Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum β -lactamase CTX-M-15 and of its structurally related β -lactamase CTX-M-3

Laurent Poirel¹, Marek Gniadkowski² and Patrice Nordmann^{1*}

¹Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 Le Kremlin-Bicêtre, France; ²Sera & Vaccines Central Research Laboratory, 00725 Warsaw, Poland

Received 17 July 2002; returned 3 September 2002; revised 10 September 2002; accepted 11 September 2002

The extended-spectrum β -lactamase CTX-M-15 confers resistance to ceftazidime, unlike the majority of CTX-M-type enzymes. Kinetic parameters were determined from purified CTX-M-15 and CTX-M-3, which differ by the single amino acid substitution Asp-240 to Gly, according to the Ambler numbering of class A β -lactamases. Relative molecular masses of CTX-M-15 and CTX-M-3 were ~29 kDa and pl values were 8.9 and 8.4, respectively. CTX-M-15 had higher affinities for β -lactams (lower K_m values) than those of CTX-M-3 but catalytic efficiency (k_{cat}/K_m values) was variable depending on the β -lactam substrate. Only CTX-M-15 showed a measurable catalytic efficiency for ceftazidime. Clavulanic acid and tazobactam were good inhibitors of both enzymes. MICs of β -lactams for *Escherichia coli* reference strains expressing cloned β -lactamase the fact that some CTX-M enzymes may hydrolyse ceftazidime and thus confer resistance to this expanded-spectrum cephalosporin in Enterobacteriaceae.

Keywords: β -lactamase, CTX-M, expanded-spectrum β -lactamases

Introduction

In addition to the classical TEM and SHV enzymes, several plasmid-mediated Ambler class A extended-spectrum β -lactamases (ESBLs) have been reported. Among them, the CTX-M-type β -lactamases are currently spreading worldwide in Enterobacteriaceae.¹ The name 'CTX-M' refers to their potent hydrolytic activity for cefotaxime.^{1,2} The CTX-M enzymes confer high-level resistance to cefotaxime, ceftriaxone and aztreonam, but have only marginal effects on MICs of ceftazidime for both wild-type and laboratory-derived strains of enterobacteria.¹ According to amino acid sequence data, they may be grouped in four clusters: CTX-M-1 (CTX-M-1, -3, -10, -11, -12, -15), CTX-M-2 (CTX-M-2, -4, -5, -6, -7, -20, Toho-1), CTX-M-8 and CTX-M-9 (CTX-M-9, -13, -14, -16, -18, -19 and Toho-2) (accession nos AJA16344 and 41346).¹⁻⁶

Two novel point-mutant derivatives of CTX-M-9, CTX-M-16 and CTX-M-19, have been reported to hydrolyse ceftazidime significantly.^{3,6} Additionally, we have reported recently the DNA sequence of another β -lactamase, CTX-M-15, from Indian enterobacterial isolates that were resistant to both cefotaxime and ceftazidime.⁵ CTX-M-15 has a single amino acid change [Asp-240 \rightarrow Gly (Ambler numbering)]⁷ compared with CTX-M-3.⁵ It has so far also been found in Japan (β -lactamase UOE-1; GenBank accession no. AY013478), Bulgaria⁸ and Poland,⁹ where CTX-M-3 is wide-spread.¹⁰

Since CTX-M-15-producing isolates had a significant degree of resistance to ceftazidime,⁵ we have purified CTX-M-15 and CTX-M-3 and compared their kinetic parameters (kinetics of CTX-M-3 has not been studied before). Additionally, this report provides detailed kinetic data that are available only for a very few CTX-M-type enzymes.

*Corresponding author. Tel: +33-1-45-21-36-32; Fax: +33-1-45-21-63-40; E-mail: nordmann.patrice@bct.ap-hop-paris.fr

JAC

L. Poirel et al.

Materials and methods

Bacterial strains, cloning experiments and sequencing

CTX-M-15-producing Escherichia coli 2 was from India.⁵ Citrobacter freundii isolate 2526/96, which was identified in Poland in 1996, was used as a *bla*_{CTX-M-3}-containing strain.⁴ E. coli reference strain DH10B was used for cloning and expression experiments.⁶ Cloning was carried out with PCR products generated with primers PROM+ (5'-TGCTCTGT-GGATAACTTGC-3') and preCTX-M-3B (5'-CCGTTTC-CGCTATTACAAAC-3') annealing to the 3'-end of insertion sequence ISEcp1 located upstream of bla_{CTX-M-15} and downstream of bla_{CTX-M-15/-3}, respectively (accession no. AY0-44436).^{3,4} Whole-cell DNA from E. coli 2 and C. freundii 2526/96 was used as template.⁵ PCR amplimers were cloned into the SrfI site of the pPCRScript-Cam (SK+) plasmid (Stratagene Inc., La Jolla, CA, USA). Recombinant plasmids were transformed into electrocompetent E. coli DH10B cells and selected on Mueller-Hinton (MH) agar plates containing 100 mg/L ampicillin and 30 mg/L chloramphenicol. Sequencing of inserts of recombinant plasmids was carried out as described previously.6

