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ABBREVIATIONS 

16:0 Palmitic acid 

16:1 Palmitoleic acid 

18:0 Stearic acid 

18:1  Oleic acid 

18:2 Linoleic acid 

ALA  α-Linolenic acid 

ARA  Arachidonic acid 

DGLA  Dihomo-γ-linolenic acid 

DHA  ω3 Docosahexaenoic acid 

DPA  ω3 Docosapentaenoic acid 

DTA  ω6 Docosatetraenoic acid 

EPA  ω3 Eicosapentaenoic acid 

ETA  ω3 Eicosatetraenoic acid 

GLA  γ-Linolenic acid 

LA  Linoleic acid 

OA  Oleic acid 

SDA  Stearidonic acid 

 

5-FOA  5-Fluoroorotic acid 

bp  Base pair(s) 

cDNA  Complementary DNA 

DNA  Deoxyribonucleic acid 

EST  Expression sequence tag 

GLC  Gas-liquid chromatography 

GUS  β-Glucuronidase 

kb  Kilobase(s) 

LB medium Luria-Bertani medium 

mRNA  Messenger RNA 

ORF  Open reading frame 

PCR  Polymerase chain reaction 

PUFA  Polyunsaturated fatty acid 

rDNA  Ribosomal DNA 

rRNA  Ribosomal RNA 

RNA  Ribonucleic acid 

SdhB  Succinate dehydrogenase subunit B 

TrpC  N-(5-phosphoribosil) anthranilate isomerase 
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INTRODUCTION 

 

Omega-3 polyunsaturated fatty acid (ω3-PUFA) is a general term for polyunsaturated fatty 

acids with a double bond (C=C) at the third-carbon bond from the methyl end of the carbon 

chain. Eicosapentaenoic acid (EPA, C20:5ω3), docosahexaenoic acid (DHA, C20:6ω3) and 

α-linolenic acid (ALA, C18:3ω3) are known as major ω3-PUFAs which abuntandly exists in 

nature. Stearidonic acid (SDA, C18:4ω3) and docosapentaenoic acid (DPA, C22:5ω3) can be 

found in oils accumulated in some kinds of plants and marine life. Eicosatetraenoic acid (ETA 

C20:4ω3) is hardly obtained from natural sources.  

Omega-3 PUFAs such as EPA and DHA are known to be important structural components 

of membrane phospholipids, as well as precursors of signaling molecule eicosanoids [1]. 

Omega-3 PUFAs have attracted much attention for their beneficial effects on human health in 

reducing cardiac diseases such as arrhythmia, stroke and high blood pressure [2-4]. In addition, 

some reports suggest that ω3-PUFAs could prevent rheumatoid arthritis and asthma [5-7]. An 

ω3-PUFA derivative has also been identified as an important anti-inflammatory lipid mediator 

and possible anti-influenza agent [8, 9]. Therefore, the demand for ω3-PUFAs is rapidly 

increasing in the pharmaceutical, medical and nutritional fields. 

Currently, ω3-PUFAs for human consumption are typically derived from a natural source, 

such as fish oils, sea animal oils and plant oils. However, these sources have some 

disadvantages, including unstable and limited supply, lower ω3-PUFA content, and undesirable 

contaminations. Recent investigations have focused on ω3-PUFA production by altenative 

source such as oleaginous bacteria, fungi, plants and microalgae [10, 11]. In particular, 

oleaginous microorganisms are more suitable as an alternative source for ω3-PUFA production 

than conventional sources, because these microorganisms can be cultivated easily and rapidly 

on a large scale and produce considerable amounts of high-quality ω3-PUFAs. 

Thus, the author focused on oleaginous microorganisms as ω3-PUFA producers and carried 

out their biochemical analysis and molecular breeding for the production of ω3-PUFAs. 

Chapter I describes the selection and characterization of promoters based on genomic 

approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Chapter II 

describes the characterization of galactose-dependent promoters from M. alpina 1S-4. Chapter 

III describes ω3-eicosatetraenoic acid (ETA) production by molecular breeding of the mutant 
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strain S14 derived from M. alpina 1S-4. Chapter IV describes EPA production by molecular 

breeding of the mutant strain ST1358 derived from M. alpina 1S-4. Chapter V describes the 

screening, isolation and characterization of docosahexaenoic acid (DHA)-producing 

microorganisms.  
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CHAPTER I 

Selection and characterization of promoters based on 

genomic approach for the molecular breeding of oleaginous fungus 

Mortierella alpina 1S-4 

 

As mentioned in general introduction to this thesis, lipid fermentation by microorganisms 

is noticed as an alternative method supplying PUFA more stably than conventional production 

[12], therefore the development of gene manipulation tools for lipid-producing microorganisms 

is important. Various lipids have been produced by means of molecular breeding of 

microorganisms in some studies [13-16]. Mortierella alpina 1S-4, an oleaginous fungus, is a 

lipid-producing microbe [17]. To date, the production of various kinds of PUFAs has been 

achieved by molecular breeding of M. alpina [14, 18-20]. Basic molecular breeding tools such 

as gene delivery systems, host-vector systems and transformation systems using auxotrophy or 

antibiotic resistance have been established in M. alpina 1S-4 [21-23]. However, the gene 

modifiability of M. alpina is still limited due to lack of identification of variations in promoters 

[24]. The properties of promoters strongly influence the expression level and duration of target 

genes [25-27]. The application of highly expressing and/or regulated promoters is one of most 

important factors in a valuable expression system [28-35]. In M. alpina, enrichment of promoter 

types would contribute to improving PUFA productivity and modifying PUFA composition, and 

may help elucidate the mechanisms regulating gene expression in this strain. 

In general, promoter discovery in fungal biotechnology has been mainly based on the 

information of highly- or constitutively-expressed proteins [36, 37]. Recently, expression 

sequence tag (EST) analysis has been used as a powerful tool for investigating expressed genes. 

EST abundance data can present directly gene transcriptional levels, and make possible 

widespread approaches to find desired promoters in combination with the genomic information 

[38, 39].  

In this chapter, the author describe selection and cloning of promoter regions of various 

genes of M. alpina 1S-4 on the basis of EST abundance data, and characterized these promoter 

regions by fusing β-glucuronidase (GUS) reporter assays. 
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MATERIALS AND METHODS 

 

Strains, media, and growth conditions 

A uracil auxotroph (ura5‒ strain), previously isolated from M. alpina 1S-4 deposited at the 

Graduate School of Agriculture of Kyoto University [40], was used as a recipient host strain for 

transformation. Czapek-Dox agar medium, supplemented with 0.05 mg/ml uracil, was used for 

sporulation of the ura5‒strain, as described previously [40]. SC agar medium [40] was used as a 

uracil-free synthetic medium for cultivation of the transformants derived from M. alpina 1S-4 

ura5‒ strain at 28°C. GY medium (2% [wt/vol] glucose and 1% yeast extract) was used for 

reporter assays and extracting genomic DNA. GS medium (5% [wt/wt] soy flour, 0.3% K2HPO4, 

0.05% MgCl2·6H2O and 0.05% CaCl2·2H2O) was used for large-scale cultivation. Liquid 

cultivations were performed at 28°C with shaking (300 rpm), except for large-scale cultivation 

when a jar-fermentor was used. 

Escherichia coli strain DH5α was used for DNA manipulation and grown on LB agar 

plates containing 50 μg/ml kanamycin.  

Agrobacterium tumefaciens C58C1 was used for the transformation of M. alpina 1S-4 

ura5‒ strain. LB-Mg agar medium, minimal medium (MM) and induction medium (IM) were 

used for the transformation, cultivation and infection of A. tumefaciens, respectively. The 

compositions of LB-Mg agar medium, MM, and IM have been described previously [40]. 

 

Genomic DNA preparation 

M. alpina 1S-4 was cultivated in 10 ml of GY medium at 28°C for 4 d with shaking (300 

rpm). Fungal mycelia were harvested by suction filtration and washed twice with sterile water. 

Preparation of genomic DNA was performed using a method described previously [41]. 

 

Construction of cDNA libraries of M. alpina 1S-4 and EST analysis 

For large-scale cultivation, an inoculum was prepared in a 50-L jar fermentor containing 30 

L of GY medium supplemented with 0.1% soybean oil, followed by cultivation for 2 d at 28°C. 

The main cultivation was carried out in a 10-kL fermentor (Kansai Chemical Engineering Co., 

Hyogo, Japan) with 4 kL of GS medium at 26°C with stirring. At 18, 42, 66, 90 and 114 h after 

starting cultivation, 5.33% or 4% glucose was added. For extracting the total RNA of M. alpina, 
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fungal mycelia were sampled after 17, 25, 42, 114, 209 and 281 h of cultivation. Total RNA was 

extracted from each sample by using RNeasy Mini Kit (QIAGEN).  

First strand cDNA was synthesized by using SOLiD
TM

 Total RNA-Seq for Whole 

Transcriptome Libraries (Applied Biosystems, Inc., California, USA). For EST and 

transcriptome analysis, a research contract service (Genaris, Inc., Kanagawa, Japan) was used. 

 

Cloning of M. alpina promoters 

Information regarding selected promoters analyzed in this chapter is shown in Table 1. 

Selected promoter regions were cloned from the genome of M. alpina 1S-4 by PCR performed 

using specific primers (Table 1-1) designed on the basis of the information available in the 

genomic database for this strain. For deletion constructs, the anti-sense primers used for PCR 

are shown in Table 1-1 and forward primers are shown in Table 1-2. XbaI and SpeI restriction 

enzyme sites were created at the 5′ end of each forward primer and at the 3′ end of each reverse 

primer, respectively. When an XbaI site was present in the promoter region, an SpeI site was 

created instead of the XbaI site at the 5′ end of the forward primer. When an SpeI site was 

present in the promoter region, an XbaI site was created instead of the SpeI site at the 3′ end of 

the reverse primer. 

 

Construction of GUS reporter gene-carrying vectors for promoter analysis 

The reporter gene vectors were constructed on the backbone of pBIG3ura5s [42]. The 

histone promoter (the histone H4.1 promoter short fragment [42]), succinate dehydrogenase 

subunit B (SdhB) terminator [22] and the ura5 marker gene [21] were amplified from the 

genomic DNA of M. alpina 1S-4. The ura5 expression cassette controlled by a histone promoter 

and SdhB terminator was generated by fusion PCR with additional EcoRI and XbaI restriction 

enzyme sites at the 5′ and 3′ ends, respectively, of this cassette. The ura5 expression cassette, 

digested with EcoRI and XbaI, was ligated to pBIG3ura5s [42] digested with the same 

restriction enzymes and designated as pBIG35Zh. 

The β-Glucuronidase (GUS) gene was synthesized with optimized codon usage to reflect 

the codon bias of M. alpina 1S-4 obtained from the Kazusa database (http://www.kazusa.or.jp/ 

codon/), with additional SpeI and BamHI restriction enzyme sites at the 5′ and 3′ flanking ORFs, 

respectively. The GUS expression cassette, controlled by a histone promoter and SdhB 
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terminator, was generated by fusion PCR with additional XbaI and NheI restriction sites at the 5′ 

and 3′ ends of the cassette, respectively. This GUS expression cassette was digested with XbaI 

and NheI and ligated to pBIG35Zh digested with same restriction enzymes and designated 

pBIG35ZhGUSm (Fig. 1-1). In this vector, the histone promoter region, located upstream of the 

GUS gene, can be removed by digestion with XbaI and SpeI, and replaced by another promoter 

fragment digested with XbaI and/or SpeI for promoter assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation of M. alpina 1S-4 ura5‒ strain 

A spore suspension of M. alpina 1S-4 ura5‒ strain was freshly prepared by harvesting from 

cultures grown on Czapek-Dox agar medium supplemented with 0.05 mg/ml uracil and then 

filtering the suspension through Miracloth (Calbiochem) [40]. 

Transformation of M. alpina 1S-4 ura5‒ strain was performed using the Agrobacterium 

tumefaciens-mediated transformation (ATMT) method described previously [42] with slight 

modification. Briefly, Agrobacterium tumefaciens C58C1 was transformed with each vector via 

electroporation as described previously [43] and its transformants were isolated on LB-Mg agar 

plates supplemented with kanamycin (20 μg/ml), ampicillin (50 μg/ml) and rifampicin (50 

μg/ml). Agrobacterium tumefaciens transformants were cultivated in 100 ml of MM 

supplemented with kanamycin (20 μg/ml) and ampicillin (50 μg/ml) at 28°C for 48 h with 

shaking (120 rpm). Bacterial cells were harvested by centrifugation at 8,000 × g, washed once 

Fig. 1-1. Vector construct used in M. alpina 1S-4 

promoter assays. 

GUSm, codon-optimized β-glucuronidase gene for M. 

alpina; his p, M. alpina histone H4.1 promoter short 

fragment; SdhB t, M. alpina SdhB transcription 

terminator; ura5, orotate phosphoribosyl transferase 

gene of M. alpina 1S-4; NPTIII, neomycin 

phosphotransferase III gene; TrfA, TrfA locus, which 

produces 2 proteins that promote replication of the 

plasmid; ColEI ori, ColEI origin of replication; oriV, 

pRK2 origin of replication; RB, right border; LB, left 

border. 

pBIG35ZhGUSm
12.5 kb

Spe I 

Xba I

oriV 

NPTIII 

TrfA 

LB

his p
ura5

SdhB t
his p

GUSm 

SdhB t RB

CoEl ori 
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with fresh IM, and then diluted to an optical density of 660 nm (OD660) of 0.1–0.2 in 10 ml of 

fresh IM. After pre-incubation for 12–16 h at 28°C with shaking (300 rpm) to an OD660 of 

1.5–2.0, 100 μl of the bacterial cell suspension was mixed with an equal volume of a spore 

suspension (10
8
 spores/ml) of M. alpina 1S-4 ura5

-
 strain, and then spread on membranes 

(Whatman #50 Hardened Circles, 70 mm, Whatman International Ltd. UK) kept on 

cocultivation media (IM with 1.5% agar) and incubated at 23°C for 5 d. After cocultivation, the 

membranes were transferred to uracil-free SC agar plates that contained 0.03% Nile blue A 

(Sigma-Aldrich Japan) to distinguish between fungal colonies and the white color of the 

membrane. After 2 d of incubation at 28°C, hyphae from visible fungal colonies were 

transferred to fresh uracil-free SC agar plates, this was repeated 3 times to obtain candidates. 

Integration of the vector into the chromosome of the host strain was verified by PCR, as 

described previously [40]. 

