- 1 Biochemical and chemical biological approaches to mammalian sleep: roles of
- 2 calcineurin in site-specific dephosphorylation and sleep regulation
- 3
- 4 Jianjun Yu^{1,2,*}, Tao V. Wang^{1,2,*}, Rui Gao^{1,*}, Chenggang Li^{2,3,*}, Huijie Liu^{2,3,*}, Lu
- 5 Yang^{1,2}, Yuxiang Liu^{1,2,3}, Yunfeng Cui^{2,3}, Peng R. Chen¹ and Yi Rao^{1,2,3,#}
- 6
- 7 ¹Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences,
- 8 Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences;
- 9 Department of Chemical Biology, College of Chemistry and Chemical Engineering;
- 10 School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research,
- 11 Peking University, Beijing, China.
- 12 ²Chinese Institute of Brain Research, Beijing (CIBR), and Chinese Institutes for
- 13 Medical Research, Beijing (CIMR), Capital Medical University, Beijing, China.
- ¹⁴ ³Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing,
- 15 China, Research Unit of Medical Neurobiology, Chinese Academy of Medical
- 16 Sciences, Beijing 102206, and Institute of Physiology, Shenzhen Bay Laboratory,
- 17 Shenzhen, Guangdong, China.

- 19 *These are co-first authors.
- 20 [#]Corresponding Author (email: <u>yrao@pku.edu.cn</u>)
- 21

¹⁸

22	Understanding of sleep mechanisms traditionally rely on electrophysiology and
23	genetics but here we have initiated biochemical and chemical biological studies. Sleep
24	was increased in mouse mutants with an alanine replacing threonine at residue 469
25	(T469A) of the salt inducible kinase 3 (SIK3). We searched for T469 phosphatases by
26	classic purification with HEK293 cells and by a new photo-crosslinking method with
27	mouse brains. Both led to PPP3CA, a catalytic subunit of calcium/calmodulin
28	activated phosphatase (calcineurin). It dephosphorylated T469 and serine (S) 551 but
29	not T221 in SIK3 in vitro. PPP3CA knockdown increased phosphorylation of T469
30	and S551 but not T221 in mouse brains. Knockdown of its regulatory subunit PPP3R1
31	significantly reduced daily sleep by more than 5 hours, exceeding other known mouse
32	mutants. Our results have uncovered in vitro and in vivo evidence for site-specific
33	SIK3 dephosphorylation by calcineurin, demonstrated a physiological role for
34	calcineurin in sleep, and suggested sleep control by calcium dependent
35	dephosphorylation.

37	Sleep is an important physiological process in animals ¹ . It is regulated by the circadian
38	and the homeostatic processes ^{2,3} . The genetic approach has been taken in flies, mice,
39	dogs and humans and proven powerful in uncovering many genes involved in sleep
40	regulation ⁴⁻¹¹ . Prominent examples include the discoveries of roles of orexin and its
41	receptor in maintaining wakefulness ^{12,13} , and the finding of salt inducible kinase 3
42	(SIK3) through a forward genetic screen ¹⁴ . No attempt has been made to use
43	biochemistry as a means of discovering molecules important for sleep because sleep
44	could only be assayed in animals which are accessible to genetics, but not on molecules
45	only biochemically accessible.
46	While we have taken the genetic approach in both Drosophila ¹⁵⁻¹⁸ and the
47	mouse ^{10,17,19} , we assessed its advantages and limits and decided to use both a
48	biochemical approach with the classic purification method and a chemical biological
49	approach with a newly developed chemical biological method to investigate molecular
50	mechanisms of sleep by examining site-specific phosphorylation of a protein kinase
51	previously found to be important for sleep regulation ^{14,19-21} .
52	Protein phosphorylation differs between day and night and among different sleep-
53	wake relevant states ²²⁻²⁵ . Multiple protein kinases in mammalian animals have been
54	implicated in sleep regulation, including protein kinase A (PKA) ²⁶⁻³⁰ , the extracellular
55	signal-regulated kinase (ERK) ³¹⁻³³ , adenosine monophosphate (AMP)-activated

56 protein kinase (AMPK)³⁴⁻³⁶, calcium (Ca²⁺)/calmodulin (CaM) kinase II (CaMKII) α

57 and β^{37-39} , c-Jun N-terminal kinase (JNK)⁴⁰, SIK 3, 1 and $2^{14,19-21}$, and the liver kinase

58 B (LKB1)^{17,41-43}. A role for Ca²⁺-dependent pathway in regulating sleep has been 59 proposed³⁸ and was thought to be mediated at least in part by CaMKII α and $\beta^{38,39}$. 60 The reduction of sleep per 24 hours (hrs) was more than 120 minutes (mins) in 61 CaMK2 β knockout mice³⁸, which was more than other known genetic mutants in 62 mice^{10,12-14,17,19,21,27,30,39,44-53}.

63 While kinases are well known to play roles in mammalian sleep, little is known 64 about protein phosphatases (PPases) in mammalian sleep. A protein discovered in the 1970s⁵⁴⁻⁵⁶ was named calcineurin (CaN, PP2 or PPP3)⁵⁷ before its function as a 65 phosphatase was characterized in the 1980s^{58,59}. By the 1990s, most of biochemical 66 67 properties of CaN were known, such as that it is the only Ca²⁺- and calmodulin (CaM)-68 activated phosphatase, that the enzyme is a dimer made of a catalytic subunit 69 calcineurin A (with three alternatives, PPP3CA, PPP3CB or PPP3CC) and a regulatory subunit calcineurin B (with two alternatives PPP3R1 or PPP3R2)⁶⁰⁻⁶². PPP3CA, 70 71 PPP3CB and PPP3R1 are ubiquitously expressed, whereas PPP3CC is abundant in the 72 testis and PPP3R2 is specifically expressed in the testis. Loss of either PPP3CC or 73 PPP3R2 leads to male infertility⁶³⁻⁶⁸. CaN functions in many systems, with its role in 74 immunoregulation particularly striking⁶⁹⁻⁷². Recently, the number of potential targets 75 for all forms of calcineurin expanded from approximately 70 to 486 proteins⁷². In the 76 brain, PPP3CA is the most abundant of the three catalytic subunits and PPP3R1 is the 77 most abundant of the two regulatory subunits.

78	We began to search for PPases for SIK3 after defining the importance of a specific
79	phosphorylation site in SIK3: threonine (T) 469. While loss of the serine (S) 551
80	equivalent sites in SIK1 and SIK2 caused the same gain of function (GOF) phenotype
81	as that of S551 SIK3 GOF ²¹ , deletion of SIK1 or SIK2 gene did not affect sleep in
82	mice ¹⁹ . We therefore have focused on SIK3 but not SIK1 or SIK2 in further studies.
83	T469 and S551 of SIK3 are phosphorylated by PKA and their phosphorylation
84	increased SIK3 interaction with the 14-3-3 protein ⁷³ . 14-3-3 binding inhibited SIK3
85	and absence of either T469 or S551 increased SIK3 signaling ⁷³ . S551 phosphorylation
86	of SIK3 reduced sleep ^{14,20} . The functional significance of T469 phosphorylation in
87	SIK3 was previously unknown. Here we have generated T to alanine (A) mutation of
88	the amino acid residue at 469 (T469A) of SIK3. We found sleep increased in T469A
89	mice as compared to wild type (wt) mice, indicating that the function of T469 is similar
90	to that of S551 in sleep regulation.
91	We used two approaches to search for PPases of T469 and S551 of SIK3: classic
92	biochemistry of purifying PPases for T469 and S551 of SIK3 from human embryonic
93	kidney (HEK) HEK 293T cells, and chemical biology of photo-crosslinking of proteins
94	(RG and PRC) interacting with SIK3 in the mouse brain. In both experiments, PPP3CA,
95	a catalytic subunit of CaN, was found. in vitro biochemical assays demonstrated that
96	PPP3CA dephosphorylated phospho-T469 and phospho-S551 of SIK3. This reaction
97	also required Ca ²⁺ , CaM and PPP3R1. Interestingly, PPP3CA did not dephosphorylate

98 T221 of SIK3, a site whose phosphorylation promotes SIK3 activity^{17,19} and indicates

99	sleep need and promotes sleep ¹⁹ . Ca ²⁺ ionophore induced dephosphorylation of T469
100	and S551, but not T221, was inhibited in HEK cells when PPP3CA and PPP3CB or
101	the regulatory subunit PPP3R1 was knocked down by small guided RNA (sgRNA)
102	mediated gene knockdown. Phosphorylation of T469 and S551, but not T221, was
103	increased in mouse brains when PPP3CA or PPP3R1 was knocked down, indicating
104	that PPP3CA and PPP3R1 is physiologically required for dephosphorylation of T469
105	and S551 in vivo. Knockdown of PPP3CA reduced sleep by approximately 3 hrs (or
106	187.6±13.0 mins to be precise) over 24 hrs. Knockdown of PPP3R1 reduced sleep by
107	more than 5 hrs (or 349.3±21.5 mins) per day, which exceeded sleep changes in all
108	mouse mutants tested so far. Measured by the extent of changes in sleep, CaN is the
109	most significant regulator of sleep identified so far. Our work is the first to rely on
110	biochemistry and chemical biology to discover molecules important for sleep and it
111	has shown the awesome power of biochemistry and chemical biology (in addition to
112	that of genetics) in sleep research.

113

114 **Results**

115 Functional significance of T469 in regulating mouse sleep

To study the potential role of T469 in SIK3, we generated a line of mice carrying the
T469A mutation (Fig. 1, Extended Data Figs. 1 and 2, Extended Data Tables 1 and 2).
Sleep is usually measured in male mice but, because male mice with the genotype of

119 SIK3^{T469A/T469A} were embryonic lethal, we could only compare the sleep phenotypes

120	of two genotypes (SIK $3^{+/+}$ and SIK $3^{T469A/+}$) in males. We have also examined the sleep
121	phenotypes of all three genotypes (SIK3 ^{+/+} and SIK3 ^{T469A/+} and SIK3 ^{T469A/+} T469A) in
122	females (Extended Data Figs. 3 and 4, Extended Data Tables 1 and 2). The phenotypes
123	in males and females were qualitatively similar, though the phenotypes of
124	SIK $3^{T469A/T469A}$ were stronger than those of SIK $3^{T469A/+}$, as expected.
125	Representative electroencephalogram (EEG) and electromyogram (EMG) graphs
126	are shown in Fig. 1K and typical hypnograms shown in Figure S2E. Over 24 hrs,
127	SIK3 ^{T469A/+} males slept more than SIK3 ^{+/+} males by 50.1±18.9 mins (Fig. 1a, Extended
128	Data Table 2). During daytime, (or the light phase), there was no significant difference

129 in sleep time between SIK3^{T469A/+} and SIK3^{+/+} males (Fig. 1a, Extended Data Table 2,

130 7.7±9.7 mins). During nighttime (or the dark phase), SIK3^{T469A/+} males slept more than

131 SIK3^{+/+} males by 42.4±15.1 mins (Fig. 1a, Extended Data Table S). The amount of

132 total non-rapid eye movement (NREM) sleep during 24 hrs was increased in

133 SIK $3^{T469A/+}$ males by 55.8±17.5 mins over SIK $3^{+/+}$ males (Fig. 1 b and c). The amount

134 of nighttime NREM sleep was increased in SIK3^{T469A/+} males by 40.6±13.6 mins over

135 SIK3^{+/+} males (Fig. 1 b and c). Neither NREM episode number nor episode duration

136 reached statistical significance (Fig. 1 d and e). Rapid eye movement (REM) sleep was

137 not significantly different between SIK3^{T469A/+} and SIK3^{+/+} males (Extended Data Fig.

138 1 e-g, Extended Data Table 2). Power spectrum of EEG showed only increase in the

139 0.5 to 3 Hertz (Hz) range (Fig. 1f). Sleep need is an important regulator of sleep^{2,3,74,75}.

140 It is regulated by prior wakeful experience^{2,76} and can be measured by NREM delta

141 power densities which is a measure of EEG activity in the 1-4 Hz range^{2,74,75,77,78}. 142 NREM delta power densities are significantly increased in SIK3^{T469A/+} males (Fig. 1g). Other parameters were not significantly different between SIK3^{T469A/+} and SIK3^{+/+} 143 144 males. 145 In females, SIK3^{T469A/T469A} mice showed significantly more NREM sleep in the 146 dark phase (84.6 ± 26.5 mins more than SIK $3^{+/+}$ mice or 60.8 ± 27.4 mins more than SIK3^{T469A/+} mice) (Extended Data Fig. 3 a and b, Extended Data Tables 1 and 2), 147 148 attributable to an increase of NREM episode number (Extended Data Fig. 3c) but not 149 episode duration (Extended Data Fig. 3d). REM sleep was not significantly different 150 in the dark phase, but decreased in the light phase (Extended Data Fig. 3 e and f, 151 Extended Data Tables 1 and 2), attributable to the decrease of REM episode number 152 (Extended Data Fig. 3g) but not episode duration (Extended Data Fig. 3h). Wake was 153 decreased in the dark but not the light phase (Extended Data Fig. 3 i and j, Extended 154 Data Tables 1 and 2). Wake episode number was increased in the dark (Extended Data

155 Fig. 3) while wake episode duration was decreased in the dark (Extended Data Fig. 31).

156 Transition from NREM to REM was decreased whereas the other transitions were not

157 different (Extended Data Fig. 3 m to p). NREM delta power densities were increased

- 158 in both SIK3^{T469A/T469A} and SIK3^{T469A/+} females when compared to SIK3^{+/+} females
- 159 (Extended Data Fig. 4).

In summary, in male and female T469A mutants, both total sleep and NREM sleep
in the dark phase was increased. NREM delta power densities were also increased in

both male and female T469A mutant mice. T469 phosphorylation is indeed a negative
regulator of basal NREM sleep and sleep need, which are both opposite to the roles of
SIK3^{14,19-21}.

165

173

166 Biochemical purification of phosphatase(s) for T469 and S551 of SIK3

- 167 With HEK 293T cells, we biochemically purified phosphatase(s) capable of
- 168 dephosphorylating T469 and S551 of SIK3 (Fig. 2).

We first ensured that the antibodies we used could specifically recognize the phospho-forms of T469 and S551 of SIK3. Recombinant SIK3 fragment containing its amino acid residues (aa) 1 to 558 was generated in and purified from *Escherichia coli* (*E. coli*). The presence of both PKA and ATP catalyzed phosphorylation of T469 and

specific for the phosphorylated forms of T469 and S551, respectively (Extended DataFig. 5).

