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ABSTRACT 

 

Apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3 (APOBEC3) 

enzymes are a family of single-stranded (ss)DNA cytosine deaminases that serve as a host 

restriction factors for retrotransposons and viruses that contain a ssDNA intermediate. While the 

APOBEC3 family was originally expanded to restrict endogenous retroelements, the majority of 

these targets are now inactivated and the family has been found to act on different targets, such as 

viral ssDNA as a mechanism of viral defense. Some of the family members also catalyze “off-

target” deaminations in human ssDNA and have been implicated in somatic mutagenesis that can 

lead to cancer.  

My PhD thesis research investigated the biochemical mechanisms underlying both the 

benefits and the risks of the A3 family of enzymes. The central hypothesis of this work is that A3 

enzymes have evolved distinct biochemical mechanisms to deaminate ssDNA that differentiate 

A3 restriction of retroelements and retroviruses from A3-induced somatic mutagenesis. 

Therefore, we investigated the biochemical mechanisms the A3 enzymes utilize during restriction 

of Human Immunodeficiency Virus (HIV) in both deamination-dependent and deamination-

independent modes, as well as the unique mechanisms employed during mutation of genomic 

DNA. There are seven APOBEC3 members (A-H, excluding E) and of these, four members 

(A3D, A3F, A3G, A3H) have been identified to restrict HIV replication in CD4 T+ cells, and 

currently three members (A3A, A3B and A3H haplotype I) have been implicated in somatic 

mutagenesis.  

The APOBEC3 enzymes that restrict HIV replication function optimally in the absence of 

the HIV viral infectivity factor (Vif). Vif targets APOBEC3 for degradation via the proteasome 

in HIV infected cells. For APOBEC3s that are able to fortuitously escape Vif mediated 

degradation and become encapsidated, the enzymes can deaminate cytosines to form uracils in 

viral (-)DNA. Replication of (-)DNA to (+)DNA causes HIV-1 reverse transcriptase to 

incorporate adenines opposite uracils which creates C/G→T/A transition mutations. While 

restriction of HIV most commonly occurs through this deamination-dependent mechanism, 

APOBEC3s have also been identified to interfere with HIV reverse transcriptase processes in a 

deamination-independent manner, although this mechanism is secondary to the deamination-

dependent mode. In order to restrict retroelements and viruses such as HIV, the A3 enzymes 
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require an efficient processive ssDNA scanning mechanism that allows them to search for, and 

locate cytosines on ssDNA in the finite amount of time the substrate is available during formation 

of the double-stranded DNA provirus. To understand if this requirement was lost in A3 enzymes 

unable to restrict HIV, we studied A3C. Human A3C is not able to restrict HIV, in comparison to 

the more active gorilla and chimpanzee A3C orthologs that can restrict HIV, however an 

explanation for this difference was lacking. A polymorphism, S188I, in human A3C, which is 

found in less than 3% of the global population leads to increases enzymatic activity and HIV 

restriction. However, chimp and gorilla also possess the S188 allele suggesting a secondary 

residue responsible for increasing the activity of the A3C enzyme, in addition to residue 188. We 

determined that both I188 as well as N115 increases the activity of A3C by promoting 

dimerization of A3C. The dimerization of A3C increases its processivity on ssDNA and 

correlates with higher levels of mutagenesis during HIV reverse transcription, as is known for 

other A3 members studied. Since these amino acid changes also lie within the known interface 

for A3C interaction with Vif, we examined whether the different oligomerization states changed 

the ability of Vif to degrade A3C and found that Vif was able to induce A3C degradation 

regardless of its oligomerization state. Nevertheless, we determined that dimerization of A3C was 

able to predict the activity of the enzyme. 

Similarly, it is known that A3 enzymes exhibiting reduced mutagenesis due to inefficient 

cytosine deamination may compensate by having an increased deamination-independent antiviral 

activity. A3 mediated inhibition of reverse transcriptase movement along the template may have 

an effect on processes such as HIV reverse transcriptase (RT) template switching and insertion 

fidelity, all of which would inhibit HIV replication. By examining these HIV RT processes in the 

presence of the A3 enzymes we were able to determine that A3F, which binds RNA and DNA 

with high affinity, promoted HIV RT template switching by blocking the progression of RT and 

forcing the RT to switch templates. Other A3s such as A3G and A3C, which bind the template 

with lower affinity, did not affect template switching. Interestingly, A3G decreased the fidelity of 

RT, causing misincorporation of nucleotides. Both of these outcomes, an increase in template 

switching and a decrease in polymerase fidelity, may promote virus evolution and emphasizes the 

importance of viral inactivation through the deamination-dependent mode of restriction. 

If APOBEC3s are expressed in the wrong cell at the wrong time, they can facilitate 

mutagenesis of human genomic DNA and contribute to the C/G→T/A mutations evident in 
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multiple human cancers. A3 enzymes induce mutations during processes that generate ssDNA, 

such as transcription and replication, and we sought to determine the biochemical features of A3 

enzymes that cause somatic mutations. Interestingly, instead of enzyme processivity, which is 

required for efficient restriction of HIV, the determining characteristic for mutagenesis of 

genomic DNA was the ability of A3 enzymes to cycle rapidly between ssDNA substrates. For 

example, A3A, a non-processive enzyme, readily cycled between substrates and induced higher 

levels of mutations than A3G, a processive enzyme that is unable to cycle. In addition to 

substrate cycling, enzyme oligomerization also influences its ability to induce mutations in cells 

due to a size limitation imposed by the dynamic transcription bubble. Deamination during 

transcription by A3B tetramers was poor, but A3A monomers, and A3H dimers were efficient. 

Therefore, the biochemical properties of the enzymes, in addition to availability of ssDNA, 

determine whether A3s will be able to induce mutagenesis in cells.  

Taken together, these data have allowed us to better understand the biochemical 

mechanisms behind A3 enzyme evolution that has influenced their ability to restrict HIV in 

hominids, their ability to manipulate retroviral polymerases, and their capacity to induce somatic 

mutagenesis in human genomes.  
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1.0 . Introduction and Literature Review  
 
Portions of this chapter were reprinted with permission from Adolph MB., et al. (2018) [1]. 
 

1.1 APOBEC Family of Enzymes 
The APOBEC family of enzymes are single-stranded polynucleotide cytidine deaminases and 

are named after the function of their namesake member, Apolipoprotein B mRNA editing 

complex, APOBEC1 (A1) which was the first member to be identified [2]. The AID/APOBEC 

family share structural and functional similarities to other zinc-dependent deaminases, and the 

APOBEC locus evolved function from the ancestral member, activation induced cytosine 

deaminase (AID) [3]. AID was genetically discovered prior to the APOBEC3 family members 

and has maintained a nonconventional name compared to the other enzymes in this family [4].  

