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Abstract
In recent years, numerous investigations have explored the use of biochar for the removal of organic and inorganic pollutants 
in single component systems. Biochar is a carbonaceous material produced from waste biomass, mainly by thermochemical 
conversion methods. This material was used as a biosorbent in various removal processes of pollutants, and its efficiency 
was strongly influenced by the characteristics of the biomass feedstock. This review integrates the recent works of literature 
to understand the biosorption behaviour of dyes onto biochar-based biosorbents. The factors influencing the biosorption 
process and the mechanisms describing the biosorption behaviours of the biochar have been broadly reviewed. Furthermore, 
the biosorption models can be used to comprehend the competence of the biochar as biosorbent for dye removal techniques.
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1 Introduction

The release of organic and inorganic pollutants into the envi-
ronment can cause severe changes (contamination in the 
water, death of trees and grassland, more problems in wild-
life, contamination in the food chain, negative health effects 
on the flora and fauna, severe human health problems etc.) 
in the atmosphere and generates various types of pollutions 
(Bhagavathi Pushpa et al. 2019). This is because these pollut-
ants are toxic, mutagenic and carcinogenic, and their presence 
in ecosystems determines the decrease of the ecosystem qual-
ity (Farah et al. 2013). Most of the pollutants are produced by 
various domestic activities and industrial discharges. All liv-
ing beings on the earth from microbes to whales depend upon 
the earth’s water and air supply. When these resources are 
polluted, the survival of all forms of living things are directly 
threatened. In recent years, the term pollution has become a 
global concern. Over two-thirds of the earth is covered with 
water and increasing human population directly contributes to 
an increase in water pollution as a result of man-made activi-
ties (Bhagavathi Pushpa et al. 2016a).

In the current situation, the quality of water is a huge 
concern for humans (Schwarzenbach et  al. 2010). The 
water is to be precious for the future generations, and it 
needs to be preserved, whereas the rate of contamination 
and depletion of natural resources is increasing day by day. 
The domestic activities have a direct or indirect impact on 
the quality of water. Subsequent impacts occur in the form 
of diminution of biodiversity, dangerous habitats, and an 
overall loss in the quality of natural life (Inyinbor et al. 
2018).

Due to the impact of these pollutants on human health 
and the environment, it has become a global threat over the 
last decade (Thillainayagam et al. 2021). For example, the 
textile industry generates huge amounts of polluted aqueous 
effluents, due to the excessive water consumption for fabric 
processing (Priya et al. 2020). Other industries are also pro-
ducing coloured and contaminated waters at the end of their 
technological processes (Pereira and Alves 2012). Polluted 
wastewater loaded with dyes has chemical stability, persis-
tent colour and high Biochemical Oxygen Demand (BOD) 
and is intolerable for ecosystems (Wang et al. 2007). In 
India, the textile industry is the major sector that consumes 
huge amounts of dyes (Mathur et al. 2005). About 20% of 
the world’s total water pollution is due to such industrial 
dyeing activities (Streith 2018; Rita 2012) with an esti-
mated amount of 2.8 Lakh tons of dyes per annum being 
released to the environment (Jin et al. 2007). Because of 
this, many countries have imposed strict laws and regula-
tions for wastewater disposal and separate guidelines for 
each industry to reduce the discharge of pollutants into the 
environment.

Many industries have designed and implemented differ-
ent treatment strategies to treat their effluents. For example, 
adsorption, ion-exchange, filtration, irradiation and coagu-
lation, oxidation, Fenton’s reagent  (H2O2-Fe salts), photo-
chemical, ozonation, sodium hypochlorite (NaOCl), and 
electrochemical destruction were used to remove the organic 
pollutants from the wastewater (Robinson et al. 2001; Yagub 
et al. 2014; Salleh et al. 2011).

Over the recent past, biological treatment has been one of 
the cost-effective technologies compared to other processes 
(Vijayaraghavan and Yun 2008a). Microorganisms were 
majorly used for the degradation of contaminants from the 
wastewater through different bioprocess techniques (Mcmul-
lan et al. 2001). Biodegradation or biotic degradation is the 
biochemical degradation of contaminants by bacteria or 
other biological sources. These organisms are transforming 
pollutants through metabolic or enzymatic processes. Many 
bacteria species were successfully used for the biosorption 
of pollutants from effluents (Harshad Lade et al. 2015; Gua-
die et al. 2017; Neetha et al. 2018). Although the method 
is environmentally benign, high operating costs associ-
ated with long operating time hinder commercial process 
applications.