 

GUS assay 

Cell-free extracts of M. alpina were prepared by a slight modification of a method 

described previously [21]. All transformants and the wild-type strain of M. alpina 1S-4 were 

cultivated in 10 ml of GY medium for 2–14 d at 28°C with shaking (300 rpm), harvested by 

suction filtration, and washed twice with sterile water. Fungal mycelia were suspended in 2 

volumes of 100 mM Tris-HCl containing 5 mM 2-mercaptoethanol (pH 7.5) and then disrupted 

by using a bead shocker (Wakenyaku Co. Ltd., Kyoto, Japan) at 5,000 rpm for 30 s twice with 

glass beads (φ 1.0 mm, Waken B Tech Co. Ltd., Kyoto, Japan). The extract was centrifuged at 

15,000 × g for 10 min to remove cell debris and intact cells. The supernatant was used for the 

GUS assay as cell-free extract. All steps were performed at 4 °C. 

β-Glucuronidase (GUS) assays were performed as described previously [44]. Enzyme 

activity was calculated in terms of nanomoles of p-nitrophenol production per milligram of 

protein per minute at 37°C. Protein concentration was measured according to the Bradford 

method, using bovine serum albumin as a standard [45]. 
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Promoter Primer F sequence (5′- 3′) Primer R sequence (5′- 3′) 

PP1 p AATCTCTAGA
a
GCGCAGTCGGAATGCC AGTAACTAGTCGTGTTTTCTTTTGAAATGGG 

PP2 p AAGCTCTAGAGACTGTAAAGACGGAGGGG AGTAACTAGTTGTGGATAGTGGGTAGTGG 

PP3 p AACGTCTAGACGTGTTATCTTGCGCTGC TCATACTAGTGATGATTTAGAGGTGTTGG 

SSA2 p TTAGTCTAGAAAAGTGCTGCTTCGGAACC AGATACTAGTGATGTAGATGTGAGTGTGAG 

PP7 p AATATCTAGATGACCGTGCGCTTTTTGAGAC AGCAACTAGTCGTATATTTGTTGAAAGGTG 

SSA22 p AATATCTAGAGGGTGCAGGTCCGGTCC AGCCACTAGTTCTACTCACCTTTTCCCTCAG 

PP4 p TGAGTCTAGAAGAGTGATTTTGTGGCTGTAC CAATACTAGTGGCTGATGTATGTGTTGATG 

PP8 p ATGCTCTAGATATGGCGACCCATTCACG AAGAACTAGTGGTTGAACAGAGTATGTTTGC 

SAH1 p AATCTCTAGACTGGCGAATACATGCGCAC ATAGTCTAGAGGTGGATATGAAGGGTGG 

PET9 p ACCTTCTAGAAGACGAGAAGAGTTCATGATG AATAACTAGTGATGAGTGTATGTGGAGAGTG 

HSP104 p AATATCTAGAGTTGAAGGTGCAGACACCGG AATAACTAGTGGTGGGGCGTTATGTGG 

HSC82 p ATCATCTAGAGAGCTCAAGATGAAGGTGCTC AATAACTAGTGGTGTGTGTGGTTTGCGGG 

UBC5 p AACTACTAGTGTATACAGGTCTTAGAGACC ATTCACTAGTCGTGGGTGGAGAGAGTG 

CDA1 p AACTCTAGATGAAAATAGAAATGGGTGGATGG ATTGACTAGTCGTAGGTTTCTTTGTGTGTG 

RPP0 p AATGTCTAGACACAGTGACAAGGGTGTTAAC ATGCACTAGTGTTGATTATTGTTCGAGGG 

PP5 p AACGTCTAGATGTTTTTTGTGCAAATTACCTCG AAGCACTAGTTTTGGATTGGGATTGCTTGAG 

PP6 p AAAGTCTAGACTGGCAATAGTTAGTGCACG ATCAACTAGTGATGGAGGTTTGTTTGAGAAG 

RPS16B p AATGTCTAGACCTGCAGAAAGATGATCCAAAAG AAGCACTAGTGATGAATAATGCCTATGATCAG 

EFB1 p TTAGACTAGTCGTAGTTGACTCTTTTATG CAGTACTAGTGGTGGGTGCTTTGTCGATTTG 

TDH1 p AACCTCTAGAAGGAAATAAATTCTCCTCGGTG AATAACTAGTGTTGAGTGGGTGTGTGTGG 

CIT1 p ATTTTCTAGACACCTCAAAAACGTGCCTTG AATAACTAGTGGCGGATATGTGTATGGAG 

TIF2 p AAGTTCTAGAGTCGACCTATCATCATTTTTGGC AGCGACTAGTGTTTTTTTTTGCTTTTTTTTTTATG 

CAT2 p AATCACTAGTAAACGGTGGAGCATTCTCAC TATCACTAGTGAAGGCGATGGGCAGGG 

ELO1 p AATGTCTAGACTTGCCCAGCATTACTCC TCATACTAGTCTTTGAGGGGAGGAATTGC 

IPP1 p ACAATCTAGAGGCTGCGTTGCCGGGAG ATAGACTAGTGGTGGTGGTGAAGAGTAG 

OLE1 p AGCATCTAGAGGGTTCTCACATTGAATTTG AATAACTAGTCGCTGTGCGTCCTGCGTTG 

PGK1 p TGAATCTAGACACCGTCGCTATGTGAAG TTGCTCTAGAGCAGAAACACACTGGCAG 

a 
The underlined sequences show synthesized XbaI (TCTAGA) and SpeI (ACTAGT) sites. 

Table 1-1. PCR primers for selected promoters. 
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 Promoter Length of deletion clone (bp) Primer F sequence (5′- 3′) 

 PP2 p 1199 ATTTCTAGA
a
TGCATTTACAGGTGAATATTAC 

  820 TTATCTAGACATAAAAGTGTCTGGAGCG 

  399 TTATCTAGAACTAAGTGGTGTCTACTTTGG 

  202 AATTCTAGAGGATACTCCATCCCCACCC 

 

 PP3 p 1651 AATATCTAGAGATCCTGGTCGAAAAAGACAG 

 1201 AATGTCTAGATGAGTTTCTGTTTTTTCCTTTTTGC 

  801 AATATCTAGATGAACAATTCATGCAGCTTCACG 

  401 AATATCTAGACGTCTAAGCGTTTACGTGCC 

  201 AATATCTAGACTCGTTTTGATGGAGTTCTC 

 

 SSA2 p 843 AGTATCTAGATGACGGCGTGTATATGTCAG 

  599 AGGTTCTAGACCATTGTATCGATTTCTGAT 

  399 AGTATCTAGAGCTATGCGAACGGTTCATTTTG 

  199 AGGTTCTAGATTTTTTCTCTCTGGTGTGAACG 

    

 PP7 p 1079 AGCATCTAGAAAAACTATTCAATAATGGGCG 

  785 ATTTCTAGAATGGCGAGACGCAGGGGGTAG 

  500 AATATCTAGAGAGTGGGCACTGAACTAAAAAG 

  250 AATATCTAGAGACACTGCATGACGCGAAATC 

    

 HSC82 p 800 AATTCTAGATTTTACTACCGCATTCCCTTTTC 

  599 ACGTCTAGACCTTTTCAGTAAACAATTTC 

  400 ATTTCTAGACACAAAGAAGAAGGGTGTGTC 

  200 ACGTCTAGAACTGTTTTCTTGAAACTTC 

    

 PP6 p 1000 AATTCTAGACAGTTACCGTGCGCCCACTG 

  750 AATTCTAGACTTTCACAAATAGGCATCCTATC 

  500 AATTCTAGAGGCTTTTTCGTTTATTGGATTG 

  93 ACGTCTAGATATCCAATTCTCACCACTTC 

    

 CIT1 p 1263 AAGTCTAGATGTCAATCATCTTTGCTGCTG 

  963 TGCGTCTAGAATTATAATTATAATGAGGAAGTG 

  663 TTATCTAGAGGCGAGTGGCGGACTGC 

  363 TTGTCTAGACAATTGGCAAGGCTGGGTTG 

a
 The underlined sequences show synthesized XbaI (TCTAGA) site. 

Table 1-2. PCR primers used for deletion clones. 
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RESULTS 

 

Selection, cloning and evaluation of various promoters of M. alpina 1S-4 

The cDNA libraries were prepared by using RNA extracted from the mycelia of M. alpina 

1S-4 on during different cultivation stages (see Materials & Methods). EST analysis were 

performed for each cDNA sample, and the abundances of each EST clone during all cultivation 

stages were summed (data not shown). These totals were sorted in descending order. On the 

basis of these EST abundance data and previous reports regarding conventional promoters of 

other organisms [27, 46-48], putative promoter regions of 28 genes of M. alpina 1S-4 were 

selected as candidates of highly-expressing and/or temporally-regulated promoters (Table 1-3). 

Considering of the positions of putative transcriptional factor-binding sites in each selected 

promoter region, approximately 1000–2500 bp of the 5′ flanking region of individual ORFs 

were cloned as putative promoter regions from the genomic DNA of M. alpina 1S-4. To 

evaluate the activity of these putative promoters in M. alpina, pBIG35ZhGUSm plasmids 

carrying each putative promoter region, instead of the histone promoter, located upstream of the 

β-glucuronidase (GUS) gene were constructed (Fig. 1-1) and transformed into M. alpina 1S-4 

using the ATMT method. For each construct, 30 transformants were randomly selected and 

cultivated for 5 d in GY liquid medium, and then their GUS activities were measured. Due to 

the variety in GUS activity in individual M. alpina transformant lines with each promoter 

construct (a representative pattern is shown in Fig. 1-2), the average value of GUS activities in 

the 10 moderately expressing lines was used for comparison with different promoter activities 

(Fig. 1-3). As shown in Fig. 1-3, PP1, PP3, SSA2, PP7, HSC82, PP6, TDH1 and CIT1 

promoters led to increased GUS activity compared with a conventional histone promoter. In 

particular, PP3 and PP6 promoters showed approximately 5-fold higher activity than the histone 

promoter.  

The author also carried out the same experiments with GS medium, which was used for 

large-scale cultivation (see Materials and Methods). There were no apparent differences in the 

GUS activity levels between GY and GS media (data not shown). Therefore, GY medium was 

used to cultivate transformants in all subsequent GUS assays. 
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 Gene Annotation Relative EST transcript abundance
a
 

 PP1 Predicted protein 35.7  

 PP2 Predicted protein 29.0  

 PP3 Predicted protein 11.7  

 SSA2 ATP binding protein (member of HSP70 family) 8.9  

 PP7 Predicted protein 7.9  

 SSA22 ATP binding protein (member of HSP70 family) 7.6  

 PP4 Predicted protein 7.3  

 PP8 Predicted protein 6.6  

 SAH1 S-Adenosyl-L-homocysteine hydrolase  6.6  

 PET9 ADP/ATP carrier of the mitochondrial inner membrane 6.0  

 HSP104 Hsp that cooperates with Hsp40 and Hsp70 5.9  

 HSC82 Cytoplasmic chaperone of the Hsp90 family 5.6  

 UBC5 Ubiquitin-conjugating enzyme 4.7  

 CDA1 Chitin deacetylase 4.5  

 RPP0 Ribosomal protein P0 4.0  

 PP5 Predicted protein 4.0  

 PP6 Predicted protein 3.8  

 RPS16B Protein component of 40S ribosormal subunit 3.2  

 EFB1 Translation elongation factor 1 beta 2.6  

 TDH1 Glyceraldehyde-3-phosphate dehydrogenase 2.4  

 CIT1 Citrate synthase 2.0  

 TIF2 Translation initiation factor eIF4A 1.9  

 CAT2 Carnitine acyl-CoA transferase 0.9  

 ELO1 Fatty acid elongase I 0.7  

 IPP1 Cytoplasmic inorganic pyrophosphatase  0.7  

 OLE1 Delta-9 fatty acid desaturase 0.6  

 PGK1 3-Phosphoglycerate kinase  0.4 

a
EST abundance data show the total for EST transcriptional abundance at different cultivation stages, by 

using relative values for histone H4.1. 

Table 1-3. Information regarding genes for selected promoters. 
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Fig. 1-2. Distribution of GUS activity levels driven by the HSC82 promoter in M. alpina transformants 

cultivated for 5 d in GY liquid medium.  

Each plot denotes individual transformants, and all plots are sorted in ascending order of GUS activity. 

GUS activity is expressed in nanomoles of p-nitrophenol produced per minute per milligram of protein. 

Fig. 1-3. GUS activity driven by various promoters in M. alpina transformants cultivated for 5 d in GY liquid 

medium. 

GUS activity is expressed in nanomoles of p-nitrophenol produced per minute per milligram of protein. The Bars 

represent the mean values with standard deviations of GUS activity in 10 individual transformant lines for each 

promoter construct. 
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Time course measurements of promoter activity during cultivation of M. alpina 1S-4 

Transformants with each promoter construct were cultivated in GY medium for 2–14 d and 

then GUS activity was evaluated in order to investigate the effect of cultivation time on GUS 

activity with different promoters (Fig. 1-4). Based on the pattern of time-dependent changes in 

GUS activity, promoters could be categorized into the following 4 groups; GUS activity levels 

controlled by the HSC82, PP7, SSA2, HSP104, UBC5 or PET9 promoter were almost constant 

throughout the cultivation period (Fig. 1-4A). With the CIT1, PP8, SAH1, EFB1, OLE1, HSC82, 

CDA1, RPP0, RPS16B or CAT2 promoter, GUS activity levels were higher in the early stage of 

cultivation and then decreased (Fig. 1-4B). GUS activity controlled by the PP6, ELO1 or TDH1 

promoter peaked at the middle stage of cultivation (Fig. 1-4C). With the PP3, PP2, PP4, PP5, 

SSA22, IPP1 or PGK1 promoter, GUS activity levels were low in the early stage, and then 

increased with cultivation time (Fig. 1-4D).  

Fig. 1-4. Representative patterns of time-depend changes in GUS activity with different promoters. Results 

with (A) HSC82, (B) CIT1, (C) PP6 and (D) PP3 promoters are shown as representative.  

All transformants for each promoter construct were cultivated in GY medium for 2–14 d. GUS activity is 

expressed in nanomoles of p-nitrophenol produced per minute per milligram of protein. Plots represent the 

mean values with standard deviations of GUS activity in 3 individual transformant lines for each construct. 
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PP2, PP3, PP6, PP7, SSA2, HSC82 and CIT1 promoters with constitutive or 

time-dependent high-level activity were selected and used for subsequent studies. 