S551 in vitro. When the antibodies were tested, they were each confirmed to be

We lysed HEK 293T cells and fractionated 500 mg of cell lysates (at a concentration of 10 mg/ml) sequentially on a Q HP, a Blue HP, an SP HP, a heparin HP, a hydroxyapatite (HAP) HP and a Superdex 200 column (Fig. 2 and Fig. 3a). At each step, an aliquot from each fraction was assayed for PPase activities at T469 and S551. Active fractions from one step were combined and further fractionated on the next column. Thus, fractions 10 to 13 from the Q HP column, the flow through (FL) fraction from the Blue HP column, the FL from the SP HP column, the FL from the

183 heparin column, and fractions 5 to 7 from the HAP HP column were each loaded onto

184	the nex	t column	(Fig. 2).
-----	---------	----------	-----------

185	During purification, we observed that PPase activities for T469 were highly
186	correlated with those for S551 (Fig. 2 and Extended Data Fig. 3b).
187	Fractions 10 to 18 from the Superdex 200 column were run onto a polyacrylamide
188	gel and silver-stained for proteins (Fig. 3b). Fraction 15 contained the strongest PPase
189	activities. A thick band indicated by an arrow in the lane for fraction 15 was cut and
190	sent for mass spectroscopic (MS) analysis. Four PPases were detected: PPP3CA,
191	PPP3CB, PPP3CC and PPP5C (Fig. 3c).
192	
193	Discovery of PPP3CA as a protein-protein interaction partner for SIK3 in the
194	mouse brain
195	We used a new photo-crosslinking method invented by two of us (RG and PRC,

196 unpublished) to search for proteins interacting with SIK3 in vivo. We intended to 197 capture interacting proteins of SIK3 in the brain. Compared with digested neuronal 198 cell culture or cell lysates, brain slices are better in keeping in situ protein networks. 199 Among current approaches for studying protein-protein interactions (PPIs), photo-200 crosslinking strategies which covalently capture interacting proteins under light 201 irradiation are considered to be the more desired methods in living systems due to their 202 good temporal resolution and low cytotoxicity compared with chemical crosslinking. 203 However, the incorporation of photo-crosslinkers into proteins of interests (POIs)

204	normally relies on genetic code expansion (GCE) strategy to engineer native tRNA
205	synthetases for photoactivable unnatural amino acid insertion ⁷⁹ or metabolic turn-over
206	processes for photoactivable moiety containing amino acid analogues ⁸⁰ , which are
207	both difficult to achieve in tissue samples. Furthermore, traditional moieties used for
208	photo-crosslinking such as diazirine and aryl azide are normally sensitive to ultraviolet
209	(UV) irradiation ⁸¹ , which possesses high-energy phototoxicity and weak tissue
210	penetration ⁸² . As a result, photo-crosslinking strategy for in situ PPI capture in tissue
211	level samples has not been frequently reported.
212	Based on the previous work from the Chen lab ⁸³ , here we (RG and PRC) have
213	developed a photocatalytic crosslinking strategy for capturing PPIs in mouse brain
214	slices (Fig. 4a). Considering the challenges as mentioned, we chose eosin Y as the
215	photocatalyst and 1,6-diaminohexane as the linker. Each compound shows good
216	solubility and eosin Y, in particular, is widely used in tissue staining. With maximum
217	absorption at 517 nm, eosin Y generates singlet oxygen (1O2) under green light
218	irradiation ⁸⁴ , which activates side chains of certain amino acid residues such as
219	tyrosine to form electrophilic intermediates which could further form covalent linkage
220	with amine warhead ⁸⁵ . Our method does not require transfection or genetic
221	modification to incorporate the photocatalyst or the crosslinker into target samples for
222	PPI capture.

223	We have generated SIK3-3xHA mice in which the SIK3 protein was tagged with
224	a hemagglutinin (HA) epitope at its carboxyl (C) terminus ⁸⁶ . This allowed us to
225	examine proteins associated with SIK3-HA after photo-crosslinking (Fig. 4b).
226	We applied the photocatalytic crosslinking strategy in freshly prepared mouse
227	brain slice samples of the SIK3-HA mice. Eosin and 1,6-diaminohexane were
228	incorporated into samples following the protocol described, followed by green LED
229	(GL) irradiation. The SIK3 interactome was verified by Western analysis, of which
230	clear crosslinking bands were presented in the +GL group, indicating efficient
231	activation of our probes (Fig. 4b).
232	For both crosslinking and non-crosslinking groups, SIK3 protein was enriched by
233	anti-HA beads and the crosslinking interactome could be pulled down at the same time.
234	For further analysis of the proteins in crosslinking complexes, we excised bands with
235	molecular weight larger than SIK3 for MS sample preparation. Quantitative studies
236	were performed by applying dimethyl labeling method towards both groups after
237	trypsin digestion. Although there were individual variations, 81 proteins overlapped in
238	three independent experiment replications with high level of enrichment in the +GL
239	groups (ratio +GL/-GL>4, log2(+GL/-GL)>2), just as shown in the Venn diagram (Fig.
240	4c). To better justify the protein candidates, we applied a volcano plot analysis (Fig.
241	4d), in which only the proteins with fold-change more than 4 and p-value less than
242	0.05 were considered as significant interacting candidates of SIK3. There was only
243	one catalytic PPase: PPP3CA (Fig. 4d).

244	To confirm interaction of SIK3 and PPP3CA in the brain, we used antibodies for
245	SIK3 in an immunoprecipitation experiment and found both SIK3 and PPP3CA in the
246	precipitates (Fig. 4e). Similarly, both PPP3CA and SIK3 were found in the precipitates
247	when anti-PPP3CA antibodies were used to immunoprecipitate brain lysates (Fig. 4f).
248	This interaction could be recapitulated in HEK 293T cells when FLAG tagged SIK3
249	and HA tagged PPP3CA were introduced into HEK cells and immunoprecipitation
250	experiments carried out with either the anti-FLAG (Fig. 4g) or the anti-HA (Fig. 4h)
251	antibodies.
252	
253	in vitro Dephosphorylation of T469 and S551, but not T221 by PPP3CA
254	While the biochemical approach has uncovered 4 PPases with potential activities on
255	SIK3, and the chemical biological approach has uncovered PPP3CA as an interacting
256	protein for SIK3, it was unclear which PPase(s) could dephosphorylate SIK3 at T469
257	or S551. Given the widely known assumption that PPases are notoriously "non-
258	specific", it was also unclear whether any of the PPases identified by us was specific.
259	We immunoprecipitated FLAG tagged SIK3 expressed in HEK 293T cells as the
260	substrate for testing PPases because it was phosphorylated at T221, T469 and S551
261	(Fig. 5a). Each of the PPases (PPP3CA, PPP3CB, PPP3CC, PPP5C and PPP3R1) was
262	also expressed in and immunoprecipitated from HEK cells. T469 and S551 of SIK3
263	could be dephosphorylated by PPP3CA, PPP3CB and PPP3CC, in the presence of
264	PPP3R1. By contrast, PPP3CA, PPP3CB and PPP3CC could not dephosphorylate

265 T221 of SIK3. Under the same conditions, PPP5C could not dephosphorylate T469,

266	S551	or T221	of SIK3	(Fig.	5a).
-----	------	---------	---------	-------	------

267	Because PPP3CA and PPP3R1 are abundant in the brain while PPP3CC and
268	PPP3R2 are thought to be enriched or specific in the testis ⁶³⁻⁶⁸ , we focused on PPP3CA
269	and PPP3R1. In the presence of PPP3R1, PPP3CA immunoprecipitated from HEK
270	cells could dephosphorylate MEK1 at S217, but not T308 of AKT1, S241 of PDK1,
271	T215 of MARK1, S9 of GSK3β, T183 of JNK1, T185 of ERK2 (Fig. 5 b-e).
272	Experiments in Fig. 5 a to e used enzymes immunoprecipitated from HEK cells
273	and it could not be ruled out that they contained other proteins associated with the
274	intended PPase. We expressed CaM, PPP3CA and PPP3R1 in E. coli so that the
275	absence of protein serine/threonine PPases in E. coli made the contamination
276	impossible. We found that CaM, PPP3CA, PPP3R1 and Ca ²⁺ were all required for
277	dephosphorylation of T469 and S551 of SIK3 (Fig. 5f). This further showed that CaN
278	is a Ca ²⁺ /CaM-activated PPase requiring both its catalytic PPP3CA subunit and
279	regulatory PPP3R1 subunit.
280	Thus, our in vitro results have demonstrated that PPP3CA is highly specific,
281	because not only it does not dephosphorylate tested kinases other than SIK3 and

282 MEK1, but it also targets T469 and S551 but not T221 in SIK3.

283

in vivo Requirement of PPP3CA and PPP3R1 for dephosphorylation of T469 and
S551, but not T221 in HEK cells

We investigated whether PPP3CA could dephosphorylate T469 and S551 of SIK3 in
HEK293T cells.

288	Ionomycin is a classic Ca^{2+} ionophore, allowing Ca^{2+} flow into cells. When
289	applied to media culturing HEK cells, ionomycin could dephosphorylate T469 and
290	S551 of SIK3 in a dose- (Fig. 6a) and time- (Fig. 6b) sensitive manner. It was also
291	specific without evidence for changes in SIK3-T221 phosphorylation (Fig. 6 a-b).
292	Overexpression of PPP3CA/PPP3R1 enhanced the ionomycin induced
293	dephosphorylation of T469 and S551 in a dosage-dependent manner (Fig. 6c).
294	However, overexpression of an inactive form of PPP3CA, PPP3CA-H151A (with
295	histidine, or H, mutated to A), did not dephosphorylate T469 and S551 (Fig. 6d).
296	To investigate calcineurin dependence of ionomycin induced dephosphorylation,
297	we used sgRNAs to generate single or double knockout HEK293T cell lines for
298	PPP3CA, PPP3CB and PPP3R1. The phenotype of single knockout for PPP3CA or
299	PPP3CB in HEK cells was variable. However, phenotypes of PPP3CA and PPP3CB
300	double knockout, or PPP3R1 single knockout, in HEK cells was robust. The
301	ionomycin induced dephosphorylation of T469 and S551 of SIK3 was significantly
302	inhibited by PPP3R1 knockout or PPP3CA and PPP3CB double knockout in HEK
303	cells (Fig. 6e). Again, the effect was specific as phosphorylation of T221 of SIK3 was
304	not significantly affected in any of these knockout HEK cells.

305

306 in vivo Requirement of PPP3CA and PPP3R1 for dephosphorylation of T469 and

307 **S551**, but not T221, in the mouse brain

308	To investigate their in vivo roles in the mouse, we used the CRISPR-Cas9 strategy to
309	target PPP3CA or PPP3R1 in the brains of adult mice, with three sgRNAs for each
310	gene (Extended Data Fig. 6). There were two types of controls: WT ^{Ctrl} were wt mice
311	injected with the same viruses as those for targeting PPP3CA or PPP3R1; eGFP ^{Ctrl}
312	were mice with Cas9 expressed from the Rosa26 locus (Rosa ^{Cas9/+}) injected with
313	sgRNAs targeting the enhanced green fluorescent protein (eGFP). PPP3CA
314	knockdown (PPP3CA ^{KD}) mice were generated by injecting Rosa ^{Cas9/+} mice with
315	AAV2/PHP.eB-CMV-mScarlet-PPP3CA-sgRNA-WPRE. PPP3R1 ^{KD} mice were
316	generated by injecting Rosa ^{Cas9/+} mice with AAV2/PHP.eB-CMV-mScarlet-PPP3R1-
317	sgRNA-WPRE.

318 Knockdown efficiency was examined by Western analysis, which showed that 319 sgRNAs targeting PPP3CA or PPP3R1 readily decreased their protein levels. 320 Furthermore, when PPP3CA was targeted by sgRNA, levels of PPP3CA and PPP3R1 321 proteins were reduced (Fig. 7a), showing interdependence of the catalytic and the 322 regulatory subunits. However, PPP3CB protein level was not reduced in PPP3CA^{KD} 323 mice (Fig. 7a), indicating the specificity of sgRNAs for PPP3CA over PPP3CB. In 324 PPP3R1^{KD} mice, levels of PPP3R1, PPP3CA and PPP3CB were reduced (Fig. 7b), 325 again confirming the interdependence of catalytic and regulatory subunits.

326	Levels of phosphorylation of different S/T sites of multiple proteins were
327	examined by Western analysis. Phosphorylation levels of T469 and S551 in SIK3 were
328	both increased after PPP3CA or PPP3R1 was knocked down in mouse brains while
329	phosphorylation level of T221 in SIK3 was not significantly changed (Fig. 7 a and
330	b).
331	We also examined phosphorylation of other protein kinases in the mouse brain.
332	After PPP3CA or PPP3R1 was knocked down, no significant change was consistently
333	observed for the phosphorylation level of specific S/T sites on other proteins such as
334	T202 of ERK1/2, S217 of MEK1, T183 of JNK, S473 of AKT1, T172 of AMPK α ,
335	T286 of CaMK2 α/β , S241 of PDK1, or S9 of GSK3 β (Fig. 7 a and b).
336	These results provide in vivo evidence that CaN does not dephosphorylate specific
337	S or T in at least 8 other kinases, and that it is specifically required for the
338	dephosphorylation of T469 and S551, but not T221, of SIK3. Our findings that
339	PPP3CA could dephosphorylate S217 of MEK1 precipitated from HEK cells, but that
340	MEK1-S217 phosphorylation was not affected in PPP3CA ^{KD} brains, suggest that other
341	PPases are more important than PPP3CA in regulating the phosphorylation of S217 of
342	MEK1 in the brain.

343

344 in vivo Physiologically requirement of PPP3CA for sleep

To investigate physiological roles of the endogenous PPP3CA in mice, we analyzed the sleep phenotypes of PPP3CA^{KD} mice and compared them with those of control (WT^{Ctrl} and eGFP^{Ctrl}) mice.

348 Representative EEG and EMG graphs are shown in Figure 8K and representative

349 hypnogram shown in Figure S8E. There is no significant difference among the three

350 genotypes in terms of the general patterns of EEG or EMG, indicating that PPP3CA^{KD}

did not generally or non-specifically disrupt EEG or EMG recordings.

Total sleep over 24 hrs was significantly reduced in PPP3CA^{KD} mice, with 352 353 reduction at every time point in both daytime (the light phase) and nighttime (the dark 354 phase) (Fig. 8a and Extended Data Fig. 7 a-d, Extended Data Tables 3 and 4). Differences in total sleep over 24 hrs were: 187.6±13.0 mins less in PPP3CA^{KD} than 355 356 eGFP^{Ctrl} mice, 192.6±14.7 mins less in PPP3CA^{KD} than WT^{Ctrl}, 5.0±15.1 mins more 357 in eGFP^{Ctrl} than WT^{Ctrl}. In other words, PPP3CA^{KD} mice slept approximately 3 hrs less than either eGFP^{Ctrl} or WT^{Ctrl} control mice. Differences of sleep duration in the 12 hrs 358 of light phase were: 79.5±7.7 mins less in PPP3CA^{KD} than eGFP^{Ctrl} mice, 84.2±8.7 359 mins less in PPP3CA^{KD} than WT^{Ctrl}, 4.8±8.9 mins more in eGFP^{Ctrl} than WT^{Ctrl}. 360 361 Differences of sleep duration in the 12 hrs of dark phase were: 108.1 ± 10.3 mins less in PPP3CA^{KD} than eGFP^{Ctrl} mice, 108.4±11.6 mins less in PPP3CA^{KD} than WT^{Ctrl}. 362 0.2±11.9 mins more in eGFP^{Ctrl} than WT^{Ctrl}. 363

364 NREM sleep was similar to total sleep in that it was significantly reduced
365 throughout the entire 24 hrs (Fig. 8 b and c, Extended Data Tables 3 and 4). Differences

366	in NREM sleep over 24 hrs were: 201.0±12.4 mins less in PPP3CA ^{KD} than eGFP ^{Ctrl}
367	mice, 207.0±14.0 mins less in PPP3CA ^{KD} than WT ^{Ctrl} , 5.9±14.4 mins less in eGFP ^{Ctrl}
368	than WT ^{Ctrl} . In other words, NREM was reduced by approximately 204 mins in
369	PPP3CA ^{KD} mice as compared to either control. Differences in NREM sleep in the light
370	phase were: 100.8 \pm 7.6 mins less in PPP3CA ^{KD} than eGFP ^{Ctrl} mice, 104.9 \pm 8.5 mins
371	less in PPP3CA ^{KD} than WT ^{Ctrl} , 4.1 \pm 8.8 mins less in eGFP ^{Ctrl} than WT ^{Ctrl} . During
372	daytime, NREM episode number was not changed (Fig. 8d), but NREM episode
373	duration was reduced (Fig. 8e). Differences in NREM sleep in the dark phase were:
374	100.2±9.2 mins less in PPP3CAKD than eGFPCtrl mice, 102.0±10.4 mins less in
375	PPP3CA ^{KD} than WT ^{Ctrl} , 1.8±10.7 mins less in eGFP ^{Ctrl} than WT ^{Ctrl} . During nighttime,
376	the number (Fig. 8d) but not the duration (Fig. 8e) of NREM episodes was reduced.
377	Changes in REM sleep was much more moderate and were in opposite directions
378	in the light vs the dark phase. Differences in REM sleep over 24 hrs were: 13.3 ± 2.6
379	mins more in PPP3CA ^{KD} than eGFP ^{Ctrl} mice, 14.4±2.9 mins more in PPP3CA ^{KD} than
380	WT ^{Ctrl} , 1.0±3.0 mins more in eGFP ^{Ctrl} than WT ^{Ctrl} . In other words, REM was increased
381	by approximately 13 mins in PPP3CA ^{KD} mice as compared to either control.
382	Differences in REM sleep in the light phase were: 21.3±2.3 mins more in PPP3CA ^{KD}
383	than eGFP ^{Ctrl} mice, 20.7±2.6 mins more in PPP3CA ^{KD} than WT ^{Ctrl} , 0.5±2.7 mins less
384	in eGFP ^{Ctrl} than WT ^{Ctrl} (Extended Data Fig. 7 e and f). In other words, REM sleep was
385	moderately (but statistically significantly) increased during daytime by approximately
386	20 mins, due to increased REM episode number (Extended Data Fig. 7g) but not REM