Biosorption is a technique that utilizes the biomass to 
adsorb contaminants from aqueous solutions. Compared to 
other conventional methods, biosorption is considered as 
one of the most effective treatment techniques, both techno 
centric and eco centric (Varshini and Das 2014; Bhagavathi 
et al. 2016b; Kucuker et al. 2017). Biobased sorbents (or 
biosorbents) such as fungi, bacteria, polysaccharide sor-
bents, algae (Sabah et al. 2016; Moghaz Reda and Abdo 
Sayeda 2018), and agricultural wastes (Vijayaraghavan and 
Yun 2008a) are cheap, available in large quantities, and their 
performances depend; the type of dye and the experimental 
conditions (including initial dye concentration, pH, tempera-
ture, contact time, etc.). Therefore, biosorbents with a higher 
potential to bind/take dyes molecules are desirable (Macek 
and Mackova 2011).

These are the main reasons why recent environmental 
remediation studies have focused on the use of biochar and 
biochar-based adsorbents for the removal of contaminants 
from aqueous media (Tareq et al. 2019; Alam and Alessi 
2019; Li et al. 2019). The characteristics of such materials 
highly depend on the nature of feedstock biomass, prepa-
ration conditions and the synthesis techniques. (Lee et al. 
2018; Shakoor et al. 2019). All these factors strongly influ-
enced the nature of superficial functional groups, surface 
charge, pH, mineral content specific surface area and poros-
ity of biochars (Tareq et al. 2019) and are responsible for 
their adsorptive performances. Resultant biochar plays a sig-
nificant contribution to address the adsorbent requirements 
and globally, it was considered as an effective and low-cost 
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treatment technique (Thines et al. 2017). Biochar from vari-
ous feedstocks was made and effectively inspected for their 
sorption capacity towards various metals (Inyang et al. 2016) 
and nutrients (Kasak et al. 2018).

The main objective of this review is to provide a concep-
tual understanding of current research trends, discoveries 
and theories on biomass-derived biochar as an adsorbent 
for the removal of dyes from an aqueous solution. The key 
purpose of this study is to review the efficient use of bio-
mass feedstocks for biochar synthesis, to investigate the dye 
sorption behaviour, and to review the effects of operational 
parameters on these adsorption processes.

2  Biomass feedstock used for biochar 
preparation

It is well known that the main source of feedstocks for the 
preparation of biochar is biomass. Biomass can be defined 
as animal or plant residue obtained from their transforma-
tions at the end of its utility (Irmak 2017). It covers wood 
and agricultural residues as lignocellulosic materials, and 
municipal solid waste and livestock residues, as non-ligno-
cellulosic materials. These types of biomass can be directly 
converted into high value products, such as bioenergy, chem-
icals and materials by various thermochemical techniques. 
Depending on the value of the working temperature, pres-
sure and time required for heating, thermochemical methods 
are classified into pyrolysis, gasification, liquefication and 
direct combustion. Of these methods, pyrolysis is considered 
the most cost-effective method, as it yields by-products, such 
as biochar, bio-oil and syngas, which have high economic 
value.

2.1  Selection of biomass feedstock’s categories

The raw biomass that is considered as waste in agricultural 
practices, namely rice husk (Jegan et al. 2020a, b; Liu et al. 
2012), coconut shell (Anton et al. 2017; Praveen et al. 2020), 
groundnut shell (Ahmad et al. 2012; Jegan et al. 2020b), 
wood wastes (Lucchini et al. 2013), sunflower seed husk 
(Saleh et al. 2016), cauliflower leaves, orange peels (Stella 
Mary et  al. 2016), poplar wood (Suliman et  al. 2015), 
raw fish scales (George et al. 2019), switch grass (Pat-
rick et al. 2017), beech wood (Guizani et al. 2017), pine-
wood (Mohanty et al. 2013), timothy grass (Mohanty et al. 
2013), soybean stover (Ahmad et al. 2012), saw dust (Liu 
et al. 2012), algae residues (Chang et al. 2015), seaweeds 
(Gokulan et al. 2019a, b, c; Kumar et al. 2021), walnut shell 
(Mukome et al. 2013), poultry manure (Kameyama et al. 
2016), can be used efficiently for biochar production.

