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Abstract

The mechanism of insulin action is a central theme in biology and medicine. In addition to the 

rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, 

genetic and acquired abnormalities of insulin action underlie the far more common conditions of 

type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from 

hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular 

properties of insulin receptor signalling is arguably a priority in biomedical research. In the past 

decade, major progress has led to the delineation of mechanisms of glucose transport, lipid 

synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases 

and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has 

led to a reassessment of the general principles of insulin action. These advances will accelerate the 

discovery of new treatment modalities for diabetes.

After the discovery of insulin in 1921 ( REF. 1), its mechanism of action remained unclear 

for at least 30 years. In 1950, Rachmiel Levine2 demonstrated that insulin increases 

membrane permeability to glucose, as a basis for its glucose-lowering effect, thus ending 

speculation as to whether insulin binds directly to glycolytic enzymes to modify their 

activity. In 1971, Jesse Roth and colleagues3 demonstrated the existence of a membrane 

receptor for insulin. However, the signalling mechanism elicited by insulin binding to the 

receptor did not become clear until Kasuga and Kahn4, using antibodies isolated from 

patients with autoimmune syndromes of insulin resistance to immunoprecipitate the 

receptor, demonstrated that it becomes phosphorylated on tyrosine residues in response to 

insulin binding — an unexpected finding, as tyrosine phosphorylation had until then been 
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thought of as exclusive to oncogenes. Not until the insulin receptor (IR) cDNA was cloned 

by the Ullrich and Rutter groups in 1985 ( REFS 5,6) did the notion of tyrosine 

phosphorylation as the basis for insulin signalling become widely adopted, effectively 

shifting attention from the cell surface to the intracellular pathways mediating the diverse 

actions of the receptor (FIG. 1).

In 1991, White and Kahn7 cloned the first of four IR substrate (IRS) proteins, a family of 

adaptor proteins whose main role is to convert the tyrosine phosphorylation signal into a 

lipid kinase signal by recruiting the catalytic subunit of the enzyme PI3K. The latter 

generates the triphosphorylated inositol required to activate the serine/threonine kinase AKT. 

The identification of AKT8 as an insulin-activated serine/threonine kinase solved the riddle 

of how the tyrosine phosphorylation signal is converted into a serine/threonine 

phosphorylation signal. In fact, while it had long been apparent that most actions of insulin 

required the phosphorylation of serine/threonine residues on various substrates, efforts to 

demonstrate direct effects of insulin on serine/threonine kinases had fallen short. AKT 

provided the missing link that enabled the clarification of the distal steps in insulin 

signalling, such as the modulation of glucose uptake by glucose transporter type 4 (GLUT4), 

glycogen synthesis by glycogen synthase kinase 3 (GSK3), protein and fat synthesis by 

mTOR and gene expression by forkhead family box O (FOXO) (FIG. 2).

Insulin has complex effects on metabolism, cell growth and differentiation. Virtually all 

mammalian cells possess IRs and hence respond to insulin. The major tissues targeted by 

insulin’s effects on metabolism include: muscle, where insulin promotes glucose uptake and 

protein synthesis; adipose tissue, where insulin promotes glucose and fatty acid uptake and 

inhibits lipolysis; the liver, where insulin promotes glucose utilization, suppresses glucose 

production, and promotes triglyceride synthesis; and neurons, where it promotes 

anorexigenic and locomotor signals. Additional notable insulin target cells with a 

metabolic function include macrophages, endothelial cells and insulin-producing pancreatic 

β-cells. Moreover, some of the key mediators of insulin signalling — PI3K and AKT — are 

activated downstream of other growth factor receptors, and conversely some mitogenic 

pathways — growth factor receptor-bound protein 2 (GRB2) and ERK9 — are activated by 

insulin, creating a network of interacting signalling pathways10. Therefore, insulin’s 

signalling mechanisms are complex, and this historical overview falls necessarily short of 

crediting additional signalling pathways that contribute to the hormone’s diverse effects. 

Nonetheless, human genetics, animal models and cellular biology have built a consensus 

around the pathways described above as the main signalling nodes.

In this Review, we focus mainly on the cellular mechanisms of insulin signalling and on new 

insights into pathways of primary relevance to insulin’s metabolic effects. We describe 

newly discovered elements of IR signal transduction and how they relate to the main 

metabolic actions of insulin. We focus on how the IR signal is modulated, including 

antagonistic proteins and combinatorial interactions among different isoforms, as well as 

temporal and spatial regulation of cellular insulin signalling. We also highlight key aspects 

of how these pathways fit into physiology and the pathophysiology of type 2 diabetes, with 

the general theme that increased insulin action is associated with increased insulin 

sensitivity, as defined by a leftward shift in the dose–response curve for insulin action on 
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glucose levels. However, work in this field has also identified multiple examples of insulin 

sensitivity being uncoupled from IR activity11–15 and other suggestions that insulin 

resistance is an adaptive trait16,17. For recent reviews on insulin resistance, we refer the 

reader to REFS 18–20.

Antagonistic signalling

Every step in the insulin signalling cascade is a reversible enzymatic reaction. Thus, for each 

kinase activated by insulin, there are (often multiple) phosphatases that terminate its action. 

Moreover, in addition to the vast repertoire of serine/threonine kinases regulated by insulin, 

there is an even larger group of phosphatases that actively suppress the actions of the 

insulin-activated kinases. Furthermore, different post-translational modifications of the same 

target protein often result in different biological effects. These mechanisms are as important 

as signalling initiation but, because of their redundancy, have proved less amenable to 

cellular and genetic analyses. An overview of antagonistic signalling mechanisms is shown 

in FIG. 3a.

Insulin

The hormone itself is arguably the most important negative regulator of its own signalling. 

Similar to other receptor tyrosine kinases, IR undergoes ligand-induced internalization and 

lysosomal degradation or recycling back to the cell surface21 (FIG. 3b). This event requires a 

12-amino-acid motif located on the intracellular part of the IR juxtamembrane domain22. 

This motif targets the receptor to clathrin-coated pits, and from there to lysosomes, whose 

acidic pH is thought to favour insulin release. Thus, as insulin levels rise, receptor down-

regulation at the cell surface paradoxically decreases insulin signalling, contributing to its 

termination. This is the basis of the common observation that insulin resistance is associated 

with hyperinsulinaemia. However, because this phenomenon is strictly dependent on plasma 

insulin concentrations, it is promptly reversed when insulin levels fall, most notably after 

fasting in humans23.

