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Abstract. Key priorities in biochar research for future guidance of sustainable policy development have been identi�ed 
by expert assessment within the COST Action TD1107. �e current level of scienti�c understanding (LOSU) regard-
ing the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were 
addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical 
properties, nutrient cycles and crop production, and soil remediation. �e highest future research priorities regarding 
biochar’s e�ects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s 
contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cy-
cling due to microbial priming as well as altered rhizosphere ecology, and soil pH bu�ering capacity. Methodological 
and other constraints to achieve the required LOSU are discussed and options for e�cient progress of biochar research 
and sustainable application to soil are presented.

Keywords: biochar, biodiversity, ecosystem services, ecotoxicology, greenhouse gases, nutrient cycles, policy support, 
soil organic matter, soil physical properties, soil remediation.

goal, 36 invited international biochar and soil scientists 
(Table 1) met over two days in June 2014 at the Univer-
sity of Aveiro (Portugal), to review, discuss and evaluate 
the current and required Level of Scienti�c Understand-
ing (LOSU) to achieve sustainable biochar policy develop-
ment. �e workshop was followed by online discussions, 
leading to an assessment of research priorities based on 
perceived gaps in scienti�c knowledge and their impor-
tance to di�erent issues relevant to biochar soil amend-
ment.

1. Methods

In a preliminary exercise, a methodology using a soil-
based ecosystem services approach was proposed, dis-
cussed and adopted as a starting point (Je�ery et al. 2010, 
following MEA 2005) to ensure a collective understand-
ing from a policy development perspective and facilitate 
knowledge transfer of outcomes to a wider audience. Vari-
ous iterations of plenary discussions and ranking exercis-
es were carried out. Five main thematic areas of biochar 
research were addressed, which combined the working 
groups 2 (land use implementation) and 4 (environmental 
impact assessment) of the COST Action TD1107 “Bio-
char as option for sustainable resource management” 

Introduction

Biochar research has evolved rapidly in terms of published 
peer-reviewed papers (Verheijen et al. 2014), developing a 
growing body of knowledge to support sustainable deci-
sion making (e.g. Lehmann, Joseph 2015). However, many 
issues have been explored only super�cially and there are 
still considerable knowledge gaps in some areas. For in-
stance, the e�ects of biochar additions have received more 
attention than underlying mechanisms; trade-o�s between 
speci�c mechanisms have only started to be investigated 
(Je�ery et al. 2015a), while long-term interactions in soil 
ecosystems required to inform sustainable policy devel-
opment have rarely been addressed (Zhang et al. 2016). 
Many authors reported biochar’s potential impacts on 
agronomic responses or singled out certain environmen-
tal aspects but did not consider the wider environmental 
impacts of biochar use as a soil amendment, e.g. on soil 
remediation options, soil organic carbon (SOC) stocks, 
greenhouse gas (GHG) emissions, nutrient leaching, and 
soil functional diversity, including its use in (agro)forestry. 

�e current study aimed to identify knowledge gaps 
and prioritize the focus for future biochar research to in-
form decision-makers relevant to the full scope of bio-
char-soil-crop-environment interactions. To achieve this 
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(Verheijen et al., this issue): (i) soil biodiversity and eco-
toxicology, (ii) soil organic matter and greenhouse gas 
(GHG) emissions, (iii) soil physical properties, (iv) nu-
trient cycles and crop production, and (v) soil remedia-
tion. Twenty-two potential soil-based ecosystem services 
relevant to biochar application as a cross-cutting soil and 
environmental management tool were identi�ed.

For each of the 22 soil-based ecosystem services 
(MEA 2005), participants assigned a point score re�ect-
ing their assessment of the importance of the service to 
sustainable policy development and the current and mini-
mally required LOSU of biochar soil amendment inter-
actions with ecosystem services. Subsequently, the main 
exercise was conducted, using the same structure in the 
�ve thematic groups. Here, soil indicators (properties 
and processes) relevant to biochar were used, instead of 
soil-based ecosystem services, on account of more con-
sistent understanding between participants from diverse 
disciplines. Within each thematic group, soil indicators 

were identi�ed and ranked according to their relative im-
portance. �e relative importance is de�ned as the extent 
to which biochar soil amendment a�ects each indicator. 
�e current and the minimal LOSU considered required 
to e�ectively guide policy development were objectively 
assessed. Key priority issues, speci�c knowledge gaps and 
methodological aspects linked to biochar impact evalua-
tion were identi�ed and recommendations for future re-
search were put forward. 