 

 

Deletion analysis 

In order to investigate the length of the promoter regions required to maintain high 

expression activity, a series of 5′ deletion constructs of the 7 selected promoters were generated 

(Fig. 1-5, left column) and introduced into M. alpina 1S-4. For each deletion construct, 30 

randomly selected transformants were cultivated in GY medium for the appropriate number of 

days based on the above results, and then GUS activity was evaluated. For comparison, the 

GUS activity levels of 10 moderately expressing lines were averaged and represented as a value 

relative to each full-length promoter, which was set as 100% (Fig. 1-5, right column). In the 

PP2, PP3 and PP6 promoters, relatively long lengths of the promoter regions (over 1,000 bp) 

were required for high GUS expression, and the GUS activity levels dramatically diminished 

with deletion of the 5′ regions. In contrast, the other promoters maintained high activity even in 

relatively short regions (approximately 400–800 bp). 
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Fig. 1-5. 5′-deletion analysis of 7 different promoters. 

In the left column, constructs with different 5′ upstream deletions of individual promoters are shown. For each 
construct, the length of the fragment upstream from the transcription start site is shown on the left end. In the 

right column, GUS activity levels with the deleted constructs in M. alpina transformants are shown. All 

transformants were cultivated in GY liquid medium. Cultivation times were 5 d for the SSA2, HSC82, PP7 and 

PP6 promoters, 3 d for the CIT1 promoter, and 14 d for the PP2 and PP3 promoters. The average GUS activity 

of each full-length construct is set at 100% and has been used to define the relative GUS activity of individual 

deletion constructs. Bars represent the mean values with standard deviations of GUS activity in 10 individual 

transformant lines for each construct. 
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DISCUSSION 

 

In general, promoters that are useful for gene manipulation systems exhibit either  

constitutively high, time-dependent and/or conditionally inducible expression. Thus, screening 

and investigation of beneficial promoters for M. alpina gene manipulation was performed by 

using an EST-based approach in this view point. EST abundance data can provide gene 

expression levels without post-translational influence. Therefore, by using an EST-based 

approach, the desired promoters can be identified more directly and efficiently than by using 

conventional approaches based on information on protein expression. 

In many cases, EST analysis is employed to obtain transcriptional information at a certain 

point in the cultivation period. Because the transcriptional level of each gene generally changes 

depending on the cultivation stage, in this chapter, EST analysis with M. alpina was carried out 

at different cultivation stages. On the basis of the EST data and previous reports on conventional 

promoters of other organisms, 28 promoters of M. alpina 1S-4 were selected as candidates for 

highly expressing and/or regulated promoters (see Table 1-3).  

The GUS reporter gene was used to monitor the promoter activity in this chapter because 

the GUS gene has been commonly used as a reporter gene for promoter assays for various 

organisms [25, 36]. In addition, the author considered that this study also means investigation of 

heterologous gene expression in M. alpina, because the GUS gene is a heterologous gene for 

this strain. 

The GUS activity in M. alpina transformant lines with each promoter construct was 

distributed across a wide range (Fig. 1-2). This dispersion might be attributable to the differing 

locations of the GUS gene in chromosomal DNA, i.e., the position effect. It has previously been 

reported that M. alpina transformants generated by the ATMT method have a single copy of 

T-DNA at a random location in chromosomal DNA [42]. 

The comprehensive analysis showed that the PP3 and PP6 promoters were demonstrate 

remarkably higher GUS activity than the conventional histone promoter in M. alpina. The 

functions of the proteins coded by the PP3 and PP6 genes are unknown. Investigation of the 

function of these proteins functions might lead to new findings, which may in turn lead to new 

insights on M. alpina physiology. Interestingly, the GUS expression levels were not necessarily 

proportional to the EST abundance values (compare Fig. 1-3 with Table 1-3). There were some 
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cases where the GUS expression levels were much lower than expected from the EST 

abundance data, e.g. the SSA22 and PP8 promoters. In such cases, other factors besides 

promoters, such as the terminator and post-transcriptional processing might lead to 

high-transcriptional levels of the original gene, unlike the findings seen for heterologous GUS 

gene expression. 

Time-course measurements of GUS activity levels with various promoters showed several 

temporally-different patterns of expression (Fig. 1-4). These promoters allow for phase-specific 

expression in M. alpina, unlike the conventional histone promoter expressing constitutively 

during cultivation time (data not shown). These time-dependent promoters could contribute to 

more efficient production of PUFAs in M. alpina by means of temporal coordination of enzyme 

expression with PUFA biosynthesis. 

For the 5′ deletion analysis of promoter regions, 7 promoters were selected because of their 

characteristic expression patterns, such as high-level expression and/or time-dependent 

expression. A relatively long length (over 1,000 bp) was required to maintain high activity in the 

PP2, PP3 and PP6 promoters. This finding suggests that transcription factor binding sites or 

enhancer elements of these promoters are located considerably upstream. In contrast, the SSA2, 

PP7, HSC82 and CIT1 promoters retained sufficient activity even in the truncated form 

(400–800 bp). These short promoters with high activity will be advantageous in applications 

involving M. alpina gene manipulation because they will be useful for convenient vector 

construction.  

More detailed deletion analysis and consensus sequence analysis of highly-expressing 

and/or regulated promoters will help identify functionally essential elements for transcriptional 

regulation. This in turn could help elucidate the transcriptional regulatory mechanisms of M. 

alpina. The information of transcriptional regulatory elements of promoters for high-level 

expression and time-dependent expression is also useful for applications. For example, in 

Aspergillus oryzae, the introduction of multiple copies of the consensus sequence found in the 

high-expression promoters has been reported to improve promoter activity [49]. 

 

SUMMARY 

 

The promoter regions of 28 genes in M. alpina 1S-4 were selected and cloned on the basis 
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of EST abundance data. The activity of each promoter was evaluated by using the GUS reporter 

gene. Eight of these promoters were shown to enhance GUS expression more efficiently than 

the conventional histone promoter. Especially, the predicted protein 3 (PP3) and the predicted 

protein 6 (PP6) promoters demonstrated approximately 5-fold higher activity than the histone 

promoter. The activity of some promoters changed along with the cultivation phase of M. alpina 

1S-4. Seven promoters with constitutive or time-dependent, high-level expression activity were 

selected, and deletion analysis was carried out to determine the promoter regions required to 

retain activity. The promoters described in this chapter will be useful tools for gene 

manipulation in this strain. 
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CHAPTER II 

Characterization of galactose-dependent promoters from 

an oleaginous fungus Mortierella alpina 1S-4 

 

An inducible expression system is an significantly important tool for the control of gene 

expressions. It is necessary for the expression analysis of given genes, especially lethal and 

essential genes. Many investigations of inducible expression system have been carried out in 

various microorganisms [29, 35, 50]. Some of the most widely used regulatory systems are 

based on promoters that can be activated or repressed by the presence/absence of the inducer 

such as a carbon source in the medium [29-35, 51, 52]. These inducible expression systems have 

contributed to the functional analysis of genes of interest as well as for the efficient production 

of the heterologous proteins in these microorganisms. 

As mentioned in chapter I, in Mortierella alpina 1S-4, a few constitutive expression 

promoters have been identified and applied to the gene expression system at present. The lack of 

an inducible expression system in M. alpina limits of detailed study of genes of interest, 

especially essential or lethal genes. To increase knowledge of M. alpina, it is essential to 

establish an inducible expression system. 

In this chapter, the author describe the cloning and initial characterization of endogenous 

galactose inducible promoters for use in M. alpina 1S-4. 

 

MATERIALS AND METHODS 

 

Strains, media, and growth conditions 

The strains and media described in chapter I were used. For galactose induction in the 

submerged cultivation, 500 mg/ml sterile galactose solution was added to the medium at 2% 

final concentration. All cultivations were performed as described in chapter I otherwise 

mentioned. 

 

Genomic DNA preparation 

Genomic DNA of M. alpina 1S-4 was prepared as described in chapter I. 
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Construction of GUS reporter gene-carrying vectors for promoter analysis 

For GUS reporter assay, the vector pBIG35ZhGUSm (see chapter I) was used. The GAL1 

and GAL10 promoter regions were amplified from the genome of M. alpina 1S-4 by PCR with 

specific primers (Table 2-1) designed based on the genomic database of this strain. For deletion 

constructs of the GAL10 promoter, GAL10pR was used as the anti-sense primer, and 

GAL10p2000F, GAL10p1600F, GAL10p1200F, GAL10p800F and GAL10p400F were used as 

the sense primers (Table 2-1). All cloned fragments were treated with XbaI and/or SpeI and 

inserted in front of the GUS ORF from pBIG35ZhGUSm digested with XbaI and SpeI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation of the M. alpina 1S-4 ura5‒ strain 

The transformation of the M. alpina 1S-4 ura5‒ strain was performed by the ATMT method as 

described in chapter I. 

 

GUS assay 

Preparation of cell-free extracts of M. alpina, GUS assays and measurement of protein 

concentrations were performed as described in chapter I. 

Table 2-1. PCR primers used to clone the GAL1 and GAL10 promoter regions. 

Primer name Sequence (5′ to 3′) 

GAL1pF AATATCTAGA
a

ACCACGCATGACAATGCCAC 

GAL1pR AAGAACTAGTTGTAAAAGGGGCTGACAGTG 

GAL10pF AATATCTAGAGGTTCCGAGAGGTGGATTTG 

GAL10pR ATAATCTAGATGGCTCCTGAAAGGACGAG 

GAL10p2000F AATTCTAGACGCAGAGTGATGGTCATTACC 

GAL10p1600F AATTCTAGACTCTATGGCAAGATTACGAG 

GAL10p1200F AATTCTAGATGCTCGTGAAGAGGGGCAC 

GAL10p800F ACGTCTAGACATTTTTTGCCGCCAATTCTG 

GAL10p400F ATTTCTAGACCCCCGCCTATTTTTTTTTTC 

a 
The underlined sequences indicate inserted XbaI (TCTAGA) and SpeI (ACTAGT) sites. 
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RESULTS 

 

Cloning and basic evaluation of two GAL promoters in M. alpina 1S-4  

The putative promoter region of the GAL1 andGAL10 genes of M. alpina 1S-4 were cloned 

as candidates for galactose-dependent promoters based on the M. alpina genome database. The 

lengths of cloned GAL1 and GAL10 promoter regions were 962 bp and 2331 bp, respectively. 

To ascertain if these promoters were regulated by galactose in this strain, plasmids carrying 

the predicted GAL1 and GAL10 promoters fused to the GUS reporter gene were constructed and 

transformed into M. alpina 1S-4 by the ATMT method. All transformants had a single copy of 

T-DNA at a random location in the chromosomal DNA (data not shown). At least 30 

independent transformants for each construct were randomly selected, evaluated for GUS 

activity, and cultivated on SC medium containing 2% galactose substituted for glucose. All 

transformants exhibited detectable levels of GUS activity (data not shown), and three individual 

transformants that showed moderate levels of GUS activity were used in subsequent studies. 

The transformants carrying GAL1 or GAL10 promoter-GUS genes were cultivated on SC 

agar medium containing 2% of sugars substituted for glucose (Table 2-2). As shown in Table 

2-2, the expression of GUS regulated by the GAL promoters was clearly dependent on the 

presence of galactose in the medium. The GUS activity of fungi with GAL1 or GAL10 

promoters grown on galactose medium was approximately 7-fold or 100-fold higher than those 

grown on glucose medium, respectively. With the GAL1 promoter, GUS expression was induced 

by galactose, lactose and raffinose; furthermore, the not-negligible level of GUS activity was 

detected even when grown on the medium without a carbon source. On the other hand, GUS 

expression with the GAL10 promoter was fairly repressed wh en fungi were grown on media 

lacking galactose with/without other kinds of sugars.  

Because GUS expression with the GAL10 promoter were more sensitively 

induced/repressed by the presence/absence of galactose, the author focused on the GAL10 

promoter for further investigation. 
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Induction-response of the GAL10 promoter by galactose addition 

Time course measurements of GAL10 promoter activity after addition of galactose to the 

medium were carried out. The transformants were cultivated for 4 days in synthetic SC liquid 

medium containing 2% raffinose substituted for glucose as a sole carbon source, and then 

galactose (2% final concentration) was added to the medium. The GUS activity was monitored 

over a 48-h time course (Fig. 2-1). An increase in GUS expression was detected at 10 h after the 

addition of galactose, and then the GUS expression level reached a peak at 36 h. 

As shown in Fig. 2-2, GUS expression was induced by the addition of galactose, regardless 

of cultivation phase of mycelia. In all cases, the induction of GUS expression was maintained 

for 2–3 days, and then GUS activity declined. 

 

 

 

 

 

Table 2-2. GUS activity resulting from the β-glucuronidase gene fused to GAL1 and GAL10 

promoters in transformants cultivated on solid media containing different carbon sources.  

GUS activity [nmol/(mg·min)] 

Carbon source GAL1 p GAL10 p 

no carbon source 593.8 ± 43.4 72.1 ± 14.9 

glucose 440.1 ± 46.4 19.5 ± 2.3 

galactose 3360.1 ± 780.7 1890.8 ± 372.1 

lactose 1653.6 ± 84.2 282.6 ± 67.9 

raffinose 916.7 ± 63.0 63.3 ± 14.6 

glucose + galactose 3407.3 ± 253.6 1562.6 ± 137.2 

lactose + galactose 3543.4 ± 526.7 1876.8 ± 299.2 

raffinose + galactose 3152.3 ± 187.9 2223.9 ± 256.9 

All transformants were cultivated in SC medium containing 2% of each sugar substituted for 

glucose for 3 days at 28°C. The values represent mean GUS activity of three transformant 

lines (± standard deviation). 
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Fig. 2-1. GUS activity in response to GAL10 promoter induction by galactose addition in submerged cultivation. 

Transformants were pre-cultivated in SC liquid medium containing raffinose substituted for glucose for 4 days, 

and then galactose was added at t=0. GUS activity was monitored over a 48 h time course. The values represent 

mean GUS activity of three transformant lines (± standard deviation). 

Fig. 2-2. GUS activity in response to GAL10 promoter induction by galactose addition in different cultivation 

phase in synthetic medium. 

Transformants were cultivated in SC liquid medium containing raffinose substituted for glucose, and then 

galactose was added on day 4, 7 or 10 (arrows). The values represent mean GUS activity of three transformant 

lines. 