Inhibitory phosphorylation

As a general rule, tyrosine phosphorylation activates, and serine/threonine phosphorylation 

inactivates, IR and IRS proteins18,24. At a more granular level, the effects are site-dependent, 

but serine/threonine phosphorylation is a major mechanism by which IR signalling is fine-

tuned, antagonized or terminated.

One example that has been well-studied in vitro is the serine/threonine phosphorylation of 

IRS by the mTOR-ribosomal protein S6 kinase (S6K) pathway, which may link prolonged 

insulin signalling with decreased IRS protein levels. Unrestrained activation of S6K causes 

serine/threonine phosphorylation of IRS, which results in decreased IRS signalling and 

proteasomal degradation25,26 (FIG. 3c). Additional work has shown that mTOR and S6K 

phosphorylate IRS at multiple residues24. Consistent with this concept, knocking out S6K1 

from mice reduces weight gain and enhances insulin sensitivity27. However, the importance 

of IRS serine/threonine phosphorylation in these phenotypes and in insulin action in general 

has been called into question. Mice with a knock-in allele of IRS1 in which the reported 
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S6K-directed phosphorylation site (Ser302) was mutated to alanine showed no alterations in 

insulin action28. Thus, the mechanisms linking mTOR–S6K signalling to impaired insulin 

action may be independent of IRS.

A second pathway leading to inhibitory phosphorylation is initiated by inflammatory 

cytokines29. This pathway can be triggered by macrophage infiltration in adipose tissue 

during obesity30,31. These macrophages secrete pro-inflammatory cytokines, including 

TNFα, IL-1β, and IL-6, which act in a paracrine manner to activate serine kinases in 

adipocytes, including IκB kinase β (IKKβ), c-Jun N-terminal kinase (JNK), S6K and 

mTOR32 (FIG. 3). These kinases carry out inhibitory phosphorylation of IRS1, thus causing 

insulin resistance in adipocytes. Consistent with this, activation of inflammatory pathways 

can impair glucose metabolism and cause systemic insulin resistance32,33. Recent evidence 

demonstrates that immune cell activation in liver, muscle, pancreas and brain can also impair 

local insulin signalling and lead to metabolic dysfunction32. However, the physiological 

relevance of IRS serine/threonine phosphorylation in these tissues has been questioned. 

Mice carrying an IRS1 allele in which the expected TNFα-dependent phosphorylation site 

(Ser307) is mutated to alanine showed impaired insulin action34, the opposite of what would 

have been expected based on the paradigm established in vitro. This underscores our 

incomplete understanding of these pathways and the involvement of IRS serine/threonine 

phosphorylation in insulin action in vivo.

A third mechanism of IR antagonism is caused by lipotoxicity (FIG. 3). Diacylglycerol-

dependent activation of protein kinase Cε (PKCε) impairs IR autophosphorylation by 

phosphorylating Thr1160 in the activation loop of IR35. Indeed, mutant mice in which this 

phosphorylation site has been mutated are protected against diet-induced impairment of 

insulin action in liver35 but not in muscle, where the effects of diacylglycerol may instead be 

mediated by PKCθ36. In addition to diacylglycerol36,37, ceramide accumulation can also 

impair AKT function by stimulating the activity of PKCζ, which alters membrane 

localization of AKT, and protein phosphatase 2A (PP2A)38,39, which is described in more 

detail below.

Lipid phosphatases

The plasma membrane concentrations of the lipid second messenger PtdIns(3,4,5)P3 are 

controlled not only at the level of synthesis by PI3K but also at the level of localization (see 

below) and degradation. Two lipid phosphatases are known to dephosphorylate 

PtdIns(3,4,5)P3 and thereby attenuate downstream insulin signalling: PTEN and SHIP2 (Src 

homology 2 (SH2)-containing inositol 5′-phosphatase 2)40 (FIG. 3).

PTEN is a 3′-phosphatase that converts PtdIns(3,4,5)P3 into its precursor, PtdIns(4,5)P2, and 

terminates insulin signalling (FIG. 3d). This molecular function was uncovered in studies of 

DAF-18, the Caenorhabditis elegans homologue of PTEN40,41. Moreover, PTEN has been 

long been recognized as a tumour suppressor that is frequently disrupted in human 

cancers42,43. PTEN inhibition increases AKT activity, thus amplifying not only the effects of 

insulin on glucose metabolism44–50 but also cell growth and survival pathways42. PTEN 

haploinsufficiency in humans increases insulin sensitivity and results in weight gain51.
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SHIP2 is a 5′-phosphatase that converts PtdIns(3,4,5)P3 into PtdIns(3,4)P2. In vitro studies 

established that SHIP2 negatively regulates insulin-stimulated rat Akt phosphorylation52. 

Subsequent in vivo studies demonstrated that knockout of SHIP2 in mice protects against 

obesity and insulin resistance53–55. Likewise, glycaemia in rodent models of insulin 

resistance and diabetes has been shown to be improved by liver-specific expression of a 

dominant-negative form of SHIP2, SHIP knockdown (using antisense oligonucleotides 

against SHIP2), or a small-molecule SHIP2 inhibitor56–59.

Protein phosphatases

The discovery of the tyrosine kinase activity of IR and IRS triggered a search for tyrosine 

phosphatases that terminate their activation. However, the nearly 100 members of this gene 

family do not have selective substrates but appear to be able to dephosphorylate tyrosine 

residues rather promiscuously; moreover, their activity appears to be constitutive, suggesting 

that IR and IRS tyrosine phosphorylation is transient. Specificity is probably achieved via 

subcellular localization and physical proximity. Protein tyrosine phosphatase 1B (PTP1B) 

negatively regulates insulin signalling by dephosphorylating tyrosine residues on IR and IRS 

proteins, and PTP1B ablation in mice is associated with increased insulin sensitivity60–62. 

This phosphatase appears to have a primary effect in the central nervous system63–66, 

although increased IR and IRS phosphorylation in response to PTP1B depletion was shown 

in peripheral tissues as well67–69. PTP1B also negatively regulates leptin signalling, by 

acting on Janus kinase 2 (JAK2). Because the functions of leptin partly overlap with those of 

insulin, PTP1B (like FOXO1, see below) has the potential to be an integrative node in signal 

transduction underlying shared biological effects between the two hormones.