�e results were re�ned within each thematic group 
and the combined data were evaluated according to the 
following calculations:

(1) Research Gap = Required LOSU – Current LOSU;

(2)  Research Priority Index (RPI) = 
(Research Gap) × (Research Gap) ×  

(Relative Importance). 

Higher values of RPI refer to higher priorities.
As the between-group variation in all the above 

Table 1. Organisation of the �ve thematic groups (the names of facilitators/discussion leaders of each thematic group underlined), 
largely based on the structure of working groups 2 (land use implementation) and 4 (environmental impact assessment) of the 
COST Action TD1107

Soil biodiversity & 
ecotoxicology

Soil organic matter & 
greenhouse gases

Soil physical 
properties

Nutrient cycles & crop 
production

Soil  
remediation

Ana Catarina Bastos Juergen Kern Priit Tammeorg Ellen Graber Frédéric Rees 

António Amaro Gemini Delle Vedove Gabriel Gascó Claudia M. d. S. Cordovil Georg Lemmer 

Alice Budai Jan Horak Bruno Glaser Bruno Glaser Aline Puga 

Xavier Domene Pietro Panzacchi Mark Kibblewhite Claudia Kammann Flávio Silva 

Ciro Gardi Munoo Prasad Elena Kondrlova David Laird

Simon Je�ery Verena Lehr Martinho Martins Lidia Sas-Paszt 

Susana Loureiro Giustino Tonon Wenceslau Teixeira Greet Ruysschaert

Marija Prodana Frank Verheijen Maurizio Ventura

Costanza Zavalloni

Fig. 1. Di�erences between thematic groups in the mean values for research priority index and its partitions: Importance, current and 
required level of scienti�c understanding (LOSU), and research priority index of individual thematic groups
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mentioned values was rather high (Fig. 1), the RPI’s of all 
groups were normalized so that the highest RPI value in 
each TG corresponded to 100%. Each thematic group was 
organized through discussion and general consent. A criti-
cal number of active participants were required in each 
group, incorporating various levels of expertise. Each the-
matic group leader was advised to carefully manage the 
balance of participants’ contributions. 

2. Results and discussion

2.1. Soil biodiversity and ecotoxicology

�e highest RPI was identi�ed for biochar capacity to 
shi� a soil community’s functional redundancy, which is 
de�ned here as the degree of functional overlapping in a 
given ecosystem. High RPIs were also obtained for asses-
sing the bioavailability of biochar contaminants, trophic 
interactions, disease suppression, and population dyna-
mics (Fig. 2).

Recent studies focusing on soil-biochar-biota inter-
actions in both terrestrial and aquatic ecosystems suggest 
potential impacts regarding the application of some bio-
chars to soil on the activity and structure of edaphic and 
freshwater biological communities (due to leaching and 
potential transport of biochar particles into watercourse), 
their trophic relationships, and the processes they medi-
ate. �e extent and pattern of biological responses and/or 
observed toxicity can be assigned to bioavailable biochar 
fractions and appear to depend mainly on the target spe-
cies and exposure scenarios, as well as on biochar physi-
co-chemical properties and application rates (Busch et al. 
2012; Oleszczuk et al. 2013; Smith et al. 2012; Bastos et al. 
2014; Marks et al. 2014; Domene et al. 2015; Jaiswal et al. 
2015). A number of di�erent mechanisms may play a role 
in determining biological responses to biochar amend-
ment. �ese include the potential provision of refuge for 
microbial communities, shi�s in available nutrients and 
nutrient ratios (Gundale, DeLuca 2006; Prendergast-Mill-
er et al. 2014), bioavailable contaminants (e.g. Elad et al. 
2012; Graber, Elad 2013; Denyes et al. 2012; Hilber et al., 
this issue), enhanced plant root development and systemic 
defence against biotic or abiotic stress (Elad et al. 2010; 
Jaiswal et al. 2014) as well as microbial or plant-symbiont 
molecular signalling dynamics (Spokas et al. 2010; Masiel-
lo et al. 2013; Graber et al. 2015). 