387	episode duration (Extended Data Fig. 7h) in PPP3CA ^{KD} mice. Differences in REM
388	sleep in the dark phase were: 7.9 \pm 1.6 mins less in PPP3CA ^{KD} than eGFP ^{Ctrl} mice,
389	6.3±1.8 mins less in PPP3CA ^{KD} than WT ^{Ctrl} , 1.6±1.8 mins more in eGFP ^{Ctrl} than WT ^{Ctrl}
390	(Extended Data Fig. 7 e and f). In other words, REM sleep was weakly decreased in
391	nighttime by approximately 6 mins (Extended Data Fig. 7 e and f), due to decreased
392	number (Extended Data Fig. 7g) and duration (Extended Data Fig. 7h) of REM
393	episodes.
394	EEG power spectrum analysis showed only NREM delta power densities reduced
395	in PPP3CA ^{KD} mice at ZT15 and ZT23 but not other time points (Fig. 8 e and f).
396	Probabilities of transition between different sleep and wake states were increased
397	between REM and NREM, but decreased between wake and NREM (Figure 8 i and h,
398	Extended Data Fig. 7 k and l).
399	After 6 hrs of SD, NREM (Fig. 8j) or total sleep/wakefulness (Extended Data
400	Figure 8a) recovered gradually in WT ^{Ctrl} and eGFP ^{Ctrl} mice, whereas their recoveries
401	after SD was significantly reduced in PPP3CA ^{KD} mice. Recovery of REM after SD
402	was not significantly different among WT ^{Ctrl} , eGFP ^{Ctrl} and PPP3CA ^{KD} mice (Extended
403	Data Fig. 8b).
404	Thus, PPP3CA is physiologically required for basal sleep mainly by promoting
405	NREM episode duration during daytime and NREM episode number during nighttime.
406	PPP3CA regulation of REM was moderate and different between daytime and
407	nighttime. PPP3CA is also physiologically required for recovery of NREM after SD.

408

409 in vivo Physiologically requirement of PPP3R1 for sleep

410	PPP3CA is a catalytic subunit of the CaN phosphatase. Its involvement in sleep
411	naturally begs the question whether a regulatory subunit is also involved. Because
412	PPP3R2 was specifically expressed in the testis, not in the brain, we investigated
413	PPP3R1 for potential roles in regulating sleep.

414 Western analysis of whole brains showed that PPP3R1^{KD} mice expressed PPP3R1

415 protein at a significant decreased level (Fig. 7b). Representative EEG and EMG graphs

416 are shown in Fig. 9k and representative hypnograms in Extended Data Fig. 10e.

417 Sleep duration at every ZT in both light and dark phases except 5 ZT hrs around

418 light to dark transition was significantly and dramatically decreased in PPP3R1^{KD} mice

419 (Fig. 9a and Extended Data Fig. 9 a-d, Extended Data Tables 5 and 6). PPP3R1^{KD} mice

420 spent significantly reduced amount of time for sleep over 24 hrs: 236.4±24.5 mins for

421 PPP3R1^{KD} mice (Extended Data Table 5). This is 381.4±22.8 mins less than eGFP^{Ctrl}

422 mice or 349.3±21.5 mins less than WT^{Ctrl} mice (Extended Data Table 6). In other

423 words, sleep over 24 hrs is decreased by more than 5 hrs in PPP3R1^{KD} mice.

424 Over 24 hrs, NREM was reduced from 543.6 ± 6.5 mins in eGFP^{Ctrl} or 512.0 ± 0.6

425 mins in WT^{Ctrl} to 183.6±18.3 mins in PPP3R1^{KD} mice (Fig. 9c, Extended Data Table

426 5). This is 360.1 ± 18.5 mins less in PPP3R1^{KD} than eGFP^{Ctrl} mice or 328.4 ± 17.5 mins

427 less than WT^{Ctrl} mice (Extended Data Table 6). The decrease in total NREM over 24

428 hrs was attributable to shorter NREMS episode duration (Fig. 9c) but not to episode
429 number (Fig. 9d).

430	In the light phase, NREM sleep (Figs 9 b-e; Extended Data Tables 5 and 6) was
431	significantly decreased in PPP3R1KD mice whereas REM was not significantly
432	different between PPP3R1 ^{KD} and eGFP ^{Ctrl} mice or PPP3R1 ^{KD} and WT ^{Ctrl} mice
433	(Extended Data Fig. 9 e-h; Extended Data Tables 5 and 6). NREM of PPP3R1 ^{KD} mice
434	in the light phase is 212.9 \pm 14.5 mins less than eGFP ^{Ctrl} mice or 213.4 \pm 13.7 mins less
435	than WT ^{Ctrl} mice (Extended Data Table 6). In the dark phase, sleep of any kind
436	(including both REM and NREM) was dramatically reduced in PPP3R1 ^{KD} mice:
437	20.4 \pm 8.5 mins total sleep, 18.47 \pm 7.7 mins of NREM sleep, 1.9 \pm 0.9 mins of REM sleep
438	(Extended Data Table 5), corresponding to a reduction of 159.0±14.1 mins less than
439	eGFP ^{Ctrl} mice or 123.8±13.3 mins less than WT ^{Ctrl} mice, 147.2±13.2 mins less than
440	eGFP ^{Ctrl} mice or 115.0±12.5 mins less than WT ^{Ctrl} mice, 11.7±2.0 mins less than
441	eGFP ^{Ctrl} mice or 9.0±1.8 mins less than WT ^{Ctrl} mice (Extended Data Table 6). These
442	results indicate that PPP3R1 is physiologically required for sleep.
443	Probabilities of transition between different sleep and wake states (Fig. 9i) were
444	summarized from data in Figure 9H and Figure S9K and S9L. Probabilities of

445 transition from Wake to NREMS, and from NREMS to NREMS, were reduced 446 whereas probabilities of transition from NREMS to wake, wake to wake were 447 increased.

448	PPP3R1 ^{KD} mice showed neither NREMS nor REMS sleep recovery after 6 hrs of
449	SD, with statistically significant decreases at every time point tested from the 8 th to the
450	24 th hr (Fig. 9j and Extended Data Fig. 10 a-b).
451	NREM delta power densities were decreased in PPP3R1 ^{KD} mice (Fig. 9 f-g and
452	Extended Data Fig. 9 i-j), suggesting that PPP3R1 is required for sleep need. After SD,
453	NREMS delta power recovery was also less in PPP3R1 ^{KD} mice than control mice
454	(Extended Data Fig. 10 c-d).
455	

456 Discussion

457 We conclude that CaN plays a major role in controlling sleep, especially of the NREM 458 type, and suggest a signaling pathway involving not only protein kinases but also 459 protein phosphatases in sleep regulation. Our results have also demonstrated the 460 specificity of CaN in phosphorylating specific S and T sites in SIK3, revealing a 461 specificity previously unsuspected for PPases.

462 Of the three catalytic subunits of CaN, all are active in vitro in biochemically 463 dephosphorylating T469 and S551, but not T221, of SIK3. in vivo, we have proven a 464 biochemical role of dephosphorylating T469 and S551 for PPP3CA and PPP3CB in 465 HEK cells and for PPP3CA in the mouse brain. We have found a physiological role 466 for PPP3CA in regulating sleep in the mouse. PPP3CB is also involved in HEK cells in mediating dephosphorylation induced by Ca²⁺, but it remains to be tested whether 467 468 PPP3CB is required in the brain, where it is also expressed, though at a level lower

469	than that of PPP3CA. The finding that the effect of PPP3R1 knockdown in the mouse
470	was stronger than PPP3CA knockdown, especially on NREM sleep, supports the
471	possibility that PPP3R1 also functions with a catalytic subunit other than PPP3CA.
472	PPP3CB provides the obvious candidate. The expression of PPP3CC is thought to be
473	testis-enriched or -specific, and its role in sleep has not been tested. Of the two
474	regulatory subunits, we have shown biochemically that PPP3R1 is required for SIK3
475	dephosphorylation in HEK cells and in the mouse brain, and physiologically that
476	PPP3R1 is required for sleep regulation. We have not targeted PPP3R2 in the mouse
477	because it is testis-specific. Because of the interdependence of catalytic and regulatory
478	subunits (Fig. 7 a-b), the sleep phenotypes observed by us in the manuscript should be
479	attributed to CaN, not distinguishing among different subunits.
479 480	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in
479 480 481	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve
479480481482	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of
 479 480 481 482 483 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice,
 479 480 481 482 483 484 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice, which could be explained by either more sites in SIK3 for PPP3CA dephosphorylation,
 479 480 481 482 483 484 485 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice, which could be explained by either more sites in SIK3 for PPP3CA dephosphorylation, or by more substrates in addition to SIK3 for PPP3CA dephosphorylation. SIK 1, 2, 3
 479 480 481 482 483 484 485 486 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice, which could be explained by either more sites in SIK3 for PPP3CA dephosphorylation, or by more substrates in addition to SIK3 for PPP3CA dephosphorylation. SIK 1, 2, 3 are all members of the AMPK related kinases (ARKs), we are actively examining
 479 480 481 482 483 484 485 486 487 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice, which could be explained by either more sites in SIK3 for PPP3CA dephosphorylation, or by more substrates in addition to SIK3 for PPP3CA dephosphorylation. SIK 1, 2, 3 are all members of the AMPK related kinases (ARKs), we are actively examining whether and which one of the 16 to 20 ARKs ⁸⁷⁻⁸⁹ is involved in sleep. Direct effects
 479 480 481 482 483 484 485 486 487 488 	attributed to CaN, not distinguishing among different subunits. Is SIK3 the only downstream target mediating the physiological role of CaN in sleep regulation? It is not clear at the moment. The possibility that CaN may involve substrates in addition to SIK3 is supported by the following: the sleep phenotypes of PPP3CA ^{KD} and PPP3R1 ^{KD} were stronger than that of SIK3 ^{T469A/T469A} mutant mice, which could be explained by either more sites in SIK3 for PPP3CA dephosphorylation, or by more substrates in addition to SIK3 for PPP3CA dephosphorylation. SIK 1, 2, 3 are all members of the AMPK related kinases (ARKs), we are actively examining whether and which one of the 16 to 20 ARKs ⁸⁷⁻⁸⁹ is involved in sleep. Direct effects of CaN on targets other than ARKs are also being explored.

490 Advantage of combining classic biochemistry with new chemical biology

491	We have used both a classic biochemical purification method and a new chemical
492	biological photo-crosslinking method. This combination is very helpful. With the
493	biochemical method (Figs. 2 and 3), 4 PPases were purified. It was unclear which one
494	among those 4 was the right phosphatase and it was also possible that there were other
495	PPases. With the photo-crosslinking method, PPases were not the most prominent
496	proteins found to interact with SIK3-HA in the brain. However, when we looked at
497	both results, it immediately drew our attention to one PPase: the one shared by both
498	methods.
499	The combination thus expediated the process of focusing on CaN as the PPase for
500	T469 and \$551 of \$IK3.

501

502 A new photo-crosslinking strategy

We (RG and PRC) have developed a new photo-catalytic crosslinking strategy for capturing in situ protein-protein interactions in native tissue slice samples (Fig. 4). Our method utilizes eosin as photocatalyst which generates singlet oxygen upon visible light irradiation. The singlet oxygen activates a diamine probe to capture direct protein-protein interactions. Proteins of interest (POIs) and their interacting partners could then be pulled down and analyzed by mass spectrometry.

509 This method has several unique advantages: 1) it does not require transfection or 510 other genetic methods to introduce crosslinking probes. Ready-to-use in native

511	samples and captures in situ protein-protein interactions; 2) the photocatalyst eosin
512	generates singlet oxygen with high efficiency under irradiation. The molecule itself
513	also performs high compatibility in tissue samples as a tissue staining dye; 3) the peak
514	excitation wavelength of eosin is around 520 nm. Visible light-meditated crosslinking
515	method shows benefit against traditional UV methods with better tissue penetration
516	and less cytotoxicity.
517	
518	Specificity of CaN dephosphorylation of sites in SIK3
519	With the background of the widely held perception of PPases being not very specific,
520	the selectivity of a PPase for different sites in the same substrate protein was striking.
521	We have three pieces of in vitro evidence supporting the specificity of CaN
522	(PPP3CA and PPP3R1): 1) PPP3CA expressed in and purified by
523	immunoprecipitation from HEK cells dephosphorylated T469 and S551, but not T221,
524	of SIK3 (Fig. 5); 2) With each protein component expressed in and purified from E.
525	coli, we have demonstrated that dephosphorylation of T469 and S551 in SIK3 requires
526	Ca ²⁺ , CaM, PPP3CA and PPP3R1 (Fig. 5f); 3) The same purified components
527	combined together did not dephosphorylate T221 of SIK3. CaN also did not
528	dephosphorylate T308 of AKT1, S241 of PDK1, T215 of MARK1, S9 of GSK3 β ,
529	T183 of JNK1, or T185 of ERK2, though it dephosphorylated S217 of MEK1 (Fig. 5

530 b-e).

531	We have three pieces of in vivo evidence supporting the specificity of CaN: 1)
532	Overexpression of CaN in HEK cells enhanced Ca ²⁺ ionophore induced
533	dephosphorylation of T469 and S551 in SIK3, but did not affect phosphorylation of
534	T221 in SIK3 (Fig. 6 c-d); 2) Knockdown of the catalytic or the regulatory subunits of
535	CaN in HEK cells inhibited the T469 and S551 dephosphorylation induced by Ca^{2+}
536	ionophore (Fig. 6e). Two subunits of CaN (PPP3CA and PPP3CB) had to be targeted
537	by sgRNAs at the same time to suppress the dephosphorylation effective and robustly,
538	suggesting that, in HEK cells, both catalytic subunits function in mediating the
539	ionophore response. 3) This is not the case in the mouse brain where PPP3CA is highly
540	expressed. Knockdown of PPP3CA alone was sufficient to inhibit the
541	dephosphorylation of T469 and S551 of SIK3 (Fig. 7a). PPP3CA knockdown did not
542	affect the phosphorylation level of T221 of SIK3, proving the site-specificity of CaN
543	for SIK3. PPP3CA or PPP3R1 knockdown in the mouse brain also did not affect the
544	phosphorylation of specific sites in kinases such as ERK1/2, MEK1, JNK, AKT,
545	CaMK2 α/β , PDK1, or GSK3 β (Fig. 7 a-b).
546	The specificity of CaN for T469 and S551 of SIK3 raises the question whether
547	there is a site specific PPase for T221 of SIK3. More broadly, are there kinase-
548	phosphatase pairs in all important signaling pathways?

549

550 CaN regulation of sleep

551	PPP3CA knockdown reveals that it is required physiologically for regulating sleep
552	both during daytime and nighttime, especially NREM (Fig. 8 a-e). Its role in REM
553	sleep is moderate and different between daytime and nighttime (Extended Data Fig. 7
554	e-h). Different from LKB1 ¹⁷ or SIK3 ¹⁹ knockout mice, sleep need measured by NREM
555	delta power densities was not affected by PPP3CA knockdown (Fig. 8 f and g).
556	PPP3CA is required for recovery of NREM sleep (Fig. 8j), but not REM sleep
557	(Extended Data Fig. 8b), after deprivation, indicating that PPP3CA is important for
558	homeostatic regulation of sleep.
559	PPP3R1 knockdown showed a stronger phenotype than PPP3CA, which is
560	expected because a regulatory subunit can interact with all catalytic subunits in the
561	brain, while, although the catalytic subunit could also interact with all regulatory
562	subunit, there is only one regulatory subunit in the mouse brain, with the other one
563	(PPP3R2) limited to the testis.
564	PPP3R1 is required physiologically for both NREM and REM sleep. It is required
565	for nighttime sleep, and its reduction led to near elimination of NREM and REM sleep
566	at nighttime (Fig. 9 a-c; Extended Data Fig. 9 e-f). During daytime, it is required more
567	for NREM sleep (Fig. 9 b-c; Extended Data Fig. 9 e-f). It is required for sleep need
568	indicated by NREM delta power densities (Fig. 9g), and for recovery of both NREM

569 (Fig. 9j) and REM (Extended Data Fig. 10b) after SD.