Pleckstrin homology domain and leucine-rich repeat protein phosphatase 1α (PHLPP1α), 

PHLPP1β, and PHLPP2 constitute a distinct family of serine/threonine protein 

phosphatases70,71 (FIG. 3e). They were first discovered as AKT Ser473 phosphatases72,73, 

but other substrates include PKC and S6K74,75. PHLPP is involved in two separate negative 

feedback loops with insulin signalling. First, insulin signalling promotes PHLPP protein 

translation via mTOR-dependent activation of S6K and eukaryotic translation initiation 

factor 4E-binding protein 1 (4EBP1)76. Second, insulin signalling stabilizes PHLPP protein. 

This occurs due to AKT phosphorylation and inhibition of GSK3β, which normally 

phosphorylates PHLPP, causing it to be degraded77 (FIG. 3e).

Protein phosphatase 2A (PP2A) is another serine/threonine phosphatase that 

dephosphorylates Akt78. The holoenzyme comprises three subunits: structural, regulatory 

and catalytic. Because each has multiple isoforms, it has been estimated that 75 different 

holoenzymes are possible79. Certain components have been specifically linked with negative 

regulation of insulin signalling80,81. However, in addition to AKT, there are numerous 

potential targets for PP2A-mediated dephosphorylation. This may underlie the paradoxical 

worsening of insulin resistance by PP2A inhibitors in mice82.

Pseudosubstrates of the IR kinase

One set of IR signalling inhibitors are the adaptor proteins GRB10 and GRB14 (FIG. 3b). 

These proteins contain two different domains that each bind to the IR (and the insulin-like 
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growth factor 1 (IGF1) receptor)83. One is a unique peptide region referred to as BPS 

(between PH and SH2), which binds to the substrate-binding cleft of IR84. The second 

domain is an SH2 domain, which binds the phosphorylated tyrosine residues on IR85. Thus 

these GRBs act as pseudosubstrates and obstruct IRS binding and activation. Because the 

GRB SH2 domain protects IR phosphotyrosines from phosphatases, it potentiates IR 

phosphorylation, despite the overall function of these proteins as inhibitors86–88. It was 

recently revealed that GRB10 is part of a negative feedback loop, as it is an IR inhibitor that 

is stabilized downstream of IR. Using phosphoproteomics, it was found that insulin 

signalling via Akt and mTOR complex 1 (mTORC1) causes direct phosphorylation of 

GRB10 ( REFS 89,90). This stabilizes GRB10, thus perpetuating its inhibitory effect on IR 

(FIG. 3b).

The physiological importance of these proteins is demonstrated by the improved insulin 

sensitivity seen in mice lacking GRB10, GRB14 or both87,88,91,92. Human genetic studies 

also link these proteins with insulin signalling. Single nucleotide polymorphisms (SNPs) 

located within or near GRB10 correlate with glucose levels in the fasted state, glucose 

tolerance, glucose-stimulated insulin secretion and type 2 diabetes93–97. SNPs near GRB14 
are associated with insulin levels, insulin sensitivity and type 2 diabetes93,97–99 as well as 

adiposity, body fat distribution and body mass index93,100–105.

A second set of IR inhibitory proteins are the SOCS proteins. Four members of this family 

(SOCS1, SOCS3, SOCS6 and SOCS7) have been shown to attenuate insulin signalling106. 

There are two mechanisms for this inhibition: one is that a SOCS protein — through its SH2 

domain — binds and occupies the phosphotyrosine site of the IR (FIG. 3b), and the second 

is that a SOCS protein — through its SOCS box domain — recruits a ubiquitin ligase to 

target IRS proteins for proteasomal degradation106 (FIG. 3c). Consistent with these 

molecular mechanisms, a body of evidence has suggested that reducing or inhibiting SOCS 

proteins would benefit insulin sensitivity in vivo106. Deleting SOCS3 specifically in muscle 

improves insulin signalling and insulin-stimulated glucose disposal during feeding with a 

high-fat diet107. On the other hand, whole-body deletion of SOCS1 showed a trend towards 

improved glucose tolerance and was not protective against insulin resistance induced by a 

high-fat diet108. The latter studies carry the caveat that Socs1−/− mice die within three weeks 

of birth, and these studies were therefore carried out in mice with a double knockout of 

Socs1 and a second gene, Rag2, which survive to adulthood109. On balance, most studies 

indicate a role for SOCS proteins in the termination of insulin signalling, and further 

investigation will clarify the pathophysiological effects of this pathway.

An interesting counterpoint to these inhibitory pseudosubstrates is provided by SH2B1, 

which instead enhances insulin signalling83,110. This protein binds IR phosphotyrosine 

residues through its SH2 domain, thus protecting these IR residues from dephosphorylation. 

However, SH2B1 does not block the active site of the IR kinase, thus potentiating insulin 

signalling83,110 (FIG. 3). The role of this protein in insulin signalling in vivo has been 

confirmed by studies in flies and mice deficient in SH2B1, which demonstrate impaired 

glucose metabolism and blunted insulin signalling in muscle, liver and fat111,112. Notably, 

the mouse studies were carried out in mice that lack SH2B1 in peripheral tissues but retain 

its expression in neurons, as this protein also impacts body weight by modulating leptin 
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signalling83,110. These pathways are validated by human genetic studies showing 

associations of SH2B1 polymorphisms with obesity and insulin resistance113–120, although 

some findings indicate the gene is not directly linked with abnormal glucose homeostasis121.

Isoform specificity

Studies in humans, mice, and cell culture indicate that individual isoforms of the proteins 

involved in insulin signalling — and termination of insulin signalling — function distinctly. 

These findings support a combinatorial model of insulin signalling, whereby a single 

hormone can lead to a remarkable spectrum of consequences. This model has been 

previously reviewed10, and here, we highlight new findings.

IR

The IR itself has two isoforms, A and B. The latter is generated by alternative splicing and 

contains an additional exon encoding 11 amino acids122. IR-A is notable because it has 

comparable affinities for insulin and IGF-II. There appear to be small differences in the 

signalling properties of the two isoforms, such that IR-A is stronger than IR-B in its 

metabolic effects123 and in promoting glycogen synthesis124. In our view, IR-A functions 

primarily as a growth-promoting isoform during foetal life, whereas the apparent lower 

potency of IR-B, the predominant isoform in adult liver125, is intended to reduce hepatocyte 

sensitivity to insulin, in view of the fact that liver cells are exposed to the high insulin 

concentrations of the portal vein.