Direct or indirect impacts on soil and aquatic fauna 
have also been reported, which include possible risks to 
their survival and/or reproduction, trophic relationships 
and possibly, functional diversity (Ezawa et  al. 2002; 
Bastos et al. 2014; Domene et al. 2014; �ies et al. 2015; 
Marks et al. 2016). More work is needed in order to iden-
tify speci�c biochar characteristics and application rates 
that allow more suitable management and minimization 
of possible trade-o�s between desired bene�ts and the 

short- to long-term integrity of ecosystem functions (Ver-
heijen et al. 2014; Hilber et al., this issue). 

Much of what is currently known with respect to 
biochar-biota interactions relies heavily on laboratory-
based and/or microcosm approaches, most of which 
are short-term (Je�ery et  al. 2015a). Studies focusing 
on biochar ecotoxicology are o�en based on acute ex-
posure to high levels of freshly produced, non-modi�ed 
biochars. Some of such current methodologies poorly 
represent the natural environment and use individual 
species testing, such as standardized (e.g., ISO, OECD) 
bioassays using plants and terrestrial or aquatic inver-
tebrates. Results may be enhanced by integrating meso-
cosms and �eld components for validation, addressing 
functional, behavioural and chronic endpoints (e.g., de-
composition rates, avoidance, reproduction) and trophic 
interactions, screening and monitoring tools that are 
suitable at plot and �eld scales, and exploring the use-
fulness of modelling approaches in a variety of ecosys-
tems. Greater ecological diversity that includes di�erent 
functional groups and interactions between co-existing 
test species should provide results that o�er a more ro-
bust ecological representation.

Expert opinion also concluded that various existing 
soil and aquatic biology and ecotoxicology indicators and 
methods may be suitable for evaluating soil-biochar-biota 
interactions, without requiring major adjustments or opti-
misation, besides possibly the recommended soil moisture 
content in standard testing (Busch et al. 2012). It is also 
likely that methods relying on the use of biomarkers (e.g., 
DNA, RNA, PLFAs; proteomics) may require optimisa-
tion. E�cient biomarker extraction may be compromised 
by adsorption to biochar surfaces, whereas interpretation 
of results may be biased due to confounding factors linked 
to biochar heterogeneity.

2.2. Soil organic matter and greenhouse gases 

�e highest RPIs were assigned to biochar interactions 
with soil organic matter (SOM) stability (priming), N

2
O 

and CO
2
 �uxes and biochar C stability (Fig. 2), followed 

by CH
4
 �uxes and cycling, and the nitrogen balance (e.g., 

plant N uptake, remaining soil N, and nitrate leaching 
losses). Plant-related indicators had the lowest RPI of this 
current analysis. 

�e decay of organic matter in soil is a complex pro-
cess and is usually investigated indirectly by tracing one or 
more �uxes from the SOM pool over time (Kuzyakov et al. 
2014). For the decomposition of carbon-rich substrates, 
such as biochar materials, the prevalent mechanism is 
mineralisation to CO

2
, which has been emphasized as 

one important indicator. Assessing CO
2
 �uxes over time 

is therefore considered to be a suitable experimental ap-
proach to quantify the degradation dynamics of biochars 



Journal of Environmental Engineering and Landscape Management. Article in press 5

added to soil, although some analytical di�culties remain 
to be overcome (Sagrilo et al. 2015). Biochars may a�ect 
the stability of biogenic soil organic matter: inhibit, have 
no e�ect or promote SOM degradation (Zimmerman et al. 
2011; Zavalloni et al. 2011; Rittl et al. 2015; Ventura et al. 

2015). Such priming e�ects in�uence the supply of nutri-
ents (see 3.4). �e e�ect of chars produced via hydrother-
mal carbonization (HTC) is less well investigated for the 
time being, but most studies suggest relatively low stability 
of hydrochars compared to pyrolysis biochars (Steinbeiss 

Fig. 2. Normalized research priority of the indicators as identi�ed by the thematic groups. Higher values of RPI (and red 
background) refer to higher priorities. Abbreviations: Av. = Available; BD = Biodegradability; Org. = organic; Tot. = Total
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et al. 2009; Qayyum et al. 2012; Dicke et al. 2014; Lanza 
et al. 2015; Schimmelpfennig et al. 2014; Busch, Glaser 
2015), even when the hydrochar was carbonized at high-
temperature (300 °C) plus high-pressure (30 bar) condi-
tions (Schimmelpfennig 2015).