The composition and amounts of different constituents 
such as hemicellulose, cellulose and lignin vary depending 

on the type of feedstock materials used (Inyang et al. 2014). 
These constituents will undergo thermal decay during the 
pyrolysis process. This degradation of the constituents 
occurs first between 200 and 260  °C (hemicelluloses), 
230–350 °C (cellulose) and lignin (300–500 °C). Due to the 
seasonal availability of feedstocks biomass, it is preferable 
to use a combination of biomass feedstocks from different 
source points including agricultural residues, forestry wastes 
and manures, etc., to obtain biochar (Tong et al. 2011). 
Figure 1 illustrates the sustainability of biomass-derived 
by-products.

Different researches pointed out that the sorption of pol-
lutants was based on several adsorption mechanisms and 
it depended on the type of feedstock that was used for bio-
char production. In general, the sorption capacity of the 
biochar was based on pore filling, electrostatic attraction, 
precipitation, complexation and ion exchange mechanism. 
For instance, Mohan et al. (2007) reported that the sorp-
tion capacity of the biochar obtained from agricultural waste 
and wood biomass is mainly due to the existence of super-
ficial functional groups (such as: C=O, C–O, –OH, etc.), 
which can interact with inorganic or organic compounds 
from aqueous media. The sorption mechanism may vary 
depending on the characteristics of biochar and the physico-
chemical properties of the contaminants (Kumar et al. 2011; 
Gwenzi et al. 2017).

2.2  Biochar development

Thermochemical conversion methods such as pyrolysis, 
hydrothermal carbonization (HTC), and gasification are the 
most commonly used conversion techniques for biochar syn-
thesis. The highest biochar yields were obtained in case of 
pyrolysis (Wang et al. 2019), and therefore this process was 
considered to be the most effective and economic in terms 
of biochar production (Waqas et al. 2020).

In pyrolysis, the biomass was heated to a temperature 
of 150–900 °C in an oxygen-free environment to convert 
biomass into biochar (Ahmad et al. 2014). During this ther-
mal degradation, the organic compounds from the compo-
sition of biomass feedstock (hemicellulose, cellulose and 
lignin) are degraded. Thus, the yield of the pyrolysis prod-
ucts (bio-solid, bio-oil and biogas) also varies, depending 
on the temperature, retention time and heating rate, etc. As 
a function of these parameters, the pyrolysis processes are 
classified into slow, intermediate, fast and flash (Table 1). 
Figure 2 shows the classification of batch production process 
of biochar.

Slow pyrolysis can be defined as a continuous operation, 
where oxygen-free feedstock biomass is transferred to a fur-
nace, on the other end, fast pyrolysis depends on very rapid 
heat transfer, usually to fine particles at less than 650 °C 
with a heating rate (ca 100–1000 °C/s). In the gasification 
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chamber, the feedstocks are oxidised at the temperature 
of about 800 °C and high pressure (Oliver et al. 2013). In 
HTC, the conversion of biomass into biochar was carried 
out by the application of heat and pressure in the presence 
of water, reaction temperature (160–800 °C) and the reac-
tion pressure must be maintained (> 1 atm) in the liquid 
form (Vijayaraghavan 2019). This method is often applied 
to the wet biomass feedstock for biochar production. Slow 
pyrolysis and hydrothermal carbonization techniques are 
the most efficient thermochemical conversion methods to 
produce the biochar in terms of feedstocks and high carbon 
yield. However, the biochar derived from HTC technique 
was readily biodegradable, whereas biochar derived through 
slow pyrolysis technique was more stable and thus had a 

distinctly higher potential for carbon sequestration than HTC 
(Malghani et al. 2013).