IRS

There are four isoforms of IRS in mammals, although humans lack IRS3 ( REF. 126). The 

isoforms differ with respect to tissue distribution and ability to engage a diverse subset of 

cellular substrates. Thus, the pleiotropy of insulin action can be explained by the ability of 

these adaptors to engage different cellular pathways. IRS1 and IRS2 are the main isoforms 

involved in metabolic homeostasis18. In the liver, ablation of IRS1 and IRS2 ( REFS 127,128) 

phenocopies IR knockout, providing evidence that they are the main transducers of the 

insulin signal129. Likewise, IRS1 and IRS2 double knockout in muscle impairs cellular 

metabolism as well as muscle growth130, similar to double knockouts of IR and IFG1R in 

muscle131. In contrast to the overlapping cellular functions of IRS1 and IRS2, there are 

differences in their in vivo functions. Generalized ablation of IRS1 results in growth 

retardation and skeletal muscle insulin resistance, whereas IRS2 knockouts have strain-

specific β-cell failure10.

Intensive investigation of the differences in the functions of these two IRS isoforms in the 

liver has been carried out over the past decade. Hepatocyte-specific knockout of either IRS1 

or IRS2 caused moderate defects in glucose metabolism, with some evidence suggesting 

IRS1 is slightly more valuable for maintaining hepatic metabolism127,128,132,133. There may 

also be temporal (fasting versus postprandial)128 or spatial (pericentral versus periportal)134 

elements that lend specificity to IRS pathways, and those will be discussed in depth below.
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AKT

There are three isoforms of AKT (1–3), and each may have some distinct effects135–138. 

Although the two major forms of AKT (1 and 2) are not redundant in vivo — as shown by 

the relevant knockouts — in cells that express both, there appear to be two factors 

determining the specificity of insulin signalling: their relative abundance as well as their 

intracellular localization. A body of evidence has suggested that AKT2 is the most important 

isoform for glucose homeostasis, whereas AKT1 is important for growth and AKT3 for 

brain development137. Indeed, mice lacking Akt2 display impaired glucose homeostasis, 

while those lacking Akt1 or Akt3 do not137. This was supported by in vitro evidence 

demonstrating a specific mechanism whereby AKT2 is specifically capable of promoting 

GLUT4 translocation, because it is enriched at the plasma membrane in response to insulin, 

an effect that is not seen for AKT1 ( REFS 139,140). These findings emphasized the 

importance of the subcellular localization of insulin signalling components, and in-depth 

discussion about the spatial organization is provided below. However, advancements in 

research tools have allowed a reappraisal of the selectivity of AKT2 in glucose 

metabolism141. New data demonstrate that GLUT4 translocation is maintained after 

selective, acute inhibition of the kinase activity of either AKT1 or AKT2 ( REF. 142). This 

suggests that either isoform is sufficient and that prior results were due to effects of long-

term AKT2 depletion, independent of catalytic activity. On the other hand, there was a 

specific requirement for AKT1 in adipogenesis142, thus confirming that isoform specificity 

is important for some AKT functions.

Temporal regulation

Individual cellular effects of insulin occur with distinct temporal dynamics. These different 

dynamics depend on the kinetics of insulin secretion, the dynamic expression of insulin 

signalling proteins, the kinetics of kinase activities downstream of IR and the sensitivity of 

transcriptional mediators to insulin signalling. Therefore, different biological effects of IR 

signalling occur at different times after initiation of insulin signalling.

Dynamics of insulin secretion

Although the pattern of insulin secretion falls outside the scope of this review, IR signalling 

cannot be properly understood without considering that different biological responses by 

different insulin target cells are also the result of how insulin is released into the 

bloodstream143. In the post-absorptive state, insulin is released — like most 

hormones — in pulses144. In this state, insulin is important for maintaining active protein 

synthesis, preventing protein degradation and suppressing free fatty acid secretion, which 

might adversely affect hepatic glucose production145. In anticipation of (cephalic phase) and 

in response to a meal, insulin is secreted in characteristic multi-phasic patterns. Glucose 

uptake in muscle and fat is likely the earliest response to a rise in plasma insulin, followed 

by suppression of hepatic glucose production and stimulation of lipogenesis. These 

dynamics become profoundly altered in insulin resistance and diabetes.
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Abundance of insulin signalling proteins

Insulin exerts homeostatic control over its own signalling pathway, turning it down when it 

is less needed (fasting), and amplifying it in response to nutrient influx. The IRS proteins 

provide an example. While IRS1 is expressed at a relatively consistent level, IRS2 is most 

abundant during fasting — because of transcriptional activation by FOXOs — and its levels 

are decreased by insulin146–148. The importance of this in vivo was highlighted by studies 

showing that IRS2 carries out insulin signalling mainly during fasting and immediately after 

feeding, whereas IRS1 does so mainly in the fed state128. Similarly, fasting induces FOXO 

expression in the liver, contributing to the termination of insulin action, while it decreases 

expression of the sterol regulatory element binding protein 1c (SREBP1c), resulting in 

inhibition of lipid synthesis.

Phosphorylation in response to insulin

The sequential phosphorylation of downstream targets is a cornerstone of insulin signalling 

(FIG. 4). The temporal dynamics of these sequences lends precision to phosphorylation-

dependent protein interactions149. Thus, the signalling to entire networks downstream of 

insulin is conceivably determined by the timing of such phosphorylation events150.

Phosphoproteomic analyses have demonstrated tyrosine phosphorylation of dozens of 

proteins in response to insulin151–154. As expected, tyrosine phosphorylation of IR and IRS 

proteins occurs within 1 minute of insulin treatment. Other downstream targets cluster into 

subcategories in which tyrosine phosphorylation is delayed, even by up to 45 minutes. 

Likewise, many sites remain phosphorylated over long periods, whereas others are transient. 

IRS1 provides an interesting example, as it has multiple phosphotyrosine sites, which 

display a range of different temporal patterns153,154. Furthermore, there appear to be cell 

type-specific differences in the timing of IRS1 tyrosine phosphorylation151–154.

In contrast to phosphotyrosine sites, the vast majority of insulin-regulated phosphorylation 

events are on serine residues. In 3T3-L1 adipocytes, the percentages have been quantified as 

87.8% phosphoserine, 11.4% phosphothreonine and 0.8% phosphotyrosine153. The serine 

and threonine sites regulated by insulin number in the thousands, and they can be subdivided 

into multiple clusters based on shared kinetics. For example, phosphorylation of Akt Thr308 

occurs within 15 seconds and stabilizes, whereas that of Ser473 follows, peaking after one or 

more minutes153,154. These specific temporal patterns of phosphorylation may underlie the 

differential responsiveness of each insulin signalling pathway.