Susceptibility testing

MICs of selected β -lactams were determined by the agar dilution technique on MH agar plates as described previously,⁶ and interpreted according to the NCCLS guidelines.¹¹

Biochemical analysis of CTX-M-15 and CTX-M-3

Cultures of *E. coli* DH10B with plasmids pCTX-M-15 and pCTX-M-3 were grown overnight at 37°C in 4 L of trypticase soy broth containing ampicillin (100 mg/L) and chloramphenicol (30 mg/L). β -Lactamase extracts were obtained using purification steps with a Q-Sepharose column, then an S-Sepharose column followed by elution at 50 mM NaCl, as described previously.⁶ β -Lactamase-positive fractions were pooled and dialysed against 50 mM phosphate buffer (pH 7), and subsequently concentrated 10-fold with Centrisart-C30 microcentrifuge filters (Sartorius, Goettingen, Germany).⁶

Analytical isoelectric focusing (IEF) using an ampholinecontaining polyacrylamide gel and purity of the enzymes and relative molecular masses estimated by SDS–PAGE analysis were carried out as reported previously.⁶

Purified β -lactamases were then used for kinetic measurements at 30°C in 100 mM sodium phosphate buffer (pH 7.0). The initial rates of hydrolysis were determined with an ULTROSPEC 2000 UV spectrophotometer (Amersham Pharmacia Biotech), as described previously.⁶ The 50% inhibitory concentrations (IC₅₀ values) were determined as reported previously.⁶ Specific activities of the purified β -lactamases were evaluated as previously reported; one unit of enzyme activity was defined as the activity that hydrolysed $100 \,\mu$ mol of cefalothin per minute.⁶

Results and discussion

Recombinant plasmids and susceptibility testing

The DNA inserts of the two recombinant plasmids pCTX-M-15 and pCTX-M-3 were sequenced, confirming that they contained the $bla_{\text{CTX-M-15}}$ and $bla_{\text{CTX-M-3}}$ genes, respectively. The 3'-end of IS*Ecp1* was located 48 and 128 bp upstream of the start codon of $bla_{\text{CTX-M-15}}$ and $bla_{\text{CTX-M-3}}$, respectively (data not shown), indicating that the surrounding sequences of these two $bla_{\text{CTX-M}}$ genes were different.

E. coli DH10B that harboured pCTX-M-15 and pCTX-M-3 demonstrated a typical inhibitor-susceptible ESBL-mediated resistance profile (Table 1). MICs of β -lactams for *E. coli* DH10B (pCTX-M-15) mirrored those for *E. coli* DH10B (pCTX-M-3) except for ceftazidime; the MIC of ceftazidime for the CTX-M-15 producer was significantly higher than that for the CTX-M-3 producer.

Biochemical analysis of CTX-M-15 and CTX-M-3

The specific activities of purified β -lactamases CTX-M-15 and CTX-M-3 were 185 and 138 mU/mg of protein, respectively, with a 50-fold purification factor in both cases. Their purification level was ~90% (data not shown). IEF analysis identified pI values for CTX-M-15 and CTX-M-3 of 8.9 and 8.4, respectively. The relative molecular masses of CTX-M-15 and CTX-M-3, determined by SDS–PAGE analysis, were ~29 kDa (data not shown).

The glycine residue in position 240 in CTX-M-15 provided lower hydrolytic activity (lower k_{cat} values) for penicillins compared with CTX-M-3, as found for CTX-M-16 and CTX-M-9, which differ by the same amino acid substitution in position 240.⁶ The overall hydrolytic activity of CTX-M-15 against cephalosporins was not higher than that of CTX-M-3, depending on the cephalosporin molecule.