APOBEC and AID enzymes modify cytidine in either mRNA or single-stranded (ss) DNA to 

form uracil [5-7]. Other members have also been identified, including APOBEC2 and 

APOBEC4, though they do not have demonstrated catalytic activity [3, 8, 9]. The primary 

substrate of family members other than A1 is ssDNA (Figure 1.1), though the RNA editing role 

of A1 may not have been its ancestral role [10]. In RNA, where uracil has a coding function, 

deamination is an RNA editing tool. In DNA, the formation of uracil by APOBEC/AID is a 

promutagenic lesion which in some cases can be detrimental and cause cancer, but in other cases 

enables evolution of antibody genes and inactivation of viruses, retroelement, or other 

cytoplasmic inflammation-inducing DNA [5, 11, 12].  

The multiple functions of the APOBEC family of proteins are possible because uracil has 

multiple fates in ssDNA. Most commonly, uracil is recognized as a lesion by the base excision 

repair (BER) enzyme uracil-DNA glycosylase (UNG) and excised. Subsequent processing by AP 

endonuclease (APE) and polymerase gap filling is required to complete the repair [13]. If UNG 

removes uracils during replication, DNA damage tolerance mechanisms such as template 

switching can allow for error-free lesion bypass [14]. If left unrepaired, the uracil will template 

addition of adenine at a site that should have incorporated a guanine, thus creating a C/G→T/A 

transition mutation (Figure 1.2A) [13]. In B cells, the uracils formed by AID in antibody genes 

act as nucleating factors for error prone DNA repair to evolve and mature antibody genes or 

create double-stranded DNA breaks to facilitate immunoglobulin class switching [11]. In T cells, 

macrophages, and germ cells, various APOBEC3 (A3) members (A3A, A3B, A3C, A3D, A3F,  
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Figure	1.1.	Overview of human APOBEC cytidine deaminase functions. During normal function, 
the APOBEC family members are each expressed in unique cell types. RNA editing by APOBEC 
enzymes can occur in the small intestine (A1) or in monocytes (A3A). In B-cells, AID 
deaminations initiate antibody diversification pathways for somatic hypermutation and class-
switch recombination. In CD4+ T cells, A3 deamination of retroviral ssDNA intermediates 
restricts their replication. In CD4+ T cells and monocytes, A3s can restrict foreign DNA in order 
to reduce the DNA-induced inflammatory response. In germ cells and somatic cells, APOBEC 
enzymes may restrict retrotransposons through RNA binding or deamination of reverse 
transcripts. In various tissues, unregulated APOBEC expression can lead to unregulated 
deaminations in genomic DNA that can initiate genomic instability or cell transformation, which 
ultimately may lead to cancer. The APOBECs involved in each process are depicted below the 
figure. Reprinted with permission from Adolph MB., Love RP., Chelico, L. (2018) Biochemical 
basis of APOBEC3 deoxycytidine deaminase activity on diverse DNA substrates. Reprinted with 
permission from Adolph et al., 2018 [1].  
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Figure	1.2. Schematic of the fate of the uracil after cytosine deamination in genomic DNA.	(A)	
Without repair, replication of the U results in a T/A base pair instead of a C/G base pair. 
Alternatively, uracils created by cytosine deamination are removed by uracil DNA glycoslyase 
(UNG) to create an abasic site (X). This abasic site can be processed by AP endonuclease (APE) 
that the cleaves the DNA backbone at the abasic site to enable subsequent repair by Base 
Excision Repair (BER) polymerases, the Mismatch Repair (MMR) pathway, or depending on the 
number of uracils in the immediate area this can lead to DNA breaks. Alternatively, this lesion 
can be bypassed through error free mechanisms or gap-filling DNA synthesis can occur by high 
fidelity polymerases in an error free manner. Depending on cellular conditions, translesion 
synthesis polymerases may also synthesize DNA within the gap, resulting in error prone repair. 
(B) A3 enzymes deaminate single-stranded (-) DNA intermediates of retroelements, HIV-1, or 
endogenous retroviruses. The uracil formed by cytosine deamination in the (-) DNA strand serves 
as a template for the reverse transcriptase during (+) DNA synthesis, which leads to concomitant 
G→A mutation in the (+) DNA due to the absence of an unmodified template. In the host 
nucleus, the uracil can be excised by UNG/APE and depending on the number of uracils this can 
lead to degradation of the template or repair of uracil and integration of the retroelement or 
proviral DNA. Reprinted with permission from Adolph et al., 2018 [1].  
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A3G, and A3H) can deaminate cytidines in ssDNA intermediates of retroviruses, 

retrotransposons, and other foreign DNA to cause mutagenesis. This mutagenesis occurs to the 

point of destroying gene function or inducing DNA repair mediated DNA degradation to block  

replication of foreign elements in these cells (Figure 1.2B) [2, 15]. The APOBEC enzymes must 

remain tightly regulated to avoid mutagenesis of the cell’s own genomic DNA. Regulation failure 

leads to APOBEC-induced somatic mutagenesis and the C/G→T/A mutation signature is evident 

in multiple cancers [16, 17]. 	

1.2 Evolution of APOBEC3 activity  
Despite the risk of harboring these promutagenic enzymes, the APOBEC family is ancient and 

has been present since the emergence of jawed vertebrates, with AID being the ancestral member 

(Figure 1.3B) [3].  AID is selectively expressed in B cells, and is essential for the regulation of B 

cell diversification [4]. Cytidine deamination by AID on ssDNA during transcription of variable 

regions in the immunoglobulin locus is required for the initiation of both class-switch 

recombination and somatic hypermutation [18, 19]. Interestingly, the activity of AID is regulated 

at the transcription bubble through the interaction with transcriptional co factors that assist with 

AID catalytic activity [20, 21]. The expression of AID in B cells is essential as AID deficiency 

leads to Hyper-IgM syndrome and the inability to produce antibodies other than IgM M2 [22].  