Glucose uptake

The stimulation of cellular glucose uptake was one of the first recognized biological 

activities of insulin (FIG. 5a). Although insulin stimulates glucose uptake into many cell 

types, it has most pronounced effects on adipocytes and muscle cells, enhancing glucose 

uptake by approximately tenfold and fivefold, respectively155. The phenomenon was first 

described in detail in studies of primary rat adipocytes. Insulin stimulated glucose uptake, 

reaching a plateau approximately ten times higher than that of unstimulated levels, within 15 

minutes156,157. The increased rate of glucose uptake was maintained with the continued 

presence of insulin, and it rapidly returned to pre-stimulated levels once insulin was 
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removed. Cells responded similarly to a second challenge of insulin. Once the glucose 

transporters had been identified, it could be shown that insulin controls glucose uptake by 

controlling the density of glucose transporters in the plasma membrane rather than by gating 

the transporters’ activity158,159. Adipocytes and myotubes express GLUT4, a member of the 

GLUT family of facilitative glucose transporters, and regulation of GLUT4 trafficking to 

and from the plasma membrane underlies insulin regulation of glucose uptake into these 

cells.

Insulin signal transduction intersects GLUT4 trafficking at a number of steps, including the 

biogenesis of vesicles that ferry GLUT4 to the plasma membrane, docking and fusion with 

the plasma membrane160,161. These steps occur downstream of AKT activation. However, 

different effectors control different aspects of GLUT4 trafficking. The best described AKT 

substrate required for GLUT4 translocation is TBC1 domain family member 4 (TBC1D4; 

also known as AS160), a RABGAP162,163. AKT phosphorylation of TBC1D4 functionally 

inactivates its GTPase-activating protein (GAP) activity, resulting in the activation of RAB 

proteins targeted by TBC1D4 ( REFS 161,164,165) (FIG. 5b). In muscle cells, the primary 

isoform is RAB8a166. In fat cells, it is RAB10, which is responsible for about half of the 

effect of insulin on GLUT4 ( REFS 167,168). RAB10 functions at a step before vesicle 

docking, and recent evidence suggests it is involved in the biogenesis of GLUT4-containing 

transport vesicles169. Thus, insulin signalling to GLUT4 that is independent of TBC1D4–

RAB10 likely targets vesicle docking and fusion. Those effectors are yet to be discovered. 

Recently, a role for TBK1 kinase regulation of the exocyst in the docking and/or fusion of 

GLUT4-containing vesicle with the plasma membrane has been reported170.

Transcriptional effects of insulin

The effects of insulin are mediated by several transcription factors, including FOXO, 

SREBP1c, CREB-regulated transcription co-activator 2 (CRTC2) and CREB binding protein 

(CBP)/p300-interacting transactivator 2 (CITED2). In vivo, evidence for a role of FOXO and 

SREBP1c is compelling. During fasting, hepatic FOXOs promote the expression of 

glucose-6-phosphatase and suppress that of glucokinase, thereby promoting net glucose 

output171–174. Inactivation of FOXOs by insulin reverses these effects (FIG. 5c). In addition, 

FOXOs mediate the effects of insulin on adipocyte differentiation, neuropeptide 

transcription and processing, and β-cell health175–179. SREBP1c promotes expression of the 

enzymes involved in fatty acid synthesis180,181. Unlike FOXO, SREBP1c is activated by 

insulin both transcriptionally and post-translationally, wherein SREBP1c is processed to its 

mature form and translocates to the nucleus182–185 (FIG. 5c). The pathways of insulin 

signalling that regulate FOXOs and SREBP1c diverge, such that SREBP1c regulation is 

downstream of mTOR186, whereas FOXOs are direct targets of AKT187–189.

There are also substantial temporal differences in the effects of insulin on FOXO compared 

with those on SREBP1c. FOXOs are exquisitely and immediately sensitive to insulin, 

reaching maximal phosphorylation in the liver within 30 seconds of insulin administration in 
vivo and within 1 minute of insulin treatment in 3T3-L1 adipocytes in vitro153,154. In fact, 

the peak of FOXO phosphorylation precedes peak activation of AKT154. Consequently, the 

effects of inactivating FOXO to reduce glucose-6-phosphatase and increase glucokinase 
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occur rapidly174. Conversely, SREBP1c activation occurs later and requires higher insulin 

doses. The increases in SREBP1c mRNA and in the mature form of SREBP1c protein peak 

approximately 12 hours after feeding190,191. Accordingly, the transcriptional targets of 

SREBP1c also increase several hours after feeding174,192,193. The slow increase in 

SREBP1c levels is consistent with SREBP1c maturation being downstream of mTOR182, 

one of the slower targets of insulin to be activated (minutes)153. Though considering that 

SREBP1c is slower yet (hours), the molecular links between mTOR and SREBP1c may lend 

additional temporal control. One such link is the phosphatidic acid phosphatase lipin 1, 

which reduces nuclear SREBP1c194. mTORC1 phosphorylates lipin 1, leading to the nuclear 

exclusion of lipin 1 and the accumulation of nuclear SREBP1c (FIG. 5c). A second link is 

CRTC2, which competes with SREBP1c for binding to SEC31A, a component of the COPII 

complex195. Phosphorylation of CRTC2 by mTOR causes it to dissociate from Sec31A, 

thus enabling the trafficking and activation of SREBP1c (FIG. 5c). Thus, in addition to the 

bifurcation of insulin signalling to these two transcription factors, the temporal regulation of 

these two pathways plays a crucial role in insulin action.

Subcellular spatial regulation

Components of the IR pathway must colocalize in order to transmit downstream signalling. 

Archetypical examples of this are the recruitment of IRS, PI3K, PDK1, AKT and their 

cognate phosphatases to the plasma membrane for activation and inactivation, respectively. 

However, downstream of AKT, there are multiple subcellular sites at which IR signalling 

targets localize (FIG. 5).

Trafficking vesicles

After ligand binding, IR is internalized via clathrin-coated vesicles. From their location in 

endosomes, the IR kinase remains active for signalling, and downstream targets have been 

found to colocalize to these early endosomes196,197. Evidence suggests that endosomal IR 

signalling is important for mitogenic but not for metabolic effects of IR196. However, 

because insulin is a weak mitogen, the extent to which the mitogenic effects are the result of 

IR signalling as opposed to IGF1 receptor signalling remains conjectural198. However, a 

second aspect of IR trafficking in vesicles that can affect metabolic signalling is the fate of 

the IR for recycling versus degradation. Recently, it was shown that the protein SORLA 

(sorting-related receptor with type A repeats, encoded by SORL1) directs the recycling of 

internalized IR back to the cell surface, thereby enhancing IR signalling199. This may 

provide a molecular mechanism for the association of SNPs near SORL1 with obesity 

traits200,201.