�e stability of char materials in soil is a crucial indica-
tor. Char stability can be estimated by the decay half-life or 
mean residence time. �e use of biochar as a tool for C se-
questration requires half-life values of at least several decades 
(Lanza et al. 2015), and a considerable body of evidence ex-
ists that biochar has such a half-life or more (Qayyum et al. 
2012; Singh et  al. 2012; Kuzyakov et  al. 2014). However, 
these studies all rely on an extrapolation from investigations 
of limited duration of a few months to 8.5 years. Lehmann 
et al. (2015) undertook a comprehensive exploration of the 
available literature, normalized to an incubation temperature 
of 10 °C, the mean annual soil temperature of temperate re-
gions. �ey found that the persistence of most biochars, par-
ticularly those with an H/Corg ratio <0.4 is in the centennial 
range and thus su�cient for net C removal into a slower-
cycling soil C pool. �e stability of char in soil determines 
the length of time that any positive e�ects on soil quality and 
the environment may manifest. 

Observations of the e�ects of biochar application to 
soil on N

2
O �uxes is not consistent but a reduction of N

2
O 

emissions is the most predominant result, particularly 
when the molar H/C

org
 ratio is low (Kammann et al. 2012; 

Malghani et al. 2013; Cayuela et al. 2013, 2014, 2015; van 
Zwieten et  al. 2015). Also CH

4
 emissions from �ooded 

soils can be reduced by improving CH
4
 oxidation in the 

root rhizosphere, i.e. a bio�lter process for anaerobically 
produced CH

4
 before it leaves the sediment via aerenchy-

ma (Je�ery et al. 2016.).
Di�erent processes involved in the N

2
O production 

such as denitri�cation and nitri�cation are in�uenced 
by soil water status, bioavailable C content, pH, N avail-
ability and oxygen content. Limited understanding of the 
interactions controlling these processes limits the ability 
to predict biochar e�ect on N

2
O emissions (e.g. Sánchez-

García et al. 2015). Meta-analysis predicts that woody bio-
chars applied at rates above 1% by weight to a soil mixture 
have the potential to signi�cantly reduce N

2
O emissions, 

particularly in non-�ooded soils (Cayuela et al. 2014; van 
Zwieten et al. 2015). However, the mechanisms are still 
not well understood and range from pH e�ects (e.g. lim-
ing; Obia et al. 2015; Hüppi et al. 2015), to changes in soil 
N transformations (Nelissen et al. 2012), to shi�s in the 
ratio of N

2
O/N

2
 end products of denitri�cation (Cayuela 

et al. 2013). �e hypothesis explaining the last mechanism 
assumes changes in denitri�er gene expression (Harter 
et al. 2014) and nitrate capture (Kammann et al. 2015). 
Besides mechanistic understanding, there is a de�nite lack 
in �eld experiments quantifying N

2
O emissions as com-

pared to laboratory studies (Zhang et al. 2016). Long-term 

�eld experiments considering the impacts of additions of 
organic and inorganic fertilizers on N

2
O emissions are 

needed for di�erent agro-ecosystems in order to obtain a 
deeper insight into the mechanisms and potential utility 
of biochar additions for controlling N

2
O emissions.

2.3. Soil physical properties

�e soil physical indicators requiring the most research to 
support policy and decision making were identi�ed as soil 
formation, hydrological cycle, optimal hydraulic interval 
and wind erosion (Fig. 2). For most indicators, it was con-
cluded that existing methods for measuring soil physical 
properties (e.g., bulk density, soil moisture characteristics, 
mechanical resistance and shear strength) can still be used 
when biochar is present. However, this supposition should 
be validated for a variety of biochar types and addition ra-
tes. A possible concern is that the e�ects of biochar on soil 
indicators change as biochar ages, and an investigation of 
this would require longer-term �eld studies and arti�cial 
ageing studies in the laboratory (see also section 3.6). It 
was concluded that the e�ects of biochar ageing should be 
studied especially regarding the following soil properties:

a) Particle size distribution; 
b) Water retention characteristics and plant-availa-

ble water content of the soils;
c) Cation exchange capacity (CEC);
d) Porosity (total, pore size distribution and pore 

continuity); 
e) Saturated and unsaturated hydraulic conductivity;
f) Least limiting interval range (di�erence between 

the minimum moisture content required to allow 
tillage and the moisture content at �eld capacity);

g) Organic coating and biochar-mineral complex 
formation and its impact on nitrate capture by 
biochar particles.