Despite APOBEC2 (A2) being the second APOBEC deaminase that evolved, catalytic activity 

has not been demonstrated for this enzyme, although it is required for proper muscle 

development in mice [3, 8, 9, 23]. As more complex organisms evolved, duplications in the 

APOBEC family of genes occurred to create A1, likely from AID, and in placental mammals, the 

A3 enzymes appeared (Figure 1.3B) [3, 23]. In spite of A1s role in RNA editing it evolved from 

AID, a DNA targeting enzyme, However, there is evidence that A1 from the green anole lizard 

cannot deaminate RNA, suggesting that its ancestral function was as a deoxycytidine deaminase 

[10]. AID was also initially thought to be a RNA editing enzyme, due to homology with other 

RNA deaminases, however an RNA substrate has not been identified [24]. The A3 enzymes have 

been amplified from one member in mice to seven members in primates, and all possess a similar 

Zinc-binding domain structure (Figure 1.3C) [3, 23]. This massive expansion of the A3 locus 

correlates with the increased number of primate retrotransposons and endogenous retroviruses, 

and is thought to have been required to suppress excessive damage to the genome by these 

elements [23, 25]. With the majority of retrotransposons and endogenous retroviruses in humans  
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Figure 1.3. Evolution and domain structure of the APOBEC family. (A) The APOBEC family in 
humans is composed of eleven members having either a single or double Zn2+-coordinating 
domain per polypeptide chain. Of the double domain enzymes, the N-terminal domain (NTD) is 
not catalytically active, but often serves as a processivity domain. The C-terminal domain (CTD) 
confers the catalytic activity. (B) Expansion of the primate APOBEC3 locus with 7 APOBEC3 
members in humans with corresponding Zinc-binding domain (Z) classification based on the 
phylogenetic cluster of the domain (Z1-Z3) (modified from Lackey et al. 2012). (C) A3 enzymes 
have a basic structure in each Z-type domain that is composed of a five-stranded β-sheet core 
surrounded by six α-helices. Numerical assignments to β-strands and α-helices are superimposed 
in (A). Zinc atom is shown as a blue sphere.  
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inactivated, it is thought that the risk of A3 enzymes may now outweigh the benefits of their 

protection [25]. Evidence of this comes from population stratifications, where there are deletions 

in the human A3 locus on chromosome 22 that removes A3B or sequence variations in A3 genes 

that decrease deaminase activity, such as some forms of A3H, A3D, and A3C [26-28]. Despite 

AID posing a risk to genomic integrity, this enzyme is indispensable to proper immunity and 

must be maintained [19]. 

1.3 General HIV biology 

Human Immunodeficiency Virus type 1 (HIV-1, hereafter HIV) currently infects 37 million 

people worldwide, with the majority of those infected residing in Sub-Saharan Africa [29].  HIV, 

and the related though less infectious virus HIV-2, arose through zoonotic transfer from primates 

infected with simian immunodeficiency virus (SIV). HIV is a positive-sense, single-stranded 

(ss)RNA virus that belongs the to the retrovirus family [30]. It consists of a 9.7 kb genome that 

encodes numerous proteins that exist within three main groups: structural proteins, regulatory 

proteins, and viral accessory proteins (Figure 1.4A) [31]. The HIV contains two dimerized RNA 

genomes, although only one proviral DNA is produced during infection [32]. Group-specific 

antigen (gag), polymerase (pol) and envelope protein (env) are structural proteins essential for 

HIV replication [31]. Of the structural proteins, gag encodes the precursor gag protein, which is 

cleaved by a virally encoded protease into smaller structural subunits, namely matrix (MA), 

capsid (CA), and nucleocapsid (NC); pol, which arises from a Gag-pol precursor, encodes reverse 

transcriptase (RT), protease (PR) and integrase (IN) enzymes required for the virus to undergo 

reverse transcription (RT), integration (IN) and cleavage of the Gag precursor; env is the viral 

envelope precursor protein that is cleaved into gp120 (also called SU) and gp41 (also called TM) 

and facilitates the attachment to and infection of host cells (Figure 1.4A) [33]. The HIV 

regulatory proteins are transcriptional transactivator (Tat), and regulator of viral gene expression 

(Rev), and are required for elongation and regulation of transcription products, and nuclear export 

of viral mRNA, respectively [34]. HIV also encodes accessory proteins, which aid the virus in 

avoiding the host immune mechanisms and are crucial virulence factors [35-37]. The accessory 

proteins (Vpr, Vpu, Nef and Vif) enhance viral fitness by hijacking host protein degradation 

pathways in order to overcome the host’s viral restriction factors or change immune signaling 

[35-37]. Vpr is incorporated into viral particles and aids the infection of host cells by regulating 

the localization of the proviral DNA pre-integration complex (PIC) [36, 37]. Vpr also hijacks a  
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Figure 1.4. Schematic overview of HIV-1 genome architecture and life cycle. (A) HIV encodes three 
structural genes (yellow), gag pol and env, which are processed into mature proteins (green). The HIV 
genome contains 15 distinct proteins: the Gag and Env structural proteins MA (matrix), CA (capsid), NC 
(nucleocapsid), p6, SU (surface, gp120), and TM (transmembrane, gp41); the Pol proteins: PR (protease), 
RT (reverse transcriptase), and IN (integrase); two regulatory proteins Tat and Rev (orange); four 
accessory proteins Nef, Vif, Vpr, and Vpu (wheat) (B) Major steps involved in the HIV-1 replication 
cycle. HIV-1 envelope glycoprotein binds to the cell surface receptor to trigger viral fusion. Uncoating of 
the viral capsid, coupled with reverse transcription, leads to the formation of a double-stranded DNA and 
a pre-integration complex (PIC). The PIC-associated viral integrase (vertical box) mediates integration 
into the host genome. Proviral DNA (red) transcription is mediated by the host RNA polymerase II and 
HIV-1 Tat, producing viral mRNA transcripts (red) for viral protein production and viral genomic RNA. 
Protease-mediated maturation occurs after budding. Reprinted with permission from Adolph et al., 2018 
[1]. 
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host E3 ubiquitin ligase complex and causes G2 cell cycle arrest [38]. Vpu enhances virion 

release by triggering ubiquitin-mediated degradation of CD4 glycoprotein as well as CD4 down-

modulation in complex with Env [39, 40]. Nef prevents immune targeting of virally infected cells 

by down regulating the expression of MHC-1 at the surface of the infected cells (Figure 1.4A) 

[35-37]. Viral infectivity factor (Vif), targets for degradation certain APOBEC3 enzymes that 

target and restrict viral replication [41]. The nature of this interaction will be expanded in detail 

in section 1.4.3.  