CTX-M-15 had higher affinities (low K_m) than CTX-M-3 for all the β -lactams studied except for cefepime. This was particularly true for aztreonam, as found for CTX-M-16 when compared with CTX-M-9.³

In general, CTX-M-15 and CTX-M-3 had strong catalytic efficiency (high k_{cat}/K_m) against benzylpenicillin, piperacillin, cefotaxime and ceftriaxone (Table 2), as reported for other CTX-M-type enzymes such as CTX-M-16 and CTX-M-18.^{3,6} The comparison of catalytic efficiencies of CTX-M-15 with those of CTX-M-3 revealed that cefuroxime and benzylpenicillin, respectively, were the best substrates for the two enzymes. The catalytic efficiencies of CTX-M-15 and

Biochemistry of CTX-M-15 and CTX-M-3

	MIC (mg/L)					
β -Lactam(s) ^{<i>a</i>}	E. coli DH10B (pCTX-M-15)	E. coli DH10B (pCTX-M-3)	E. coli DH10B			
Amoxicillin	>512	>512	2			
Co-amoxiclav	32	128	2			
Ticarcillin	>512	>512	1			
Ticarcillin + CLA	32	64	1			
Piperacillin	>512	512	1			
Piperacillin + TZB	4	2	1			
Cefalothin	>512	>512	2			
Cefuroxime	>512	>512	2			
Cefotaxime	512	512	< 0.06			
Cefotaxime + CLA	2	2	< 0.06			
Cefotaxime + TZB	0.5	1	< 0.06			
Ceftazidime	256	32	< 0.06			
Ceftazidime + CLA	2	2	< 0.06			
Ceftazidime + TZB	2	2	< 0.06			
Ceftriaxone	>512	>512	< 0.06			
Cefepime	64	128	< 0.06			
Cefpirome	512	512	< 0.06			
Cefoxitin	4	2	2			
Moxalactam	1	0.5	0.12			
Aztreonam	64	128	0.06			
Imipenem	0.25	0.25	0.12			

Table 1. MICs of β -lactams for *E. coli* DH10B alone or harbouring recombinant plasmids pCTX-M-15 and pCTX-M-3 expressing CTX-M-15 and CTX-M-3, respectively

^aCLA, clavulanic acid at a fixed concentration of 2 mg/L; TZB, tazobactam at a fixed concentration of 4 mg/L.

Substrate	CTX-M-15			CTX-M-3		
	$\overline{k_{\text{cat}}(\text{s}^{-1})}$	$K_{\rm m}(\mu{\rm M})$	$k_{\rm cat}/K_{\rm m}(\mu{\rm M}^{-1}{\rm s}^{-1})$	$k_{\rm cat}$ (s ⁻¹)	$K_{\rm m}(\mu{\rm M})$	$k_{\rm cat}/K_{\rm m}(\mu{\rm M}^{-1}{\rm s}^{-1})$
Benzylpenicillin	40	10	4	270	2.5	110
Amoxicillin	20	38	0.5	160	185	1
Ticarcillin	2	5	0.5	40	29	1
Piperacillin	35	13	3	180	66	3
Cefalothin	35	43	0.5	2800	96	30
Cephaloridine	130	83	1.5	130	300	0.5
Cefuroxime	70	13	5	3	49	0.07
Cefoxitin	< 0.01	ND	ND	< 0.01	ND	ND
Ceftazidime	2	1760	0.001	< 0.01	>3000	ND
Ceftriaxone	135	37	3.5	30	58	0.5
Cefotaxime	150	54	3	380	113	3.5
Cefepime	10	1075	0.01	0.2	170	0.001
Cefpirome	120	195	0.6	30	316	0.1
Imipenem	< 0.01	ND	ND	< 0.01	ND	ND
Aztreonam	1.5	11	0.1	190	188	1

Table 2. Steady-state kinetic parameters of purified CTX-M-15 and CTX-M-3 β-lactamases

Values are means of three independent measurements (standard deviations of the values were within 15%); ND, not determinable (the initial rate of hydrolysis was lower than $0.01 \ \mu M^{-1} \ s^{-1}$).

CTX-3 did not correlate perfectly with the MIC values for *E. coli* producing CTX-M-15 and CTX-M-3, possibly caused by high copy number (~100 copies) of the cloning vector, which may substantially increase the amount of enzymes present in the periplasmic space.

In the case of ceftazidime, higher MIC values for CTX-M-15 producer than that for CTX-M-3 producer could be explained by different kinetic parameters. CTX-M-15, but not CTX-M-3, demonstrated a detectable, although relatively low, catalytic activity against ceftazidime, along with a low affinity for this substrate (high K_m value). Similar observations had previously been reported for the two other ceftazidime-hydrolysing CTX-M-type enzymes, i.e. CTX-M-16 and CTX-M-19.³⁻⁵

The kinetic parameters of CTX-M-15 against ceftazidime may be explained by the glycine residue at position 240. This amino acid residue at position 240 is not conserved among class A β -lactamases.⁷ Some amino acid residues in this position have been found to play a key role in the extended hydrolytic profile of several ESBLs. Amino acid residue Gly-240 is found in other ESBLs such as VEB-1, BES-1 and PER-1.^{3,12} Conversely, in a previous study,¹² we have reported that the substitution Gly-240 \rightarrow Glu in PER-1 caused a reduction in affinity of the enzyme for aztreonam and decreased its catalytic efficiency against cefotaxime and ceftazidime.