570

571 Calcium regulation of sleep

572	Ca ²⁺ imaging in different brain regions have shown that intracellular and extracellular
573	concentrations of Ca^{2+} are different among different sleep/wake states ⁹⁰⁻⁹³ .
574	Pharmacological and genetic manipulations of channels affecting Ca ²⁺ concentrations
575	could change sleep patterns in mice ^{38,94-97} .
576	Our findings of the roles of CaN provides one possible downstream component of
577	Ca ²⁺ , but it remains to be further studies how Ca ²⁺ , kinases, phosphatases, ion channels
578	and transcriptional factors interact in sleep regulation.
579	
580	Protein kinases and sleep
581	The first kinase implicated in sleep regulation was PKA. An antidepressant capable of
582	inhibiting phosphodiesterase and increasing cyclic adenosine monophosphate (cAMP)
583	could increase wakefulness ²⁶ in rats. In mice, overexpression of a dominant negative
584	form of PKA increased REM sleep and NREM fragmentation while decreasing sleep
585	rebound after deprivation ³⁰ . ERK requirement for sleep in mice was shown by
586	significant sleep reduction after pharmacological inhibitions or genetic deletions of
587	ERK1 or ERK2 genes in neurons ³³ . AMPK was implicated in sleep regulation when
588	its inhibitor was found to decrease sleep and its activator found to increase sleep in
589	mice ³⁴ . Pharmacological inhibition of CaMKII in specific brain regions was found to
590	increase sleep $^{37}\!\!.$ Genetic knockout studies show the importance of CaMK2 $\!\alpha$ and
591	CaMK2 β in sleep with a reduction of approximately 50 minutes (mins) or 120 mins
592	per 24 hrs in CaMK2 α and CaMK2 β knockout mutants, respectively 38 . SIK3 was

593	discovered through a forward genetic screen in mice when a gain of function mutant
594	of SIK3 was discovered ¹⁴ . A small fragment was deleted in the SIK3 ^{sleepy} mutant,
595	resulting in the absence of a PKA target site S551 ²⁰ . Mutations of the S551 equivalent
596	sites in SIK1 and SIK2 led to the GOF phenotype ²¹ , making it unclear which of the
597	SIK kinases or phosphorylation sites were physiologically required for sleep regulation.
598	Our studies of mice deleting each one of the SIK genes indicated that only SIK3, but
599	not SIK1 or SIK2 is required for sleep in mice ¹⁹ . LKB1 is a tumor suppressor gene ⁴¹⁻
600	43,98,99 whose product was found to phosphorylate T172 of the α subunit of AMPK $^{100-}$
601	¹⁰⁶ and the equivalent site in ARKs including SIK3 ⁸⁷ . Our recent functional studies in
602	vivo have shown requirement of LKB1 for sleep in both flies and mice ¹⁷ . The simple
603	scenario of LKB1 upstream of SIK3 in sleep regulation was rendered uncertain by our
604	in vitro biochemical studies which has uncovered more than twenty kinases of the
605	STE20 subfamily in addition to LKB1 upstream of ARKs ^{107,108} . We are still studying
606	whether any of the STE20 kinases identified by us biochemically is involved in sleep
607	regulation.

Our discovery of specific phenotypes for CaN in sleep will stimulate further studies of other PPases in regulating sleep. For example, while it seems that CaN is more important for NREM than REM, would there be a PPase more important for regulating REM sleep? What are the relationships between kinases and phosphatases in sleep regulation? The specificities we discovered for CaN in dephosphorylating specific sites and in regulating specific components of sleep brings both questions and

- 614 excitement for furthering our understanding of molecular mechanisms of mammalian
- 615 sleep. More broadly, specific involvement of PPases in important physiological
- 616 processes should be further studied.

619 Antibodies

- 620 The following primary antibodies were used: anti-HA tag (C29F4, CST), anti-FLAG
- 621 M2 HRP conjugated (A8592, Sigma), anti-SIK3 (Santa Cruz, sc-515408), anti-SIK3
- 622 pT221 (Abcam, ab271963), anti-SIK3 pT469 (Abcam, ab225633), anti-SIK3 pS551
- 623 (Abcam, ab225634), anti-PPP3CA (ABclonal, A1063), anti-PPP3CB (AffinitY,
- 624 DF12705), anti-PPP3CC (ABclonal, A7714), anti-PPP3R1 (ABclonal, A0954), anti-
- 625 JNK (CST, 9252), anti-phospho-JNK (CST, 9251), anti-ERK1/2(CST, 4695), anti-
- 626 phospho-ERK (CST, 4370), anti-AMPKα1/α2 (ABclonal, A12718), anti-AMPKα1/2–
- 627 pT183/T172 (ABclonal, AP1345), anti-PDK1 (ABclonal, A8930), anti-PDK1 pS241
- 628 (ABclonal, AP1357), anti-MEK1/2 (ABclonal, A4868), anti-MEK1/MEK2
- 629 pS217/S221 (ABclonal, AP1349), anti-GSK3β (CST, 12456), anti-GSK3β pS9 (CST,
- 630 5558), anti-panAkt (CST, 4685), anti-Akt pS473 (CST, 4060), anti-CaMKII pT286
- 631 (Abcam, ab171095), anti-CaMKII α/β (CST, 4436S), anti- β -actin (Abcam, ab8226).

632

633 Cell culture and cDNA transfection

HEK293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM,
Gibco) medium containing 10% fetal bovine serum (FBS, Gibco) and 1%
Penicillin/Streptomycin (Gibco). cDNAs were transfected into HEK293T cells with
Lipofectamine 3000 reagent (Thermo Fisher) according to the manufacturer's
instructions and harvested 24 to 28 hrs after transfection.

639

640	Drug	treatment	and	protein	prepar	ation
-----	------	-----------	-----	---------	--------	-------

- 641 HEK293T cells were treated with ionomycin (MedChemExpress) at indicated
- 642 concentrations and time durations at 37 °C. Cells were then harvested and lysed with
- 1 ml lysis buffer (0.3% Chaps, 10 mM KCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM
- 644 EGTA, pH 7.4, 1x protease inhibitor cocktail (Roche), 1x phosphatase inhibitor II and
- 645 1x phosphatase inhibitor III (Sigma)) before centrifugation of cell lysates at 13000 rpm
- 646 for 10 min at 4 °C. Protein concentrations of cell lysates were determined with the
- bicinchoninic acid (Thermo Fisher, 23225) assay and normalized to 2 mg/ml. Samples
- 648 were analyzed by immunoblotting with the indicated antibodies.

649

650 **Mice**

651 WT C57 BL/6J mice (8 to 10 weeks old) were purchased from Beijing Vital River 652 Laboratories Technology Co., Ltd. or Laboratory animal resource center in Chinese 653 Institute for Brain Research. Rosa26-Cas9 knock-in (Rosa26^{Cas9/+}, RRID: 654 IMSR JAX:024858) mice were obtained from Jackson laboratory ¹⁰⁹. SIK3-3xHA 655 mice were constructed in BIOCYTOGEN by infusing a 3xHA-T2A-iCre cassette into 656 the C terminus right before the SIK3 stop codon. All experimental procedures were 657 performed in accordance with the guidelines and were approved by the Animal Care 658 and Use Committee of Chinese Institute for Brain Research, Beijing. Mutant mice and 659 wt littermates were maintained on a C57 BL/6J background. Mice were housed under

660 a 12 hr:12 hr light/dark cycle and controlled temperature and humidity conditions.

- Food and water were delivered *ad libitum*. Mice used in all experiments were 10-14
- weeks old.
- 663

664 Generation of mice with point mutations in SIK3

- 665 SIK3 point mutant mice were constructed with CRISPR-Cas9 mediated homologous
- 666 recombination. For SIK3^{T469A/T469A}, the gRNA sequence was 5'-
- 667 TTTGTCAATGAGGAGGCACA-3' and a single strand homologous arm was
- designed to introduce nucleotide mutation from ACG to GCG (T469A) as well as a
- 669 restriction enzyme site BstUI for future genotyping, sequence of which was 5'-
- 670 CCTTCTCCAGAAGCCTTGGTTCGCTATTTGTCAATGAGGAGGCACGCGGT
- 671 GGGAGTGGCTGACCCACGGTAAGTACCTGGTCAGCATCCT-3'. A mixture of
- 672 Cas9-expressing mRNA, single strand homologous arm and sgRNA was injected into
- 673 fertilized eggs through electroporation and the eggs were then transplanted into the
- 674 womb of foster mothers. F0 and F1 mice were genotyped through PCR and BstUI
- 675 digestion to make sure the presence of recombination. Mutant lines were back-crossed
- to C57BL/6J for at least 5 generations to exclude possible off-targeting.
- 677

678 Mouse brain protein preparation

679 Whole brains of mice were quickly dissected, rinsed with PBS and homogenized by 680 homogenizer (Wiggens, D-500 Pro) in ice-cold lysis buffer (150 mM NaCl, 1% Triton-

681	X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-base, freshly
682	supplemented with a protease and phosphatase inhibitor cocktail). Brain homogenates
683	were centrifuged at 15000 rpm for 25 min at 4 °C. Supernatants were carefully
684	transferred into a new microtube. Protein concentrations of brain lysates were
685	determined with the bicinchoninic acid assay and normalized to 2 mg/ml. Before
686	immunoblotting, samples were kept in liquid nitrogen, if necessary.

687

688 Biochemical purification

689	Lysates from HEK 293 cells were prepared and filtered through 0.45 μ m filters. 500
690	mg cell lysates at a concentration of 10 mg/ml were fractionated on a QHP anionic
691	chromatography column, eluted with a linear gradient of NaCl (0-600 mM) into 20
692	column volumes (CVs), with each fraction collected as one CV as samples 1 to 20,
693	and the final wash with 1 M NaCl buffer A with 5 CVs gave rise to samples 21 to 25.
694	Each fraction was dialyzed into buffer A, removing NaCl. 10 μ l of each sample was
695	used for analysis of activities removing phosphate from SIK3 T469 and S551. T469
696	and S551 of bacterially expressed recombinant SIK3 were phosphorylated by PKA in
697	vitro before being used to test phosphatase activities of the fractions of HEK lysates.
698	Fractions 10 to 13 contained significant activities removing phosphate from SIK3
699	T469 and S551.

Fractions 10 to 13 from QHP were combined and dialyzed with buffer A before
being loaded onto a Blue HP column. It was eluted with a linear gradient of NaCl (0-

702	600 mM) into 20 column volumes (CVs), with each fraction collected as one CV as
703	samples 1 to 20, and the final wash with 1 M NaCl buffer A with 5 CVs gave rise to
704	samples 21 to 25. The FL fraction from the Blue HP contained significant activities
705	removing phosphate from SIK3 T469 and S551.
706	The FL fraction from the Blue HP column was dialyzed with buffer A and loaded
707	onto a SPHP column. The FL fraction from the SP-HP column contained significant
708	activities removing phosphate from SIK3 T469 and S551.
709	The FL fraction from the SP-HP column was dialyzed with buffer A and loaded
710	onto a heparin HP column. The FL fraction and Fraction 1 contained significant
711	activities removing phosphate from SIK3 T469 and S551.
712	The FL fraction from the heparin HP column was dialyzed with buffer A and
713	loaded onto a HAPHP column. The rest of the fractionation was similar to the first
714	column except that the final wash was with 5 CVs of 500 mM K ₂ PO ₄ , giving rise to
715	samples 21 to 25. Fractions 5 to 7 contained significant activities removing phosphate
716	from SIK3 T469 and S551.
717	Active fractions from the HAPHP column were condensed into 0.5 ml,
718	fractionated on a Superdex 200 molecular sieve column, eluted with 200 mM NaCl
719	gradient into 20 CVs. 1 ml from each fraction was collected and labeled as samples 1
720	to 20. Protein contents were monitored with UV at 280 nm.
722 Incorporation of photocatalytic probes into mouse brain slices for visible light-

723 induced PPI capture

724 SIK3-3xHA mice were sacrificed and brain slices were kept in PBS. Neurobasla 725 medium (Gibco) supplied with B-27 for photocatalytic crosslinking was prepared in 726 darkness by adding eosin Y and 1,6-dihexamine to a working concentration of 50 μ M 727 and 1 mM, respectively. Cell culture chambers (Millipore, PICM0RR50) were placed 728 in 6-well plates and rinsed with PBS. Brain slices were transferred to chambers 729 carefully with a sterile dropper and each chamber finally contained four slices to ensure 730 thorough stretch of each slice. PBS was discarded by pipetting from the outer side of 731 chambers and 0.5 ml of neurobasal medium containing photocatalytic crosslinkers was 732 added into each well to ensure that each slice was totally infiltrated with the probes. 733 Samples were incubated at 37°C with 5% CO₂ for 1 hr before photo-irradiation. For 734 photocatalytic crosslinking, the plates were placed on green LED (520 nm, 20 mW/cm²) 735 equipment while an ice bag and a fan were used to reduce light irradiation-induced 736 heat. After 15 mins of green light irradiation, the color of the medium was bleached, 737 indicating effective activation of the eosin probe. The medium was discarded and after 738 one round of PBS wash, the slices was collected into 1.5 ml Eppendorf tubes, which 739 were placed into liquid N₂ to freeze the slices.

740

741 Enrichment of crosslinked proteins

742	To each tube with frozen brain slice samples was added 1 ml of ice-cold lysis buffer
743	containing 1% of protease cocktail and a steel ball. Samples were lysed through
744	ultrasonication. After centrifugation (12,000 g, 10 mins, 4 °C) to discard the residue,
745	crosslinked proteins were enriched by anti-HA magnetic beads (Pierce, 88837)
746	according to the manufacture protocol. Importantly, the beads should be washed with
747	lysis buffer (with 0, 0.25, and 0.5 M NaCl) for three times to diminish non-specific
748	binding proteins. Crosslinked proteins were eluted with 2x SDS-loading buffer and
749	heated to 95 °C for 10 min. Eluted proteins were subjected to further Western analysis
750	and LC-MS/MS.

751

752 **Protein digestion and dimethyl labeling**

753 In-gel digestion. Proteins enriched with HA beads were loaded on an 8% SDS-PAGE 754 gel and run at 150 V for 30 mins. After silver staining, the desired bands of protein 755 mixture were excised and cut into 1 mm³ pieces. The gel pieces were discolored in 756 discoloring buffer until they all turned transparent. A dehydration process was carried 757 out by adding pure acetonitrile into gel pieces until they were totally dehydrated to 758 appear non-transparently white. Samples were then incubated in the reduction buffer 759 (10 mM DTT, 50 mM ammonium bicarbonate) at 56 °C for 30 mins and further 760 incubated in alkylation buffer (55 mM iodoacetamide, 50 mM ammonium bicarbonate) 761 at 37 °C for half an hr in the dark. After washed by 50 mM ammonium bicarbonate 762 buffer twice, gel pieces were dehydrated through the same protocol. 20 ng/µl trypsin

763	buffer in 50 mM ammonium bicarbonate was added and samples were incubated at
764	4 °C for one hr. The remaining buffer was discarded and 50 mM ammonium
765	bicarbonate buffer was added for another 16 hrs of digestion at 37 °C. The resulting
766	peptides were extracted with extraction buffer (50% acetonitrile, 45% water and 5%
767	formic acid), before being centrifuged to dryness under vacuum.
768	Dimethyl labeling . The collected peptides were reconstituted in 100 mM TEAB buffer.
769	39.688 mg/mL of NaBH ₃ CN followed by 4% (v/v) CH2O or CD2O were added for
770	light and heavy dimethyl labeling, respectively, following the addition of 39.688
771	mg/ml NaBH ₃ CN. After incubation in a fume hood for 30 mins at room temperature,
772	enough 1% (v/v) ammonia solution and FA were added immediately to quench the
773	labeling reaction. The light and heavy samples were combined together, and then
774	desalted and dried under vacuum.
775	LC-MS/MS analysis. Trypsin digested peptides were analyzed on a Exploris 480
776	Hybrid Quadrupole Orbitrap Mass Spectrometer as well as Thermo Scientific Q
777	Exactive Orbitrap Mass Spectrometer in conjunction with an Easy-nLC II HPLC
778	(Thermo Fisher Scientific). The mobile phases were A: 0.1% formic acid in H ₂ O; B:
779	0.1% formic acid in 80% ACN-20% H2O. MS/MS analysis was performed under the
780	cationic mode with a full-scan m/z range from 350 to 1,800 and a mass resolution of
781	70,000.