In the HIV mature viron, the RNA genomes and enzymes required for proviral DNA synthesis 

are contained in a protein capsid. The capsid is surrounded a protein coat termed the matrix 

which also interacts with the virus lipid envelope. Within the lipid envelope the HIV surface (SU, 

gp120) and transmembrane proteins (TU, gp41) bind to a receptor on the host CD4 T cell 

receptor in concert with the chemokine co-receptor CCR5 or CXCR4 to enable fusion of the viral 

and cellular membranes. This allows for insertion of the HIV core into the host cell (Figure 1.4B) 

[42]. It is thought that the capsid remains intact until the viral complexes reach the nuclear 

membrane, however the precise timing and location of viral uncoating are poorly understood 

[43]. Maintaining an intact capsid allows the stoichiometry of the viral components to remain 

high and promotes efficient reverse transcription. The HIV capsid becomes permeable to small 

macromolecules and the high level of host deoxynucleotide triphosphates in the cytoplasm allows 

diffusion through the capsid pore to initiate the reverse transcription process (Figure 1.4B) [44]. 

The HIV pre-integration complex (PIC) is formed upon virus uncoating and once viral double-

stranded (ds)DNA is formed from the RNA genome, the PIC integrates into the chromosome of 

the host cell. With the aid of the viral IN protein, this forms the provirus, which is flanked by 

long terminal repeats (LTRs) [33, 42]. The proviral DNA is transcribed by RNA polymerase II to 

generate viral RNA that is subsequently translated to form viral proteins or packaged into newly 

assembled virions. These progeny virions undergo viral maturation and budding, which produces 

infectious viral particles (Figure 1.4B) [45].  

Reverse transcription utilizes a virally encoded RT to covert the RNA genome into DNA 

(Figure 1.5) [46]. This process can be exploited by the APOBEC3 enzymes, and will be a central 

component of the presented work. HIV RT is a heterodimer that contains p66 and p51 subunits 

that are 560 and 440 amino acids in length, respectively [47]. The p51 subunit is thought to play a 

structural role, while p66 contains an RNA- and DNA-dependent DNA polymerase and an  
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Figure 1.5. Schematic of reverse transcriptase and replication of HIV. The genomic RNA (red 
line) is primed for replication using a host tRNAlys3 primer. Synthesis of the minus strand (-) 
cDNA (blue line) generates an RNA/DNA hybrid that is a substrate for RNase H. RNase H 
degrades the genomic RNA strand (hatched red line), leaving the nascent (-) cDNA single-
stranded. First strand transfer occurs when the (-) DNA hybridizes to the repeated (R) sequence at 
the 3' end of the viral RNA. The (-) DNA synthesis resumes and the reverse transcriptase 
associated RNaseH domain degrades the RNA strand (hatched line). Two purine-rich sequences 
called the polypurine tracts (PPT) are relatively resistant to RNaseH cleavage and serve as the 
primer for (+) DNA synthesis. HIV-1 has a central and 3' end PPT (cPPT and PPT). The (+) 
DNA synthesis enables removal of the tRNA primer. In a process called the second strand 
transfer, both the (+) and (-) DNA are extended until the entire DNA becomes double-stranded, 
eventually creating a dsDNA that has the same sequences (U3-R-U5) at both ends (called the 
long terminal repeats, LTRs). The nucleocapsid protein facilitates the strand transfer. Figure is 
adapted from Coffin et al.[30]. Reprinted with permission from Adolph et al., 2018 [1].  
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RNaseH domain that cleaves RNA in RNA/DNA hybrids. To initiate reverse transcription, there 

is a primer binding site (PBS) that is 18 nucleotides long near the 5’ end of the genome. The PBS 

is primed by a host tRNAlys3. The RT synthesizes the minus strand (-) complimentary DNA (-

)DNA as the RNaseH degrades the RNA. First strand transfer of the (-)DNA is facilitated by HIV 

nucleocapsid (NC) and transfers the (-)DNA to the 3’ repeated (R) sequence.  The plus-strand 

(+)DNA synthesis is primed by polypurine tracts (PPT) within the RNA genome that are resistant  

to RNaseH activity [30]. Completion of reverse transcription results in a double stranded DNA 

segment, with each end containing the same U3-R-U5 sequence. These sequences represent the 

LTRs, which contain the viral promoter for transcription of viral mRNAs, including the full 

length genomic RNA synthesis.	

1.4  Restriction of HIV by APOBEC3 	

When the HIV-1 fuses with a target CD4+ T cell, the capsid is released into the cytoplasm 

(Figure 1.6A). The deoxynucleotide triphosphates (dNTP) from the host cell diffuse into the 

nucleocapsid and reverse transcription begins [44]. Due to the impermeability of the capsid to 

cellular proteins at this early stage, if A3 enzymes are to access the HIV-1 (-) DNA synthesized 

by reverse transcriptase, they must be present in the viral capsid (Figure 1.6A). Thus, the model 

for HIV-1 restriction by A3 enzymes in CD4+ T cells requires that they become encapsidated 

into newly formed virus particles in the producer cell [48]. To mediate encapsidation the A3 

enzymes bind viral or cellular RNAs with the same sequence affinity as the NC domain of Gag 

that packages the HIV-1 RNA [49, 50]. Encapsidation is also facilitated by A3 oligomerization 

on RNA although the mechanism is not entirely understood [51]. It could simply be that 

oligomerization is a way of A3s hedging bets for encapsidation through multiple mechanisms, 

since there is no guarantee of an A3 in each virion.  

 Usually, the encapsidation of A3 enzymes is blocked by the HIV-1 protein Vif (virus 

infectivity factor), which causes polyubiquitination and degradation of A3 enzymes through the 

26S proteasome [41]. Vif can specifically interact with A3 enzymes and acts as a substrate 

receptor by interacting with components of a Cullin RING ligase 5 E3 ubiquitin ligase complex, 

and results in a complex capable of binding and polyubiquitinating an A3 (Figure 1.6A) [41, 52-

55]. In HIV-1 infected people, the suppression of A3 enzymes by Vif is not complete since 

proviral genomes have been found to contain footprints of A3 deaminase activity [56, 57]. 