A canonical target of insulin signalling that requires spatial regulation in trafficking vesicles 

is GLUT4. In unstimulated cells, GLUT4 is sequestered intracellularly. Insulin signalling 

induces its redistribution to the plasma membrane, increasing glucose uptake158,159. Upon 

cessation of signalling, GLUT4 is retrieved from the plasma membrane, returning to the 

intracellular storage sites, poised to be re-recruited to the plasma membrane by another 

round of insulin signalling157,158 (FIG. 5b). Thus, the control of glucose flux, in both 

unstimulated and insulin-stimulated fat and muscle cells, requires the activities of a large 
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number of proteins that make the GLUT4 transport vesicles and regulate the fusion of the 

vesicles with the plasma membrane. This is one of the best characterized examples of 

regulation of biological activity by controlled compartmentalization.

Insulin stimulation of glucose uptake is most pronounced in fat and muscle cells, although 

insulin promotes a small (less than twofold) uptake into many cell types. This specialization 

is fat and muscle cell dependent. Ectopic expression of GLUT4 in other cell types does not 

by itself recapitulate its insulin-dependent translocation to the plasma membrane 

characteristic of fat and muscle cells202. Insulin does not modify GLUT4 directly; instead, it 

acts on the trafficking pathway that transports GLUT4 to the plasma membrane. The insulin-

regulated aminopeptidase (IRAP) is also translocated to the plasma membrane, with GLUT4 

( REF. 203). IRAP is a component of vesicles that ferry GLUT4 to the plasma membrane, 

but it does not have a major role in glucose homeostasis204. Moreover, GLUT4-containing 

vesicles have not been reported to contain soluble proteins that are secreted concurrent with 

GLUT4 insertion into the membrane, suggesting that insulin-regulated trafficking of 

membrane proteins is restricted to a remodelling of the plasma membrane rather than being 

coupled to adipokine secretion. Overall, insulin control of GLUT4 translocation is a prime 

example of the regulation of insulin effects through compartmentalization, as well as of 

tyrosine kinase-dependent regulation of membrane trafficking.

Nuclear actions of insulin

The discovery that insulin causes the AKT-dependent nuclear exclusion of FOXOs shifted 

the focus on insulin signalling from the membrane to the nucleus. This mechanism is neither 

unique to FOXO nor unidirectional. The insulin-stimulated translocation of mature 

SREBP1c to the nucleus is one example. Another is the CREB co-activator CRTC2, which 

is phosphorylated by SIK2, an AKT substrate, and excluded from the nucleus205,206 (FIG. 

5c).

FOXO subcellular localization is regulated by other signalling pathways that either function 

in conjunction with insulin to promote the nuclear exclusion of FOXOs, or counteract it. 

Fasting and glucagon207, cytokine- and other stress-activated pathways208,209 promote the 

import of FOXOS into the nucleus from the cytoplasm. Moreover, other nutritional cues can 

complement — or compete with — insulin and glucagon to influence FOXO localization 

through mechanisms other than phosphorylation. Oxidative stress causes FOXO 

deacetylation, which promotes nuclear retention and activation of FOXOs but also promotes 

rapid ubiquitylation and degradation179,210. On the other hand, acetylation sensitizes FOXOs 

to insulin-induced phosphorylation while increasing stability179,211. These modifications 

influence FOXO activity in multiple cell types including β-cells, hepatocytes, macrophages 

and endothelial cells179,212–214.

Lysosome

The lysosome, where mTORC1 is activated215, has emerged as an important site of cellular 

insulin signalling (FIG. 5d). mTORC1 translocates to the lysosome in response to amino 

acids, a process that is mediated by a protein complex termed the Ragulator216. At the 

lysosomal membrane, mTORC1 interacts with its activator, RHEB. However, mTORC1 
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activation by RHEB only proceeds if insulin signalling is also activated. This is because in 

the absence of insulin signalling, RHEB is kept in its GDP-bound, inactive state by the 

GTPase-activating TSC protein complex217. Following insulin stimulation, AKT 

phosphorylates and inactivates TSC2 ( REFS 218,219). Recent work demonstrates that AKT-

mediated phosphorylation causes TSC2 to dissociate from the lysosome220. This stabilizes 

the GTP-bound, active form of RHEB, thus activating mTORC1. These findings 

demonstrate spatial coordination of multiple signalling proteins at the lysosome as a 

mechanism to tightly control mTORC1 activation in response to both hormonal (insulin) and 

nutritional (amino acid) cues.

Regulation at endoplasmic reticulum–mitochondria contact sites

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are endoplasmic 

reticulum membrane subdomains that interact physically with mitochondria. This 

juxtaposition facilitates the transfer of calcium and lipids between the two organelles and is 

thus considered a site where signalling pathways — particularly those relying on calcium 

flux — intersect with energy and lipid metabolism pathways221.

Recent evidence suggests that MAMs are an important target site for insulin signalling222. 

AKT and mTORC2 — the kinase complex that is responsible for carrying out the Ser473 

phosphorylation of AKT — are localized to MAMs, and this localization is increased with 

insulin signalling223–226. Evidence suggests that the localization of mTORC2 and of AKT-

pS473 to MAMs contributes to the regulation of MAM function and calcium flux224. 

Conversely, the integrity of the MAMs contributes to insulin signalling, as disruption of 

MAMs dampens insulin signalling and impairs glucose homeostasis225,227. Moreover, 

overabundance of MAMs worsens insulin signalling and glucose metabolism228. These 

findings indicate that the formation and number of MAMs both affect and are affected by 

insulin signalling in multiple ways.

Tissue microenvironment

In addition to the subcellular organization of IR targets, the spatial distribution of cells 

within a tissue can also impact insulin signalling (FIG. 5e). There are many neuronal, 

hormonal and metabolic signals that link distant tissues and affect insulin signalling, which 

are outside the scope of this review. Instead, this section will focus on the local effects of 

neighbouring cells within the same tissue. A seminal demonstration that neighbouring cells 

can affect insulin signalling is provided by the infiltration of macrophages into the adipose 

tissue during obesity, which can initiate inflammatory pathways that impair insulin 

signalling30–32. Other cell–cell interactions that affect insulin signalling occur between the 

same or different cell types. This section highlights that insulin action in a given cell can be 

influenced by its spatial positioning in a tissue, via paracrine effects or differences in 

nutrient and/or hormone access.