0

1000

2000

3000

4000

0 2 4 6 8 10 12 14

Cultivation time (days)

G
U

S
 a

c
ti
v
it
y
 [
n

m
o

l/
(m

in
·m

g
)]

day 4

day 7

day 10

no addition

0 10 20 30 40 50

G
U

S
 a

c
ti
v
it
y
 [
n

m
o

l/
(m

in
·m

g
)]

0

1000

2000

3000

5000

4000

Time (h)



CHAPTER II 

- 26 - 

 

Induction-response of the GAL10 promoter in complex medium 

The induction of expression by the GAL10 promoter in the nutrient rich medium was also 

investigated. The transformants were cultivated in GY liquid medium (2% glucose and 1% yeast 

extract), and then galactose was added at day 4, 7 or 10 during the cultivation (Fig. 2-3). As 

shown in Fig. 2-3, GUS activity was induced by the addition of galactose in the same manner as 

that observed with synthetic medium. In all cases, the induction of GUS expression was 

maintained for approximately 3 days, and then GUS activity declined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deletion analysis of the GAL10 promoter 

In order to investigate the length of promoter regions required to induce high expression, a 

series of 5′ GAL10 promoter deletion constructs was generated (Fig. 2-4, left) and introduced 

into M. alpina 1S-4. For each deletion constructs, 30 transformants were randomly selected and 

were cultivated for 3 days in SC agar medium containing galactose substituted for glucose, and 

then GUS activity was evaluated. For comparison, the GUS activity levels of each 10 

moderately expressing lines were averaged and represented as relative values normalized to 

activity of the undeleted promoter, with 100% activity (Fig. 2-4, right). As shown in Fig. 2-4, a 

Fig. 2-3. GUS activity in response to GAL10 promoter induction by galactose addition in 

different cultivation phases in complex medium. 

Transformants were cultivated in GY liquid medium, and galactose was added on day 4, 7 or 

10 (arrows). The values represent mean GUS activity of three transformant lines. 
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relatively long promoter region (over 2,000 bp) was required to induce sufficient GUS 

expression. GUS activity dramatically diminished with the deletion of 5′ regions. The deleted 

promoter (2,000 bp) showed the same tendency of response to sugars as the undeleted GAL10 

promoter (data not shown), although GUS activity was lower. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

 

In this chapter, the author investigated the promoter regions of the GAL1 and GAL10 genes 

as inducible promoter candidates for an oleaginous fungus M. alpina. The enzymes coded by 

these genes are involved in the galactose-metabolic pathway; GAL1 catalyzes phosphorylation 

of galactose, and GAL10 catalyzes epimerization from uridine diphosphate galactose to uridine 

diphosphate glucose. The promoter regions of genes homologous to of GAL1 and GAL10 have 

been reported as galactose-inducible promoters in various microorganisms including 

Fig. 2-4. 5′-deletion analysis of the GAL10 promoter. 

Left column) Constructs with different 5′ upstream deletions of the promoter region are 

shown. For each construct, the length of the fragment upstream from the transcription start 

site is shown on the left end. Right column) GUS activity levels with the deleted constructs 

in M. alpina transformants are shown. All transformants were cultivated for 3 days on SC 

agar medium containing 2% galactose substituted for glucose. The average GUS activity of 

the undeleted construct (2332 bp) was set at 100% and has been used to define the relative 

GUS activity of individual deletion constructs. Bars represent the mean values with standard 

deviations of GUS activity in 10 individual transformant lines for each construct. 
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Saccharomyces cerevisiae [52]. Promoters of other genes involved in the galactose-metabolic 

pathway, such as GAL4 and GAL7, also have been used as inducible promoters in such 

microorganisms [53-57]. Although GAL4 and GAL7 homologous were not found in the M. 

alpina genome database, discovery of these genes could result in isolation of other 

galactose-inducible promoters. 

In general, useful inducible promoters exhibit the following features: (i) easily controlled 

by the presence or absence of components in the medium and (ii) fully repressed in the absence 

of inducer in the medium. For the convenience of induction in submerged cultivation, another 

useful feature of an inducible promoter was searched: (iii) induced by addition of the inducer 

into the medium, rather than by replacement of medium. The GUS reporter assay revealed that 

GAL1 and GAL10 promoters were both regulated by the presence/absence of galactose in the 

medium (Table 2-2). In particular, GUS activity regulated by the GAL10 promoter was 

extremely low in the medium without galactose. On the other hand, GUS activity was detectable 

even when other sugars were present in the medium containing galactose (Table 2-2). This result 

suggests that the GAL10 promoter activity can be fully repressed during cultivation in the 

medium containing sugars other than galactose, and then easily induced by the addition of 

galactose into the medium. Therefore, the author focused on GAL10 promoter and carried out 

further investigation. 

To investigate the function of the GAL10 promoter in submerged cultivation, raffinose was 

used as a sole carbon source in pre-culture medium, because raffinose did not affect the 

induction of the GAL10 promoter in medium with/without galactose (Table 2-2). When 

galactose was added to the medium, in which transformants with the GAL10 promoter fused 

with the GUS gene were pre-cultivated, GUS activity was elevated 10 h after the addition of 

galactose (Fig. 2-1), was maintained for 2–3 days, and then declined (Fig. 2-2). The same 

tendency was observed in all cultivation phases of transformants (Fig. 2-2). This phenomenon 

might be caused by galactose assimilation resulting in a concentration decrease in the medium. 

Continued addition of galactose to the medium might achieve extended periods of induced 

expression. 

In terms of industrial application, the inducibility of the GAL10 promoter in GY medium 

was also investigated, a conventional nutrient-rich medium for M. alpina cultivation. The 

GAL10 promoter was able to induce GUS activity when galactose was added into GY medium 
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regardless of cultivation phase, as well as in the synthetic medium (Fig. 2-3). However, the 

induced GUS activity was lower and the induction response was slower than in synthetic 

medium (compare Fig. 2-2 and Fig. 2-3). This effect is likely caused by glucose in GY medium, 

because slightly repression of GUS activity with the GAL10 promoter by glucose was observed 

even in the presence of galactose (Table 2-2). In agreement with this findings, it has been 

reported for other microorganisms that glucose represses expression regulated by promoters that 

can be induced by carbon sources such as galactose and xylose [58-61]. In addition, the 

difference in nitrogen sources and trace elements between synthetic and complex media might 

also affect regulation and induction kinetics of this promoter. Further investigation of cultivation 

conditions could result in high levels of activity and/or prolonged induction with the GAL10 

promoter for potential use. Recently, functional lipids such as PUFAs have been recognized for 

their beneficial effects on human health [62], and M. alpina has been utilized for the production 

of various PUFAs through molecular bleeding [14, 18-20]. The ability of the GAL10 promoter 

that can be induced even in complex medium as well as in synthetic medium will be a great 

advantage for industrial lipid production by M. alpina.  

The 5′ deletion analysis of the GAL10 promoter region revealed that a relatively long 

length (over 2,000 bp) was required to regulate high GUS activity (Fig. 2-4). This result 

suggests that transcription factor binding sites, enhancer elements and induction factor binding 

sites of the GAL10 promoter are located in the far upstream region. A more detailed deletion 

analysis will lead to identification of functionally essential regulatory elements and elucidation 

of the inducible regulatory mechanisms of this promoter. Such information of inducible 

promoters is also useful for practical applications. For example, in Saccharomyces cerevisiae, 

the introduction of multiple copies of the consensus sequence, which is essential for the 

galactose-inducible promoters has been reported to improve inducibility of promoters [63]. 

 

SUMMARY 

 

The putative promoter regions of two genes encoding galactose metabolic enzymes, GAL1 

and GAL10, were cloned from the genome of M. alpina 1S-4. The GUS reporter gene assay in 

M. alpina 1S-4 revealed that regulation of these promoters was dependent on the presence of 

galactose in the medium both with and without other sugars. With the GAL10 promoter, an 
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approximately 50-fold increase of GUS activity was demonstrated by addition of galactose into 

the culture media at any cultivation phase. The 5′ deletion analysis of the GAL10 promoter 

revealed that a promoter region of over 2,000 bp length was required for an inducible response 

and high-level activity. The GAL10 promoter will be a the valuable tool for gene manipulation 

in M. alpina 1S-4. 
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CHAPTER III 

Omega-3 eicosatetraenoic acid (ETA) production by molecular 

breeding of the mutant strain S14 derived from Mortierella alpina 1S-4 

 

As mentioned in the general introduction to this thesis, 3-PUFAs are found in natural 

sources. Especially, α-linolenic acid (ALA, C18:3ω3), eicosapentaenoic acid (EPA, C20:5ω3) 

and docosahexaenoic acid (DHA, C22:6ω3) have been well studied because of their sufficient 

natural supply. Recently, stearidonic acid (SDA, C18:4ω3) and ω3-docosapentaenoic acid (DPA, 

C22:5ω3) have been reported to be accumulated in several natural oils [64, 65] and their sources 

are being developed, therefore research on their physiological function will be advancing in the 

near future. On the other hand, ω3-eicosatetraenoic acid (ETA, C20:4ω3) is hard to find in 

nature. In addition, there are only few reports of ETA production at a low level by 

overexpression of Δ6 desaturase gene in E. plantagineum [66], by mutation in Mortierella 

alpina [67], and molecular breeding in Arabidopsis thaliana [68]. Although ETA has been 

expected to show beneficial effects on human health just like eicosanoids, the detailed 

bioactivity of ETA has remained almost unknown because its sources were scarce. 

Mortierella alpina 1S-4, an oleaginous fungus, is known as an industrial strain that 

produces arachidonic acid (ARA, C20:4ω6) commercially [14]. To date, considerable 

accumulation of EPA have been reported by overexpressing endogenous ω3-desaturase gene in 

M. alpina 1S-4 as a novel alternative source of 3-PUFAs [42]. The industrial production of 

various kinds of PUFAs have been also succeeded by using mutants derived from M. alpina 

1S-4 through chemical mutagenesis [17, 69]. M. alpina S14 is a Δ5-desaturation activity- 

defective mutant derived from M. alpina 1S-4, after treating the parental spores with a chemical 

mutagen [70] (Fig. 3-1). The strain S14 produces only a trace (about 1%) amount of ARA, and 

the ratio of dihomo-γ-linolenic acid (DGLA, C20:3ω6) to total fatty acids is markedly high, 

accounting for as much as 43% [71] and has been applied to the industrial production of DGLA 

[72]. ETA can be biosynthesized by ω3- (e.g. similar to Δ17-) desaturation from DGLA; 

therefore, the author hypothesized that this strain would be a good host strain for ETA 

production by expressing ω3- or Δ17-desaturase gene. 
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In this chapter, the author describe evaluation of ETA production using expression of the 

endogenous ω3-desaturase gene and the heterologous Δ17-desaturase gene in M. alpina S14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATERIALS AND METHODS 

 

Strains, media, and growth conditions 

M. alpina S14, a Δ5-desaturation activity-defective mutant, has been previously isolated 

from M. alpina 1S-4 deposited in the Graduate School of Agriculture of Kyoto University [40] 

and was used as a control strain in this chapter. The media described in chapter I were used. All 

cultivation was performed as described in chapter I unless otherwise mentioned. 

 

Isolation of uracil auxotrophs of M. alpina S14 

Isolation of uracil auxotrophs was performed as described previously [21]. Mutant S14 was 

incubated on Czapek-Dox agar medium at 28ºC for 1 month, and allowed to sporulate at 12ºC 

for 1 month. Spores of ST1358 were harvested from the surface of Czapek-Dox (2.6×10
8
 

spores/225 cm
2
); 2.6×10

7
 spores were spread on a GY agar medium containing 5-FOA (1.0 

mg/mL) and uracil (0.05 mg/mL). By means of 5-FOA positive selection, uracil auxotrophs 

acquired that acquired 5-FOA resistance could be isolated. 

Fig. 3-1. A biosynthetic pathway of PUFAs in the mutant strain S14 derived from 

Mortierella alpina 1S-4. 

OA, oleic acid; LA, linoleic acid; GLA, γ-linolenic acid; DGLA, dihomo-γ-linolenic 

acid; ARA, arachidonic acid; ALA, α-linolenic acid; SDA, stearidonic acid; ETA, ω3 

eicosatetraenoic acid; EPA, eicosapentaenoic acid. 
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Fatty acid analysis 

All strains were inoculated in GY medium and then the culture was carried out at 12ºC or 

28ºC with reciprocal shaking (120 strokes/min) for a desired period. The mycelia were 

harvested by suction filtration and dried at 120ºC. The dried cells were weighed and 

transmethylated with 10% methanolic HCl and dichloromethane at 55ºC for 2 h, containing 0.2 

mg of n-tricosanoic acid as an internal standard. The resultant fatty acid methylesters were 

extracted with n-hexane, concentrated and then analyzed using gas chromatography. 

 

Isolation of the ura5 genomic gene of uracil auxotrophs of S14 

The ura5 genomic gene was amplified using forward primer ura5upF (5-TTTCTGATGTG 

TCTCCCACC-3) and reverse primer ura5downR (5-TTCCAACAGAACCTTCCCTCG-3) 

with uracil auxotrophic S14 genomic DNA as the template. A 700-bp PCR product was cloned 

into the pUC118 vector using Reagent Set for Mighty Cloning Kit (Takara, Shiga, Japan), and 

then sequenced with a Beckman-Coulter CEQ8000 system (Beckman- Coulter, Fullerton, CA, 

USA) using M13 primers. 

 

Construction of a transformation vector for M. alpina S14 ura5

 strain 

Transformation vectors pSDura5ω3 and pSDura5ω3×2 were constructed by the 

modification of pSDura5 [9, 10]. The ω3-desaturase gene was amplified using a forward primer, 

w3F2PciI (5-GGGAATATTAAGCTTACATGTCCCC-3) and a reverse primer, w3R2BamHI 

(5-GCCGGATCCAAATTGTTAATGCTTG-3) at 56ºC with M. alpina 1S-4 cDNA as a 

template. The 2 primers contained a PciI and a BamHI site, respectively (underlined). About 

1.3-kb of PCR product was ligated to the pT7 Blue T-Vector (Novagen, Darmstadt, Germany), 

resulting in construction of a plasmid named pT7ω3. Its sequence was checked. The 

ω3-desaturase gene was digested with PciI and BamHI, followed by ligation into pBlueshtp 

treated with NcoI and BamHI to construct pBluesω3 [73]. The ω3-desaturase expression unit 

including a promoter and a terminator was cut out by EcoRI from pBluesω3 and ligated into 

pSDura5 digested with the same enzyme to generate pSDura5ω3 and pSDura5ω3×2 (Fig. 3-2). 

The latter plasmid possessed two ω3-desaturase expression units. 
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Saprolegnia diclina Δ17 desaturase gene (Sdd17m) was synthesized with optimized codon 

usage to reflect the codon bias of M. alpina 1S-4 (obtained from the Kazusa database; 

http://www.kazusa.or. jp/codon/), with additional SpeI and BamHI restriction enzyme sites at the 

5′ and 3′ ends, respectively. The Sdd17m expression cassette, with the SSA2 promoter and SdhB 

terminator, was generated by fusion PCR with XbaI and NheI restriction sites at the 5′ and 3′ 

ends of the cassette, respectively. This cassette was then digested with XbaI and NheI and 

ligated into pBIG35ZhSSA2pSdd17m, which had been digested with same restriction enzymes 

(Fig. 3-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation of M. alpina S14 

Transformation by microprojectile bombardment was performed as follows; a spore 

suspension from the M. alpina S14 ura5‒ strain was freshly prepared from cultures growing on 

Czapek-Dox agar medium supplemented with 0.05 mg/mL uracil; the suspension was filtered 

through Miracloth (Calbiochem) [40] and spread on a uracil-free SC medium. A PDS-1000/He 

Particle Delivery System (Bio-Rad Laboratories Inc., CA, USA) was used for the 

Fig. 3-2. Vector constructs used for expression of (A) ω3-desaturase and (B) sdd17m in M. alpina S14. 

