
 Open access Journal Article DOI:10.1021/ACSSYNBIO.6B00304

BioBlocks: Programming Protocols in Biology Made Easier — Source link

Vishal Gupta, Jesus Irimia, Iván Pau, Alfonso Rodríguez-Patón

Institutions: Technical University of Madrid

Published on: 24 Jan 2017 - ACS Synthetic Biology (American Chemical Society)

Topics: Computer programming, High-level programming language and Cloud computing

Related papers:

 Web Experimentation on Virtual and Remote Laboratories

 The Cognitive Interaction Toolkit Improving Reproducibility of Robotic Systems Experiments

The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for
computational biology.

 SuperGlue: a programming environment for scientific visualization

 Data Pipelines and Virtual Screening: Automating the Process

Share this paper:

View more about this paper here: https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-
5ee3wkpdsa

https://typeset.io/
https://www.doi.org/10.1021/ACSSYNBIO.6B00304
https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa
https://typeset.io/authors/vishal-gupta-1m0f86swao
https://typeset.io/authors/jesus-irimia-2gri31lkn9
https://typeset.io/authors/ivan-pau-1drclhoi2b
https://typeset.io/authors/alfonso-rodriguez-paton-yqsjxvvtly
https://typeset.io/institutions/technical-university-of-madrid-1ety5u2c
https://typeset.io/journals/acs-synthetic-biology-1ighf781
https://typeset.io/topics/computer-programming-3jqyk4gq
https://typeset.io/topics/high-level-programming-language-2ak8rqqh
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/papers/web-experimentation-on-virtual-and-remote-laboratories-38fiky8j9h
https://typeset.io/papers/the-cognitive-interaction-toolkit-improving-reproducibility-1ucubc2a6a
https://typeset.io/papers/the-erato-systems-biology-workbench-enabling-interaction-and-2ae17zyqbr
https://typeset.io/papers/superglue-a-programming-environment-for-scientific-38bjpsk0de
https://typeset.io/papers/data-pipelines-and-virtual-screening-automating-the-process-vvqjex6y2z
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa
https://twitter.com/intent/tweet?text=BioBlocks:%20Programming%20Protocols%20in%20Biology%20Made%20Easier&url=https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa
https://typeset.io/papers/bioblocks-programming-protocols-in-biology-made-easier-5ee3wkpdsa

BioBlocks:

Programming protocols in biology made easier
Vishal Gupta, Jesús Irimia, Iván Pau, Alfonso Rodríguez-Patón

Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid. Campus de Montegancedo,

28660 Boadilla del Monte (Madrid) Spain.

ABSTRACT

The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-

demand biology enterprises are making automating entire experiments a reality. Automation offers the

benefit of high-throughput experimentation, rapid prototyping and improved reproducibility of results.

However, learning to automate and codify experiments is a difficult task as it requires programming

expertise. Here, we present a web-based visual development environment called BioBlocks for

describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires

little or no experience in computer programming to automate the execution of experiments. The

experiments can be specified, saved, modified and shared between multiple users in an easy manner.

BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or

remotely i.e. in the cloud. It aims to serve as a 'de facto' open standard for programming protocols in

Biology.

Keywords

Lab Automation, Rapid prototyping, Reproducibility, Blockly, Scratch, High-level programming

language.

1. INTRODUCTION

The inability to reproduce the results of biological research has become a critical issue to address

because of its economic and scientific impact.
1
 Some factors that contribute to the problem of

reproducibility are the ambiguity introduced by natural languages (English) when describing

experiments, the person-to-person variability while carrying out experiments, inadequate data sharing,

poor quality control, etc. Several academic and commercial solutions address these problems using

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081075doi: bioRxiv preprint

https://doi.org/10.1101/081075
http://creativecommons.org/licenses/by-nc-nd/4.0/

automation. Biological protocols described using programming languages are precise and can be

automated as the description (code) is machine-readable. However, they have not been successful

because it requires the user (biologist) to have expertise in programming. Notable efforts in this

direction are academic solutions like BioCoder
2
, Puppeteer

3
, AquaCore

4
, Par-Par

5
 and commercial

solutions like Antha
6
 and Transcriptics

7
. Graphical User Interfaces (GUIs) are commonly used to

describe experiments but they are solution specific and do not allow interoperability.