CTX-M-15 and CTX-M-3 were similarly prone to inhibition by clavulanic acid (IC₅₀ values 9 and 12 nM, respectively) and by tazobactam (IC₅₀ values 2 and 6 nM, respectively). The relatively higher susceptibility to inhibition by tazobactam compared with clavulanic acid is a feature of CTX-M-type enzymes.¹

Data presented in this work indicate further that detection of CTX-M-type ESBLs can no longer be based only on a resistance pattern that includes resistance to cefotaxime and susceptibility to ceftazidime. The role of clinical usage of ceftazidime should be evaluated for selection of novel ceftazidime-hydrolysing CTX-M-type enzymes that may occur through a single amino acid substitution. This is true especially for the CTX-M-1- and CTX-M-9-type β -lactamases, which are spread worldwide.^{1–6,8,10}

Acknowledgements

This work was funded by a grant from the Ministère de l'Education Nationale et de la Recherche (UPRES-EA), Faculté de Médecine Paris-Sud, Université Paris XI, Paris, France.

References

1. Tzouvelekis, L. S., Tzelepi, E., Tassios, P. T. & Legakis, N. J. (2000). CTX-M-type β -lactamases: an emerging group of extended-

spectrum enzymes. International Journal of Antimicrobial Agents 14, 137–42.

2. Bauernfeind, A., Stemplinger, I., Jungwirth, R., Ernst, S. & Casellas, J. M. (1996). Sequences of β -lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β -lactamases. *Antimicrobial Agents and Chemotherapy* **40**, 509–13.

3. Bonnet, R., Dutour, C., Sampaio, J. L. M., Chanal, C., Sirot, D., Labia, R. *et al.* (2000). Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240 to Gly. *Antimicrobial Agents and Chemotherapy* **45**, 2269–75.

4. Gniadkowski, M., Schneider, I., Palucha, A., Jungwirth, R., Mikiewicz, B. & Bauernfeind, A. (1998). Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing β -lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. *Antimicrobial Agents and Chemotherapy* **42**, 827–32.

5. Karim, A., Poirel, L., Nagarajan, S. & Nordmann, P. (2001). Plasmid-mediated extended-spectrum β -lactamase (CTX-M-3 like) from India and gene association with insertion sequence IS*Ecp1*. *FEMS Microbiology Letters* **201**, 237–41.

6. Poirel, L., Naas, T., Le Thomas, I., Karim, A., Bingen, E. & Nordmann, P. (2001). CTX-M-type extended-spectrum β -lactamase that hydrolyses ceftazidime through a single amino acid substitution in the omega loop. *Antimicrobial Agents and Chemotherapy* **45**, 3355–61.

7. Ambler, R. P., Coulson, A. F. W., Frère, J.-M., Ghuysen, J.-M., Joris, B., Forsman, M. *et al.* (1991). A standard numbering scheme for the class A β -lactamases. *Biochemical Journal* **276**, 269–70.

8. Schneider, I., Kueleyom, E., Makovska, R. & Bauernfeind, A. (2002). First detection of CTX-M-3 β -lactamase producing *Escherichia coli* in Europe. In *Program and Abstracts of the Twelfth Congress of Clinical Microbiology and Infectious Diseases, Milan, Italy, 2002.* Abstract P430, p. 68. European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland.

9. Baraniak, A., Fiett, J., Hryniewicz, W., Nordmann, P. & Gniadkowski, M. (2002). Ceftazidime-hydrolysing CTX-M-15 extended-spectrum β -lactamase (ESBL) in Poland. *Journal of Antimicrobial Chemotherapy* **50**, 393–6.

10. Baraniak, A., Fiett, J., Sulikowska, A., Hryniewicz, W. & Gniadkowski, M. (2002). Countrywide spread of CTX-M-3 extended-spectrum β -lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. *Antimicrobial Agents and Chemotherapy* **46**, 151–9.

11. National Committee for Clinical Laboratory Standards. (2000). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically—Fifth Edition: Approved Standard M7-A4.* NCCLS, Wayne, PA, USA.

12. Bouthors, A.-T., Dagoneau-Blanchard, N., Naas, T., Nordmann, P., Jarlier, V. & Sougakoff, W. (1998). Role of residues 104, 164, 166, 238, and 240 in the substrate profile of PER-1 β -lactamase hydrolysing third-generation cephalosporins. *Biochemical Journal* **330**, 1443–9.