ω3, Mortierella alpina ω3-desaturase; hisH 4.1p, M. alpina histone H4.1 promoter; trpC t, Aspergillus 

nidulans trpC transcription terminator; rDNA, M. alpina 1S-4 18S rDNA fragment; bla, ampicillin 

resistance gene; ura5, orotate phosphoribosyl transferase gene of M. alpina; SSA2 p, M. alpina SSA2 

promoter; SdhB t, M. alpina SdhB transcription terminator; Sdd17m, codon-optimized Δ17 fatty acid 
desaturase gene from Saprolegnia diclina; NPTIII, neomycin phosphotransferase III gene; TrfA, TrfA 

locus, which produces 2 proteins that promote replication of the plasmid; ColEI ori, ColEI origin of 

replication; oriV, pRK2 origin of replication; RB, right border; LB, left border. 
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transformation. Tungsten particles (0.4 μm in diameter) coated with pSDura5, pSDura5ω3 and 

pSDura5ω3×2 were prepared according to the manufacturer’s manual. Bombardment was 

performed in the plate placed on the device under a helium pressure of 1,100 psi (7,580 kPa). 

After the bombardment, the plate was incubated at 28ºC (3–6 days). 

Transformation by the ATMT method was performed as described in chapter I. 

 

RESULTS 

 

Isolation and characterization of uracil auxotrophs of M. alpina S14 

M. alpina S14, a Δ5-desaturase defective mutant derived from M. alpina 1S-4, was used as 

the host strain for heterologous gene expression. The strain S14 accumulates a higher amount of 

DGLA, a precursor for ETA, than does the wild-type strain 1S-4. To develop a transformation 

system using M. alpina S14, four uracil auxotrophic S14 mutants (S14-1, 2, 3, and 6) was 

obtained. The mutants grew on the SC medium with uracil, but not on uracil-free SC medium 

(Fig. 3-3A).  

Fig. 3-3. Characterization of uracil 

auxotrophic strains of M. alpina S14. 

(A) Growth of M. alpina 1S-4, S14 and 

uracil auxotrophic S14 on SC medium 

with or without uracil. (B) A mutation site 

of the ura5 gene in M. alpina uracil 

auxotrophic S14. 
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These S14 uracil auxotrophs were evaluated as a host strain for molecular breeding based 

on growth and fatty acid production and composition. As a result, all 4 uracil auxotrophs 

showed vigorous growth and as much fatty acid production and composition as the wild-type 

strain S14 (data not shown). 

To assess whether the homologous ura5 gene was suitable as a selective marker for uracil 

auxotrophic mutants, the ura5 gene in the genome of these mutants was sequenced [5]. As 

shown in Fig. 3-3B, in case of a mutant S14-2, the mutation of base substitution was observed 

in the ura5 gene: the substitution of G for A and G for T were observed at the +211 and +212 

nucleotide positions, leading to amino acid replacement, G 71 I. A base-pair change was 

detected in that of S14-3: the substitution of A to G at +1 caused the deficiency of start codon. 

S14-1 and -6 were found to have no mutations point in their ura5 gene. 

Consequently, the strain S14-2 was used as a host strain for transformation in subsequent 

studies because of the evident multiple mutational points in its ura5 gene. 

 

Transformation of the M. alpina S14 uracil auxotroph with pSDura5ω3×2 and fatty acid 

analysis 

The vector pSDura5-ω3×2 was introduced into the M. alpina S14 uracil auxotroph using 

the microprojectile bombardment method and selected one stable transformant (ω3#1). 

Subsequently, the ETA production of the 1S-4 wild-type strain, S14 host strain, and the 

transformant ω3#1 was evaluated during cultivation at 12°C (Fig. 3-4). The amount of ETA in 

ω3#1 remarkably increased with the elapse of cultivation time compared to wild-type 1S-4 and 

host S14. The ETA contents of ω3#1 reached 42.1% in the total fatty acids, while those of 

wild-type 1S-4 and S14 were just 0.5% and 13.1%: ETA content of ω3#1 was up to 84.2-fold 

and 3.2-fold higher compared to wild-type 1S-4 and S14, respectively. ALA and SDA contents 

of ω3#1 were up to 3.7% and 14.2% of total fatty acid on Day 5. In contrast, no accumulation of 

3-PUFAs including ETA was observed in ω3#1 when cultivated at 28°C (data not shown). 
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Transformation of the M. alpina S14 uracil auxotroph with pBIG35ZhSSA2pSdd17m and 

fatty acid analysis 

In order to produce ETA in M. alpina S14 at a normal temperature, the Saprolegnia diclina 

fatty acid Δ17-desaturase gene (Sdd17m) was used. S. diclina is an oleaginous microorganism 

producing omega-3 PUFAs at a normal temperature, and Sdd17 is able to catalyze a 

desaturation at ω3 position of DGLA resulting in ETA biosynthesis [74] as well as endogenous 

ω3 desaturase in M. alpina. The expression vector pBIG35ZhSSA2pSdd17m (Fig. 3-2), 

carrying the codon-optimized Sdd17 gene (Sdd17m), was constructed and introduced into the M. 

alpina S14 uracil auxotroph using the ATMT method. As a result, five stable transformants were 

randomly selected and used for further studies. 

Fig. 3-4. Time course of growth, fatty acid production, and composition of the M. alpina 1S-4 

wild-type strain, S14 host strain, and its transformant ω3#1 overexpressing ω3-desaturase gene. 

All strains were cultivated in 10 mL of the GY liquid medium at 12C for 5, 7, 9, and 11 days. The 

data are shown as mean ± SD from 3 individual experiments. For all other abbreviations, see the 

legend of Fig. 3-1. 
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The selected transformants and the host strain S14 were cultivated in GY medium at 28°C, and 

the time course of their fatty acid production and composition were analyzed (Fig. 3-5). All 

transformants showed accumulation of ETA, which was not detected in the host strain S14 at 

normal temperature. Transformant #7 exhibited the highest ETA content (24.9% of total fatty 

acids on day 10) among all transformants. The trace amount of ALA and SDA was detected in 

transformants. 

Fig. 3-5. Time course of growth, fatty acid production, and composition of the M. alpina 1S-4 wild-type 

strain, S14 host strain and its transformants expressing the Sdd17m gene. 

All strains were cultivated in 4 mL of the GY liquid medium at 28C for 3, 7, and 10 days. The data are 

shown as mean ± SD from 3 individual experiments. For other all abbreviations, see the legend of Fig. 3-1. 
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DISCUSSION 

 

The oleaginous filamentous fungus Mortierella alpina 1S-4 is known as an industrial strain 

that produces arachidonic acid (ARA) commercially [14]. Until now, the industrial production 

of PUFAs using M. alpina 1S-4 and its mutant strains has been succeeded [17, 69]. This strain is 

also known to accumulate considerable amounts of EPA, when cultivated at low temperatures, 

which cause the expression of the endogenous 3-desaturase gene and increase the activity of 

the gene product [75]. Based on these observations, the author hypothesized that M. alpina has a 

potential of ω3-PUFAs accumulation and employed this fungus as a host strain to produce a rare 

ω3-PUFA: ETA. 

M. alpina S14 is a Δ5-desaturation activity-defective mutant derived from M. alpina 1S-4 

[70]; M. alpina S14 also exhibits a higher accumulation of DGLA, a precursor of ETA, than 

strain 1S-4. Therefore, the author surmised that this strain would be suitable for evaluation of 

endogenous ω3- and heterologous Δ17-desaturase gene expression, which both can be converted 

to DGLA to ETA. 

First, some ura5

 mutants which were derived from the strain S14 were obtained, and then 

the strain S14-2 was selected as the host strain for transformation. The endogenous 

ω3-desaturase gene was introduced into the uracil auxotroph, strain S14-2, and the 

transformants showed considerable production of ETA (Fig. 3-4). Other rare 3-PUFAs such as 

SDA were also accumulated in the transformants. This result indicates that it is possible to 

obtain some transformants producing other unique PUFAs by constructing a transformation 

system with other useful mutants derived from M. alpina 1S-4. 

Thus, the potency of M. alpina as an ETA source was demonstrated via overexpression of 

the endogenous ω3-desaturase gene. For industrial production, however, low-temperature 

cultivation is not suitable because of its high running cost compared to normal-temperature 

cultivation. Therefore, the transformation with Sdd17m gene which enables the strain to produce 

ω3-PUFAs at a normal room temperature was subsequently tested. For the introduction of the 

Sdd17m gene, the ATMT method [42] was used, instead of the microprojectile bombardment 

method which often causes undesired mutations in host cells and results in unstable 

transformants because of the physical damage by high pressure employed to transfer plasmid 

DNA, and random multiple integrations of plasmids into the chromosomal DNA. The ATMT 
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method results in a single-copy integration of T-DNA at a random location in chromosomal 

DNA and the increased transformation frequency under mild conditions for M. alpina cells. 

Moreover, application of stronger promoters, not the conventional histone promoter, is expected 

to lead to the further improvements in ETA production. 

In order to produce ETA at normal temperature, the Sdd17m gene were introduced into the 

uracil auxotrophic S14 using the ATMT method under the control by a strong promoter SSA2 p. 

As a result, some transformants exhibited ETA production at 28°C (Fig. 3-5), and it was 

confirmed that the Sdd17 protein was functional in M. alpina S14. On the other hand, it was 

found that the activity of Sdd17 to convert DGLA to ETA might be lower than that of ARA to 

EPA because residual accumulation of DGLA was observed in the transformants while efficient 

conversion of ARA to EPA was reported [74]. It was also suggested that the Δ15-desaturation 

activity of Sdd17 for C18 substrates is extremely low because ALA and SDA accumulation 

were hardly detected in transformants (Fig. 3-5). Additional expression of heterologous 

Δ15-desaturase and endogenous ω3-desaturase might lead to enhanced ETA biosynthesis and 

productivity. In addition, this study is the first report to show that the SSA2 promoter can be 

used for modification of the PUFA production in M. alpina. Recently, several useful promoters 

of M. alpina have been newly identified. By applying them, further efficient production of 

3-PUFAs might be possible using M. alpina. 

 

SUMMARY 

 

The endogenous ω3-desaturase gene or the heterologous Saprolegnia diclina Δ17 

desaturase (Sdd17m) gene were overexpressed in M. alpina S14, a Δ5-desaturation 

activity-defective mutant derived from M. alpina 1S-4. Transformants introduced with the 

endogenous ω3-desaturase gene showed ETA at 42.1% content in the total lipids that was 

84.2-fold and 3.2-fold higher than that of the wild-type strain 1S-4 and host strain S14, 

respectively, when cultivated at 12°C. No accumulation of ETA was observed at 28°C. In 

contrast, transformants with the heterologous Sdd17m gene showed 24.9% of the content of 

total lipids at 28°C. These results indicated that these M. alpina S14 transformants are 

promising strains for the production of ETA, which is hard to obtain from natural sources. 
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CHAPTER IV 

Eicosapentaenoic acid (EPA) production by an oleaginous fungus 

Mortierella alpina expressing heterologous Δ17-desaturase gene 

under normal temperature 

 

Mortierella alpina 1S-4 is known to accumulate considerable amounts of eicosapentaenoic 

acid (EPA, C20:5ω3) when cultivated at low temperatures, which cause the expression of the 

endogenous omega3-desaturase gene and the activity of its gene product to increase [75]. 

Although M. alpina is a promising alternative source of EPA, there are some problems with 

commercial EPA production using this strain when cultivated under low temperatures, such as 

low growth and fatty acid productivity. Nonetheless, some groups have reported that it is 

possible to produce omega-3 fatty acid-containing lipids under normal temperatures through the 

expression of hetelologous genes involved in omega-3 fatty acid biosynthesis in oleaginous 

organisms [76, 77]. 

In this chapter, the author describe the investigation of heterologous gene expression in M. 

alpina for the production of EPA at a normal temperature.  

 

MATERIALS AND METHODS 

 

Strains, media, and growth conditions 

M. alpina ST1358, an ω3-desaturation activity-defective mutant, has been previously 

isolated from M. alpina 1S-4 deposited in the Graduate School of Agriculture of Kyoto 

University [40] and was used as a control strain in this chapter. The media described in chapter I 

were used. For jar-fermentation, the transformant was precultured in a 500-ml Erlenmeyer flask 

containing 100 ml GY medium, with shaking for 5 days at 28°C, and the subsequent main 

culture was carried out in a 5-l jar-fermentor (Able, Tokyo, Japan) with a working volume of 2.5 

l medium at 28°C, an inoculation rate of 4%, an agitation speed of 700 rpm, and an aeration rate 

of 2.5 l/min. Glucose (2.4%), yeast extract (1.0%) and soy bean oil (0.1%) were used as the 

initial ingredients. For other conditions for the jar-fermentation, see the legend to Fig. 4-5. 
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Cloning and sequencing of the M. alpina ST1358 ω3-desaturase gene  

The ω3-desaturase genomic gene was amplified with the forward primer w3overupF 

(5′-TTTTCCTTCCTCCCGCCAGAGTCATA-3′) and the reverse primer w3overdownR 

(5′-CTGCAGTTCTGTATTGACGCTTTTCG-3′), using ST1358 genomic DNA as the template. 

The PCR product, which was approximately 1.3 kb in size, was cloned into pUC118 using the 

Reagent Set for Mighty Cloning Kit (Takara, Shiga, Japan), the insert was then sequenced with 

a Beckman-Coulter CEQ8000 system (Beckman-Coulter, Fullerton, CA, USA) using M13 

primers. 

 

Isolation of uracil auxotrophs of M. alpina ST1358  

Isolation of uracil auxotrophs was performed as described previously [21]. M. alpina 

ST1358 was incubated on Czapek-Dox agar medium at 28ºC for 1 month, and allowed to 

sporulate at 12ºC for 1 month. Spores of strain ST1358 were harvested from the surface of 

Czapek-Dox (2.6 × 10
8
 spores/225 cm

2
); 2.6 × 10

7
 spores were spread on a GY agar medium 

containing 5-fluoroorotic acid (1.0 mg/ml) and uracil (0.05 mg/ml). 

