
 1

Application Note

BioBlend: automating pipeline analyses within Galaxy and
CloudMan
Clare Sloggett1, Nuwan Goonasekera1,2, Enis Afgan1,3,*
1Victorian Life Sciences Computation Initiative (VLSCI), University of Melbourne, Melbourne, Australia
2Victorian eResearch Strategic Initiative (VeRSI), University of Melbourne, Melbourne, Australia
3Center for Informatics and Computing (CIR), Ruder Boskovic Institute (RBI), Zagreb, Croatia

ABSTRACT
Summary: We present BioBlend, a unified API in a high-level lan-
guage (python) that wraps the functionality of Galaxy and CloudMan
APIs. BioBlend makes it easy for bioinformaticians to automate end-
to-end large-data analysis, from scratch, in a way that is highly ac-
cessible to collaborators, by allowing them to both provision the
required infrastructure, and automate complex analyses over large
data sets within the familiar Galaxy environment.
Availability and implementation: http://bioblend.readthedocs.org/
Automated installation of BioBlend is available via PyPI (e.g., pip
install bioblend). Alternatively, the source code is available from the
GitHub repository (https://github.com/afgane/bioblend) under the
MIT open source license. The library has been tested and is working
on Linux, Macintosh, and Windows based systems.
Contact: enis.afgan@unimelb.edu.au
Supplementary information: http://bioblend.readthedocs.org/

1 INTRODUCTION
With the continuous influx of high-throughput genomic sequenc-
ing data, automation of complex analyses has become essential to
reduce repetitive effort by researchers. Genomics increasingly
involves running computationally intensive analyses, each of
which may take days, over large numbers of samples. These anal-
yses use a broad landscape of tools and usually require the skills of
both biologists and bioinformaticians.

Galaxy [Nekrutenko et al, 2012] is a popular application for
bioinformatics analysis. It provides a web-based interface that
allows interactive analysis and visualization of large, complex data
while automatically tracking all the analysis steps. It is thus an
excellent tool for designing analyses, recording provenance, and
facilitating collaboration between bioinformaticians and biologists.
However, the graphical point-and-click interface is less than ideal
for the execution of the resulting pipelines over large numbers of
samples, or for handling complex, sample-dependent workflow
logic. To remedy this, Galaxy also offers a programmatic API.
This makes it possible to (1) use Galaxy to design an analysis in a
visual and integrated setting; (2) automate reuse of the created

 *To whom correspondence should be addressed.

pipeline in a flexible, scripted manner; and (3) retain all of the
results in Galaxy’s interactive environment.

In addition to a framework for composing pipelines, there is a
need for computational infrastructure capable of doing the pro-
cessing and data storage in a scalable manner. Galaxy supports the
notion of executing entirely within a cloud computing environment
via the CloudMan platform [Afgan et al, 2011]. The CloudMan
platform enables a complete deployment of Galaxy, including the
Galaxy application itself, the underlying bioinformatics command-
line tools, and the reference data, to be easily provisioned and
managed on a cloud infrastructure [Afgan et al, 2010]. CloudMan
works with Amazon, OpenStack, OpenNebula, and Eucalyptus
based clouds and can be used with applications other than Galaxy.
CloudMan also exposes an API through which it can be program-
matically manipulated, allowing provisioning and scaling of the
compute platform for automated, parallelized pipeline processing.

Currently, the Galaxy and CloudMan APIs are available as
HTTP-based REST interfaces, which are arguably difficult for
bioinformaticians to discover and interact with. Most bioinformati-
cians are quite comfortable writing automation scripts in a high-
level scripting language. They are typically much less interested in
writing direct HTTP requests or using low-level constructs. With
that in mind, we have developed a Python library for Galaxy and
CloudMan, called BioBlend that provides a high-level interface for
interacting with the two applications. This promotes faster interac-
tion with those applications, facilitates reuse and sharing of scripts,
and eases collaboration between bioinformaticians and biologists.
Extensive API documentation is provided for the library while the
source code repository contains specific examples.

2 METHODS
The BioBlend library is implemented in Python and provides Python bind-
ings for Galaxy and CloudMan. The library needs to be installed on a local
system and imported into a runtime environment (or a script) before use.
The library functionality is then available via regular method calls on ob-
jects. When invoked, the methods return data as Python dictionaries, en-
capsulating the return state of the method invocation.

Structurally, at the top-most level, the library is divided into two main
modules, representing the two applications, Galaxy and CloudMan. Within
the module for each application, further logical structure has been created

© The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Associate Editor: Prof. Alfonso Valencia

 Bioinformatics Advance Access published April 28, 2013

2

to match the concepts and functionality available within the application.
Figure 1 illustrates this structure.