Longer term soil formation could be a�ected by bio-
char soil amendment via changes in accumulation, trans-
formation, and translocation of soil components leading 
to modi�ed soil morphology and productivity (Spokas 
et al. 2012). Future work should include long-term �eld 
experimentation, exploration of soils around historic kiln 
sites (e.g. Borchard et  al. 2014; Heitkötter, Marschner 
2015) and arti�cial ageing methodologies that integrate 
physical, chemical and biological soil processes, as well as 
soil management.

�e multi-faceted nature of the hydrological cycle 
makes evaluation of the e�ects of biochar on the hydro-
logical cycle di�cult (Kammann, Graber 2015; Masiello 
et al. 2015). �e e�ect of biochar on soil hydrology de-
pends on the feedstock and amount of biochar added, 
biochar quality including particle size distribution, pore 
size distribution, reactive surface area, and hydropho-
bic compounds on the biochar surface and soil type in-
cluding soil water repellence, soil aggregation, soil bulk 
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density, and soil texture. Soil water content in soil-biochar 
mixtures is not always enhanced with the e�ects being 
dependent on application rate and usually with more 
pronounced increases in the macroporosity than the mi-
croporosity of soils (Tammeorg et al. 2014a, 2014b; Je�ery 
et al. 2015b; Masiello et al. 2015). �e suggested use of 
biochar as a component of horticultural growing media 
(Méndez et al. 2015; Vaughn et al. 2015; Kern et al., this 
issue) makes it necessary to di�erentiate between soils and 
growing media for calculating the in�uence of biochar on 
retention of plant-available water. In the latter case, it is 
advisable to determine biochar water retention between 
–1 and –10 kPa, di�erentiating between easily available 
water (from –1 to –5 kPa) and water bu�ering capacity 
(–5 to –10 kPa). 

Regarding wind erosion, biochar with some particle 
sizes can become easily airborne if a moisture content of 
at least 15% is not maintained (Silva et al. 2015). A key 
requirement is the quanti�cation of biochar separately 
from other forms of carbon in soil. Related to this are re-
quirements to detect the movement of biochar in the soil 
pro�le and the transport of biochar particles by water and 
wind erosion. Recommended methods for distinguishing 
biochar from other carbon in soil include stable isotope 
technology in combination with isotopically-labelled bio-
char. If labelled biochar was not used, possible methods 
include chemical extraction methods of black carbon, e.g. 
by using benzene polycarboxylic acids as markers for bio-
char (Glaser et al. 1998; Brodowski et al. 2005). Similarly, 
indirect methods such as mid-infrared and near-infrared 
spectroscopy and multivariate data analysis (Bornemann 
et al. 2008; Allen, Laird 2013) can also be used, but still 
need to be standardized.

2.4. Nutrient cycles and crop production

We identi�ed priming of SOM, rhizosphere microbiome, 
surface reactions and direct microbial hormonal e�ects 
as being the most critical indicators for future research 
(Fig. 2). Rhizosphere microbiome and biodiversity were 
considered within the context of “How does the impact of 
biochar on biodiversity a�ect nutrient cycling and the way 
it can be evaluated.” Potential suggested indicators were 
microbial functioning assessed by molecular markers, cul-
tivation techniques and enzymatic methods.

As SOM is the most important source of nutrients 
such as N and P (Blagodatskaya, Kuzyakov 2008), e�ects 
of biochar on SOM turnover (priming e�ects) are likely to 
a�ect the availability of soil nutrients derived from SOM 
mineralization, e.g., by speeding up nitri�cation (Sánchez-
García et al. 2015). �erefore priming e�ects were conside-
red highly important. However, both negative and positive 
e�ects on SOM stability have been reported in the literatu-
re (Maestrini et al. 2015) indicating that biochar can both 

inhibit, or promote, or have no e�ect on SOM degradation. 
�e e�ects depend both on the length of the incubation stu-
dy (Lehmann et al. 2015), and the presence or absence of 
plants (Weng et al. 2015; see also section 3.2). 

Some observations indicate that biochar reduces ni-
trate leaching from soil (Ventura et al. 2012; Laird, Rogov-
ska 2015; Haider et al. 2016) but this does not translate 
directly into improved crop growth. Biochar increased 
N utilization e�ciency, but reduced N accumulation in 
plants, probably because some mineral N was captured by 
biochar (Zheng et al. 2013; Haider et al. 2015). If captured 
N during a pre-loading (or post-production treatment) 
process by biochar is easily released to plants, the loaded 
biochar may increase plant growth since it then acts as a 
slow-release fertilizer (Kammann et al. 2015) and indeed 
biochar has been investigated as a support material for 
slow release mineral fertilizer (González et al. 2015). 