  

Isolation of ura5 genomic gene from uracil auxotrophs of M. alpina ST1358 

The ura5 genomic gene was amplified with the forward primer ura5upF (5′-CCGCAACCC 

ATCAGCACACA-3′) and the reverse primer ura5downR (5′-GGACCTTATCCCATTTAGATT 

TGCC-3′), using uracil auxotrophic ST1358 genomic DNA as the template. A 700 bp PCR 

product was cloned into the pUC118 vector using the Reagent Set for Mighty Cloning Kit; and 

the insert was then sequenced with a Beckman-Coulter CEQ8000 system using M13 primers. 

 

Fatty acid analysis 

Analysis of fatty acids and lipids were performed as described in chapter III. 

 

Construction of the Sdd17m expression vector 

Saprolegnia diclina Δ17 desaturase gene (Sdd17m) was synthesized with optimized codon 

usage to reflect the codon bias of M. alpina 1S-4 (obtained from the Kazusa database; 

http://www.kazusa.or. jp/codon/), with additional SpeI and BamHI restriction enzyme sites at the 

5′ and 3′ ends, respectively. The Sdd17m expression cassette, with a histone promoter and SdhB 
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terminator, was generated by fusion PCR with XbaI and NheI restriction sites at the 5′- and 3′- 

ends of the cassette, respectively. This cassette was then digested with XbaI and NheI and 

ligated into pBIG35ZhSdd17m, which had been digested with same restriction enzymes (Fig. 

4-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation of M. alpina ST1358 ura5‒ strain 

Transformation of M. alpina ST1358 ura5‒ strain was performed by the ATMT method as 

described in chapter I. 

 

Fig. 4-1. The vector construct used for the expression of sdd17m in Mortierella 

alpina ST1358. 

Sdd17m, codon-optimized Δ17 fatty acid desaturase gene from Saprolegnia 

diclina; his p, M. alpina histone H4.1 promoter short fragment; SdhB t, M. alpina 

SdhB transcription terminator; ura5, orotate phosphoribosyl transferase gene of 

M. alpina; NPTIII, neomycin phosphotransferase III gene; TrfA, TrfA locus, 

which produces 2 proteins that promote replication of the plasmid; ColEI ori, 

ColEI origin of replication; oriV, pRK2 origin of replication; RB, right border; 

LB, left border. 
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RESULTS 

 

Isolation and characterization of uracil auxotrophs of M. alpina ST1358 

In this chapter, M. alpina ST1358, an ω3-desaturase defective mutant derived from M. 

alpina 1S-4, was used as the host strain for heterologous gene expression. Strain ST1358 

accumulates a higher amount of ARA than the wild strain 1S-4 and is deficient in the 

productivity of ω3 PUFAs [78]. To develop a transformation system using M. alpina ST1358, 

we obtained three uracil auxotrophic ST1358 mutants (ST1358-1, 2 and 3) that grow on SC 

medium with uracil, but not on uracil-free SC medium (Fig. 4-2A). Growth and fatty acid 

production and composition in the ST1358 uracil auxotrophs were examined to select one as a 

host strain for transformation. All the three uracil auxotrophs grew in a rich medium ato the 

same extent as wild 1S-4 and ST1358. There was no significant difference in fatty acid 

production or composition between ST1358 and these uracil auxotrophs (data not shown). 

These results indicate that all uracil auxotrophs could be used as a host strain for transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4-2. Characterization of uracil auxotrophic strains of Mortierella alpina ST1358. 

(A) Growth of M. alpina 1S-4, ST1358 and uracil auxotrophic ST1358 on SC medium with (+) or without (-) uracil. 

(B) Mutation site of the ura5 gene in the M. alpina uracil auxotrophic ST1358.  
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To detrmine which strain had a ura5 mutation that would be able to maintain stable uracil 

auxotrophy, the sequence of the ura5 gene in each mutant was analyzed. As shown in Fig. 4-2B, 

in ST1358-1, the adenine at +163 nucleotide position in ura5 had been deleted, leading to a 

frameshift mutation. In ST1358-2 and ST1358-3, the start codon had been eliminated by the 

substitution of T to C at +2 and A to T at +1, respectively. 

Consequently, strain ST1358-1 was used as the host strain for transformation in subsequent 

studies. 

 

Transformation of the M. alpina ST1358 uracil auxotroph with Sdd17m 

In order to convert ARA accumulated in M. alpina ST1358 to EPA, the Saprolegnia diclina 

fatty acid Δ17-desaturase gene (Sdd17) was used. S. diclina is an oleaginous microorganism 

producing EPA at a normal temperature, and Sdd17 is able to catalyze a desaturation at ω3 

position of ARA [74] as well as endogenous ω3 desaturase in M. alpina. The expression vector 

pBIG35ZhSdd17m (Fig. 4-1), carrying the codon-optimized Sdd17 gene (Sdd17m), was 

constructed and introduced into the M. alpina ST1358 uracil auxotroph using the ATMT method. 

As result, eight stable transformants were randomly selected and used for further studies.  

 

 

Cultivation and fatty acid analysis of the transformants carrying Sdd17m 

The stable transformants and the host strain were cultivated in GY medium for 7 days at 

28°C and 12°C, and then their fatty acid productivity and composition were evaluated (Fig. 4-3). 

When cultivated at 28°C, all the transformants produced EPA, which was hardly detectable in 

the host strain (Fig. 4-3A). At 12°C, the content of EPA in total fatty acids produced by 

transformants were also higher than that of the host strain (Fig. 4-3B). EPA content of 

transformant #8 and #9 was over 20% of total fatty acid at 12°C. Based on the fatty acid 

productivity and the EPA content, transformants #4, #6, #8 and #9 were selected for subsequent 

studies. 
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The selected transformants, the host strain ST1358, and the wild-type strain 1S-4 were 

cultivated in GY medium at 28°C, and the time course of their fatty acid production and 

composition were analyzed (Fig. 4-4). As reported in the previous paper, ST1358 showed a 

higher accumulation of ARA than the wild-type strain 1S-4 but did not accumulate EPA. On the 

Fig. 4-3. Fatty acid production and composition of the Mortierella alpina ST1358 

host strain and its transformants expressing Sdd17m. 

All strains were cultivated in 10 ml of GY liquid medium for 7 days at (A) 28˚C and 
(B) 12˚C. OA, oleic acid; LA, linoleic acid; GLA, γ-linolenic acid; DGLA, 

dihomo-γ-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid. 
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other hand, except transformant #9, all transformants showed increasing accumulation and 

content of EPA during cultivation. Transformant #6 exhibited high PUFA productivity and 

resulted in the highest EPA content (26% of total fatty acids on day 10) among all transformants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4-4. Time course of growth, fatty acid production and composition of the 

Mortierella alpina 1S-4 wild-type strain, the ST1358 host strain and its 

transformants expressing Sdd17m.  

All strains were cultivated in 4 ml of GY liquid medium at 28˚C for 3, 7, and 10 
days. Values represent mean values with standard deviations from three 

individual experiments. For all abbreviations, see the legend for Fig. 4-3. 
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EPA production by expressing of Sdd17m in transformant #6 in a 5-l jar fermentor 

Bench-scale EPA fermentation using M. alpina ST1358 transformant #6 in a 5-l jar 

fermentor was carried out. The transformant expressing the Sdd17m gene was cultivated with 

feeding of glucose in 2.5 l GY medium with aeration and agitation for 12 days at 28°C. The 

time course analysis of growth, fatty acid production and composition, and glucose 

concentration in the medium are shown in Fig. 4-5. The production of total fatty acids was low 

at first, then increased markedly to reach approximately 7.0 g/l culture broth on day 3, and is 

maintained at the level until day 12. EPA content increases with growth until it reached 

approximately 20% of total fatty acids. EPA content was almost unchanged after day 7. 

 

Fig. 4-5. Time course of growth, glucose consumption, fatty acid production and composition of 

the Mortierella alpina ST1358 transformant expressing Sdd17 cultivated in a 5-l jar fermentor. 

M. alpina ST1358 sdd17m #6 was cultivated in 2.5 l medium (2.4% glucose, 1.0% yeast extract 

and 0.1% soybean oil) at 28˚C for 12 days with aeration at 2.5 l/min and agitation at 700 rpm. 
Glucose was added periodically to the medium as shown. For all abbreviations, see the legend for 

Fig. 4-3. 
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DISCUSSION 

 

M. alpina ST1358 is a mutant derived from M. alpina 1S-4 after treating the parental 

spores with chemical mutagenesis twice [78]. Strain ST1358 exhibited a deficiency in the 

production of the omega-3 PUFAs and a higher accumulation of ARA, a precursor of EPA, than 

the wild-type strain 1S-4. Therefore, the author considered that this strain would be suitable to 

evaluate heterologous Δ17-desaturase gene expression, which has a function similar to that of 

the endogenous ω3 desaturase gene which produces EPA from ARA. The low ω3-desaturation 

activity and high ARA productivity observed in this strain might be caused by a mutation in the 

regulatory region of ω3-desaturase gene or in other genes related to PUFA biosynthesis, as no 

mutations were found in the ω3-desaturase gene in this strain. 

Using methods described in the previous report [21], the author succeeded in deriving 

ura5‒ mutants from strain ST1358 and selected one of the ura5‒
 
mutants, ST1358-1, as a host 

strain for transformation. Both the growth and PUFA productivity of strain ST1358-1, which has 

a frameshift mutation in ura5, are slightly better than those of the other ura5
-
 mutants and are 

almost equal to those of the parent strain, ST1358. 

Recently, the importance of the ratio of omega-3 and omega-6 PUFAs in the diet has been 

noticed and oils with a high omega-3/omega-6 lipid ratio have been in demand [79]. Previously 

it has been reported that it was possible to produce an EPA content up to 35% of total lipids by 

overexpressing the endogenous ω3-desaturase gene in M. alpina; but in that report, residual 

accumulation of ARA, an omega-6 PUFA, have been also observed due to the preference of 

endogenous ω3-desaturase for C18 substrates [42]. In this chapter, the Sdd17m gene 

(codon-optimized Sdd17 gene) was used to produce EPA in M. alpina ST1358. Sdd17 is a 

Δ17-desaturase of Saprolegnia diclina, which has been reported to preferentially convert C20 

substrates including ARA than C18 substrates [74], and is expected to accumulate less ARA 

during EPA production than endogenous ω3-desaturase. In addition, low contents of PUFA 

expect for EPA could respond to the demand for food and medical purposes as well as 

contribute to reduction of costs in purification step in industrial EPA production. 

Strain ST1358-1 was transformed with Sdd17m using the ATMT method. The 

transformants exhibited EPA production at a normal temperature (Fig. 4-3A). Moreover, the 

transformants produce a higher EPA content at a low temperature than the parent strain (Fig. 
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4-3B). These results indicate that the Sdd17 protein was functionally worked in M. alpina 

ST1358. In transformants, ARA was almost fully converted into EPA under the low temperature, 

whereas residual accumulation of ARA was observed at the normal temperature. The use of 

stronger promoters for Sdd17m expression might improve EPA production and content during 

cultivation at a normal temperature. 

All the transformants exhibited levels of growth and fatty acid productivity that were 

comparable to those seen in the wild-type strain (Fig. 4-4) except for transformant #9, in which 

the introduced Sdd17m gene might be omitted. In terms of industrial application, a bench-scale 

fermentation with a 5-l jar fermentor was performed (Fig. 4-5). Fatty acid analysis showed the 

high level of EPA content up to 20% of the total fatty acids. 

Up to date, the production of various kinds of PUFA has been achieved in M. alpina by 

molecular breeding. However, all of them were performed using its endogenous genes, that is, 

by over expression or repression. This study is the first report of the use of heterologous gene 

expression for the modification of the PUFA biosynthesis pathway in M. alpina. Recently, 

various genes involved in biosynthesis of PUFAs and their derivatives in oleaginous organisms 

have been identified. By applying these gene resources, production of further diverse kinds of 

PUFAs might be possible using M. alpina.  

Many investigations for EPA production has been already reported in various organisms by 

their molecular breeding. For example, recombinant production of EPA at 15% of total lipids in 

E. coli has been reported [80]. In plants, the EPA production at 20–30% of total lipids has been 

reported in soybean, tobacco and camellia [11, 81]. In microorganisms, Yarrowia lipolytica has 

achieved higher level of EPA production that are up to 50% of total lipids [77]. In fungi, 

although Pythium irregulare has been reported to accumulate EPA at 10% of total lipids [82], 

this report is the first example of EPA production at a normal temperature using an industrial 

strain of oleaginous fungus. In this chapter, the content of EPA of the total fatty acids was about 

20%, which was still lower than in previous reports of other high EPA-producing organisms. 

Higher production of EPA will be achieved through further studies, including studies on the 

expression of other heterologous genes related to PUFA biosynthesis, applying high-expression 

promoters, and blocking undesired fatty acid synthesis by metabolic engineering. 
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SUMMARY 

 

The heterologous Sdd17m gene was expressed in M. alpina ST1358, an ω5-desaturation 

activity-defective mutant derived from M. alpina 1S-4. EPA accumulation was observed in 

transformants at both 28°C and 12°C. The EPA content in total lipids produced by transformants 

was over 20% at 28°C. Bench-scale fermentation with a 5-l jar fermentor showed that EPA 

content reached 20% of total fatty acids, and final EPA production reached 1.6 g/l. These results 

provide a platform technology for the industrial production of EPA at a normal temperature 

using M. alpina as a promising source for EPA. 
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CHAPTER V 

Isolation and characterization of a docosahexaenoic acid (DHA)- 

phospholipids producing microorganism Crypthecodinium sp. D31 

 

 

Docosahexaenoic acid (DHA, C22:6ω3) is one of the most important dietary compounds 

because of its various specific functions, such as reducing the risk of coronary heart disease [83, 

84], lowering blood cholesterol levels [85], and reducing the risk of certain cancers [86]. DHA 

is also an important component of cell membranes, especially in the brain and retina of 

mammals [87]. Especially, DHA in the phospholipid form is of particular interest compared 

with the triacylglycerol form, because of its advantages such as few side effects and a higher 

capacity for transport into and accumulation in the human brain [88-90]. Clinical studies have 

shown that DHA-phospholipids is effective for the activation and the maintenance of brain 

functions, e.g. enhancement of learning ability [91], maintenance of memories [92] and 

increasing sleeping hour [93]. In addition, DHA in the phospholipid form is more suitable for 

industrial storage because it is not easily oxidized compared with the triacylglycerol form. Due 

to these advantages, the demand for DHA-phospholipids has increased. 

Currently, the major sources of DHA are fish oils. However, these sources have some 

disadvantages, including limited supply, lower DHA content and a peculiar taste arising from 

fish smells [94]. In addition, DHA typically exists in triacylglycerol form in fish oils. Recently, 

single cell oils from marine microorganisms such as thraustochytrids, labyrinthulids and 

dinoflagellates have been noticed as alternative sources of DHA [95-97]. These microorganisms 

can be cultivated easily on a large scale and produce considerable amounts of high-quality DHA. 