Hepatic zonation

Hepatocytes are arranged in zones, described by their proximity to the portal vein (rich with 

nutrients and oxygen) or the central vein (relatively deprived of nutrients and oxygen). It has 
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long been known that certain metabolic pathways are preferentially localized to different 

zones, and interconnected pathways are localized together. Fatty acid oxidation and 

gluconeogenesis are localized to periportal hepatocytes, whereas glycolysis and fatty acid 

synthesis are localized to pericentral hepatocytes229. Recently, it was reported that while IR, 

IRS2 and AKT are equally distributed, IRS1 is twice as abundant in pericentral hepatocytes 

as in periportal hepatocytes134. This may cause IRS1 to be preferentially involved in 

glycolytic and lipogenic pathways, potentially providing another layer of specificity for 

coordinated regulation of metabolic pathways.

Endothelial–parenchymal cell interactions

A neighbouring non-parenchymal cell type that can impact parenchymal cell insulin 

signalling is endothelial cells. One potential mechanism for this lies in their role in 

delivering insulin from plasma into the interstitium. This can occur through regulation of 

blood flow and through the transcytosis of insulin across the endothelium230,231. The 

latter is thought to be rate-limiting for insulin delivery into tissues such as muscle and 

adipose tissue, where capillaries are lined with continuous endothelial cells230. However, the 

mechanisms of insulin delivery remain unclear. In vitro evidence suggests that the 

transcytosis is mediated by IR in endothelial cells232,233. However, mice lacking IR 

specifically in endothelial cells maintain normal insulin sensitivity unless placed on a low-

salt diet234. This finding is unexpected, but may be explained by the preservation of IGF1R 

in these mice. On the other hand, mice lacking IRS2 — or both IRS1 and IRS2 — in 

endothelial cells are insulin resistant, with impaired muscle glucose uptake235. This is due to 

poor insulin-stimulated capillary recruitment and insulin delivery to the interstitium, 

resulting in reduced AKT activation.

A second potential mechanism involves paracrine factors secreted from the endothelial cells 

that affect insulin signalling in parenchymal cells. Mice lacking FOXOs in endothelial cells 

display insulin resistance and impaired insulin signalling in hepatocytes236. This is 

associated with excessive release of nitric oxide from liver sinusoidal endothelial cells and 

concomitant tyrosine nitration of IR in hepatocytes. This highlights how insulin signalling in 

one cell type can influence insulin signalling in an adjacent cell type.

Other cell–cell interactions

Additional cell–cell interactions in the tissue microenvironment may also impact insulin 

signalling. One example is the unexpected finding that NOTCH receptors — best known for 

their role in development — are negative regulators of insulin signalling in mature 

cells237,238. Notch receptors on the surface of a cell are activated by the binding of 

transmembrane protein ligands that are expressed on the surface of an adjacent cell239. This 

causes the intracellular domain of NOTCH to become cleaved and transported to the nucleus 

where it binds to the transcription factor recombining binding protein suppressor of hairless 

κ (RBPJκ) and regulates gene expression. Mice that are heterozygous for NOTCH, or that 

lack RBPJκ specifically in hepatocytes, have enhanced insulin signalling in liver including 

elevated AKT phosphorylation and improved suppression of hepatic glucose production237. 

This pathway is confirmed to be downstream of signalling from an adjacent cell, as 

expressing only the extracellular domain of NOTCH — which sequesters endogenous 
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ligands on adjacent cells — is sufficient to invoke the pathway and enhance AKT 

phosphorylation at Thr308 ( REF. 238).

Conclusions and perspectives

As we approach the 100th anniversary of the discovery of insulin, the signalling pathways of 

this important hormone have largely been defined. Although there will always be gaps in our 

understanding, progress has been substantial. However, we should acknowledge the limits of 

a reductionist cellular and biochemical approach to insulin signalling. In the living organism, 

the integrated signals arising from insulin’s pleiotropic actions in multiple tissues cannot be 

easily reconciled with intrinsic cellular pathways — to wit, the complexity of distinguishing 

between direct effects of insulin in the liver from indirect effects caused by substrate 

redistribution in other organs171,240. A second conclusion relates to the clinical implications 

of these discoveries. The heterogeneity of insulin signalling has thus far defeated approaches 

to discover clinically useful insulin sensitizers: turning on the main path through IR, IRS, 

PI3K, AKT is fraught with risks, while turning off antagonistic signals, such as FOXO or the 

many serine/threonine kinase or phosphatases, appears unlikely to succeed in view of the 

built-in redundancy of these systems. Nonetheless, the body of knowledge developed in this 

field will probably contribute to the solution of the clinical problem of insulin resistance in 

its various clinical manifestations.
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Glossary

Anorexigenic
Appetite-suppressant

Paracrine
A mechanism by which neighbouring cells influence each other by way of a secreted factor

Diacylglycerol
A glycerol molecule with two fatty acid chains present in food or produced primarily in the 

liver, adipose tissue and intestine, diacylglycerol is best known for its signalling properties to 

activate protein kinase C but also functions as a precursor molecule in the synthesis of 

triglycerides and prostaglandins

Haploinsufficiency
A phenotype caused by a heterozygous loss-of-function mutation, or by a mutation partly 

affecting levels and/or activity of a gene product

Post-absorptive state
The state following food absorption by the gut, hence the fasting state

RABGAP
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A protein activating the GTPase activity of RAB, a component of secretory vesicles involved 

in intracellular transport

Exocyst
An octamer assembled to promote intracellular vesicle transport

COPII complex
A complex of proteins assembled around coat protein II (COPII), required for anterograde 

transport from the endoplasmic reticulum to the Golgi

Transcytocis
The transport of proteins across the interior of a cell
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Figure 1. Timeline of the major discoveries in insulin signalling
CNS, central nervous system; FOXO, forkhead family box O; TBC1D4, TBC1 domain 

family member 4.
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Figure 2. Activation of insulin signalling
a| Following insulin binding, the insulin receptor (IR) tyrosine kinase is activated, causing 

tyrosine phosphorylation of IR and of the IR substrate (IRS) proteins. Phosphotyrosine sites 

on IRS allow binding of the lipid kinase PI3K, which synthesizes PtdIns(3,4,5)P3 (PIP3) at 

the plasma membrane. This recruits the phosphoinositide-dependent kinase (PDK), which 

directly phosphorylates the Thr308 residue of AKT. A second phosphorylation of AKT, at 

the Ser473 residue, is carried out by mTOR complex 2 (mTORC2) (not shown). Activated 

AKT goes on to phosphorylate a number of substrates at Ser/Thr residues. These include: 

the forkhead family box O (FOXO) transcription factors; the protein tuberous sclerosis 2 

(TSC2), which permits activation of mTORC1 and its downstream targets ribosomal protein 

S6 kinase (S6K) and sterol regulatory element binding protein 1c (SREBP1c); glycogen 

synthase kinase 3β (GSK3β) and the RabGAP TBC1 domain family member 4 (TBC1D4). 