Biochar has been shown to increase the activity of 
di�erent soil enzymes (Bailey et al. 2011; Ventura et al. 
2014). In general, also microbial biomass increases a�er 
biochar application (Liu et al. 2016) suggesting that bio-
char may promote nutrient cycling in soil. For example, 
biochar may promote P mobilisation by stimulation of 
soil microbial activity, although the response is strongly 
dependent on soil type (Deb et al. 2016). Understanding 
the e�ect of biochar on the soil biological community (and 
on the rhizosphere microbiome in particular) is therefore 
critical, for the development of on-farm soil management 
and conservation practices to improve soil properties, ag-
ricultural productivity and environmental performance. 
However, the e�ects of biochar on the rhizosphere micro-
biome remain uncertain meaning that there is an impor-
tant gap between the current and required LOSU’s.

A better knowledge of plant-biochar-microbial in-
teractions may eventually lead to applications of biochar 
as a carrier of bene�cial microorganisms and thus reduce 
the use of current carriers like peat, vermiculite or per-
lite (Hale et al. 2015). Recently, it has been shown using P 
isotopes that mycorrhizae can actively mine biochar pores 
for (loaded) phosphorus (Hammer et al. 2014). Other tri-
als have focused on selecting the most e�cient strains of 
microorganisms to utilize nutrients contained in biochar 
(Postma et al. 2010). �erefore there is potential to devel-
op new microbiologically enriched biochar preparations. 

Biochar can itself be a source of nutrients such as P 
(Jin et al. 2016). However, the nutrient content of biochar 
is generally low, with the exception of ash-rich biochars 
produced from nutrient-rich feedstocks (Glaser et  al. 
2002). Moreover, nutrients such as nitrogen (N) are main-
ly bound to biochar covalently and so not immediately 
available for plant uptake because their mineralisation rate 
will be slow. For these reasons, direct nutrient supply via 
biochar mineralization was considered less important in 
comparison to other indirect processes.
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Biochar may a�ect soil nutrients by reducing leach-
ing losses from soil (Biederman, Harpole 2013; Ventura 
et  al. 2012) and its surface reactivity is likely to be the 
most important factor in�uencing this process. However, 
biochar increases soil water retention and this could there-
fore reduce nutrient leaching by reducing water move-
ment through soil (Laird et al. 2010). �e e�ect of biochar 
on water transport and retention needs to be investigated 
to determine its e�ect on nutrient losses.

2.5. Soil remediation

We identi�ed the following indicators as the most im-
portant research priorities: content of pollutants in plants 
(both in shoots and roots), soil pH value and bu�ering 
capacity, and dynamics of organic pollutants (Fig. 2). It is 
critical to evaluate whether biochars can increase or de-
crease the uptake of organic and inorganic pollutants by 
plants, both in the context of clean crop production and 
phytoremediation. Translocation of metals from roots to 
shoots has been shown to vary in the presence of biochar 
in some cases (Rees et al. 2015), however, investigations 
of the precise localization of pollutants in the di�erent 
plant tissues have seldom been made. For some volati-
le organic pollutants, release of pollutants accumulated 
by plants may occur via evapotranspiration or outward 
di�usion from above-ground biomass (Sorek et al. 2007). 
Biochar might a�ect this process through adsorbing the 
compounds in the root zone, thereby reducing phytoavai-
lability, or by a�ecting plant metabolic processes, but few 
related investigations have been made so far. �e e�ect of 
biochar on root development, e.g. root surface, has also 
rarely been described, despite its importance regarding 
pollutant uptake (Hammer et al. 2014; Graber et al. 2015; 
Rees et al. 2016). All these plant-related research topics 
should be targeted in the near future to improve unders-
tanding of biochar’s e�ect in vegetated soils (Kammann, 
Graber 2015). Besides plants, other organisms should be 
included in experiments involving biochar in soil remedi-
ation. �e potential synergetic or antagonist e�ects of bio-
char and Arbuscular mycorrhizae on the bioavailability of 
potentially toxic elements should be elucidated in control-
led and �eld experiments. �e e�ects of earthworms on 
urban soils and their synergy with biochar regarding soils 
remediation are also poorly known (Beesley, Dickinson 
2011; Gomez-Eyles et al. 2011).