However, the inhibition is clearly sufficient enough to enable ongoing viral replication. From cell  
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Figure 1.6. APOBEC3 restriction of HIV. (A) Cellular A3s (purple) are unable to interact with 
viral RNA undergoing reverse transcription due to the presence of the capsid (hatched line) and 
must be encapsidated in the virus producer cell to deaminate proviral DNA. The action of A3 
enzymes is thwarted by HIV-1 Vif that induces their degradation through the 26S proteasome. 
Vif (red square) interacts with CBFβ, Elongin C and Cullin 5, which enables recruitment of E3 
ligase components (shown as a circle for simplicity) and degradation of A3 enzymes (purple). (B) 
Nucleocapsid (NC) (green) coats the DNA during (-) DNA elongation and (+) DNA synthesis, 
however the A3 (purple) is able to displace the transiently bound NC in order to access the 
ssDNA (dotted line) created through RNaseH degradation of the template strand. Reprinted with 
permission from Adolph et al., 2018 [1].  
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culture studies with ΔVif HIV-1, only A3D, A3F, A3G, and A3H are encapsidated and restrict 

HIV-1 replication [58]. Although all four of the A3s have variants in the human population, A3H 

is the most notable since it is the most variable and has seven major haplotypes (hap), but only 

hap II, hap V, and hap VII are able to restrict HIV-1 replication [59, 60].      

The encapsidated A3 enzymes are in a competitive situation where they must deaminate 

cytosines in a ssDNA substrate that is not available initially and only available for a finite time  

after synthesis (Figure 1.6B). To form the (-) DNA, the HIV-1 RNA genome is primed by a 

tRNAlys,3 that is unfolded and annealed to the PBS by the HIV-1 nucleic acid chaperone, NC [61]. 

After reverse transcription and degradation of the RNA by the RNaseH domain associated with 

the HIV-1 reverse transcriptase, NC facilitates a strand transfer to another complementary repeat 

(R) region and full synthesis of the (-) DNA can begin. During synthesis of the (-) DNA, the 

RNaseH activity of reverse transcriptase will cleave the RNA at internal sites until the RNA 

cleavage leads to dissociation [30]. The NC is abundant in the capsid and protects the HIV-1 

genetic material by binding the RNA or ssDNA at approximately one nucleocapsid every seven 

nucleotides [62]. NC facilitates reverse transcriptase by melting secondary structure in the 

template [63]. Although not fully understood, the mechanism of nucleic acid chaperoning by 

nucleocapsid involves the protein rapidly binding and unbinding the RNA or DNA [63]. Thus, 

A3 enzymes can compete with NC for access to the (-) DNA (Figure 1.6B). However, there are 

still physical obstacles the enzymes must overcome such as annealed RNA fragments, the reverse 

transcriptase, and constraints such as finding the deamination motif.  

 Each A3 deaminates cytosine within a preferred sequence. A trinucleotide motif is the 

preferred substrate, although a dinucleotide motif can also be deaminated. For A3G the preferred 

sequence is 5'CCC (underlined C deaminated) and for other A3 enzymes it is 5'TC, with each 

enzyme having a specific preference, e.g., 5'TTC for A3F and 5'CTC for A3H [64-66]. The 

C→U deaminations catalyzed on the (-) DNA strand become G→A mutations when reverse 

transcriptase is forced to use uracil as a template during (+) DNA strand synthesis (Figure 1.2B) 

[67-70]. Throughout this process, the A3 enzymes also directly disrupt proviral DNA synthesis 

by oligomerizing on the template DNA resulting in a “roadblock” for the reverse transcriptase 

[71-74]. In addition, A3G can interact with reverse transcriptase directly and inhibit polymerase 

activity [71, 75]. The double-stranded proviral genome is imported into the nucleus and either the 

uracils cause DNA repair mediated cleavage of the provirus or the provirus is integrated through 
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the action of HIV-1 integrase and host protein interactions [75] (Figure 1.2B, Figure 1.4B). 

Depending on the number and type of mutations induced by the A3 enzymes, the integrated 

provirus may be functionally inactivated. Most commonly labs have studied A3-induced 

mutagenesis of a ΔVif HIV-1 virus. In these situations, the A3 “hypermutation” arises where 

enzymes such as A3G can induce 5 or more mutations per kilobase [67, 69, 70]. Although 

hypermutated and integrated proviruses have been isolated from HIV-1 infected patients, the 

number of replication cycles that the provirus underwent before becoming hypermutated and 

nonfunctional is unknown [76, 77]. In the presence of Vif, the A3 enzymes are depleted from 

cells to such an extent that viruses can replicate, although a low level of mutations can persist. 

Measurements of the number of A3-induced mutations in a single round of infection are lacking 

and need to be determined in order to identify whether A3 deaminations in a wild type virus 

infection induces hypermutation and viral inactivation, a low level of mutation that leads to virus 

evolution, or has a neutral effect. All of these possibilities have been characterized in different 

labs using different experimental systems [57, 78-82]. The variability may be due to which A3 

enzyme studied and the amount that was encapsidated. The number of A3-induced mutations can 

be influenced by encapsidation levels, which are indirectly related with the ability of Vif-to 

mediate A3 degradation, but can also be affected by the inherent ability of the A3 enzymes to 

bind and oligomerize on cellular and viral RNA. 

1.4.1 Deamination-dependent restriction of HIV by APOBEC3 

1.4.1.1 Deamination-dependent restriction of HIV by APOBE3C3G.  

 APOBEC3G was the first APOBEC3 family member to be identified and is the most 

widely studied, mainly due to the enzyme having the highest levels of HIV restriction in 

comparison to the other APOBEC3s that are relevant to HIV restriction [48]. In order for A3G to 

be an efficient restriction factor, it must bind RNA and become encapsidated into the budding 

virion. Newly synthesized A3G that has not been sequestered to stress granules and P-bodies 

through host RNA binding [83-85], bind viral or cellular RNA that is subsequently bound by the 

HIV Gag protein during viral encapsidation [86-97]. Encapsidation of A3G is facilitated by RNA 

binding and oligomerization mediated through its the N-terminal domain (NTD) [98]. The NTD, 

specifically residues found on loop 7, of A3G are known to be responsible for A3G virion 

encapsidation [98-101]. A3G exists as monomers and dimers in solution, however it is able to 

further oligomerize once bound on DNA and RNA [102, 103]. Further oligomerization is 
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mediated by the C-terminal domain (CTD) through residues found on loop 7. Once encapsidated, 

A3G is able to access single-stranded (ss)DNA during (-)DNA synthesis. However, the ability of 

A3 to access the viral DNA being reverse transcribed is not sufficient for restriction, and A3G 

must possess efficient search mechanisms in order to locate target ssDNA. 