Although many marine organisms that produce significant amounts of DHA have been reported 

[96, 98, 99], they mainly produce DHA as a component of triacylglycerols, and there are many 

potential strains of marine microorganisms yet to be explored. To respond to the increasing 

demand for DHA, and for DHA-phospholipids in particular, microorganisms that can produce 

DHA in a more suitable form at higher yields are required. 

In this chapter, the author describe the isolation of a new candidate strain for high 

DHA-phospholipids production, Crypthecodinium sp. D31, and the evaluation of its DHA 

productivity and lipid profile. 
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MATERIALS AND METHODS 

 

Strains, media and growth conditions 

Marine microorganisms were isolated from fallen mangrove leaves collected from several 

brackish areas in Okinawa and Ishigaki islands in Japan by using pine pollen as a bait [95]. The 

collected zoospores were cultivated on dGPY agar medium (2 g/L glucose, 1 g/L polypeptone, 

0.5 g/L yeast extract and 15 g/L agar) containing 200 mg/L chloramphenicol, at a salinity 

equivalent to 50% of that of seawater (18 g/L Daigo’s artificial seasalts; Wako Chemical. Co. 

Ltd., Tokyo, Japan) until colonies appeared. GPY medium containing 20 g/L glucose, 10 g/L 

polypeptone and 5 g/L yeast extract, at a salinity equivalent to 50% of that of seawater, was 

used for liquid cultivation followed by analysis of fatty acid composition, unless otherwise 

noted. 

 

Fatty acid analysis 

For total fatty acid analysis, all the strains were inoculated into a test tube containing 4 mL 

of GPY medium and were cultivated at 28°C with shaking (300 rpm) for 2–14 days. The 

cultured cells were harvested by centrifugation at 3000 × g for 10 min and were washed twice 

with distilled water. The cells were dried, methyl-esterified and analyzed as described in 

Chapter III. 

 

Lipid class analysis 

For analysis of lipid classes, all the strains were inoculated into a 500 ml-flask containing 

100 mL GPY medium and were cultivated at 28°C with shaking (120 rpm) for 14 days. The 

cultured cells were harvested by centrifugation at 3000 x g for 10 min, washed twice with 

distilled water and disrupted with metal corn by using a Multi-beads shocker (Yasui Kikai, 

Osaka, Japan) at 1700 rpm for 30 sec two times. Lipids were extracted from the cells with 

chloroform-methanol (1:1) as described previously [100].  

Total lipids were fractionated by thin-layer chromatography (TLC) into neutral lipids and 

polar lipids on a silica gel coated-glass plate (Merck Ltd., Germany) with hexane-diethyl 

ether-acetic acid (40:60:1) and chloroform-diethyl ether-methanol-acetic acid (4:3:2:1), 

respectively, as solvents. After spraying the plates with 0.01% primuline in 80% acetone, the 
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appeared spots were detected under UV (260 nm), scratched, and collected in test tubes. Each 

fractionated lipid on the collected silica gel pieces was directly methyl-esterified, and analyzed 

as described in the preceding section. 

 

Isolation of genomic DNA and identification of 18S rDNA sequences from strain D31 

The cells were cultivated, harvested and ground into a powder by treatment with liquid 

nitrogen. Then, the genomic DNA was extracted using a standard phenol/chloroform method 

[101]. The 18S rDNA region was amplified by polymerase chain reaction (PCR) with the 

forward primer 18S1 F (5′-TACCTGGTTGATCCTGCCAG-3′) and the reverse primer 18S12 R 

(5′-CCTTCCGCAGGTTCACCTAC -3′) [100] with D31 genomic DNA as the template. The 

resultant PCR fragment was cloned into the pUC118 plasmid (Takara bio Inc., Tokyo, Japan) 

according to the manufacturer’s instructions, and the insert was sequenced with a 

Beckman-Coulter CEQ8000 system (Beckman-Coulter, Fullerton, CA, USA) by using M13 

primers. The determined sequence was compared with 18S rDNA sequences of various 

microorganisms stored in the DNA Data Bank of Japan (DDBJ) by using the Basic Local 

Alignment Search Tool (BLAST; http://blast.ncbi.nlm. nih.gov/ Blast.cgi). 

 

RESULTS 

 

PUFA profiles of DHA-producing isolates 

Approximately 300 strains of microorganisms were isolated, and 34 of these strains 

produced DHA. These strains exhibited provided various fatty acid compositions (containing 

arachidonic acid, eicosapentaenoic acid, docosatetraenoic acid and DHA as polyunsaturated 

fatty acids) and productivities (7.87 to 502 mg/L of total fatty acid production and 8.7% to 

66.7% of DHA content in total fatty acids) (Fig. 5-1). In particular, the isolated strain D31 had a 

unique fatty acid composition; DHA was the only polyunsaturated fatty acid (shown in Fig. 5-2) 

and the ratio of DHA was over 60% of its total fatty acids, while about 40% in Shizochytrium 

limacinum SR21 previously isolated as a high DHA-producing strain [102] that was used as a 

reference strain in Fig. 5-1. 
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Fig. 5-1. Comparison of fatty acid profiles produced by the isolates. All the strains were cultivated in GPY liquid 

medium for 7 days. 

“Other fatty acids” includes all fatty acids with a chain length <20 carbon atoms. TFA, total fatty acid; ARA, 

arachidonic acid; EPA, ω3 eicosapentaenoic acid; DTA, ω6 docosatetraenoic acid; DPA, ω6 docosapentaenoic acid; 

DHA, docosahexaenoic acid. SR21 refers to Scizochytrium limacinum SR21 that was used as a reference strain. TFA 

values are means of triplicate analyses ± standard deviation. 
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Identification and phylogenetic classification of strain D31 

The almost complete length of 18S rDNA sequence (approximately 1700 bp) from strain 

D31 was amplified, cloned and sequenced. BLAST analysis against nucleotide sequences from 

various microorganisms in DDBJ indicated that the 18S rDNA sequence of strain D31 exhibited 

99% homology with that of Crypthecodinium cohnii (data not shown). Moreover, in BLAST 

analysis using the 26S rDNA sequence, strain D31 also showed high homology (96.4%) with C. 

cohnii (data not shown). These 18S and 26S rDNA sequences of strain D31 were deposited in 

DDBJ with accession numbers AB811790 and AB811791, respectively. Finally, this strain was 

identified as the related species of Crypthecodinium cohnii based on its morphological 

(yellowish-white creamy circular colonies with raised elevation and wavy edges) and 

microscopy (swimming vegetative cells with flagella) characteristics and the results of the 

molecular phylogenetic analysis of the 26S rDNA sequence (Fig. 5-3). The strain D31 was 

deposited in the National Institute of Technology and Evaluation, Biological Resource Center, 

Japan (NBRC) with accession number NBRC109771. 

Fig. 5-2. Gas chromatogram of total fatty acids from the isolated strain D31 after methyl esterification. 

DHA, docosahexaenoic acid. 
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Effects of cultivation conditions on DHA productivity of Crypthecodinium sp. D31 

To characterize and evaluate the DHA productivity of Crypthecodinium sp. D31, the effects 

of various cultivation conditions (carbon sources, nitrogen sources, salinity and initial pH of 

cultivation medium) were investigated. The cells of Crypthecodinium sp. D31 were cultivated 

for 10 days unless otherwise noted, because this strain showed maximum DHA production on 

day 10 when cultivated on the standard GPY medium (data not shown).  

The effect of the carbon source on growth and DHA production is shown in Table 5-1. 

D-Glucose, D-fructose, acetic acid, ethanol and glycerol promoted cell growth, whereas other 

saccharides, organic acids and sugar alcohols did not promote growth. Ethanol and glycerol 

elicited DHA productivity comparable to that seen for glucose, and DHA production with 

glycerol as the carbon source was the highest. 

 

 

Fig. 5-3. Phylogenetic tree based on the 26S rDNA gene sequences from strain D31 and 

other dinoflagellates, with Plasmodium berghei as an outgroup (based on the data from 

TechnoSuruga Laboratory Co., Ltd.). 

The numbers at each internal branch show the bootstrap values. 
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The effect of the nitrogen source on growth and DHA production is shown in Table 5-2. 

The mixture of polypeptone and yeast extract, used as the basic nitrogen source in GPY medium, 

was preferable for growth and DHA production. Inorganic nitrogen sources, including 

(NH4)2SO4, NaNO3, urea and so on, did not support sufficient growth of Crypthecodinium sp. 

D31 (data not shown). 

Table 5-1. Effect of carbon sources on growth and DHA production in 

Crypthecodinium sp. D31a. 
 

Carbon source (2%) DCW (g/L) TFA (mg/L) DHA (mg/L) 

 No carbon source 0.44 ± 0.08  3.99 ± 0.06 2.48 ± 0.08 

 Glucose 3.08 ± 0.42  131 ± 6 75.8 ± 4.4 

 Fructose 1.64 ± 0.14  24.4 ± 4.1 15.1 ± 1.7 

 Galactose 0.86 ± 0.31  11.7 ± 0.2 8.22 ± 0.50 

 Mannose 0.73 ± 0.22  10.9 ± 0.1 6.23 ± 0.11 

 Xylose 0.54 ± 0.01  3.13 ± 0.02 1.91 ± 0.10 

 Sucrose 0.64 ± 0.09  4.98 ± 0.99 2.62 ± 0.07 

 Maltose 0.80 ± 0.21  3.81 ± 0.23 2.32 ± 0.10 

 Lactose 0.67 ± 0.04  4.03 ± 0.13 2.57 ± 0.05 

 Raffinose 0.95 ± 0.57  3.43 ± 0.22 2.28 ± 0.23 

 Dextrin 0.78 ± 0.11  2.88 ± 0.32 1.77 ± 0.11 

 Starch 0.67 ± 0.01  4.62 ± 0.38 2.81 ± 0.22 

 Cellulose  not measurable 
b
 3.44 ± 0.35 1.89 ± 0.25 

 Sorbitol 0.71 ± 0.04  6.11 ± 1.19 3.57 ± 0.70 

 Mannitol 0.71 ± 0.22  9.47 ± 1.56 5.28 ± 0.13 

 Citric acid 0.29 ± 0.01  4.75 ± 4.22 2.34 ± 2.19 

 Acetic acid 0.92 ± 0.12  20.6 ± 1.1 13.9 ± 0.9 

 Lactic acid 0.83 ± 0.11  4.42 ± 0.70 2.81 ± 0.33 

 Pyruvic acid 0.50 ± 0.07  3.37 ± 1.81 2.26 ± 1.16 

 Succinic acid 0.82 ± 0.14  8.98 ± 0.29 6.50 ± 0.10 

 Fumaric acid 0.53 ± 0.02  2.69 ± 0.49 1.73 ± 0.41 

 Maleic acid 0.54 ± 0.03  2.48 ± 0.47 1.43 ± 0.15 

 Malic acid 0.64 ± 0.10  2.00 ± 0.77 1.42 ± 0.59 

 Methanol 0.59 ± 0.16  3.69 ± 0.00 2.24 ± 0.00 

 Ethanol 2.38 ± 0.07  61.7 ± 3.2 38.4 ± 0.7 

 Glycerol 6.90 ± 0.20  188 ± 16 103 ± 12 
aCultivated in the medium containing a mixture of 1% polypeptone and 0.5% yeast extract as 
the nitrogen source, at a salinity equivalent to 50% of that of seawater. 
bBecause insoluble cellulose in the medium was not able to separate with cultivated cells when 
DCW measuring. 
DCW, dry cell weight; TFA, total fatty acids; DHA, docosahexaenoic acid. 
Values are means of triplicate analyses ± standard deviation. 
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The effect of the concentration of artificial seawater (with a salinity of 0–200% that of 

seawater) is shown in Table 5-3. Seawater salinities of 25%, 50% and 100% were effective for 

the growth and DHA production, especially 50% seawater salinity was optimal. On the other 

hand, growth and DHA production were suppressed in the case of 0% and 200% seawater 

salinity. 

 

 

 

 

 

 

 

 

 

 

 

Table 5-2. Effect of nitrogen sources on growth and DHA production in Crypthecodinium 

sp. D31a. 

Table 5-3. Effect of salinity of the medium on cell growth and DHA production in 

Crypthecodinium sp. D31a. 

 

 Nitrogen source (1.5%)
 
 DCW (g/L) TFA (mg/L) DHA (mg/L) 

 No nitrogen source -
b
   -   -   

 Yeast extract 1.33 ± 0.31 85.7 ± 16.9 51.3 ± 5.9 

 Polypeptone -   -   -   

 Peptone 1.00 ± 0.50 41.2 ± 0.9 25.1 ± 3.3 

 Tryptone 0.50 ± 0.00 41.5 ± 4.9 27.1 ± 2.9 

 Tryptose 2.00 ± 0.89 44.0 ± 7.3 30.7 ± 4.4 

 Malt extract 1.25 ± 0.25 43.1 ± 5.0 27.5 ± 1.9 

 Marine broth 2.59 ± 0.18 106 ± 6 52.5 ± 2.1 

 Meat extract 1.25 ± 0.00 70.8 ± 2.6 38.1 ± 0.0 

 Neopeptone 0.50 ± 0.10 35.4 ± 1.4 21.5 ± 2.4 

 1% Polypeptone + 0.5% yeast extract 3.08 ± 0.42 131 ± 7 75.8 ± 4.4 
aCultivated in the medium containing 2% glucose as a carbon source, at a salinity equivalent to 
50% of that of seawater. 
b-, Trace amounts. 
DCW, dry cell weight; TFA, total fatty acids; DHA, docosahexaenoic acid. 
Values are means of triplicate analyses ± standard deviation. 

 Salinity (%) 
b
 DCW (g/L) TFA (mg/L) DHA (mg/L) 

 0 0.28 ± 0.08 13.8 ± 0.2 8.43 ± 0.42 

 25 1.59 ± 0.16 52.6 ± 5.7 28.7 ± 2.3 

 50 2.28 ± 0.16 98.6 ± 11.5 58.0 ± 5.8 

 100 1.63 ± 0.04 67.2 ± 6.4 40.5 ± 2.2 

 200 0.26 ± 0.04 8.32 ± 0.42 4.85 ± 0.18 
aCultivated in the medium containing 2% glucose as a carbon source and a mixture of 1% 
polypeptone and 0.5% yeast extract as the nitrogen source. 
bSalinity of seawater is treated as 100%. 
DCW, dry cell weight; TFA, total fatty acids; DHA, docosahexaenoic acid. 
Values are means of triplicate analyses ± standard deviation. 
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The effect of the initial pH of the cultivation medium is shown in Table 5-4. The growth 

could not be measured in the pH range from 7.0 to 9.0 because of the formation of precipitants 

in the medium. DHA production was approximately constant in the acidic pH range (pH 

3.0–6.0) and decreased in medium that had a pH 6.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crypthecodinium sp. D31 produced 375 mg/L of DHA when cultivated under optimized 

conditions, i.e., glycerol as the carbon source, a mixture of yeast extract and polypeptone as the 

nitrogen sources, salinity at 50% that of seawater, and pH 5.5. 