782 Peptides identification. For quantitative SIK3 interactome analysis, the quantification
783 of light/heavy ratios was calculated with a precursor mass tolerance of 20 ppm.

784 Alkylation of cysteine (+57.0215 Da) was set as the static modification, and oxidation 785 of methionine (+15.9949 Da) and acetylation of N-terminal Lys (+42.0106 Da) was 786 assigned as the variable modification. The isotopic modifications (28.0313 and 787 32.0557 Da for light and heavy labeling, respectively) were set as fixed modifications 788 on the peptide N-terminus and lysine residues. Half-tryptic terminus and up to two 789 missing cleavages were set within tolerance. 790 Co-immunoprecipitation: For HEK293T cells, plasmids expressing FLAG-tagged 791 SIK3 and HA-tagged PPP3CA were transfected for 24 hrs. Cells were then collected 792 and lysed with 1 ml lysis buffer (25 mM Tris-base pH 7.4, 150 mM NaCl, 1% NP40, 793 1mM EDTA, 5% glycerol,1x protease inhibitor cocktail, 1x phosphatase inhibitor II 794 and 1x phosphatase inhibitor III) before centrifugation at 13000 rpm for 10 min at 4°C. 795 40 µl supernatants were transferred into new microtubes as input samples and the rest 796 was incubated either with 20µl anti-FLAG (Millipore, M8823) or anti-HA antibody 797 coated magnetic beads balanced by lysis buffer for 1 hr at 4 °C. Beads were then 798 washed with 1 ml lysis buffer three times at 4 °C and 40 µl PBS was added to transfer 799 the beads into new microtubes as enriched samples. For mouse, anti-PPP3CA or anti-800 SIK3 antibody and corresponding IgG were pre-incubated with protein A/G beads 801 (YEASEN) for 2 hrs at 4°C in lysis buffer. Protein samples from mouse brain were at 802 first pre-absorbed using IgG-protein A/G beads for 30 min at RT and 40 µl 803 supernatants were transferred into a new microtube as input sample before anti-804 PPP3CA/SIK3 protein A/G beads was added and rotated overnight at 4°C. Beads were

- 805 then washed with 1 ml lysis buffer three times at 4°C and 40 μl PBS was added to
- transfer the beads into a new tube as enriched samples.
- 807

808 Expression of recombinant proteins in *E. coli*

809 cDNAs for specific proteins were subcloned into the pET-28a vector, with appropriate

810 tags such as MBP, GFP or FLAG. Plasmids were transfected into E. coli BL21 and

811 incubated at 37 °C until the OD reached 0.6, when 0.5 mM of IPTG was added at 18 °C

- 812 to induce protein expression for 16 hrs. Cells were collected and treated with Ni
- 813 column binding buffer (300 mM NaCl, 20 mM Tris-HCl, pH 7.5) containing protease

814 inhibitors and thoroughly suspended. Cells were lysed with ultrasonication before

- 815 centrifugation (14,000 rpm, 30 mins, 4°C). Supernatants were filtered through 0.45 μm
- and purified by Ni beads to 90% purity. Eluted proteins were measured with Coomasie
- 817 blue and the rest of the proteins were stored at -80 °C.

818

819 in vitro Phosphatase assay

Plasmids expressing FLAG-tagged SIK3 were transfected into HEK293T cells for
immunoprecipitation. After 24 hrs, cells were collected and lysed with 1 ml lysis buffer
(25 mM Tris-base pH 7.4, 150 mM NaCl, 1% NP40, 1mM EDTA, 5% glycerol,1x
protease inhibitor cocktail, 1x phosphatase inhibitor II and 1x phosphatase inhibitor
III) before centrifugation at 13000 rpm for 10 min at 4 °C. Cell lysates were incubated
with 20µl anti-FLAG antibody coated magnetic beads balanced by lysis buffer for 1

826	hr at 4 °C. Beads were washed with 1 ml lysis buffer three times at 4 °C, before final
827	elution with 30 μl buffer A containing 2 mg/ml 3xFLAG peptide. Phosphatase
828	reactions were performed for 2 hrs at 37°C by adding 4 µl FLAG-SIK3, 3 µg rPPP3CA,
829	3 μg rPPP3R1, 4 μg rCaM with a final concentration of 10 mM CaCl_2 and 20 mM
830	MgCl ₂ . Samples were analyzed by immunoblotting with the indicated antibodies.
831	
832	Viruses
833	Viruses used in this study: AAV2/PHP.eB-CMV-mScarlet-PPP3CA-sgRNA-WPRE,
834	AAV2/PHP.eB-CMV-mScarlet-PPP3R1-sgRNA-WPRE and AAV2/PHP.eB-CMV-
835	mScarlet-eGFP-sgRNA-WPRE.
836	PPP3CA ^{KD} and PPP3R1 ^{KD} mice were generated with triple-targeted CRISPR-
837	Cas9 technology ¹¹⁰ by virus injection. Plasmids were generated before virus package.
838	Three sgRNA sequences targeting PPP3CA or PPP3R1 were designed through VBC
839	Score (vbc-score.org) and cloned into the PM04 plasmid, and sequentially inserted
840	into pAAV-CMV-mScarlet-WPRE using Gibson assembly technology. sgRNA
841	sequences were shown as follows:
842	PPP3CA-gRNA1: GACCATAGGATGTCACACAT;
843	PPP3CA-gRNA2: GCAGTCGAAGGCATCCATAC;
844	PPP3CA-gRNA3: GAGGCTGTTCGTACTTCTAC;
845	PPP3R1-gRNA1: GCTGATGAAATTAAAAGGCT;
846	PPP3R1-gRNA2: GCGATAAGGAACAGAAGTTG;

847 PPP3R1-gRNA3: GCAGAACCCTTTAGTACAGC.

848

849 Viral injection

850	Mice at 8 weeks old were anaesthetized using 4-5% isoflurane (maintained at 1-2%
851	for surgery), and 100uL virus (5×10 ¹² gc/ml) was injected through retro-orbital sinus
852	¹¹¹ . After two weeks to allow for expression, EEG implantation surgery was performed
853	according to the protocol published previously ⁵¹ . Mice were fixed in stereotaxic
854	(RWD Life Science, 68405) and skull was exposed. Two holes were drilled at the
855	frontal and the parietal cortex over the right cerebral hemisphere (Frontal: lateral to
856	middle 1.5mm, 1.0mm anterior to bregma; parietal: lateral to middle 1.5 mm, 1.0 mm
857	anterior to lambda). Two stainless steel screws (RWD Life Science), each soldered to
858	a short copper wire, were inserted into the holes. Two EMG wires were implanted
859	bilaterally into the neck muscle. All the copper wires were attached onto a micro-
860	connector and was fixed to the skull. After surgery, mice were single housed for five
861	days of recovery in new cages and then were placed into the special recording cage for
862	three days to habituate to the recording cables.

863

864 **EEG and EMG recording and analysis**

EEG and EMG data recording and analysis were performed as our previous study ¹⁷.
EEG and EMG data at basal sleep conditions were recorded for 2 consecutive days,
with a sample frequency of 200 Hz and epoch length of 4 seconds. EEG and EMG data

868	were initially processed using AccuSleep ¹¹² and then were manual correction in
869	SleepSign. EEG and EMG signals were classified into Wake (fast and low amplitude
870	EEG, high amplitude and variable EMG), NREM (high amplitude and 1-4 Hz
871	dominant frequency EEG, low EMG tonus) and REM (low amplitude and 6-9 Hz
872	frequency EEG, complete silent of EMG). The state episode was defined as at least
873	three continuous and unitary state epochs. Epoch contained movement artifacts were
874	included in sleep duration analysis but excluded from the subsequent power spectrum
875	analysis. For power spectrum analysis, EEG was subjected to fast Fourier transform
876	analysis (FFT). Power spectra represents the mean ratio of each 0.25 Hz to total $0-25$
877	Hz of EEG signals during 24 hr baseline condition. The power density of NREMs
878	represents the ratio of delta power density (1-4 Hz) to total power (0-25 Hz) in each
879	hour. Cumulative rebound represented cumulative changes of time in post-SD
880	compared with relative ZT under the baseline condition. Sleep/wake transition
881	probabilities was analyzed as described in a previous study ³⁹ . For instance, $P_{W to NR} =$
882	$N_{W to NR} / (N_{W to W} + N_{W to R} + N_{W to NR}), N_{W to NR}$ denotes the number of transitions that
883	transit from wakefulness epoch to NREM sleep epoch. W: wakefulness epoch, NR:
884	NREM epoch, R: REM epoch.

885

886 Sleep deprivation

After 2 consecutive days of EEG and EMG signals recording, mice were introducedinto new cages at ZT0. Mice were gently handled or touched to keep them awake for

- 6 hrs of sleep deprivation, before being returned to the recording cage for another 24
- 890 hrs of recording.
- 891

892 Statistical analysis

893	All statistical analyses were performed using GraphPad Prism 9.0. One-way ANOVA
894	was used to compare differences among more than three groups, followed by Tukey's
895	multiple comparisons tests. Kruskal-Wallis tests were used for non-parameters tests.
896	Two-way ANOVA was used to compare the differences between different groups with
897	different treatments, followed by Tukey's multiple comparisons tests. Two-way
898	ANOVA with repeated measurements (Two-way RM ANOVA) was used when the
899	same individuals were measured on the same outcome variable more than once,
900	followed by Tukey's multiple comparisons test. Data are presented as mean±SEM. In
901	all cases, p values morethan 0.05 were considered not significant.

902 Acknowledgements

We are grateful to Dr. Juan Huang at CIBR for generating SIK3 mice, Dr. Lei zhang at CIBR instrument core for help with customizing experimental devices for EEG recording, Dr. Yuan Li for help with mouse brain slice preparation, Linghao Kong and Ruixiang Wang from the CLS and Dr. Gongzheng Zhao from the Multi-Omics Mass Spectrometry Core of Shenzhen Bay Laboratory for assistance with mouse brain MS sample processing, the National Center for Protein Sciences at Peking University for

- 909 access to instrumentation, and CLS, CIBR, CIMR, Changping Laboratory and the
- 910 Chinese Academy of Medical Sciences (2019RU003) for support.

912 **REFERENCES**

- 813 1 Keene, A. C. & Duboue, E. R. The origins and evolution of sleep. *J Exp Biol* 221, doi:10.1242/jeb.159533 (2018).
- 915 2 Borbely, A. A. A two process model of sleep regulation. *Hum Neurobiol* 1, 195916 204 (1982).
- Borbely, A. A., Daan, S., Wirz-Justice, A. & Deboer, T. The two-process model
 of sleep regulation: a reappraisal. *J Sleep Res* 25, 131-143 (2016).
- Hendricks, J. C. *et al.* Rest in Drosophila is a sleep-like state. *Neuron* 25, 129138 (2000).
- Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and
 waking in Drosophila melanogaster. *Science* 287, 1834-1837 (2000).
- 923 6 Sehgal, A. & Mignot, E. Genetics of sleep and sleep disorders. *Cell* 146, 194-207
 924 (2011).
- Stavropoulos, N. & Young, M. W. insomniac and Cullin-3 regulate sleep and
 wakefulness in Drosophila. *Neuron* 72, 964-976 (2011).
- Bernold B. S., Kodama, L., Driscoll, M. R. & Wu, M. N. Two dopaminergic
 neurons signal to the dorsal fan-shaped body to promote wakefulness in
 Drosophila. *Curr Biol* 22, 2114-21238 (2012).
- 930 9 Allada, R., Cirelli, C. & Sehgal, A. Molecular Mechanisms of Sleep Homeostasis
 931 in Flies and Mammals. *Cold Spring Harb Perspect Biol* 9, a027730 (2017).
- 935 11 Shi, G. *et al.* Mutations in Metabotropic Glutamate Receptor 1 Contribute to
 936 Natural Short Sleep Trait. *Curr Biol* **31**, 13-24 (2021).
- Chemelli, R. M. *et al.* Narcolepsy in orexin knockout mice: molecular genetics
 of sleep regulation. *Cell* 98, 437-451 (1999).
- Lin, L. *et al.* The sleep disorder canine narcolepsy is caused by a mutation in the
 hypocretin (orexin) receptor 2 gene. *Cell* 98, 365-376 (1999).

941 942	14	Funato, H. <i>et al.</i> Forward-genetics analysis of sleep in randomly mutagenized mice. <i>Nature</i> 539 , 378-383 (2016).
943 944	15	Qian, Y. <i>et al.</i> Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila. <i>Elife</i> 6 , 26519 (2017).
945 946	16	Deng, B. <i>et al.</i> Chemoconnectomics: Mapping Chemical Transmission in Drosophila. <i>Neuron</i> 101 , 876-893 (2019).
947 948	17	Liu, Z. <i>et al.</i> LKB1 is physiologically required for sleep from Drosophila melanogaster to the Mus musculus. <i>Genetics</i> 221 , iyac082 (2022).
949 950	18	Dai, X. <i>et al.</i> D-Serine made by serine racemase in Drosophila intestine plays a physiological role in sleep. <i>Nat Commun</i> 10 , 1986 (2019).
951 952 953	19	Li, Y. <i>et al.</i> Sleep Need, the Key Regulator of Sleep Homeostasis, Is Indicated and Controlled by Phosphorylation of Threonine 221 in Salt Inducible Kinase 3. <i>bioRxiv</i> , 2021.2011.2006.467421, doi:10.1101/2021.11.06.467421 (2021).
954 955 956	20	Honda, T. <i>et al.</i> A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. <i>Proc Natl Acad Sci U S A</i> 115 , 10458-10463 (2018).
957 958	21	Park, M. <i>et al.</i> Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. <i>Sci Rep</i> 10 , 8676 (2020).
959 960 961	22	Luo, J., Phan, T. X., Yang, Y., Garelick, M. G. & Storm, D. R. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation. <i>J Neurosci</i> 33 , 6460-6468 (2013).
962 963	23	Wang, Z. <i>et al.</i> Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. <i>Nature</i> 558 , 435-439 (2018).
964 965	24	Bruning, F. et al. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366 , aav3617 (2019).
966 967 968	25	Xu, M., Liu, X., Wang, Q., Zhu, Y. & Jia, C. Phosphoproteomic analysis reveals the effects of sleep deprivation on the hippocampus in mice. <i>Mol Omics</i> 18 , 677-685 (2022).
969 970 971	26	Lelkes, Z., Alfoldi, P., Erdos, A. & Benedek, G. Rolipram, an antidepressant that increases the availability of cAMP, transiently enhances wakefulness in rats. <i>Pharmacol Biochem Behav</i> 60 , 835-839 (1998).