 For DNA modification enzymes, efficiency generally means that the enzyme is processive 

and can deaminate multiple cytosines in a single enzyme-substrate encounter. For enzymes that 

do not use an energy source to move on DNA, they can search the DNA for a specific target 

motif using facilitated diffusion [104, 105]. Facilitated diffusion describes how enzymes can use 

the electrostatic interaction with DNA to facilitate their Brownian motion driven diffusion [104, 

105]. The diffusion can be described by different terms depending on whether the enzyme 

diffuses along the phosphate backbone (sliding), diffuses along the DNA without always making 

direct contact with the phosphate backbone (jumping or hopping), or moving through a doubly-

bound state (intersegmental transfer) (Figure 1.7) [2, 104-106]. Sliding and hopping movements 

are efficient for searching < 20 nt of DNA, and this movement is essential for finding the 

deamination motif for A3 enzymes that slide [2]. Jumping and intersegmental transfer facilitates 

movements on DNA > 20 nt, but there is no local search at each place the enzyme lands unless 

the enzyme can also slide [106-108]. Thus, if an enzyme only has sliding or only has a three-

dimensional search mechanism such as hopping, jumping, or intersegmental transfer, the  

search will be inefficient [2, 107-110]. Numerous studies have demonstrated that A3G is a 

processive enzyme that is able to use both one-dimensional and three-dimensional motions [107, 

111]. This observation correlates with data from integrated proviral genomes, which 

demonstrates clusters of A3G-induced deaminations due to the processive one-dimensional 

movements of the enzyme. These findings are further confirmed when examining mutants of 

A3G that are unable to undergo sliding such as A3G H186R and A3G 193NPMins that have 

decreased mutagenesis in both in vitro studies and HIV proviral genomes [107, 108]. Similarly, 

an A3G mutant that is unable to undergo three-dimensional jumping movements, A3G 

F126A/W127A, exhibited decreased mutagenesis during in vitro studies [107]. Therefore, these 

data demonstrate that A3 enzymes must possess multiple ssDNA search mechanisms in order to 

efficiently induce mutations during the dynamic process of reverse transcription. 

1.4.1.2 Deamination-dependent restriction of HIV by APOBEC3F. 

A3F has also been shown to restrict HIV, although studies from most labs show that it is  
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Figure 1.7. DNA scanning by facilitated diffusion. (A) Sketch of the DNA showing the negative 
charge region, which is important for the electrostatic interaction of APOBEC3 enzymes with 
DNA and enables facilitated diffusion. (B) Sketch depicting the one-dimensional scanning by 
sliding of the enzyme (shown as a dimer). Sliding is important for a localized search of the 
substrate. Dotted line represents the diffusion motion of the enzyme. (C) Sketch representing the 
three-dimensional scanning by jumping. Jumping enables larger translocations, but lacks a local 
search processes. During jumping, the enzyme microscopically dissociates from the DNA 
without diffusing into the bulk solution. (D) Sketch demonstrating three-dimensional scanning by 
intersegmental transfer, which allows for larger translocations that are mediated by an enzyme 
having a doubly-bound state. An enzyme with two binding domains binds two regions of DNA 
simultaneously before dissociating from one region before moving to another. (E) Dynamics of 
A3G jumping as revealed by single molecule experiments. A3G monomers bind to ssDNA and 
can slide rapidly. Over time the monomers oligomerize and the mobility of A3G on ssDNA 
decreases. The oligomers can spontaneously dissociate enabling each monomer subunit to jump 
to a distal place on the same ssDNA. The local search process that ensues is again slowed by 
oligomer formation. (F-G) Dynamics of intersegmental transfer of A3C as revealed by studies on 
A3C dimerization. (F) An intersegmental transfer can occur when the doubly bound state 
mediated by a dimer is broken through A3C dimer dissociation. (G) Stable dimers of A3C are 
unable to undergo intersegmental transfer. Reprinted with permission from Adolph et al., 2018 
[1].    
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less efficient than A3G [58, 108, 112]. It was observed that HIV proviral genomes had mutational 

signatures in the 5’TC context, which implicated an A3 enzyme other than A3G that deaminates 

within a 5’CC context. It was then demonstrated that this mutational signature could be attributed 

to A3F [113-115]. Similar to A3G, A3F also interacts with RNA in order to be encapsidated into 

the virion, and packages more efficiently than A3G into the core of HIV particle [97, 116, 117]. 

This more efficient packaging of A3F can be attributed to the greater binding affinity of A3F for 

both DNA and RNA substrates in comparison to A3G. Despite the more efficient packaging of 

A3F, it induces mutations at lower levels than A3G in both in vitro assays and in sequenced 

proviral DNA [108]. Similar to mutants of A3G that lost their ability to use one-dimensional or 

three-dimensional motions, wild-type A3F can only use three-dimensional jumping and lacks the 

ability to slide on ssDNA (Figure 1.6) [108]. This led to fewer clustered mutations in sequenced 

genomes as A3F lacked the local search mechanism of sliding. This lack of sliding movements 

was due to a 190NPM192 motif in the connecting domain between the A3F NTD and CTD, and 

mutation of this motif to an 190NGM192 imparted A3F with the ability to slide [108]. Therefore, 

the more rigid proline in the wild-type motif of A3F blocked the sliding ability. However, despite 

adding the one-dimensional search mechanism to the repertoire of A3F, it was still less efficient 

than A3G because A3F was still less able to jump on DNA. This further emphasizes the 

requirement for multiple processive scanning mechanisms, as A3F is 4-fold less effective at 

restricting HIV than A3G in single-cycle infectivity assays[108].   

The mutational outcome also differs between A3G and A3F. An early observation with 

A3G was that it was able to induce stop codons [64]. The ability to induce stop codons arises 

from the single codon used to code for tryptophan (Figure 1.8A). In the (-) DNA orientation the 

tryptophan antisense codon contains a deamination motif for A3G (Figure 1.8A). Deaminations 

of cytosine within the antisense codon can result in two possible stop codons (Figure 1.8A). 

Depending on the surrounding sequence context, A3F may also be able to induce a stop codon 

(Figure 1.8A). However, in proviral DNA sequences, the A3G-induced tryptophan mutation to a 

stop codon is recovered more often than the A3F-induced tryptophan mutation to a stop codon 

[74, 108] (Figure 1.8B). A3F is more likely to induce a variety of missense (amino acid 

changing) mutations than A3G, which primarily causes mutations at glycine codons (Figure 

1.7B)[74, 108]. The A3G-induced mutations at glycine codons tend to be nonconservative and 

inactivating mutations whereas the A3F-induced missense mutations have less inactivation ability  



	 	17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8. Consequence of deaminations at 5′CC and 5′TC motifs. (A) The path to a stop codon 
through deamination of cytosine in the antisense codon for tryptophan in (-) DNA (5′CCA). (B) 
Deaminations by A3G at 5′CC motifs in the (-) DNA lead to codon changes in the (+) DNA 
primarily at glycine. Glycine can be changed to serine, glutamic acid, arginine, or lysine by A3G-
induced mutations. The second highest number of mutations occur at tryptophan, which leads to a 
stop codon. The A3F deaminations at 5′TC motifs in the (-) DNA result in much more variable 
amino acid changes in the (+) DNA. Sequences of the protease gene of ΔVif HIV-1 exposed to 
A3G or A3F were analyzed from Ara et al.[74, 108]. Reprinted with permission from Adolph et 
al., 2018 [1].  
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[74, 108, 117, 118]. Similar data has been found using in vitro substrates for A3A that also 

deaminate at 5'TTC [119]. Accordingly, there is evidence that 5'TC modifying A3 enzymes may 

contribute more than A3G to HIV-1 evolution in the form of immune escape or drug resistance, 

rather than inducing HIV-1 inactivation [79, 118, 120-124].   