3  Biochar for bioremediation of dyes

Biological techniques have been engaged commonly for the 
treatment of dyes from wastewaters. In recent years, these 
technologies have gained considerable attention and are cur-
rently in the process of commercialization (Vijayaraghavan 
and Yun 2008a). Biosorption is a process that utilizes 
inactive biological materials to sequester the concentra-
tion of pollutants from aqueous solutions. In recent years, 
biosorption is considered as a rapid, reversible, economic, 

Fig. 1  Overview of the sustainability of biomass-derived biochar by pyrolysis. Reprinted from Woolf et al. (2010)

Table 1  Pyrolysis process conditions (Nartey and Zhao 2014)

Process Condition Liquid (Bio-oil) Solid (Biochar) Gas (Syngas)

Slow pyrolysis Low-moderate temperature (300–550 °C), long residence time 30% 35% 35%
Intermediate pyrolysis Low-moderate temperature (450–550 °C), moderate hot vapour 

residence time
50% 25% 25%

Fast pyrolysis Moderate temperature (400–600 °C), short hot vapour residence 
time

75% 12% 13%

Flash pyrolysis High temperature (750–1000 °C), (0.5 s) – 50% 50%
Gasification High temperature (> 700 °C), long vapour residence time 5% 10% 85%
Hydrothermal carbonization Elevated temperature (< 200 °C) elevated pressure¸ long resi-

dence time (1–16 h)
– 60% –
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and environment-friendly technology compared to con-
ventional methods (Varshini and Das 2014; Kucuker et al. 
2017). Biosorption is a promising potential alternative to 
conventional processes for the removal of dyes (Bhagavathi 
et al. 2016). The biobased sorbents used in the dye removal 
process are usually acquired from various industrial wastes, 
fungi, polysaccharide sorbents, bacteria, seaweeds, and agri-
cultural wastes (Vijayaraghavan and Yun 2008a). The per-
formance of biosorbents can vary within fairly wide limits, 
and mainly depends both on the nature of biomass and on the 
operating experimental conditions used during of biosorp-
tion (Vijayaraghavan and Yun 2008b). Therefore, finding an 
effective biosorbent to remove certain contaminants from 
aqueous media is still a major challenge.

An effective commercial biosorbent requires the follow-
ing characteristics: high biosorption capacity (Wang et al. 
2017), adequate surface characteristics (Shi et al. 2015), 
effective and low-cost separation of biosorbent from solu-
tions (Xin et al. 2017; Rosales et al. 2017), resilient mechan-
ical strength and thermal stability (Wang et al. 2017), avail-
ability and cost-effective preparation (Du et al. 2016; Saha 
et al. 2017). Thus, taking into account these requirements, 
biochar has been widely used for environmental bioreme-
diation. Figure 3 exemplifies the heterogeneous structure 
of biochar and its potential applications in environmental 
bioremediation.

Today, many environmental remediation studies have 
focused on biochar and biochar-based adsorbents (Tareq 
et al. 2019). The operational use of biochar involves the 
study of the superficial properties of these materials, because 
these characteristics are important in the interactions with 
target contaminants, and their adsorptive performance, in 
order to find as many practical applications as possible 
(Novak 2018). Figure 4 demonstrates the potential pathways 
of biochar and its possible environmental applications.

3.1  Factors affecting the biosorption of dyes 
on biochar

Biochar’s adsorption capacity is strongly influenced by the 
biochar characteristics and by several experimental param-
eters such as solution pH, biochar dosage, temperature, ini-
tial dye concentration and contact time. In this section, the 
above-mentioned factors were discussed.

3.1.1  Biochar characteristics

The biochar produced from different conversion techniques 
has different functional compositions and characteristics, 
due to the variations in the operating conditions. Due to this 
variation, the biochar synthesis generally adopted the batch 

Fig. 2  Classification of the batch biochar production processes
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reactor mode. Thus, it is very important to understand the 
current research gap to attain the requirements of adsorptive 
tendency and uniform quality for large-scale productions. 
As mentioned earlier, the pyrolysis temperature, reactor 
residence time, the type of thermochemical conversion and 
nature of feedstock significantly influence the characteristics 
of the obtained biochar and have an important effect on the 
sorption performance of different pollutants.

During the pyrolysis process, the diameter of formed 
pores varies from nanometres to micrometres. Pore size is 
one of the most important factors governing the adsorption 
mechanism. Various researches have shown that the larger 
pore size is generated at high pyrolytic temperature and 
causes the surface area to increase. Along with the pyrol-
ysis condition, the constituents of feedstock biomass also 
regulate the porosity. For instance, pyrolysis of lignin and 

cellulose enriched biomaterials produces microporous bio-
char. (Joseph et al. 2007).