These effector proteins mediate the effects of insulin on glucose production, utilization and 

uptake, as well as the synthesis of glycogen, protein and lipid. b | Effects of insulin 

signalling in various tissues and cell types. ER, endoplasmic reticulum; NO, nitric oxide; 

TG, triglyceride.

Haeusler et al. Page 29

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Modification of insulin signalling
Insulin signalling is antagonized through numerous mechanisms. a | Overview of regulatory 

mechanisms; these include ligand-induced insulin receptor (IR) internalization and 

degradation (not shown in this panel), inhibitory phosphorylation of IR substrate (IRS) (by 

kinases such as IκB kinase β (IKKβ), c-Jun N-terminal kinase (JNK), ribosomal protein S6 

kinase (S6K) and mTOR), depletion of PtdIns(3,4,5)P3 (PIP3) by lipid phosphatases (PTEN 

and SHIP2), removal of activating phosphorylation groups by protein phosphatases (PTP1B, 

PHLPPs and PP2A), and inhibition by alternative substrates of the IR kinase (such as 

GRB10, GRB14 and SOCS proteins). In contrast, a different alternative substrate of IR 

(SH2B1) potentiates insulin signalling. Detailed mechanisms focused on different proteins 

of the insulin signalling cascade are shown in panels b–d. b | IR. GRB10, GRB14 and SOCS 

proteins are pseudosubstrates of the IR kinase that block IRS binding. The inhibitory activity 

of GRB10 is potentiated downstream of insulin signalling, due to mTOR complex 1 

(mTORC1)mediated phosphorylation and stabilization. Protein kinase Cε (PKCε) 

phosphorylates IR, thus blocking IR autophosphorylation. c | IRS proteins. SOCS proteins 
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antagonize insulin signalling in a second manner by recruiting a ubiquitin ligase (Ub ligase) 

that targets IRS proteins for degradation. Inhibitory Ser/Thr phosphorylation of IRS is 

carried out by multiple kinases, including mTORC1, S6K, JNK, and IKKβ. d | PIP3. The 

levels of this lipid mediator are reduced by lipid phosphatases PTEN and SHIP2. e | AKT. 

Dephosphorylation and inactivation of AKT is carried out by PP2A and PHLPP proteins. 

The latter are activated by AKT signalling itself, through mechanisms involving mTORC1 

and glycogen synthase kinase 3β (GSK3β). GRB, growth factor receptor-bound protein; 

PHLPP, pleckstrin homology domain and leucine-rich repeat protein phosphatase; PP2A, 

protein phosphatase 2A; PTP1B, tyrosine-protein phosphatase non-receptor type 1B; 

SH2B1, SH2B adapter protein 1; SHIP2, Src homology 2 (SH2)-containing inositol 5′-

phosphatase 2; SOCS, suppressor of cytokine signalling.
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Figure 4. Temporal regulation of insulin signalling
The transmission of the insulin receptor (IR) signal to its various mediators occurs over 

varying lengths of time, from seconds (AKT, TBC1D4 and FOXO), to minutes (GSK3, 

TSC2, mTOR and S6K), to hours (SREBP1c). FOXO, forkhead family box O; GSK3, 

glycogen synthase kinase 3; IRS, IR substrate; PDK, phosphoinositide-dependent kinase; 

PIP3, PtdIns(3,4,5)P3; S6K, ribosomal protein S6 kinase; SREBP1c, sterol regulatory 

element binding protein 1c; TBC1D4, TBC1 domain family member 4; TSC2, tuberous 

sclerosis 2.
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Figure 5. Spatial regulation of insulin signalling
a| Overview of the compartmentalization of the downstream targets of insulin signalling is a 

mode of regulation. Recent findings have uncovered the importance of lysosomal 

localization for mTOR complex 1 (mTORC1) activation, the endoplasmic reticulum (ER) 

and/or mitochondria-associated ER membrane (MAM) for calcium flux and lipid 

metabolism, the nucleus for transcriptional control of metabolic processes and vesicle 

trafficking for the regulation of glucose uptake. Cell–cell interactions also contribute to 

insulin signalling regulation by modulating insulin delivery, paracrine factors and cell 

surface ligands. Detailed mechanisms focused on key targets of insulin signalling are shown 

in panels b–d. b | Glucose uptake. TBC1 domain family member 4 (TBC1D4) is a 
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RABGAP that typically stimulates the conversion of active RAB-GTP into inactive RAB-

GDP. AKT phosphorylates and inactivates TBC1D4, which allows active RAB to promote 

the movement of GLUT4-containing vesicles to the cell surface. c | Transcriptional effects. 

Forkhead family box O (FOXO) transcription factors are phosphorylated by AKT, causing 

their nuclear exclusion and inactivation. Sterol regulatory element binding protein 1c 

(SREBP1c) is activated downstream of mTORC1 through two mechanisms. Nuclear lipin 1 

causes nuclear remodelling that reduces nuclear SREBP1c; AKT phosphorylates and 

inhibits lipin 1. SEC31A is a vesicle transport protein that interacts with the transcription 

factor CREB-regulated co-activator 2 (CRTC2). After mTOR phosphorylates CRTC2, 

SEC31A becomes available to instead bind and transport SREBP1c to the nucleus. d | 

Lysosomal regulation of protein synthesis and degradation. TSC2 promotes the inactive, 

GDP-bound form of the lysosomally localized protein RHEB. AKT phosphorylates tuberous 

sclerosis 2 (TSC2), causing its dissociation from the lysosome, thus allowing RHEB to 

activate its target, mTORC1. e | Tissue microenvironment and cell–cell interactions. 

Endothelial cells influence parenchymal cell insulin signalling by physically delivering 

insulin through transcytosis and by suppressing the production of detrimental nitric oxide 

(NO). Insulin receptor substrate 1 (IRS1) is preferentially expressed in pericentral hepatic 

cells, as indicated in bold. Notch receptor is activated by a ligand expressed in an adjacent 

cell. It affects insulin signalling, as its target transcription factor recombining binding 

protein suppressor of hairless κ (RBPJκ) interacts with FOXO proteins at gene promoters. 

IRAP, insulin-regulated aminopeptidase.
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