 

Lipid class composition 

Total lipids from Crypthecodinium sp. D31 and Schizochytrium limacinum SR21, a 

previously characterized industrial strain [102], used as the reference strain, were fractionated 

by TLC and the lipid class compositions were evaluated (Table 5-5). In Crypthecodinium sp. 

D31, polar lipids accounted for 69.4% of the total lipids, whereas they accounted for only 

10.2% of the total lipids in S. limacinum SR21. Crypthecodinium sp. D31 accumulated DHA 

mainly in polar lipids (79.4% of total DHA), particularly as phosphatidylcholine (71.4% of the 

total polar DHA), in contrast to S. limacinum SR21 which preferentially accumulated DHA in 

the neutral lipid triacylglycerol form. 

Table 5-4. Effect of initial medium pH on growth and DHA production in Crypthecodinium 

sp. D31a. 
 

 Initial pH
b  

DCW (g/L) TFA (mg/L) DHA (mg/L) 

 3.0  4.19 ± 0.44 230 ± 69 123 ± 33 

 4.0  3.13 ± 0.12 156 ± 20 84.9 ± 7.5 

 5.0  4.06 ± 0.06 223 ± 17 120 ± 11 

 5.5  4.13 ± 0.38 226 ± 10 124 ± 14 

 6.0  3.38 ± 0.50 191 ± 16 94.3 ± 12.8 

 6.5  2.61 ± 0.25 128 ± 10 65.4 ± 5.7 

 7.0  1.63 ± 1.13 97.4 ± 2.7 49.0 ± 4.0 

 7.5  not measurable 83.8 ± 7.9 44.9 ± 1.7 

 8.0  not measurable 49.6 ± 4.1 26.4 ± 3.2 

 9.0  not measurable  -   -  
aCultivated in GPY liquid medium (containing 2% glucose as a carbon source and a mixture of 1% 
polypeptone and 0.5% yeast extract as the nitrogen source, at a salinity equivalent to 50% of that 
of seawater). 
bpH was adjusted with HCl or NaOH. Without adjustment, the pH of GPY medium was about 6.5. 
DCW, dry cell weight; TFA, total fatty acids; DHA, docosahexaenoic acid. 
Values are means of triplicate analyses ± standard deviation. 
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DISCUSSION 

 

Thirty-four strains of DHA-producing microorganisms were isolated from brackish areas in 

Japan; these strains had various fatty acid compositions. the author focused on strain D31, 

which showed the highest DHA content among the strains isolated in this study. The DHA 

content of strain D31 accounted for over 60% of the total fatty acids (Fig. 5-1), and was higher 

than that of previously reported DHA-producing marine microorganisms (40–50% DHA), 

including the industrial strain Scizochytrium limacinum SR21 [95, 96, 102]. By the phylogenetic 

analysis, D31 was identified as a related species to the heterotrophic dinoflagellate 

Crypthecodinium cohnii. C. cohnii is known to be a DHA-producing microorganism, but the 

DHA content of this dinoflagellate is limited to approximately 50% of the total fatty acids [97]. 

 

 Crypthecodinium sp. D31 S. limacinum SR21 

 Lipid class in TFA in DHA in TFA in DHA 

 

Total lipid composition (%) 

 Neutral lipids 30.6 ± 1.1  20.6 ± 0.5  89.8 ± 1.2 83.4 ± 3.7 

 Polar lipids 69.4 ± 1.1  79.4 ± 0.5  10.2 ± 1.2 16.6 ± 3.7 

  

Neutral lipid composition (% in neutral lipids) 

 Triacylglycerols 66.3 ± 3.4  86.0 ± 2.7  90.5 ± 0.3  89.3 ± 2.1  

 1,3-diacylglycerols 6.4 ± 1.3   -  3.9 ± 0.8  4.1 ± 1.1  

 1,2-diacylglycerols 8.7 ± 2.1  4.7 ± 1.6  0.5 ± 0.1  0.2 ± 0.0  

 Monoglycerols 9.2 ± 1.6   -  0.7 ± 0.1  0.9 ± 0.2  

 Free fatty acids 10.4 ± 1.2  10.2 ± 1.4  4.7 ± 0.5  6.0 ± 0.9  

 

Polar lipid composition (% in polar lipids) 

 Phosphatidic acid 4.6 ± 0.7  3.0 ± 0.4  24.3 ± 1.9  3.0 ± 0.8  

 Phosphatidylethanolamine 10.5 ± 2.0  2.2 ± 0.7  16.8 ± 3.2  1.6 ± 0.2  

 Phosphatidylserine  -   -   0.2 ± 0.0   -  

 Phosphatidylinositol 3.0 ± 0.6  2.0 ± 0.4  0.9 ± 0.1  1.5 ± 0.1  

 Phosphatidylcholine 32.4 ± 2.7  71.4 ± 2.0  23.6 ± 2.9  73.0 ± 1.6  

 Other polar lipids 49.4 ± 0.6  21.4 ± 2.7  34.1 ± 2.2  20.8 ± 2.2 

 
a

Table 5-5. Lipid class composition (%) of Crypthecodinium sp. D31 and Schizochytrium 

limacinum SR21a. 

aBoth strains were cultivated in GPY liquid medium. S. limacinum SR21 was used as a 
reference strain. 
TFA, total fatty acids; DHA, docosahexaenoic acid. 
Values are means of triplicate analyses ± standard deviation. 
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Our data showed that DHA exists mainly as a component of polar lipids in 

Crypthecodinium sp. D31. The phospholipids produced by Crypthecodinium sp. D31 accounted 

for approximately 70% of the total lipids, while S. limacinum SR21 and other reported 

Crypthecodinium strains have relatively low phospholipid content account for 10.2% (Table 

5-5) or 28.5% [103] of the total lipids, respectively. Recently, DHA-containing phospholipids 

have been noticed because of their various specific functions [91-93] and advantages over 

triacylglycerides, such as fewer side effects and better transportability and accumulation in the 

human brains [88-90]. Crypthecodinium sp. D31 is an attractive candidate for the industrial 

production of high-purity DHA-containing phospholipids. 

In general, DHA-producing microorganisms have been known to synthesize DHA via the 

conventional fatty acid synthase (FAS) pathway and/or the polyketide synthase-like (PKS) 

pathway [104]. In microorganisms with the FAS pathway, DHA is synthesized via alternating 

steps of desaturation and elongation; therefore, various kinds of PUFAs including precursors of 

DHA are produced [105]. On the other hand, in microorganisms with only the PKS pathway, 

their fatty acid profiles are most likely to be simpler because DHA is synthesized without 

intermediate products [94]. Crypthecodinium sp. D31 was found to have a simple fatty acid 

composition with DHA as the sole polyunsaturated fatty acid. This result, in agreement with that 

of a previous report [97], suggests that this strain adopts only the PKS pathway for DHA 

synthesis. 

By investigation of the effects of carbon sources in the cultivation medium on growth and 

DHA production of Crypthecodinium sp. D31, this strain was found to produce DHA well in the 

medium containing ethanol or glycerol. This result suggests that these carbon sources are easily 

metabolized and utilized by the DHA biosynthetic pathways in this strain. In particular, glycerol 

is likely to be used as the backbone for triacylglycerol (TAG) because DHA-TAG production 

increased when this strain was cultivated in the glycerol-containing medium (data not shown). 

Glycerol is a byproduct of biodiesel production [106] and there has been increasing interest 

regarding the processes for its utilization. Crypthecodinium sp. D31 is able to efficiently 

produce DHA from glycerol, therefore it may be suitable for the utilization of excess glycerol. 

Ethanol was also utilized well by Crypthecodinium sp. D31, but acetate and other organic acids 

were relatively not so, although ethanol is known to be metabolized via the acetic acid in 

general. This finding suggests that Crypthecodinium sp. D31 does not metabolize these free 
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organic acids efficiently or that it may possess an alternative ethanol-metabolic pathway instead 

of the conversion of ethanol into acetate. 

Although the DHA production by Crypthecodinium sp. D31 was still lower (approximately 

0.38 g/L) than that by other DHA producers such as Schizochytrium sp. SR21 (approximately 

4.2 g/L [107]), two useful features, that Crypthecodinium sp. D31 can produce DHA as the only 

long-chain PUFA in its total fatty acids and high content of phospholipid DHA, will be of great 

advantage for industrial fields. 

 

SUMMARY 

 

Thirty-four strains of docosahexaenoic acid (DHA)-producing microorganisms were newly 

isolated from brackish areas in Japan. These strains showing various compositions of fatty acids. 

Especially, the fatty acids produced by one of the strains, named D31, had a high DHA content 

(over 60% of the total fatty acids) and the simple fatty acid composition (16:0, 18:0, 18:1 and 

DHA without any other polyunsaturated acids). Although most oleaginous microorganisms 

accumulate DHA as triacylglycerol, the strain D31 accumulated DHA mainly as a polar lipid 

(79.4% of total DHA), especially as phosphatidylcholine (71.4% of polar DHA). This strain 

D31 was identified as the related species of Crypthecodinium cohnii on the basis of 

phylogenetic analysis. Crypthecodinium sp. D31 showed high DHA productivity when 

cultivated in a medium containing glycerol as the carbon source and a mixture of yeast extract 

and polypeptone as the nitrogen sources, with a salinity that was equivalent to 50% of that of 

seawater and a pH in the acidic range (<pH 6.0). Crypthecodinium sp. D31 is considered as a 

promising producer of high-purity DHA-containing phospholipids.
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CONCLUSIONS 

 

In this thesis, the author described screening, selection, biochemical analysis, development 

of gene manipulation tools and molecular breeding of oleaginous microorganisms for ω3-PUFA 

production. The results described in each chapter are summarized as follows: 

 

CHAPTER I 

This chapter described the selection and characterization of promoters based on genomic 

approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. 

The promoter regions of 28 genes in Mortierella alpina 1S-4 were selected and cloned on 

the basis of expression sequence tag (EST) abundance data. The activity of each promoter was 

evaluated by using the β-glucuronidase (GUS) reporter gene. Eight of these promoters were 

shown to enhance GUS expression more efficiently than a histone promoter, which is 

conventionally used for the gene manipulation in M. alpina. Especially, the predicted protein 3 

(PP3) and the predicted protein 6 (PP6) promoters demonstrated approximately 5-fold higher 

activity than the histone promoter. The activity of some promoters changed along with the 

cultivation phase of M. alpina 1S-4. Seven promoters with constitutive or time-dependent, 

high-level expression activity were selected, and deletion analysis was carried out to determine 

the promoter regions required to retain activity. The promoters described in this chapter will be 

useful tools for gene manipulation in this strain. 

 

CHAPTER II 

This chapter described galactose-dependent promoters for potential use in an oleaginous 

fungus Mortierella alpina 1S-4. The putative promoter regions of two genes encoding galactose 

metabolic enzymes, GAL1 and GAL10, were cloned from the genome of M. alpina 1S-4. The 

GUS reporter gene assay in M. alpina 1S-4 revealed that regulation of these promoters was 

dependent on the presence of galactose in the medium both with and without other sugars. With 

the GAL10 promoter, an approximately 50-fold increase of GUS activity was demonstrated by 

addition of galactose into the culture media at any cultivation phase. The 5′ deletion analysis of 

the GAL10 promoter revealed that a promoter region of over 2,000 bp length was required for 

an inducible response and high-level activity. The GAL10 promoter will be a the valuable tool 
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for gene manipulation in M. alpina 1S-4. 

 

CHAPTER III 

This chapter described ω3-eicosatetraenoic acid (ETA) production by molecular breeding 

of the mutant strain S14, a Δ5-desaturation activity-defective mutant derived from M. alpina 

1S-4. 

The endogenous ω3-desaturase gene or the heterologous Saprolegnia diclina Δ17 

desaturase (Sdd17m) gene were overexpressed in M. alpina S14. Transformants introduced with 

the endogenous ω3-desaturase gene showed ETA at 42.1% content in the total lipids that was 

84.2-fold and 3.2-fold higher than that of the wild-type strain 1S-4 and host strain S14, 

respectively, when cultivated at 12°C. No accumulation of ETA was observed at 28°C. In 

contrast, transformants with the heterologous Sdd17m gene showed 24.9% of the content of 

total lipids at 28°C. These results indicated that these M. alpina S14 transformants are 

promising strains for the production of ETA, which is hard to obtain from natural sources. 

 

CHAPTER IV 

This chapter described eicosapentaenoic acid (EPA) production at a normal room 

temperature by molecular breeding of the mutant strain ST1358, an ω5-desaturation 

activity-defective mutant derived from M. alpina 1S-4. 

The heterologous Sdd17m gene was expressed in M. alpina ST1358. EPA accumulation 

was observed in transformants at both 28°C and 12°C. The EPA content in total lipids produced 

by transformants was over 20% at 28°C. Bench-scale fermentation with a 5-l jar fermentor 

showed that EPA content reached 20% of total fatty acids, and final EPA production reached 1.6 

g/l. These results provide a platform technology for the industrial production of EPA at a normal 

temperature using M. alpina as a promising source for EPA. 

 

CHAPTER V 

This chapter described the screening, isolation and characterization of docosahexaenoic 

acid (DHA)-producing microorganisms. 

Thirty-four strains of docosahexaenoic acid (DHA)-producing microorganisms were newly 

isolated from brackish areas in Japan. These strains showing various compositions of fatty acids. 
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Especially, the fatty acids produced by one of the strains, named D31, had a high DHA content 

(over 60% of the total fatty acids) and the simple fatty acid composition (16:0, 18:0, 18:1 and 

DHA without any other polyunsaturated acids). Although most oleaginous microorganisms 

accumulate DHA as triacylglycerol, the strain D31 accumulated DHA mainly as a polar lipid 

(79.4% of total DHA), especially as phosphatidylcholine (71.4% of polar DHA). This strain 

D31 was identified as the related species of Crypthecodinium cohnii on the basis of 

phylogenetic analysis. Crypthecodinium sp. D31 showed high DHA productivity when 

cultivated in a medium containing glycerol as the carbon source and a mixture of yeast extract 

and polypeptone as the nitrogen sources, with a salinity that was equivalent to 50% of that of 

seawater and a pH in the acidic range (<pH 6.0). Crypthecodinium sp. D31 is considered as a 

promising producer of high-purity DHA-containing phospholipids. 
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