The pH of the biochar also varies with pyrolysis tem-
perature and feedstock material type. The pH of the bio-
char increases at high pyrolytic temperature (Jin et al. 2016) 
because higher pyrolytic temperature results in more ash 
content and degrades the acidic functional groups resulting 
in high pH. The pH of the solution greatly affects the surface 
condition of the biochar. The presence of various functional 
elements at different proportions in the feedstock decreases 
the elemental ratio of the biochar at varying temperatures. 
The aromaticity and polarity of the specific biochar are due 
to these compositions. In general, high-temperature biochar 
provides a low H/C and O/C ratio compared to low-tempera-
ture biochar. The biochar’s mineral content is also regulated 
by the feedstock kind and pyrolysis temperature, along with 

Fig. 3  Applications of biochar in environmental bioremediation. Reprinted (adapted) with permission from Xiao et al. (2018)
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Fig. 4  Potential pathways of biochar and its possible environmental applications
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other physiochemical properties. The presence of mineral 
components in the biochar promotes precipitation and cati-
onic exchange of pollutants from aqueous media (Uchimiya 
et al. 2010). Although these pollutants are removed by π–π 
interaction, electrophilic interaction, hydrophobic action and 
hydrogen bonding are regulated by certain properties.

In brief, the nature of biomass feedstock and pyrolytic 
temperature will significantly influence the physiochemical 
properties of the synthesized biochar. The biochar which 
has a relatively high surface area, high hydrophobicity and 
microporosity obtained at high pyrolytic temperature will 
favour high sorption capacity for organic pollutants (Raja-
paksha et al. 2014). Whereas the biochar obtained at low 
temperature has diminished pores and more oxygen-contain-
ing functional groups. On the other hand, the pyrolysis tem-
perature will regulate the surface functions of biochar. For 
example, wood biomass-derived biochar has higher surface 
area than the biochar generated from industrial wastes and 
animal manure, even if all biochars are obtained under the 
same operating condition (Rajapaksha et al. 2014). Thus, 
by refining both parameters, the biochar properties make it 
more desirable for applications involved in the adsorption 
method. Table 2 illustrates the important characteristics of 
biochar required for the sorptive removal of organic pollut-
ants (Table 3).

3.1.2  Solution pH

The solution pH has a direct influence, not only on the 
adsorption capacity but also on the surface chemistry of the 
biochar as well as the accessibility of dye molecules for the 
binding sites (Vijayaraghavan and Ashokkumar 2019). From 
most of the previous studies, it is inferred that the optimum 
pH for dyes removal is often neutral or slightly alkaline 
(Sadhasivam et al. 2007). The percentage of dyes removal is 
maximum only at optimum conditions, and tends to decrease 
rapidly in acid or alkaline conditions. The solution pH is 
directly associated with the competition ability of hydrogen 
ions with adsorbate ions to active sites on the adsorbent sur-
face (Janaki et al. 2012; Clifford and Noemi 2010).

Babaei et al. (2016) analysed the role of solution pH 
on the biosorptive removal of methylene blue dye by bio-
char derived from agricultural wastes. The inference was 
observed by varying the solution pH from 2 to 9. The dye 
removal efficiency of the biochar was drastically improved, 
from 40 to 90%, by the pH variation from 2 to 9. The authors 
also pointed out the point of zero charge value (8.5). This 
upfront sorption behaviour of the biochar was attributed to 
the negative surface charge of the biochar, which favours 
electrostatic interactions, during of biosorption process.

Table 2  Adsorptive removal mechanisms of various organic pollutants by biochar in the aqueous medium

Pollutants Biochar feedstock Adsorption mechanisms References

Brilliant blue Rice and wheat straw Electrostatic attraction and intermolecular hydrogen 
bonds

Qiu et al. (2009)
Basic red 09
Trichloroethylene Peanut Hydrophobic action and hydrogen bonding Ahmad et al. (2012)
Tetracycline Rice husk π–π interaction Liu et al. (2012)
Basic red 09 Coconut shell Electrostatic attraction Praveen et al. (2020)
Basic blue 41 Rice husk Electrostatic interaction Jegan et al. (2020b)
Basic violet 03 Groundnut shell Electrostatic attraction Jegan et al. (2020a)