The CloudMan bindings allow cloud resources to be provisioned and
managed. By default, this will happen on the Amazon EC2 infrastructure
but support for other clouds exists. For instance, with the following code
we launch a new CloudMan platform:
from bioblend.cloudman import CloudManConfig, CloudManInstance
cfg = CloudManConfig(access_key, secret_key, cluster_name, ami_id,
 instance_type, password, block_till_ready=True)
cmi = CloudManInstance.launch_instance(cfg)
cmi.initialize(cluster_type=’Galaxy’, initial_storage_size=50)
print cmi.get_status()

The launch_instance method is a blocking call (configurable), which
will return once the CloudMan instance is provisioned and ready for use.
Next, we enable CloudMan’s auto-scaling feature, which will keep the size
of the compute infrastructure proportional to the given workload:
 cmi.enable_autoscaling(min_nodes=0, max_nodes=10)

The Galaxy bindings allow users to import data, user histories, or work-
flows to Galaxy, and to interact with existing objects. For instance, we can
import a workflow that has been archived as JSON using
gi = galaxy.GalaxyInstance(url=cmi.galaxy_url, key=galaxy_api_key)
my_workflow = gi.workflows.import_workflow_from_json(json_string)

where my_workflow will be returned as a Python dictionary encapsulat-
ing the imported workflow’s state.

We can import data from local or remote systems. For instance, to im-
port data into a Galaxy Data Library from a URL:
my_dataset = gi.libraries.upload_file_from_url(library_id, url)

or from the local machine:
my_dataset = gi.libraries.upload_file_from_local_path(library_id,
local_path)

This will return a dictionary encapsulating the dataset parameters. We
can then execute the workflow using:
datamap = {input_id: {'src': 'ld', 'id': my_dataset['id']}}
gi.workflows.run_workflow(my_workflow['id'], datamap,
 history_name="Example output")

This call mirrors the structure of the data types used by the underlying
Galaxy REST API. It will call the imported workflow with the imported
data as input, and the Galaxy workflow engine will execute the workflow’s
tasks in a correct and, if possible, parallelized order, taking advantage of
the parallel compute infrastructure. The output files can be viewed in or
retrieved from the persistent, user-owned History, which, in this case, we
have created and named Example output. In a scripting context, we can of
course scale this up to high-throughput or more complex analysis quite
easily. The online documentation includes more complete examples. It is
also worth noting that as calling run_workflow submits a series of jobs to
Galaxy and returns immediately, we can leave job queuing, parallelization
and dependency checking to the workflow engine and write our scripts in a
straightforward procedural manner.

3 DISCUSSION
Pipeline automation is becoming a necessity to reduce repetitive
effort performed by bioinformaticians (e.g., Ruffus (http://code.
google.com/p/ruffus/), Nesoni (http://vicbioinformatics.com/nesoni
.shtml)). The high-level API made available by BioBlend allows
researchers to combine the flexibility and automation of a scripting
language with the accessibility of Galaxy’s environment and
CloudMan-managed infrastructure. This makes it possible for a
bioinformatician to perform a scripted analysis, and then to follow
it up with a biologist in the Galaxy setting, leveraging Galaxy’s
capabilities for interactive analysis, visualisation, and direct pub-
lishing of data or workflows. This fills an increasingly important
gap between the need to make analyses accessible and reproduci-
ble, and the need for an automated and very flexible analysis envi-
ronment that handles all the corner cases of a research project.

As a scripting library, BioBlend opens the door for the automa-
tion of not only pipeline processing but also infrastructure provi-
sioning and management. As a result, it is uniquely positioned to
streamline pipeline automation and to become a standard library
for interacting with CloudMan and Galaxy: CloudMan can be used
to provision and manage the infrastructure required to run a high-
throughput analysis while all the processing is done through Gal-
axy. At the end of a run, the compute infrastructure can be auto-
matically released while all the data and performed steps are re-
tained within Galaxy, enabling easy reuse, visual interaction, shar-
ing, and further analysis. Furthermore, it is possible to envision
BioBlend as a first step toward defining a Galaxy Shell, which
would allow a more integrated access to Galaxy internals for ad-
vanced usage.

Since the release of BioBlend, two new complementary librar-
ies based on BioBlend have emerged from the community: Blend4j
(https://github.com/jmchilton/blend4j) and clj-blend (https://github
.com/chapmanb/clj-blend). These provide comparable functionality
but for different languages, Java and Clojure, respectively. Bio-
Blend is also demonstrated in production use in BioCloudCentral
(http://biocloudcentral.org/), where BioBlend is used to launch
CloudMan clusters on different clouds.

ACKNOWLEDGEMENTS
Galaxy, CloudMan, and BioBlend have been developed by the
Galaxy (http://wiki.galaxyproject.org/GalaxyTeam) and LSCC
teams (http://www.vlsci.org.au/page/lscc).
Funding: This work was, in part, supported by the Genomics Vir-
tual Laboratory (GVL) grant from the National eResearch Collabo-
ration Tools and Resources (NeCTAR).
Conflict of interest: None declared.

REFERENCES
Nekrutenko, A., Taylor, J. (2012) Next-generation sequencing data interpretation:

enhancing reproducibility and accessibility. Nature Reviews Genetics. 13, 667-
672.

Afgan, E., Baker, D., Coraor, N., Goto, H., Paul, I. M., Makova, K. D., Nekrutenko,
A., Taylor, J., (2011) Harnessing cloud computing with Galaxy Cloud. Nature Bi-
otechnology. 29. 972-974.

Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko, A., Taylor, J., (2010)
Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics. 11
(Supl 12). S4.

Fig. 1. Logical structure of BioBlend library modules