1.4.1.3 Deamination-dependent restriction of HIV by A3D 

Despite limited in vitro data demonstrating the mutation potential of A3D during HIV 

reverse transcription; A3D has been implicated in the restriction of HIV, as A3D is able to 

become encapsidated into the virion and is suppressed by HIV Vif. A3D was also demonstrated 

to restrict HIV in single-cycle infectivity assays with the corresponding mutational signature 

existing in 5’GC and 5’TC contexts [125]. Despite these findings, A3D is less restrictive than 

both A3G and A3F [58, 126]. Interestingly, A3D, similar to A3C, has been shown to be more 

active in other primates. For example, chimpanzee A3D is more restrictive then human A3D 

despite being encapsidated at similar levels [127]. A study found that a residue within loop 7 

reduced the human A3D activity and a C320Y substitution increased the activity more than 20-

fold [126]. This suggests that the activity of A3D was lost during evolution from chimpanzees to 

humans, or the human ortholog has evolved to restrict unique targets not yet identified.  

1.4.1.4 Deamination-dependent restriction of HIV by A3H.  

A3H is unique to the A3 family as it is the only member that exists as multiple different 

haplotypes I-VII [59, 128]. These sequence polymorphisms are unique in having varying antiviral 

activities. Only A3H haplotype II, V, and VII are relevant to HIV restriction while the others are 

thermodynamically unstable or localized to different cellular compartments [27, 129]. 

Interestingly, A3H haplotype I, the most common haplotype found in human population, is an 

unstable variant, suggesting the majority of the population possess an inactive A3H [27, 129]. 

Also unique to A3H is the Zinc (Z) -domain family to which it belongs.  A3 members have been 

characterized as having three distinct Z-type domains (Z1, Z2, Z3) based on the phylogenetic 

cluster to which it belongs [23]. Each Zinc-binding domain is required for catalytic activity and is 

characterized by a conserved Hx1Ex23-28Cx2-4C (x is any amino acid) [23]. A3H is the only 

member that has a Z3-domain; A3D and A3F have two Z2-domains, A3G and A3B have a Z1- 

(CTD) and Z2- (NTD) domain [23]. A3H is also the only single domain enzyme to oligomerize 

in solution and similar to A3G and A3F, A3H hap II is able to interact with cellular RNA and 

become encapsidated into virions [51].  As both virion encapsidation and the biochemical 
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properties of the enzymes are important for the efficient restriction of HIV, biochemical 

characterization of A3H has demonstrated that it is a processive enzyme. A3H Hap II and A3H 

Hap V preferentially deaminate 5’TC motifs and can utilize both one-dimensional sliding and 

three-dimensional translocations such as jumping and intersegmental transfer [110]. This allows 

for efficient induction of mutations during reverse transcription. The activity of A3H is improved 

through its ability to oligomerize, dimerization is uniquely mediated through an RNA 

intermediate [130-132]. Interestingly, two studies recently identified that A3H may be able to 

dimerize through an RNA mediated mechanism that involves loops 1 and 7 as well as helix 6 and 

that the presence of bound RNA alters the activity of the A3H [131, 133]. These findings warrant 

future work on the exact nature of A3H oligomerization and activity. 

1.4.1.5 Deamination-dependent restriction of HIV by A3C 

A3C has been identified to have a limited ability to restrict both viruses and endogenous 

retroelements. Despite this weak antiviral activity, A3C is expressed in CD4+ T cells and 

effectively degraded through its interaction with Vif and demonstrates evidence of positive 

selection (recent evolution) indicating that it must have played some role in the restriction of 

viruses. Previous work has identified that an A3C S188I polymorphism exists in ~10% of people 

of African descent [27]. Analysis of the HIV restriction abilities of the common (S188) and 

variant A3C (I188) is the focus of Aim 1 of the thesis research.  

1.4.2 Interaction of APOBEC3 with HIV Vif 

 HIV viral infectivity factor, or Vif, was identified to be essential for HIV replication 

however the function of Vif was not understood until a human protein CEM15 (later identified as 

A3) was shown to be suppressed in the presence of Vif [134, 135]. Vif promotes A3 degradation 

by inducing polyubiquitination of the enzyme. Vif must interact with the host transcription 

cofactor CBFβ to maintain conformational stability [53, 136]. Vif also interacts with host protein 

Elongin C, which forms an obligate heterodimer with Elongin B (EloB/C) as well as Cullin 5 

(Cul 5) (Figure 1.9A) [52, 137, 138]. This interaction with EloB/C occurs through a SLQ motif 

known as the EloB/C box [52, 64]. Vif interacts with Cul5 through two cysteine residues at 

position 114 and 133, which are part of a HCCH Zinc binding motif [139]. Binding of Vif/ 

CBFβ/EloB/C then recruits the binding of Cul5 and forms the CRL5 ligase complex with 

subsequent recruitment of Rbx2 [140, 141]. Vif mimics the human protein suppressor of cytosine 

signaling-2 (SOCS2) that is normally the substrate receptor of the CRL5 ligase in order to  
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Figure 1.9. Vif interaction interface with APOBEC3. (A) The crystal structure of Vif 
(wheat) shows that it has two domains on either side of a bound Zinc (blue).The 
α/β-domain contains the binding interface for CBFβ and A3 enzymes. The 11WQxDRMR17 motif 
(red) is used to interact with A3F, A3C, and A3D, the 40YRHHY44 motif (magenta) is used to 
interact with A3G. The α-domain contains two alpha helices that mediate two separate 
interactions with EloC (green) and Cul5 (green) (B) Domain organization of Vif. Vif uses 
specific motifs to interact with A3G (magenta), A3F/A3C/A3D (red), and A3H (orange). In 
conjunction with these specific motifs, there are shared interaction motifs for A3F and A3G with 
Vif (pink). CBFβ interacts with Vif through two adjacent motifs (cyan). The Zinc finger region 
(green, amino acids 108-139) coordinates the Zinc through an 108H114C133C139H motif and 
stabilizes Vif structure, which indirectly enables an interaction with Cullin 5 (Cul5). The BC box 
mediates an interaction with Elongin C (green). Vif oligomerizes through a PPLP motif (grey). 
Figure reprinted from Feng et al., 2014. 
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interact with this ligase [140, 141]. This complex then polyubiquitinates an A3 that is able to 

interact with Vif. Vif has independently evolved an interaction site for each A3 for which it can 

promote degradation via the proteasome [142]. The A3 then becomes the substrate of the Cul5 E3 

ubiquitin ligase complex, and A3s are targeted for degradation through the proteasome pathway 

by K48 linked polyubiquitination.  