Table 3  Adsorption characteristics of various pollutants with biochar

Feedstock Pollutant Applicable Isotherm model Applicable Kinetic 
model

References

Groundnut shell biochar Basic Blue 41 Langmuir, Freundlich, Sips, Toth PFO, PSO Jegan et al. (2020)
Groundnut shell biochar Basic Red 09 Langmuir, Freundlich, Sips, Toth PFO, PSO Jegan et al. (2020)
Cocos nucifera shell biochar Basic Blue 41 Langmuir, Freundlich, Sips, Toth PFO, PSO Praveen et al. (2020)
Cocos nucifera shell biochar Basic Red 09 Langmuir, Freundlich, Sips, Toth PFO, PSO Praveen et al. (2020)
Switch grass biochar Methylene Blue Langmuir, Freundlich PFO, PSO Park et al. (2019)
Switch grass biochar Orange G Langmuir, Freundlich PFO, PSO Park et al. (2019)
Switch grass biochar Congo Red Langmuir, Freundlich PFO, PSO Park et al. (2019)
Bovine bone biochar Basic Red 09 Langmuir, Freundlich PFO, PSO Cortes et al. (2019)
Fish scale biochar Basic Red 09 Langmuir, Freundlich PFO, PSO Cortes et al. (2019)
Rice husk biochar Basic Blue 41 Langmuir, Freundlich, Sips, Toth PFO, PSO Praveen et al. (2020)
Rice husk biochar Basic Red 09 Langmuir, Freundlich, Sips, Toth PFO, PSO Praveen et al. (2020)
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3.1.3  Biochar dosage

Many investigations have been concentrated on adsorbent 
dosage during dye sequestration techniques to find out an 
optimum minimum sorbent dose required for maximum 
removal (Chattoraj et al. 2016). The rate of dye removal 
percentage was found to be quick in the initial hours and 
then decelerated when the biochar dose increased (Dawood 
et al. 2017). This rapid rate of percentage removal of dye 
with adsorbent dosage could be attributed to the availability 
of the sorption sites on the surface of the adsorbent. Whereas 
in diminished dosage conditions the dye molecules are more 
easily accessible thus the efficiency of dye removal per unit 
weight of biochar is higher (Alene et al. 2014; Uddin et al. 
2017).

3.1.4  Temperature

From the previous research, it is evident that the temperature 
has a significant influence on the equilibrium dye uptake. 
Hence the temperature will be a vital design parameter 
affecting the sorption capacity (Iftekhar 2018). Generally, 
temperature exhibits a strong impact on the adsorption 
capacity, and it is directly proportional to the rate of reaction 
(Wahab et al. 2017). The increase in temperature increases 
physio-sorption and the decrease in temperature will result 
in a lower rate of physio-sorption. Porous substances are 
better adsorbents as they promote adsorption through an 
increased surface area. The rate of dye removal increases 
with the increase in temperature up to a certain limit, after 
that, there is a limitation in the process.

Sathishkumar et al. (2007) recommended that the opti-
mum removal was obtained at  350C to  400C and warranted 
that the adsorbent was capable of adsorbing the adsorbate 
at any particular temperature. The change in temperature 
with varying uptake capacity was referred to endothermic 
(absorbs heat) or exothermic (releases heat) process (Karimi 
et al. 2019; Ofomaja and Ho 2008).

3.1.5  Initial dye concentration and contact time

The initial dye concentration of sorbent strongly influences 
the efficacy of adsorption process. Bustard et al. (1998) 
showed increasing initial concentration of dyes provided a 
significant force to cover all mass transfer resistance between 
the aqueous and solid phases. Also, increasing the initial dye 
concentration increases the number of collisions between 
dye anions and sorbent. On the other hand, a decrease in 
decolourization capacity may occur due to the accumulation 
effect of the dye concentration to inadequate biomass con-
centration for the uptake of higher concentrations. The role 
of initial concentration on the percent of dye removal has 
a limited effect on the adsorption due to the unavailability 

of the required number of active surface sites on the bio-
char. Thus, the removal percent becomes saturated at a par-
ticular dye concentration (Abbas 2013). However, the ratio 
between the dye molecules and the surface sites is low and 
the removal percent of dye molecules is high at the lower 
concentrations. Thus, the sorption becomes independent.

3.2  Adsorption isotherms

The movement of pollutants in aqueous media and suc-
ceeding development of containment measures have led 
to the use of adsorption among other techniques (Shooto 
et al. 2016). To understand an adsorption process, it is much 
needed to know the equilibrium information and the effect 
of concentration. The quality of adsorbent is known by the 
amount of sorbate that can attract and retain in an immobi-
lized media. The sorption uptake can be expressed in mg/g 
(milligrams of dye adsorbed per gram of the sorbent) or 
mmol/g.