What are BioBlocks?

We developed BioBlocks to circumvent the programming bottleneck and allow users easier access to

automation. BioBlocks is based on visual development environments like Google’s Blockly
8
 and

Scratch
9
. They use a customizable toolbox of jigsaw-like blocks which can be linked together to produce

a machine readable code (JSON, Python, etc.). BioBlocks has customized the blocks and grammar of

Blockly, to allow the description of experimental protocols, in a simple drag and drop manner. The logic

of BioBlocks is largely based on Autoprotocol
10

 (Supplementary Table 1), a language developed by

Transcriptic for specifying experimental protocols in biology.

BioBlocks can be categorized into three types of blocks: 'container blocks', 'operation blocks' and

'organization blocks'. Container blocks represent commonly used containers like multi-well plates,

tubes, etc. 'Operation blocks' contain common procedures (actions) carried out during experimentation

like pipetting, measuring, etc. Organization blocks help the user specify protocols in an intuitive manner

akin to writing protocols in lab notebooks i.e. using Steps 1, Step 2, etc. Due care has been taken to

ensure that visual manipulation of large protocols is easy; blocks or group of blocks can be minimized to

allow for easy navigation between different parts of a protocol. These three types of blocks along with

native Blockly blocks can be linked together iteratively to form large complex protocols (Figure 1).

They can be saved, retrieved, modified and shared between multiple users.

Customization of Blocks-

The open-source nature of Blockly gives user complete control over customization of the blocks.

Customization can be done on two levels. First, modification of the blocks to generate machine code

compatible for their choice of robotic platforms and execution of their protocols. Second, to introduce

constraints to prohibit the linking of two incompatible blocks (i.e. the blocks snap away). The use of

constraints in the design of the blocks helps avoid syntactic and logical errors. Syntactic errors are

avoided because the code is generated in an automated manner and also due to the customization of

blocks to the experimental biology domain. E.g. Operations like thermocycling are compatible only

with specific types of containers (tubes). Applying this constraint restricts the user from linking

incompatible containers like multi-well plates to a thermocycling block. Logical errors like overdrawing

and under drawing fluid volumes can also be avoided. These constraints are encoded system-wide in the

blocks. The user can create new blocks with different functionalities with a novel set of constraints or

reuse/modify the existing constraints.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081075doi: bioRxiv preprint

https://doi.org/10.1101/081075
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1 BioBlocks: A) Operation (green),

Container (blue) and Organization (black)

blocks needed to describe a PCR protocol are

shown. B) The Blocks from A are linked

together in a drag and drop way to describe a

PCR protocol. The complimentary shapes of

the blocks guide the user to build the protocols

in an intuitive manner.

BioBlocks Output-

The protocols specified using BioBlocks are automatically translated in real-time to simultaneously

generate multiple outputs (see Figure 2). The first output is a translation of the protocol to machine-

readable code for its automated execution on a compatible hardware platform. The second output is a

natural language (English) translation of the protocol to aid in verification. It is in the conventional

format consisting of step-wise description of the protocol. The last output is the representation of the

protocol as a workflow using Cytoscape. It is a powerful open-source tool which allows data analysis

and visualization.
11

 The protocol workflow is an annotated and dynamic visualization, where the nodes

and edges represent the containers and the action performed over the containers respectively. The goal

of the workflow is to provide the user insight into planning and executing the protocol (Figure 2).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081075doi: bioRxiv preprint

https://doi.org/10.1101/081075
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2 Multiple outputs of BioBlocks- An example of incubation of a cell culture in BioBlocks is

shown. It is automatically translated to machine code (left), English (middle) and protocol workflow

(right) in real time. The machine compatible code enables the user (non-programmer) to use automation

and connect with multiple automation solutions.