972 973	27	Hendricks, J. C. <i>et al.</i> A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. <i>Nat Neurosci</i> 4 , 1108-1115 (2001).
974	28	Takemori H. Katoh Y. Horike N. Doi I & Okamoto M. ACTH-induced
975	20	nucleocytoplasmic translocation of salt-inducible kinase. Implication in the
976		protein kinase A-activated gene transcription in mouse adrenocortical tumor cells
977		J Biol Chem 277, 42334-42343 (2002).
978	29	Joiner, W. J., Crocker, A., White, B. H. & Sehgal, A. Sleep in Drosophila is
979		regulated by adult mushroom bodies. Nature 441, 757-760 (2006).
980	30	Hellman, K., Hernandez, P., Park, A. & Abel, T. Genetic evidence for a role for
981		protein kinase A in the maintenance of sleep and thalamocortical oscillations.
982		<i>Sleep</i> 33 , 19-28 (2010).
983	31	Foltenvi, K., Greenspan, R. J. & Newport, J. W. Activation of EGFR and ERK
984		by rhomboid signaling regulates the consolidation and maintenance of sleep in
985		Drosophila. <i>Nat Neurosci</i> 10 , 1160-1167 (2007).
986	32	Vanderheyden, W. M., Gerstner, J. R., Tanenhaus, A., Yin, J. C. & Shaw, P. J.
987		ERK phosphorylation regulates sleep and plasticity in Drosophila. <i>PLoS One</i> 8 ,
988		e81554 (2013).
989	33	Mikhail, C., Vaucher, A., Jimenez, S. & Tafti, M. ERK signaling pathway
990		regulates sleep duration through activity-induced gene expression during
991		wakefulness. Sci Signal 10, aai9219 (2017).
992	34	Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N. & Sei, H. Central AMPK
993		contributes to sleep homeostasis in mice. Neuropharmacology 57, 369-374
994		(2009).
995	35	Nagy, S. et al. AMPK signaling linked to the schizophrenia-associated 1q21.1
996		deletion is required for neuronal and sleep maintenance. PLoS Genet 14,
997		e1007623 (2018).
998	36	Yurgel, M. E. et al. A single pair of leucokinin neurons are modulated by feeding
999		state and regulate sleep-metabolism interactions. <i>PLoS Biol</i> 17 , e2006409 (2019).
1000	37	Datta, S., O'Malley, M. W. & Patterson, E. H. Calcium/calmodulin kinase II in
1001		the pedunculopontine tegmental nucleus modulates the initiation and
1002		maintenance of wakefulness. J Neurosci 31 , 17007-17016 (2011).
1003	38	Tatsuki, F. et al. Involvement of Ca(2+)-Dependent Hyperpolarization in Sleep
1004		Duration in Mammals. Neuron 90, 70-85 (2016).

1005 1006	39	Tone, D. <i>et al.</i> Distinct phosphorylation states of mammalian CaMKIIbeta control the induction and maintenance of sleep. <i>PLoS Biol</i> 20 , e3001813 (2022).
1007 1008 1009	40	Takahama, K. <i>et al.</i> Pan-neuronal knockdown of the c-Jun N-terminal Kinase (JNK) results in a reduction in sleep and longevity in Drosophila. <i>Biochem Biophys Res Commun</i> 417 , 807-811 (2012).
1010 1011	41	Hemminki, A. <i>et al.</i> A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. <i>Nature</i> 391 , 184-187 (1998).
1012 1013 1014	42	Hemminki, A. <i>et al.</i> Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. <i>Nat Genet</i> 15 , 87-90 (1997).
1015 1016	43	Jenne, D. E. <i>et al.</i> Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. <i>Nat Genet</i> 18 , 38-43 (1998).
1017 1018 1019 1020	44	Parmentier, R. <i>et al.</i> Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. <i>J Neurosci</i> 22 , 7695-7711 (2002).
1021 1022 1023	45	Popa, D. <i>et al.</i> Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. <i>J Neurosci</i> 25 , 11231-11238 (2005).
1024 1025	46	Huang, Z. L. <i>et al.</i> Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. <i>Nat Neurosci</i> 8 , 858-859 (2005).
1026 1027 1028	47	Alexandre, C. <i>et al.</i> Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. <i>J Neurosci</i> 26 , 5554-5564 (2006).
1029 1030 1031	48	Anaclet, C. <i>et al.</i> Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. <i>J Neurosci</i> 29 , 14423-14438 (2009).
1032 1033 1034	49	Bjorness, T. E., Kelly, C. L., Gao, T., Poffenberger, V. & Greene, R. W. Control and function of the homeostatic sleep response by adenosine A1 receptors. <i>J Neurosci</i> 29 , 1267-1276 (2009).
1035 1036	50	He, Y. et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325 , 866-870 (2009).

1037 1038 1039	51	Qu, W. M. <i>et al.</i> Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. <i>J Neurosci</i> 30 , 4382-4389 (2010).
1040 1041	52	Ma, T. <i>et al.</i> D-Serine Contributes to Seizure Development via ERK Signaling. <i>Front Neurosci</i> 13 , 254 (2019).
1042 1043	53	Kashiwagi, M. <i>et al.</i> Widely Distributed Neurotensinergic Neurons in the Brainstem Regulate NREM Sleep in Mice. <i>Curr Biol</i> 30 , 1002-1010 (2020).
1044 1045 1046	54	Wang, J. H. & Desai, R. A brain protein and its effect on the Ca2+-and protein modulator-activated cyclic nucleotide phosphodiesterase. <i>Biochem Biophys Res Commun</i> 72 , 926-932 (1976).
1047 1048 1049 1050	55	Watterson, D. M. & Vanaman, T. C. Affinity chromatography purification of a cyclic nucleotide phosphodiesterase using immobilized modulator protein, a troponin C-like protein from brain. <i>Biochem Biophys Res Commun</i> 73 , 40-46 (1976).
1051 1052 1053	56	Klee, C. B. & Krinks, M. H. Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. <i>Biochemistry</i> 17 , 120-126 (1978).
1054 1055 1056	57	Klee, C. B., Crouch, T. H. & Krinks, M. H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. <i>Proc Natl Acad Sci U S A</i> 76 , 6270-6273 (1979).
1057 1058 1059	58	Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B. & Cohen, P. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). <i>FEBS Lett</i> 137 , 80-84 (1982).
1060 1061 1062	59	Klee, C. B., Krinks, M. H., Manalan, A. S., Cohen, P. & Stewart, A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. <i>Methods Enzymol</i> 102 , 227-244 (1983).
1063 1064	60	Cohen, P. & Cohen, P. T. Protein phosphatases come of age. <i>J Biol Chem</i> 264 , 21435-21438 (1989).
1065 1066 1067	61	Guerini, D., Hubbard, M. J., Krinks, M. H. & Klee, C. B. Multiple forms of calcineurin, a brain isozyme of the calmodulin-stimulated protein phosphatase. <i>Adv Second Messenger Phosphoprotein Res</i> 24 , 242-247 (1990).
1068 1069	62	Klee, C. B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. <i>J Biol Chem</i> 273 , 13367-13370 (1998).

1070	63	Mukai, H. et al. cDNA cloning of a novel testis-specific calcineurin B-like
1071		protein. Biochem Biophys Res Commun 179, 1325-1330 (1991).

- 1072 64 Ueki, K., Muramatsu, T. & Kincaid, R. L. Structure and expression of two
 1073 isoforms of the murine calmodulin-dependent protein phosphatase regulatory
 1074 subunit (calcineurin B). *Biochem Biophys Res Commun* 187, 537-543 (1992).
- 1075 65 Muramatsu, T. & Kincaid, R. L. Molecular cloning and chromosomal mapping
 1076 of the human gene for the testis-specific catalytic subunit of calmodulin1077 dependent protein phosphatase (calcineurin A). *Biochem Biophys Res Commun*1078 188, 265-271 (1992).
- 1079 66 Chang, C. D., Mukai, H., Kuno, T. & Tanaka, C. cDNA cloning of an alternatively
 1080 spliced isoform of the regulatory subunit of Ca2+/calmodulin-dependent protein
 1081 phosphatase (calcineurin B alpha 2). *Biochim Biophys Acta* 1217, 174-180 (1994).
- 1082 67 Liu, L. *et al.* Characterization of a human regulatory subunit of protein
 1083 phosphatase 3 gene (PPP3RL) expressed specifically in testis. *Mol Biol Rep* 32,
 1084 41-45 (2005).
- 1085 68 Miyata, H. *et al.* Sperm calcineurin inhibition prevents mouse fertility with 1086 implications for male contraceptive. *Science* **350**, 442-445 (2015).
- 1087 69 Liu, J. *et al.* Calcineurin is a common target of cyclophilin-cyclosporin A and
 1088 FKBP-FK506 complexes. *Cell* 66, 807-815 (1991).
- 1089 70 Rusnak, F. & Mertz, P. Calcineurin: form and function. *Physiol Rev* 80, 1483 1090 1521 (2000).
- 1091 71 Roy, J. & Cyert, M. S. Identifying New Substrates and Functions for an Old
 1092 Enzyme: Calcineurin. *Cold Spring Harb Perspect Biol* 12, a035436 (2020).
- 1093 72 Wigington, C. P. *et al.* Systematic Discovery of Short Linear Motifs Decodes
 1094 Calcineurin Phosphatase Signaling. *Mol Cell* **79**, 342-358 (2020).
- Sonntag, T., Vaughan, J. M. & Montminy, M. 14-3-3 proteins mediate inhibitory
 effects of cAMP on salt-inducible kinases (SIKs). *FEBS J* 285, 467-480 (2018).
- 1097 74 Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery
 1098 process gated by a circadian pacemaker. *Am J Physiol* 246, R161-183 (1984).
- 1099 75 Tobler, I. & Borbely, A. A. Sleep EEG in the rat as a function of prior waking.
 1100 *Electroencephalogr Clin Neurophysiol* 64, 74-76 (1986).

1101	76	Suzuki, A., Sinton, C. M., Greene, R. W. & Yanagisawa, M. Behavioral and
1102		biochemical dissociation of arousal and homeostatic sleep need influenced by
1103		prior wakeful experience in mice. Proc Natl Acad Sci U S A 110, 10288-10293
1104		(2013).

- 1105 77 Dijk, D. J., Beersma, D. G. & Daan, S. EEG power density during nap sleep:
 1106 reflection of an hourglass measuring the duration of prior wakefulness. *J Biol*1107 *Rhythms* 2, 207-219 (1987).
- 1108 78 Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is
 1109 under genetic control. *J Neurosci* 21, 2610-2621 (2001).
- Ai, H. W., Shen, W., Sagi, A., Chen, P. R. & Schultz, P. G. Probing protein-protein
 interactions with a genetically encoded photo-crosslinking amino acid. *Chembiochem* 12, 1854-1857 (2011).
- 1113 80 Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo1114 methionine allow identification of protein-protein interactions in living cells. *Nat*1115 *Methods* 2, 261-267 (2005).
- 1116 81 Tanaka, Y., Bond, M. R. & Kohler, J. J. Photocrosslinkers illuminate interactions
 1117 in living cells. *Mol Biosyst* 4, 473-480 (2008).
- 1118 82 Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam
 1119 width on penetration in light-tissue interaction using computational methods.
 1120 Lasers Med Sci 32, 1909-1918 (2017).
- 1121 83 Luo, H. *et al.* Photocatalytic Chemical Crosslinking for Profiling RNA-Protein
 1122 Interactions in Living Cells. *Angew Chem Int Ed Engl* 61, e202202008 (2022).
- 1123 84 Ngo, J. T. *et al.* Click-EM for imaging metabolically tagged nonprotein
 1124 biomolecules. *Nat Chem Biol* 12, 459-465 (2016).
- 1125 85 Di Mascio, P. *et al.* Singlet Molecular Oxygen Reactions with Nucleic Acids,
 1126 Lipids, and Proteins. *Chem Rev* 119, 2043-2086 (2019).
- 1127 86 Kolodziej, P. A. & Young, R. A. Epitope tagging and protein surveillance.
 1128 *Methods Enzymol* 194, 508-519 (1991).
- 1129 87 Lizcano, J. M. *et al.* LKB1 is a master kinase that activates 13 kinases of the
 1130 AMPK subfamily, including MARK/PAR-1. *EMBO J* 23, 833-843 (2004).
- 1131 88 Jaleel, M. *et al.* Identification of the sucrose non-fermenting related kinase SNRK,
 1132 as a novel LKB1 substrate. *FEBS Lett* **579**, 1417-1423 (2005).

1133 1134 1135	89	Wang, Y. L., Wang, J., Chen, X., Wang, Z. X. & Wu, J. W. Crystal structure of the kinase and UBA domains of SNRK reveals a distinct UBA binding mode in the AMPK family. <i>Biochem Biophys Res Commun</i> 495 , 1-6 (2018).
1136 1137	90	Cox, J., Pinto, L. & Dan, Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. <i>Nat Commun</i> 7 , 10763 (2016).
1138 1139	91	Ding, F. <i>et al.</i> Changes in the composition of brain interstitial ions control the sleep-wake cycle. <i>Science</i> 352 , 550-555 (2016).
1140 1141	92	Zhou, H. <i>et al.</i> Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle. <i>Elife</i> 8 , 39777 (2019).
1142 1143 1144	93	Niethard, N., Brodt, S. & Born, J. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep. <i>J Neurosci</i> 41 , 4212-4222 (2021).
1145 1146 1147	94	Lee, J., Kim, D. & Shin, H. S. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. <i>Proc Natl Acad Sci U S A</i> 101 , 18195-18199 (2004).
1148 1149	95	Yang, Z. Q. <i>et al.</i> Short-acting T-type calcium channel antagonists significantly modify sleep architecture in rodents. <i>ACS Med Chem Lett</i> 1 , 504-509 (2010).
1150 1151	96	Astori, S. <i>et al.</i> The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. <i>Proc Natl Acad Sci U S A</i> 108 , 13823-13828 (2011).
1152 1153	97	Schneider, T. & Dibue-Adjei, M. Cav2.3 E-/R-type voltage-gated calcium channels modulate sleep in mice. <i>Sleep</i> 38 , 499 (2015).
1154 1155 1156	98	Jeghers, H., Mc, K. V. & Katz, K. H. Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. <i>N Engl J Med</i> 241 , 1031-1036 (1949).
1157 1158 1159	99	Peutz, J. L. A. Very remarkable case of familial polyposis of mucous membrane of intestinal tract and nasopharynx accompanied by peculiar pigmentations of skin and mucous membrane. <i>Nederl Maandschr Geneesk</i> 10 , 134-146 (1921).
1160 1161 1162	100	Hawley, S. A. <i>et al.</i> Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. <i>J Biol</i> 2 , 28 (2003).
1163 1164	101	Hong, S. P., Leiper, F. C., Woods, A., Carling, D. & Carlson, M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases.