Although pH is one of the key parameters that con-
trol the chemical and biological transformations of pol-
lutants and their mobility in soil, soil pH evolution fol-
lowing biochar amendments has not always been properly 
monitored and remains poorly predicted. One of the main 
associated issues is to understand how long biochar will 
maintain a su�ciently high soil pH in metal-contaminat-
ed soils to limit the mobility of metals. Soil pH bu�ering 

capacity should be measured a�er biochar addition over 
a long period of time (more than 2 years for �eld experi-
ments) to assess the in�uence of biochar ageing. Comple-
mentary to pH, measurement of redox potential could 
provide valuable information about microbial activity in 
remediation processes and in any case soil redox potential 
can be directly a�ected by biochar (Joseph et al. 2015). In 
this case, amendments of biochar should be tested under 
dynamic redox conditions, for example in contaminated 
�oodplain soils. 

Regarding organic pollutants, biochar may sorb 
organics at its surface and limit not only their mobility 
but also their biodegradability (Mumme et al. 2014). �e 
monitoring of both biotic and abiotic degradation of or-
ganic pollutants is o�en di�cult and depends on the mass 
transfer limitations in soil-biochar media (Gul et al. 2015). 
Information about the degree of abiotic transformations 
(e.g. sorption, complexation, precipitation) could be pro-
duced by using sterile media (soil and biochar).

Besides heavy metals, metalloids and organic pollut-
ants, the use of biochar for the immobilization of radionu-
clides may be suggested. Biochar-assisted soil remediation 
sometimes implies �nding a compromise between the im-
mobilization of certain pollutants and the mobilization of 
others (e.g., Cd, Zn or Pb versus As). �e application of 
biochars designed to immobilize pollutants may also cause 
the undesirable immobilization or inactivation of other 
compounds, such as fertilizers or pesticides (Beesley et al. 
2011). In the same way, the possible retention/protection 
of speci�c microorganisms, including pathogens, within 
biochar particles should be addressed when implementing 
biodegradation strategies. Finally, the in�uence of biochar 
ageing deserves particular attention when addressing soil 
remediation. Aged biochars o�en have greater concen-
trations of carboxylic functional groups on their surface, 
which can serve as additional binding sites for metal ions 
(Qian, Chen 2014; Wiedner et al. 2015) but more research 
is needed to understand ageing e�ects on metal interac-
tions with biochar (Puga et al. 2016). Ageing also increas-
es sorption of some herbicides whereas others are better 
adsorbed on fresh biochar (Trigo et al. 2014). One way 
to investigate biochar’s ageing e�ects is to use compost-
ing which is suggested to accelerate the ageing of biochar 
(Kammann et al. 2015; Wiedner et al. 2015).

2.6. Integrated discussion

2.6.1. �ematic group perspectives

Figure 2 shows soil properties or processes assigned to 
research priorities anticipated to close the LOSU gap 
across the themes. Not surprisingly, given that the discus-
sions were focused on particular themes, di�erent thema-
tic groups assigned individual properties and processes 
di�erently. One thematic group may have perceived that 
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understanding a speci�c property or process is a high pri-
ority when considering their theme, while another may 
have concluded that the same property is less important 
to their theme, even if both recognise the overall scienti-
�c understanding of the property or process similarly. For 
example, soil structure has a green RPI score of 8 for “soil 
remediation” but for “soil biodiversity and ecotoxicology” 
it is amber (RPI 62), as are aggregate stability, mechani-
cal resistance and soil crusting under “soil physical pro-
perties”. On the other hand, a maximum RPI score of 100 
was assigned to SOM stability/priming by both the groups 
considering the themes “SOM and greenhouse gases” and 
“nutrient cycles and crop production”.

2.6.2. Cross-cutting themes

Five thematic group sessions combined with repeated ple-
nary sessions, highlighted four key issues that were identi-
�ed across the di�erent thematic groups. 

Firstly, one of the most common recommendations 
to close the LOSU gap was to upscale experiments and 
move from short-term, laboratory-controlled conditions 
to long-term, �eld experiments (ideally even at catchment 
scale). Long-term experiments are particularly important 
regarding the understanding of biochar’s ageing, even 
if arti�cially accelerated ageing of biochar may provide 
complementary answers (Zhang et  al. 2016). Investiga-
tions across a range of soil types and climatic conditions 
are needed, particularly as there may be a current bias to-
wards high quality temperate soils, while the bene�ts of 
biochar application to soil quality may be more useful in 
nutrient-poor, degraded or acidic soils (Glaser et al. 2002; 
Je�ery et al. 2011).