The evaluation of single sorbate sorption performance is 
best based on a complete single sorbate sorption isotherm 
curve resultant under the same environmental conditions. 
The adsorption isotherm is usually derived for dye uptake 
versus the dye concentration in the solution at equilibrium. 
In common, the uptake increases as concentration increases 
and at higher concentrations it will reach saturation, thus 
resulting in a concave-shaped curve. These isotherms can be 
modelled to validate the data using several empirical models. 
Isotherms models also play a vital role in the technology 
transfer from lab scale to industrial applications. Different 
models were used to describe the operation mechanisms, 
analyse experimental functions, predict and optimize pro-
cesses. Quite a few models are available to define sorption 
isotherm data which include one single-parameter model, 
seven two-parameter models, five three-parameter models, 
four four-parameter models and one five-parameter model.

In general, the Langmuir (1916) adsorption isotherm 
has traditionally been used to describe the gas–solid phase 
adsorption. In its description, Langmuir stated that the 
physical force of attraction was the key function for binding 
the nature of the adsorbents to the dye molecules and he 
signified in his equation with an assumption that all surface 
sites had an equal attraction for the adsorbate. Further, it 
was prolonged to analytically describe equilibrium relations 
between the bulk liquid phase and solid phase (Davis et al. 
2003). In general, the following assumptions for the Lang-
muir model are made such that all sorption sites are uniform, 
one sorbate molecule reacts with one active site, and there is 
no interaction between sorbed species. At least one of these 
conditions is implicitly not met in the case of biosorption. In 
this process, there is more than one type of functional groups 
contributing to the biosorption process, each of which has 
a different affinity for sorbing dye molecules (Schiewer and 
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Volesky 1995). The Langmuir model is frequently used to 
fit batch biosorption data and in most cases, they success-
fully describe the equilibrium of dye biosorption (Yagub 
et al. 2014).

Originally, the Freundlich (1906) isotherm adsorption 
was empirical. But later, however, it was interpreted as sorp-
tion on heterogeneous surfaces or surface with supporting 
sites of different affinities (Schiewer and Volesky 1995; 
Davis et al. 2003). It was assumed that the stronger binding 
sites were first occupied and that the binding force decreased 
with the increasing occupancy of the site. Redlich and Peter-
son (1959) integrated the characteristics of both Langmuir 
and Freundlich models into a unified solution of adsorp-
tion with a hybrid mechanism and it doesn’t have monolayer 
nature of adsorption (Gimbert et al. 2008).

Afshin et al. (2018) experimented the adsorptive removal 
of BB41 onto activated carbon derived from algae using 
batch equilibrium method. The isotherms were analysed 
using the two-parameter isotherm models and the Lang-
muir model was described as the best fit for the experimental 
datasets. Sivarajasekar and Baskar (2013) studied the basic 
red 9 adsorptions in batch mode using activated carbon as 
adsorbent derived from immature cotton seeds. The experi-
mental equilibrium data were analysed using 24 different 
isotherm models including one single-parameter model, six 
two-parameter, eleven three-parameter models, five four-
parameter models and one five-parameter model. Among 
the all the 24 isotherms models analysed, Fritz-Schlunder-V 
was obtained to be the good sign of the experimental data 
using non-linear regression analysis.

3.3  Adsorption kinetics

Like conventional sorption processes, biosorption inher-
ently involves very rapid sorption reaction mechanisms 
(Vijayaraghavan and Yun 2008b). Many researchers used 
kinetic models including pseudo-first and second-order mod-
els to inspect the experimental data to examine the sorption 
mechanism and potential rate controlling steps such as mass 
transport and chemical reaction processes (McKay et al. 
1999). Thus, the effect of contact time was the crucial fac-
tor to determine the adsorption kinetics. Hence, the kinetics 
of adsorption is the basis for determining the performance of 
a fixed bed or other flow-through systems (Qiu et al. 2009).