- 1166 102 Sakamoto, K. *et al.* Deficiency of LKB1 in skeletal muscle prevents AMPK
 1167 activation and glucose uptake during contraction. *EMBO J* 24, 1810-1820 (2005).
- 1168 103 Shaw, R. J. *et al.* The tumor suppressor LKB1 kinase directly activates AMP1169 activated kinase and regulates apoptosis in response to energy stress. *Proc Natl*1170 *Acad Sci U S A* 101, 3329-3335 (2004).
- 1171 104 Shaw, R. J. *et al.* The kinase LKB1 mediates glucose homeostasis in liver and 1172 therapeutic effects of metformin. *Science* **310**, 1642-1646 (2005).
- 1173 105 Sutherland, C. M. *et al.* Elm1p is one of three upstream kinases for the 1174 Saccharomyces cerevisiae SNF1 complex. *Curr Biol* **13**, 1299-1305 (2003).
- 1175 106 Woods, A. *et al.* LKB1 is the upstream kinase in the AMP-activated protein
 1176 kinase cascade. *Curr Biol* 13, 2004-2008 (2003).
- 1177 107 Liu, Y., Wang, T. V., Cui, Y., Gao, S. & Rao, Y. Biochemical purification uncovers
 1178 mammalian sterile 3 (MST3) as a new protein kinase for multifunctional protein
 1179 kinases AMPK and SIK3. *J Biol Chem* 298, 101929 (2022).
- 108 Liu, Y. *et al.* STE20 phosphorylation of AMPK-related kinases revealed by
 biochemical purifications combined with genetics. *J Biol Chem* 298, 101928
 (2022).
- 109 Platt, R. J. *et al.* CRISPR-Cas9 knockin mice for genome editing and cancer
 modeling. *Cell* 159, 440-455 (2014).
- 1185 110 Sunagawa, G. A. *et al.* Mammalian Reverse Genetics without Crossing Reveals
 1186 Nr3a as a Short-Sleeper Gene. *Cell Rep* 14, 662-677 (2016).
- 1187 111 Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S.
 1188 Retro-orbital injections in mice. *Lab Anim (NY)* 40, 155-160 (2011).
- 1189 112 Barger, Z., Frye, C. G., Liu, D., Dan, Y. & Bouchard, K. E. Robust, automated
 1190 sleep scoring by a compact neural network with distributional shift correction.
 1191 *PLoS One* 14, e0224642 (2019).
- 1192

1194 FIGURE LEGENDS

1196	Fig. 1 Sleep phenotype of T469A mutant male mice. Sleep phenotype of male mice
1197	with either SIK3 ^{+/+} genotype or SIK3 ^{T469A/+} genotype. SIK3 ^{T469A/ T469A} males were
1198	embryonic lethal although females of all three genotypes including SIK3 ^{T469A/ T469A}
1199	were viable and analyzed in Extended Data Figs. 3 and 4. For detailed numbers, see
1200	Extended Data Tables 1 and 2. a , b , profiles showing sleep time each hour in min/hr
1201	(a) or profiles of NREM sleep (b). The x axis shows zeitgeber time (ZT) with the white
1202	box indicating light phase (or daytime) and black box dark phase (or nighttime). The
1203	black line shows data from SIK3 ^{+/+} mice (n = 11), the blue line data from SIK3 ^{T469A/+}
1204	mice (n = 10). ns: statistically not significant. *p<0.05; **p<0.01; mean \pm standard
1205	error of the mean (SEM) (Two-way ANOVA with Tukey's multiple comparisons test).
1206	c,d, Data and statistics of NREM sleep duration (c, *p< 0.05, **p<0.01; ns, not
1207	significant; mean \pm SEM, One-way ANOVA with Tukey's multiple comparisons test),
1208	NREM sleep episode number (d , ns, not significant; mean \pm SEM, Kruskal-Wallis test
1209	with Dunn's multiple comparisons test), and NREM sleep episode duration (e, ns, not
1210	significant; mean \pm SEM, Kruskal-Wallis test with Dunn's multiple comparisons test).
1211	f, EEG power spectrum during NREM sleep. X-axis indicates frequency distribution
1212	of EEG power. *p<0.05; mean \pm SEM (Two-way repeated measurement ANOVA with
1213	Tukey's multiple comparisons test). g, Diurnal NREMS delta density. *p<0.05;
1214	**p<0.01; ***p<0.001; ns, not significant; mean ± SEM (Mixed-effects model)

1215	NREMS delta power density over 24 hours. X-axis indicates ZT. h, Probabilities of
1216	transition between different sleep and wake states. ns, not significant; mean \pm SEM
1217	(Two-way ANOVA with Tukey's multiple comparisons test). i, Recovery of NREM
1218	sleep after 6 hrs of SD. ns, not significant; mean±SEM (Two-way repeated
1219	measurement ANOVA with Tukey's multiple comparisons test). j, One hr
1220	representative EEG and EMG graphs at different vigilance states (wake, NREM,
1221	REM).

1223 Fig. 2| Biochemical purification of SIK3 phosphatases from HEK cells. a, 500 1224 mg (at a concentration of 10 mg/ml) of HEK cell lysates was fractionated on a QHP 1225 column, eluted with a linear gradient of NaCl (0-600 mM) and the final wash with 1 1226 M NaCl buffer A. Each fraction was dialyzed into buffer A, removing NaCl. 10 µl of 1227 each sample was used for analysis of activities removing phosphate from SIK3 T469 1228 and S551. T469 and S551 of bacterially expressed recombinant SIK3 were 1229 phosphorylated by PKA in vitro before being used to test phosphatase activities of the 1230 fractions of HEK lysates. Fractions 10 to 13 contained significant activities removing 1231 phosphate from SIK3 T469 and S551. b, Fractions 10 to 13 from QHP were 1232 combined and dialyzed with buffer A before being loaded onto a Blue HP column. It 1233 was eluted with a linear gradient of NaCl (0-600 mM) and the final wash with 1 M 1234 NaCl buffer A. The flow through (FL) fraction from the Blue HP contained significant activities removing phosphate from SIK3 T469 and S551. c, The FL fraction from 1235

1236	the Blue HP column was dialyzed with buffer A and loaded onto a SP-HP column. The
1237	fractionation was similar to those in (a) and (b). The FL fraction from the SP-HP
1238	column contained significant activities removing phosphate from SIK3 T469 and S551.
1239	d, The FL fraction from the SP-HP column was dialyzed with buffer A and loaded
1240	onto a heparin column. The rest of the fractionation was similar to (a) and (b). The FL
1241	fraction and fraction 1 contained significant activities removing phosphate from SIK3
1242	T469 and S551. e, The FL fraction from the heparin column was dialyzed with buffer
1243	A and loaded onto a HAP-HP column. The rest of the fractionation was similar to (a)
1244	and (b) except that the final wash was with 5 CVs of 500 mM K ₂ PO ₄ . Fractions 5 to 7
1245	contained significant activities removing phosphate from SIK3 T469 and S551. f,
1246	Active fractions from the HAP-HP column were condensed into 0.5 ml, fractionated
1247	on a Superdex 200 molecular sieve column, eluted with 300 mM NaCl gradient into
1248	20 CVs. 1 ml from each fraction was collected and labeled as samples 1 to 20. Protein
1249	contents were monitored with UV at 280 nm.

1250

Fig. 3| Identification of protein phosphatases purified from HEK cells. a, A schematic illustration of phosphatase purification with HEK cell lysates passing through Q HP, Blue HP, SP HP, heparin HP, HAP HP and Superdex 200 columns before silver staining and mass spectroscopic analysis. b, Fractions from the Superdex 200 column with strongest phosphatase activities for T469 and S551 in Fraction 15. 25 μl of each fraction (from Fraction 10 to Fraction 18) was run onto a

- 1257 gel and silver-stained. The thick band indicated by the arrow was analyzed by mass
- 1258 spectroscopy. **c**, 4 protein phosphatases were found by MS.
- 1259

1260	Fig. 4 Proteins interacting with SIK3 identified by photo-crosslinking. a, A
1261	schematic diagram of our newly invented photo crosslinking method (RG and PC) (for
1262	details, see the method section). We have generated a mouse line with the SIK3 tagged
1263	at its C terminus with 3 repeats of the HA epitope. Brain slices were prepared from
1264	SIK3-HA mice and photocatalytic crosslinking was carried out in darkness with eosin
1265	Y (50 μM) and 1, 6 dihexamine (1 mM). The anti-HA antibody was used to pull down
1266	proteins crosslinked to SIK3. b, Comparison of proteins pulled down by anti-HA
1267	before and after light treatment. Validation of photocatalytic crosslinking efficacy in
1268	mouse brain slices. 1 hr green light was given after photocatalytic reagents treatment
1269	and slices were collected and homogenized. The arrowhead indicates SIK3-interaction
1270	proteins. c-d, Veen (c) and volcano (d) plot of putative SIK3 interaction proteins
1271	enriched in photo-linkage groups. The red dot is PPP3CA. e-f, Co-
1272	immunoprecipitation between PPP3CA and SIK3 from WT mouse brain homogenates
1273	using anti-SIK3 and anti-PPP3CA antibodies. g-h, Co-immunoprecipitation between
1274	the HA tagged PPP3CA and FLAG tagged SIK3 in HEK293T cells using anti-FLAG
1275	and anti-HA antibodies. HEK293T cells were co-overexpressed with 1 μg HA-
1276	PPP3CA and 1 μ g FLAG-SIK3 expressing plasmids for 24 hrs before cell collection
1277	and lysis.

1278

1279	Fig. 5 Site-specific dephosphorylation of SIK3 by PPP3CA in vitro. a, PPP3CA,
1280	PPP3CB, PPP3CC and PPP5C were individually tagged with FLAG and transfected
1281	into HEK 293T cells. PPP3R1 was also separately transfected into HEK 293T cells.
1282	SIK3-FLAG was transfected into HEK 293T cells. Each of the PPases and the
1283	regulatory PPP3R1 was separately immunoprecipitated by the anti-FLAG antibody
1284	from HEK cells. Under the same conditions (in the presence of PPP3R1), PPP3CA,
1285	PPP3CB or PPP3CC could dephosphorylate SIK3 at T469 and S551, but not T221.
1286	PPP5C could no dephosphorylate SIK3 at T469, S551or T221.b-e, In the presence of
1287	PPP3R1 immunoprecipitated from HEK cells, increasing concentrations (from + to
1288	+++) of PPP3CA immunoprecipitated from HEK cells could not dephosphorylate
1289	AKT1 at T308, PDK1 at S241, MARK1 at T215, GSK3 β at S9, JNK1 at T183, ERK2
1290	at T185. In the presence of PPP3R1 immunoprecipitated from HEK cells, PPP3CA
1291	immunoprecipitated from HEK cells could dephosphorylate MEK1 at S217 (b). f,
1292	Recombinant PPP3CA, PPP3R1, CaM were expressed in and purified from E. coli.
1293	Full-length SIK3 was immunoprecipitated from HEK 293T cells. In the presence of
1294	Ca ²⁺ , PPP3R1 and CaM, PPP3CA dephosphorylated SIK3 at T469 or S551but not at
1295	T221.

1296

Fig. 6| SIK3 dephosphorylation and PPP3CA in HEK cells. a-b, Ionomycin
dephosphorylated SIK3 at T469 and S551 (but not T221) in a dose-(a) and time- (b)

1299	dependent manner. c, Transfection of increasing dosage of PPP3CA and PPP3R1 into
1300	HEK cells enhanced the dephosphorylation response of SIK3-T469 and SIK3-S551 to
1301	ionomycin. In the absence of ionomycin, increasing the dosages of PPP3CA and
1302	PPP3R1 alone did not significantly changed SIK3-T469 and SIK3-S551
1303	phosphorylation. After transfection for 24 hrs, cells were treated with 10 $\mu g/ml$
1304	ionomycin for 10 min. d, Transfection of a catalytically inactive PPP3CA mutant
1305	(H151A) and PPP3R1 into HEK cells did not enhance the dephosphorylation response
1306	of SIK3-T469 and SIK3-S551 to ionomycin. e, Transfection of sgRNA targeting GFP
1307	into HEK 293T cells did not significantly affect the dephosphorylation response of
1308	SIK3-T469 and SIK3-S551 to ionomycin. Transfection of sgRNA targeting either
1309	PPP3CA or PPP3CB alone into HEK 293T cells affected the dephosphorylation
1310	response of SIK3-T469 and SIK3-S551 to ionomycin in a variable manner (data not
1311	shown). Transfection of sgRNAs targeting both PPP3CA and PPP3CB into HEK 293T
1312	cells robustly and significantly reduced the dephosphorylation response of SIK3-T469
1313	and SIK3-S551 to ionomycin. Transfection of sgRNA targeting PPP3R1 into HEK
1314	293T cells robustly and significantly reduced the dephosphorylation response of SIK3-
1315	T469 and SIK3-S551 to ionomycin. PPP3R1 targeting reduced the protein levels of
1316	itself as well as PPP3CA, and PPP3CB in HEK cells. PPP3CA and PPP3CB targeting
1317	reduced the protein levels of themselves as well as PPP3R1 in HEK cells, indicating
1318	the inter-dependence of CaN catalytic and regulatory subunits.

1319

1320	Fig. 7 Serine/threonine phosphorylation in the mouse brain after PPP3CA or
1321	PPP3R1 knockdown. Phosphorylation of different proteins was examined by anti-
1322	phospho-protein antibodies. Each lane shows results from one mouse, and three from
1323	each genotype are shown individually here to allow visualization of consistency. a,
1324	From the left are: two WT mice injected with sgRNAs targeting GFP, five CAS9
1325	expressing mice injected with sgRNAs targeting GFP, and five CAS9 expressing mice
1326	injected with sgRNAs targeting PPP3CA. Phosphorylation of SIK3 T469 and SIK3
1327	S551 was reproducibly increased in mice only when sgRNAs targeting PPP3CA were
1328	injected into CAS9 expressing mice, neither the WT mice nor with sgRNAs targeting
1329	GFP. Phosphorylation of SIK3 T221 did not change. AMPK-T172 phosphorylation
1330	was variable in each mouse, not dependent on the expression of CAS9 or sgRNAs
1331	targeting PPP3CA. b , From the left are: three WT mice injected with sgRNAs targeting
1332	GFP, three CAS9 expressing mice injected with sgRNAs targeting GFP, and three
1333	CAS9 expressing mice injected with sgRNAs targeting PPP3R1. Phosphorylation of
1334	SIK3 T469 and SIK3 S551 was reproducibly increased in mice only when sgRNAs
1335	targeting PPP3R1 were injected into CAS9 expressing mice, neither the WT mice nor
1336	with sgRNAs targeting GFP. Phosphorylation of SIK3 T221 did not change. AMPK-
1337	T172 phosphorylation was variable in each mouse, not dependent on the expression of
1338	CAS9 or sgRNAs targeting PPP3R1.

1339

1340	Fig. 8 Sleep phenotype of mice after PPP3CA knockdown. Sleep phenotypes of
1341	male mice with the genotypes of PPP3CA ^{KD} (red, $n=21$), eGFP ^{Ctrl} (black, $n=18$) and
1342	WT ^{Ctrl} mice (blue, n=12). PPP3CA ^{KD} denotes Rosa26 ^{Cas9/+} mice injected with AAV-
1343	PPP3CA-sgRNA virus; eGFP ^{Ctrl} denotes Rosa26 ^{Cas9/+} mice injected with AAV-eGFP-
1344	sgRNA virus; WT ^{Ctrl} denotes WT littermate mice injected with AAV-PPP3CA-
1345	sgRNA virus. For detailed numbers, see also Extended Data Tables 3 and 4. a-b,
1346	profiles of sleep (a) or NREM (b). *p< 0.05; ****p<0.0001; ns, not significant;
1347	mean±SEM (Two-way ANOVA with Tukey's multiple comparisons test). c, Data and
1348	statistics of NREM sleep over 24 hrs. *p< 0.05, ****p<0.0001; ns, not significant;
1349	mean \pm SEM (One-way ANOVA with Tukey's multiple comparisons test). d-e , NREM
1350	sleep episode number (d) and NREM sleep episode duration of (e). *p<0.05; **p<0.01;
1351	***p<0.001; ****p<0.0001; ns, not significant; mean±SEM (Kruskal-Wallis test with
1352	Dunn's multiple comparisons test). f , EEG power spectrum during NREM sleep. $*p <$
1353	0.05; mean \pm SEM (Two-way repeated measurement ANOVA with Tukey's multiple
1354	comparisons test). g, NREMS delta densities over 14 hrs. X-axis indicates ZT. Data at
1355	ZT13 was not included in statistical analysis due to the inaccessible values from
1356	PPP3CA ^{KD} mice. *p<0.05; **p<0.01; ***p<0.001; ns, not significant; mean±SEM
1357	(Mixed-effects model). h, Probabilities of transition between different sleep and wake
1358	states. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant;
1359	mean±SEM (Two-way ANOVA with Tukey's multiple comparisons test). i, A diagram
1360	illustrating probabilities of transition between different sleep and wke states. j,

Recovery of NREM sleep after 6 hrs of SD. *p<0.05; **p<0.01; ***p<0.001;
****p<0.0001; ns, not significant; mean±SEM (Two-way repeated measurement
ANOVA with Tukey's multiple comparisons test). k, One hr representative EEG and
EMG graphs at different vigilance states.