Secondly, there are analytical methods developed 
for soils that appear to be valid when biochar is present, 
while others require adjustment to improve measurement 
accuracy. Introducing biochar into soil poses additional 
methodological challenges, such as its distinct quanti�-
cation from SOM or its separation from soil particles for 
characterization. Biochar should be characterized prior to 
its addition to soil using established methodologies, e.g. 
mechanical resistance, density, porosity, chemical com-
position and other parameters listed in the various bio-
char characterization schemes (EBC 2012; British Biochar 
Foundation 2013; International Biochar Initiative 2015; 
Bachmann et  al. 2016), as well as new ones, according 
to the research need. Analytical biochar characterization 
should be complemented by e�ect-based approaches in 
soils that are re�ective of possible risks, as has been pro-
moted throughout the COST Action TD1107 Represen-
tative sampling of large quantities of biochar represents 
an additional challenge to achieving reproducible results. 
�e representative sampling practice suggested by Bucheli 
et al. (2014) is time-consuming but necessary when large 

variability exists among the measured properties of sub-
samples. A further recommendation is for biochar pro-
ducers to install incremental cross-stream sampling devic-
es to provide representative sampling (Bucheli et al. 2014).

�irdly, the dust from biochar may be of concern in 
relation to both human exposure and climate feedback. 
�e exposure of a population (mainly rural) in areas 
where biochar is to be applied, such as through inhalation 
due to wind erosion, should be minimized by moisten-
ing the biochar before application and mixing it with the 
topsoil as quickly as possible (Silva et al. 2015). However, 
moistening during application does not eliminate the risk 
of exposure during subsequent years due to wind erosion. 
Probably, the hazard represented by wind erosion depends 
mainly on the biochar application rate and its content of 
pollutants, but this issue should be addressed more thor-
oughly. Furthermore, black carbon aerosols may reduce 
the climate change mitigation potential of biochar (Gen-
esio et al. 2016) and the LOSU regarding how and to what 
extent this may occur is close to zero.

Finally, an aspect of the LOSU concept is the rep-
resentability of environmental and management factors. 
�is is an area where science and policy are not aligned. 
�e scienti�c model rewards innovative research, while 
policy requires trials to demonstrate reliability and stud-
ies that extend the experimental knowledge base to all the 
environmental and management factors relevant to policy 
development. Edwards (2016) makes a strong case that 
industry needs to get more involved, by forming partner-
ships with scientists, and possibly governments. Edwards 
(2016) argues that a research charity funded by industry, 
and possibly governments and other charities, would “cre-
ate a system that rewards science that is both cutting-edge 
and reproducible”, as long as it is based on sound prin-
ciples of data sharing, public quality criteria, independent 
oversight, public ownership of outputs, etc. An academia-
industry partnership on biochar in this way may be a use-
ful catalyst to bridge the LOSU gap.

Conclusions

In recent years, research activity on the use of biochars in 
soils has been increasing and this trend is likely to conti-
nue over the next decade due to the numerous potenti-
al bene�ts and risks associated with the use of biochars. 
An optimal allocation of research resources to resolve 
outstanding issues is essential for the application of these 
materials to soils to be progressed e�ciently. �is requires 
clarity about research priorities.

Based on the speci�c expertise and interdisciplinary 
representation of the participants in the Aveiro meeting, 
we propose that the most critical topics for future research 
regarding biochar soil application are as follows: 

− Functional redundancy of soil biota, and bioavai-
lability of contaminants present in biochar.
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− SOM stability and N
2
O emission reduction. 

− Soil formation, the hydrological cycle and soil wa-
ter supply to plants.

− Priming of SOM and modi�cations of the rhizos-
phere microbiome. 

− Plant uptake of pollutants and soil pH bu�ering 
capacity.

However, gaps remain in relation to how biochar 
a�ects most soil properties and processes. We hope that 
the identi�cation and prioritization of gaps in our current 
LOSU, along with the identi�ed key issues, will be a step-
ping stone on the path to reaching the required LOSU for 
the development of a sustainable biochar application sys-
tem by scientists for practical users of biochar.
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