Lagergren (1898) presented a first-order rate equation to 
describe the kinetic process of adsorption of oxalic acid and 
malonic acid to charcoal from liquid to solid phase, which is 
believed to be the earliest model of adsorption rate based on 
adsorption capacity. To distinguish kinetic equations from 
solution concentration based on adsorption capacity, Lager-
gren’s first-order rate equation has been called a pseudo-
first-order model (Ho and McKay 1998a). Ho and Mckay 
(1995) described a kinetic adsorption process for divalent 

metal ions on peat (Ho and McKay 1998b) and the bonding 
between metal ions and functional groups on peat such as 
aldehydes, ketones, acids and phenolic is responsible for the 
peat’s cation exchange capacity (Ho and McKay 2000). As 
well, the pseudo-second-order equation was also called as 
Ho’s second-order rate. This equation has been successfully 
applied to the biosorption kinetics of various dyes such as 
the removal of methylene blue from aqueous solution using 
coco-peat (Premkumar and Vijayaraghavan 2015) and sorp-
tion of Remazol dyes by green seaweed-derived biochar 
(Gokulan et al. 2019a).

3.4  Adsorption mechanisms

Conventional techniques are generally deployed to treat the 
wastewaters whereas in certain cases, different techniques 
are also deployed to treat wastewater, all of which are time-
consuming and expensive, resulting in reduced efficiency. 
Currently, biochar applications onto bioremediation have 
attracted the global research interest due to its eco-friendly, 
cost effective, and sustainable behaviour (Thompson et al. 
2016). To confirm this unique characteristic of biochar for 
biosorption of various pollutants it becomes essential to 
understand the surface structural interactions and mecha-
nisms. General biosorption mechanisms involved in the 
adsorption of organic pollutants are pore diffusion, hydro-
phobic action, hydrogen bonding, cationic and anionic 
interactions and partitioning through uncarbonized areas as 
demonstrated in Fig. 5.

In general, biochar synthesised at high pyrolysis condi-
tion has more surface area, aromatic nature with less polarity 
and acidic nature. In this condition, the hydrophobic adsorp-
tion takes place with the loss of oxygen and hydrogen-con-
taining surface functional groups. The biochar formed at low 
temperatures has more functional groups and is vulnerable 
to the adsorption of polar organic groups by hydrogen bond-
ing. The electrostatic force of action is the key mechanism in 
the adsorption process to extract the cationic dyes. Biochar 
derived from agricultural crop residues, peanut hull effec-
tively removed cationic dyes like methyl violet, methylene 
blue, basic blue, crystal violet and rhodamine by using the 
electrostatic force of interaction as adsorption mechanism 
(Jegan et al. 2020a, 2020b; Praveen et al. 2020). Biochar 
produced at lower temperatures comprises of π-systems with 
functional groups consisting of retreating electrons and they 
are in deficient of electrons, so they can act as acceptors 
and interact with the electron-donating functional groups 
in the dye molecules. Whereas biochar produced at higher 
pyrolytic temperature contains both donors and retreater 
electrons and thus it can interact with both functions (Sun 
et  al. 2012). However, the nature and type of reactions 
occurring between the dye molecules and sorbent surfaces 
are strongly impelled by the pH. In high basic pH condition, 
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the OH (phenolic) groups of adsorbent surfaces undergo 
alienation which leads to the negative surface charge of the 
adsorbent and thus it improves electrostatic reactions with 
cationic dye molecules whereas, in acidic condition, elec-
tron-donor–acceptor action surges and endorses hydrogen 
bonding with the dye molecules (Li et al. 2016).

4  Conclusion

The review provides an overview of recent advancements in 
biochar production from various biomass, and its potential 
applications as biosorbent for biosorption of dyes. Literature 
review on the synthesis of biochar showed that many bio-
logical materials were used as feedstock for biomass and 

pyrolyzed through various processes to combat water contam-
ination. Pyrolytic temperature, reactor residence time, heating 
rate, pyrolysis technique and feedstock natures have highly 
affected the properties and characteristics of the resultant bio-
char. The findings of the characterisation studies revealed that 
biochar can be used as an effective adsorbent. Insights from 
various studies suggest that the dyes are adsorbed by different 
processes including hydrogen affinity, electrostatic attraction, 
pore filling, hydrophobic and π–π interaction. The previous 
investigations have indicated that biochar is feasible and novel 
because of its adsorption capacity, its eco-friendly nature and 
economic benefits. Despite the substantial usage of biochar 
as adsorbents, there are still uncertainties in the know-how of 
technology and more relevant researches are required in future 
work to close these uncertainties.

Fig. 5  Adsorption mechanisms of inorganic and organic contaminants. Reprinted from Wang et al. (2020)
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