1366 Fig. 9| Sleep phenotype of mice after PPP3R1 knockdown. Sleep phenotypes of male mice with the genotypes of PPP3R1^{KD} (red, n=11), eGFP^{Ctrl} (black, n=11) and 1367 WT^{Ctrl} mice (blue, n=14). eGFP^{Ctrl}: Rosa26^{Cas9/+} mice injected with AAV-eGFP-1368 sgRNA virus. WT^{Ctrl}: WT mice injected with AAV-PPP3R1-sgRNA virus. PPP3R1^{KD}: 1369 1370 Rosa26^{Cas9/+} mice injected with AAV-PPP3R1-sgRNA virus. For details, see also 1371 Extended Data Tables 5 and 6. **a-b**, Sleep profiles (**a**) or profiles of NREM sleep (**b**). 1372 ns: statistically not significant; ****p<0.0001; mean ± SEM (Two-way ANOVA with 1373 Tukey's multiple comparisons test). **c**, Data and statistics of NREM sleep over 24 hrs. 1374 ns: statistically not significant; p < 0.05; p < 0.001; mean \pm SEM (One-way 1375 ANOVA with Tukey's multiple comparisons test). d-e, NREM sleep episode number 1376 (d), and NREM sleep episode duration (e). ns: statistically not significant; *p < 0.05; 1377 **p<0.01; ***p<0.001; ****p<0.0001; mean ± SEM (Kruskal-Wallis test with 1378 Dunn's multiple comparisons test). f, NREMS EEG power spectrum analysis. X-axis 1379 indicates frequency distribution of EEG power. *p < 0.05; mean \pm SEM (Two-way 1380 repeated measurement ANOVA with Tukey's multiple comparisons test). g, NREMS 1381 delta power density over 24 hours. X-axis indicates ZT. Statistical analysis each hr

1382	shown in *s. ns: statistically not significant; *p< 0.05; **p<0.01; ***p<0.001;
1383	**** $p < 0.0001$; mean \pm SEM (Mixed-effects model). h , Transition probabilities of
1384	different sleep and wake states. W: wake, NR: NREM Sleep, R: REM Sleep. ns:
1385	statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001; mean ±
1386	SEM (Two-way ANOVA with Tukey's multiple comparisons test). i, A diagrammatic
1387	illustration of transition probabilities of different sleep and wake states, summarized
1388	from data in Fig. 9H and Fig. S9K and S9L. ns: no significant changes. j, Cumulative
1389	NREMS rebound after 6 hrs of SD. ns: statistically not significant; *p<0.05; **p<0.01;
1390	*** $p < 0.001$; **** $p < 0.0001$; mean \pm SEM (Two-way repeated measurement ANOVA
1391	with Tukey's multiple comparisons test). k, Representative one hour EEG and EMG
1392	signals.
1393	

1394 Legends for Extended Data Figures and Tables

1395 Extended Data Fig. 1| Additional sleep phenotype of male T469A mutant mice. a-

- 1398 (black, n=11). *p<0.05; ns, not significant; mean±SEM (A: Two-way ANOVA with
- 1399 Tukey's Multiple comparisons test; B: One-way ANOVA with Tukey's multiple
- 1400 comparisons test; C-D: Kruskal-Wallis test with Dunn's multiple comparisons test).
- 1401 e-h, Profiles of REM sleep over 24 hrs (e), total REM duration over 24 hrs (f), REM
- episode number (g), REM episode duration (h). *p<0.05; ns, not significant; mean \pm

¹³⁹⁶ **d**, Profiles of wake over 24 hrs (**a**), total wake duration over 24 hrs (**b**), wake episode

¹³⁹⁷ number (c), wake episode duration (d) of SIK $3^{T469A/+}$ (blue, n=10) and SIK $3^{+/+}$ mice

1403	SEM (E: Two-way ANOVA with Tukey's multiple comparisons test; F: One-way
1404	ANOVA with Tukey's multiple comparisons test; G-H: Kruskal-Wallis test with
1405	Dunn's multiple comparisons test). i-j, EEG power spectrum during wake (i) or REM
1406	sleep (j). *p<0.05; mean \pm SEM (Two-way repeated measurement ANOVA with
1407	Tukey's multiple comparisons test). k-l, Probabilities of transition between different
1408	sleep and wake states.
1409	
1410	Extended Data Fig. 2 Additional sleep phenotype of Male T469A mutant mice.
1411	a-b, Recovery of wake (a) or REM sleep (b) after 6 hrs of SD. *p< 0.05; **p<0.01;
1412	****p<0.0001; ns, not significant; mean ± SEM (Two-way ANOVA with Tukey's
1413	multiple comparisons test). c, NREMS delta densities during the 24 hr recovery after
1414	SD. *p< 0.05; **p <0.01; ***p<0.001; ****p <0.0001; ns, not significant; mean \pm
1415	SEM (Mixed-effects model). d, Changes of NREM delta power densities after SD. ns,
1416	not significant; mean \pm SEM (Two-way repeated measurement ANOVA with Tukey's
1417	multiple comparisons test). e, Representative hypnograms.
1418	
1419	Extended Data Fig. 3 Sleep phenotype of female T469A mutant mice. Unlike
1420	males for which we could not obtain SIK3 ^{T469A/T469A} mutants, we did obtain all three

- 1421 genotypes for female mice: SIK3^{T469A/T469A} (red, n=5), SIK3^{T469A/+} (blue, n=6) and
- 1422 SIK3^{+/+} (black, n=7). a-d, Profiles of NREM over 24 hrs (A), total NREM duration
- 1423 over 24 hrs (b), NREM episode number (c), NREM episode duration (d). *p<0.05; ns,

1424	not significant; mean \pm SEM (a: Two-way ANOVA with Tukey's multiple
1425	comparisons test; b : One-way ANOVA with Tukey's multiple comparisons test; c-d :
1426	Kruskal-Wallis test with Dunn's multiple comparisons test). e-h, Profiles of REM
1427	sleep over 24 hrs (e), total REM duration over 24 hrs (f), REM episode number (g),
1428	REM episode duration (h). *p<0.05; **p <0.01; ns, not significant; mean \pm SEM (e :
1429	Two-way ANOVA with Tukey's multiple comparisons test; \mathbf{f} : One-way ANOVA with
1430	Tukey's multiple comparisons test; g-h: Kruskal-Wallis test with Dunn's multiple
1431	comparisons test). i-l, Profiles of wake over 24 hrs (i), total wake duration over 24 hrs
1432	(j), wake episode number (k), wake episode duration (l). *p< 0.05 ; ns, not significant;
1433	mean \pm SEM (i: Two-way ANOVA with Tukey's multiple comparisons test; j: One-
1434	wayANOVA with Tukey's multiple comparisons test; k-l: Kruskal-Wallis test with
1435	Dunn's multiple comparisons test). m-p, Probabilities of transition between different
1436	sleep and wake states. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not
1437	significant; mean±SEM (Two-way ANOVA with Tukey's multiple comparisons test).
1438	
1439	Extended Data Fig. 4 Additional sleep phenotype of female T469A mutant mice.
1440	a-c, EEG power spectrum during NREM sleep (a), REM sleep (b) or wake (c). *p<

- 1441 0.05; mean \pm SEM (Two-way repeated measurement ANOVA with Tukey's multiple
- 1442 comparisons test). d, Diurnal NREM delta power densities. *p<0.05; **p<0.01;
- 1443 ***p<0.001; ****p<0.0001; ns, not significant; mean±SEM (Mixed-effects model).
- 1444 e-g, Recovery of NREM (e), REM (f) and wake (g) after 6 hrs of SD. ns, not significant;

1445	mean±SEM (Two-way ANOVA with Tukey's multiple comparisons test). h, NREMS
1446	delta densities during the 24 hr recovery time. *p<0.05; **p<0.01; ***p<0.001; ****p
1447	<0.0001 ; ns, not significant; mean \pm SEM (Mixed-effects model). i , Changes of NREM
1448	delta densities after 6 hrs of SD. *p< 0.05; **p<0.01; ns, not significant; mean±SEM
1449	(Two-way repeated measurement ANOVA with Tukey's multiple comparisons test). j,
1450	One hr representative EEG and EMG signals of littermates at each vigilance state. k,
1451	Representative hypnograms.

1452

1453 Extended Data Fig. 5| Specificities of antibodies against SIK3 T469 and SIK3

1454 S551 phosphorylated by PKA. Recombinant SIK3 fragment containing its amino

acid residues 1 to 558 was expressed in and purified from *E. coli* before being treated

1456 by PKA in the presence of ATP. The PKA used was a mutant (PKA^{T197E}) expressed in

- 1457 and purified from *E. coli*. Recombinant PKA^{T197E} phosphorylated SIK3 at T469 and
- 1458 S551, but not T221. Anti-phospho-SIK3^{T469} and anti-phospho-SIK3^{S551} antibodies
- specifically recognized T469 and S551, but not T221, of SIK3 under the same
- 1460 conditions.
- 1461

1462 Extended Data Fig. 6| A schematic diagram of virally mediated gene knockdown

1463 in mice. A host mouse either was WT or could express CAS9 from its Rosa26 site

1464 (Rosa26^{Cas9/+}) and was injected with an AAV virus two weeks before an EEG recorder

1465 was placed on its head.

1467	Extended Data Fig. 7 Additional sleep phenotype of male PPP3CA knockdown
1468	mice. a-d, Profiles of wake over 24 hrs (a), total wake duration over 24 hrs (b), wake
1469	episode number (c), wake episode duration (d). Wake was increased by approximately
1470	3 hrs in PPP3CA ^{KD} mice as compared to either control. Wake was increased during
1471	daytime by approximately 80 mins, due to increased wake episode duration (Extended
1472	Fig. 7d) albeit decreased wake episode number (Extended Data Fig. 7c) in PPP3CA ^{KD}
1473	mice. Wake was significantly increased in nighttime by approximately 100 mins
1474	(Extended Data Fig. 7 a-b), due to increased duration (Extended Data Fig. 7d) albeit
1475	decreased number (Extended Data Fig. 7c) of wake episodes. *p<0.05; **p<0.01;
1476	***p<0.001; ****p<0.0001; ns, not significant; mean±SEM (a: Two-way ANOVA
1477	with Tukey's multiple comparisons test; b : One-way ANOVA with Tukey's multiple
1478	comparisons test; c-d: Kruskal-Wallis test with Dunn's multiple comparisons test. e-
1479	h, Profiles of REM sleep over 24 hrs (e), total REM duration over 24 hrs (f), REM
1480	episode number (g), REM episode duration (h). *p< 0.05; **p<0.01; ***p<0.001;
1481	****p<0.0001; ns, not significant; mean±SEM (e: Two-way ANOVA with Tukey's
1482	multiple comparisons test; \mathbf{f} : One-way ANOVA with Tukey's multiple comparisons
1483	test; g-j: Kruskal-Wallis test with Dunn's multiple comparisons test). i-j, EEG power
1484	spectrum during wake and REM sleep. *p< 0.05; mean \pm SEM (Two-way repeated
1485	measurement ANOVA with Tukey's multiple comparisons test). k-l, Probabilities of
1486	transition between different sleep and wake states. *p< 0.05, **p<0.01, ***p<0.001

1487 and ****p<0.0001, mean±SEM. (Two-way repeated measurement ANOVA with

- 1488 Tukey's multiple comparisons test).
- 1489

1490 Extended Data Fig. 8| Additional sleep phenotype of male PPP3CA knockdown

- 1491 **mice. a-b,** Recovery of wake (a) and REM sleep (b) after 6 hrs of SD. *p < 0.05; **p
- 1492 <0.01; ***p<0.001; ****p<0.0001; ns, not significant; mean±SEM (Two-way
- 1493 ANOVA with Tukey's multiple comparisons test). c, NREMS delta densities during
- 1494 the 24 hr recovery time. *p< 0.05; **p<0.01; ns, not significant; mean±SEM (Mixed-
- 1495 effects model). **d**, Changes of NREM delta densities after 6 hrs of SD. *p< 0.05; ns,
- 1496 not significant; mean±SEM (Two-way repeated measurement ANOVA with Tukey's
- 1497 multiple comparisons test). **e**, Representative hypnograms.
- 1498

1499 Extended Data Fig. 9 Additional sleep phenotype of PPP3R1 knockdown male

1500 **mice. a-d**, Wake analysis: profiles showing wake time each hour in mins/hr with the

- 1501 X axis indicating ZT (a), total wake time over 24 hrs, wake time during the light phase
- 1502 (daytime) or the dark phase (**b**), wake episode number (**c**), wake episode duration (**d**).
- 1503 ns: statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001;
- 1504 mean±SEM (a: Two-way ANOVA with Tukey's multiple comparisons test; b: One-
- 1505 way ANOVA with Tukey's multiple comparisons test; c-d: Kruskal-Wallis test with
- 1506 Dunn's multiple comparisons test). e-h, REM analysis: profiles showing REM
- 1507 duration each hour in mins/hr with the X axis indicating ZT (e), total REM time over

1508	24 hrs, REM time during the light phase (daytime) or the dark phase (f), REM episode
1509	number (g), REM episode duration (h). ns: statistically not significant; *p< 0.05;
1510	**p<0.01; ***p<0.001; ****p<0.0001; mean±SEM (e: Two-way ANOVA with
1511	Tukey's multiple comparisons test; f: One-way ANOVA with Tukey's multiple
1512	comparisons test; g-h: Kruskal-Wallis test with Dunn's multiple comparisons test).
1513	(i-j) EEG power spectrum analysis of wake (i) and REM sleep (j). *p<0.05;
1514	mean±SEM (Two-way repeated measurement ANOVA with Tukey's multiple
1515	comparisons test). k-l, Transition probabilities of different sleep and wake states. ns:
1516	statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001;
1517	mean±SEM. (Two-way repeated measurement ANOVA with Tukey's multiple
1518	comparisons test).

1519

1520 Extended Data Fig. 10| Additional sleep phenotype of PPP3R1 knockdown male

mice. a-b, Recovery of umulative wake (**a**) and REMS b) after 6 hrs of SD. ns: statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001; mean±SEM (Two-way ANOVA with Tukey's multiple comparisons test). **c,** NREM delta power densities during the 24 hr recovery period after 6 hrs of SD. ns: statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001;mean±SEM (Mixedeffects model). **d,** Changes of NREM delta power densities between pre- and post-SD. ns: statistically not significant; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.001; ****p<0.0001;

- 1528 mean±SEM (Two-way repeated measurement ANOVA with Tukey's multiple
- 1529 comparisons test). e, Representative hypnograms.

1530

- 1531 Extended Data Table 1| Total Time spent in different sleep-wake states by SIK3^{+/+},
- 1532 SIK3^{+/T469A} and SIK3^{T469A} mice.

1533

- 1534 Extended Data Table 2| Differences in total time spent in different sleep-wake
- 1535 states by SIK3^{+/+}, SIK3^{+/T469A} and SIK3 ^{T469A} /T469A Mice.

1536

- 1537 Extended Data Table 3| Total time spent in different sleep-wake States by
- 1538 eGFP^{Ctrl}, WT^{Ctrl} and PPP3CA^{KD} mice.

1539

- 1540 Extended Data Table 4 Differences in total time spent in different sleep-wake
- 1541 states by eGFP^{Ctrl}, WT^{Ctrl} and PPP3CA^{KD}, ice.

1542

Extended Data Table 5| Total time spent in different sleep-wake states by
 eGFP^{Ctrl}, WT^{Ctrl} and PPP3R1^{KD} mice.

1545

1546 Extended Data Table 6| Differences in total time spent in different sleep-wake

1547 states by eGFP^{Ctrl}, WT^{Ctrl} and PPP3R1^{KD} mice.

1548

G

0.5

0.3

0.2

NREMS delta density

K

ns

Е Sik3 +/+ Sik3 T469.A/4 NREMS episode duration (s) 250 ns ns 200 00 150 100 50 24h Light Dark

А

I

Superdex200

С

Protein	Mascot score	AA (amino acid)	MW	Matched peptides
PPP3CA	300.723	521	58688	88
PPP3CB	84.620	524	59024	30
PPP3CC	23.393	512	58129	16
PPP5C	4.287	499	56879	9

B

E

Input:

anti-Flag

anti-HA

anti-Flag

anti-HA

Input:

B

С

D

FLAG-ERK2

FLAG-PPP3R1

F

A

eGFP Curl

ns ***

888

Light

-

ns

00 ഷ്ട്

Dark

ns ns

0 8

WT Curl

Е

NREMS episode duration (s)

300 -

200

24h

ns

eGFP^{Ctrl}

PPP3CAKD

vs

Frequency/Hz

hours post SD

* * * * * * *

eGFP Ctrl

РРРЗСАКD

WT Curl

2 4 6 8

ns ****

NR to R

← v.s. ←: n.s.

🛶 v.s. 🛶 :

F

J

Cumulative rebound of NREMS

180

120

60

0

0.04 - 0.03 - 0.03 - 0.02 - 0.01 - 0.00