As a proof of principle, the output code is generated using JSON syntax in two modes. The first mode is

compatible with Autoprotocol, potentially allowing for remote execution of the described protocols at

Transcriptics (a lab-in-a-cloud company). The second mode is an extension of Autoprotocol, which

allows the description of protocols requiring feedback during execution e.g. continuous culture devices

like turbidostats (Supplementary information) or any other new lab operation (block) included by the

user. The real-time feedback and control of experiments, enables the user to guide the experiment based

on real-time data. There are other drag and drop editors based on Autoprotocol (Wet Lab accelerator by

Autodesk), but they do not allow conditional programming
12

 nor addition of new lab operations. As the

DIY community for making open and 3D printable lab machines grows, BioBlocks would be very

helpful for biologists to use it to operate those machines.
13,14

CONCLUSION

We present BioBlocks, a web-based visual programming environment that addresses the problem of

reproducibility by reducing ambiguity and minimizing human error using automation. On the front end,

it is a visual programming interface based on the jigsaw model that has proven to be useful in multiple

contexts. On the back end, the software system generates code compatible with lab automation settings

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081075doi: bioRxiv preprint

https://doi.org/10.1101/081075
http://creativecommons.org/licenses/by-nc-nd/4.0/

for rapid prototyping of biological experiments. This work, is a step towards allowing the biologists to

automate and codify their experiments in a simple manner, enabling to them to connect to multiple

automation solutions.

ACKNOWLEDGMENTS

This work was partially funded by EU FP7–FET-Proactive Project 610730 EVOPROG grant, Spanish

National Projects TIN2012-36992 and TIN2016-81079-R grants. Icons in Figure 2 made

by Freepik from www.flaticon.com

REFERENCES

1. Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The Economics of Reproducibility in

Preclinical Research. PLOS Biol. 13, e1002165 (2015).

2. Ananthanarayanan, V. & Thies, W. Biocoder: A programming language for standardizing and

automating biology protocols. J. Biol. Eng. 4, 13 (2010).

3. Yaman, F., Bhatia, S., Adler, A., Densmore, D. & Beal, J. Automated selection of synthetic

biology parts for genetic regulatory networks. ACS Synth. Biol. 1, 332–344 (2012).

4. Amin, A., Thottethodi, M., Vijaykumar, T., Wereley, S. & Jacobson, S. C. Aquacore: a

programmable architecture for microfluidics. Proc. 34th Annu. Int. Symp. Comput. Archit. 254–
265 (2007). doi:10.1145/1250662.1250694

5. Linshiz, G. et al. PaR-PaR laboratory automation platform. ACS Synth. Biol. 2, 216–222 (2013).

6. Antha. at <https://www.antha-lang.org/>

7. Transcriptics. at <https://secure.transcriptic.com/>

8. Blockly. at <https://developers.google.com/blockly/>

9. MIT Scratch. at <https://scratch.mit.edu/>

10. Autoprotocol. at <http://autoprotocol.org/>

11. Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular

interaction networks. Genome Res. 13, 2498–2504 (2003).

12. Bates, M., Berliner, A. J., Lachoff, J., Jaschke, P. R. & Groban, E. S. Wet Lab Accelerator: A

Web-Based Application Democratizing Laboratory Automation for Synthetic Biology. ACS

Synth. Biol. (2016). doi:10.1021/acssynbio.6b00108

13. OpenTrons. at <http://www.opentrons.com/>

14. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J. & Klavins, E. A Low Cost,

Customizable Turbidostat for Use in Synthetic Circuit Characterization. ACS Synth. Biol. (2014).

doi:10.1021/sb500165g

SOFTWARE

Software, Tutorials and Code available on our webpage-

http://www.lia.upm.es/index.php/software/Bioblocks

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081075doi: bioRxiv preprint

http://www.freepik.com/
http://www.flaticon.com/
http://www.lia.upm.es/index.php/software/Bioblocks
https://doi.org/10.1101/081075
http://creativecommons.org/licenses/by-nc-nd/4.0/