Vif interacts with A3 enzymes on both unique and overlapping sites. Two positively 

charged regions on Vif comprise the domains that interact with A3G, namely K26, 40YRHHY44, 

and W70 on one side and residues 14-17 and 21WxSLVK26 on the opposite side [143-145]. The 

Vif domains that interact with A3F are similarly located, with the main interface being 

11WQxDRMR17 and 74TGERxW79 being the secondary interface [144, 146]. Vif also 

intearacts with both A3F and A3G via a 69YWxL72 motif [144]. These interfaces were 

originally identified through alanine scanning, but have been recently refined through structural 

modeling and molecular docking studies.  Studies have identified that the 14DRMR17 motif that 

interacts with A3F is also the interface for the interaction with A3C and A3D [144, 146]. Most 

recently, studies have shown that A3H interacts with Vif through another unique interface 

composed of residues on the β- sheet of Vif, (residues 40-44) [147]. A3H was previously thought 

to have a unique interface to A3G however these residues identified overlap with the residues 

known for A3G. A3H can also interact with Vif on unique residues at position 63 and 90 [147]. 

These multiple interfaces ensure that Vif is able to counteract distinct A3s effectively.  

Conversely, while there are specific interfaces on Vif that are important for the interaction 

with A3s, each A3 has a specific set of amino acids that interact with Vif. Vif interacts with A3s 

through three interfaces on the A3s that are grouped as an A3G, A3F/C/D or A3H interface 

(Figure 1.9B) [143, 146-148]. Although the A3F/C/D interaction site is identified as one, there 

are small differences in the amino acid interactions for each A3, but overall the interface is 

largely the same [146, 149].  For A3G, the amino acid D128 is important for the interaction, and 

mutation of this residue is sufficient to prevent the interaction [148, 150]. Similar to A3G, residue 

D121 on A3H has been found to be essential for the interaction while E289 on A3F is important 

for sensitivity to Vif [151-153]. Interestingly, while the interfaces are essential for maintaining an 

interaction, there is also species specificity to this interaction as SIV Vif is not able to effectively 

antagonize human A3G, and HIV Vif was shown to not effectively degrade primate A3s. This 

species specificity demonstrates that the A3s may be a cross species barrier to infection by 
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viruses spread from related primates, and that Vifs have evolved to antagonize the A3s from the 

species in which they reside.  

1.4.3 Deamination-independent restriction of HIV by APOBEC3 

While the primary mechanism of restriction of HIV by the APOBEC3 enzymes is 

deamination-dependent, studies have observed that A3G and other A3 enzymes also possess  

deamination-independent modes of restriction. While the majority of viral restriction occurs 

through deamination of cytosines during reverse transcription, A3 enzymes can also inhibit 

processes such as tRNA primer binding, initiation and elongation of reverse transcription, plus-

strand DNA synthesis as well as inhibition of integration [71, 73, 154-159]. These processes were 

demonstrated to be due to deamination-independent mechanisms as mutations that affected the 

catalytic activity of the enzyme (E259Q for A3G and E251Q for A3F) did not change the 

observed antiviral activity [160, 161]. One mechanism for deamination-independent restriction 

suggests that A3G or A3F binding to the primer template may cause a “road-block” to RT 

polymerization, which slows down the extension of the template [71, 74]. A3F is thought to have 

a stronger deamination-independent mode of restriction than A3G, since it binds substrates with a 

higher affinity and may impair polymerization to a greater extent. A3F was also shown to inhibit 

the production of full-length products of RT more efficiently than A3G, and can inhibit the 

accumulation of late reverse transcriptase products [74]. Interestingly, the deamination-

independent mode represents less than 1% of the restriction activity for A3G, whereas for A3F it 

represents approximately 30% [162]. Therefore, these studies on the deamination-independent 

mechanisms have highlighted the contribution of these mechanisms to the restriction of HIV, but 

this mode of restriction is notably less potent than the restriction caused by cytosine deamination.  

1.5 Restriction of endogenous retroelements by APOBEC3 

Although some A3 enzymes have evolved the biochemical characteristics necessary to restrict 

HIV-1 replication, their role in protecting the host genome integrity predates immunodeficiency 

viruses. More of the A3 family members are able to restrict retrotransposons than HIV-1 and 

retrotransposon pressure on primate genomes is thought to have caused the expansion of the A3 

locus (Figure 1.3B) [23]. Retrotransposons replicate through an RNA intermediate and are 

divided into two groups, long terminal repeat (LTR) retrotransposons (also known as endogenous 

retroviruses) and non-LTR retrotransposons [15].  
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LTR retrotransposons (endogenous retroviruses) constitute approximately 10% of the 

human genome [15], but owing to the accumulation of mutations, endogenous retroviruses, such 

as HERV-K, have become largely inactive in humans. Reconstruction of endogenous retrovirus 

genomes has led to the observation that they accumulated many C/G→T/A mutations and were 

inactivated by A3 enzyme activity [163]. When active, endogenous retroviruses were single-

strand (+) RNA viruses that infected germ cells and thus were transmitted vertically, but 

otherwise replicated similarly to HIV-1 and underwent reverse transcription in the cytoplasm 

[15]. 

Non-LTR retrotransposons constitute approximately 30% of the human genome [15]. 

Three types of non-LTR retrotransposons are still active in humans, the long interspersed 

element-1 (LINE-1), the short interspersed element (SINE) Alu, and the composite 

retrotransposon SINE-VNTR-Alu (SVR) [15, 164]. Since Alu and SVR depend on LINE-1 

activity for their retrotransposition, the LINE-1 is the model used to study A3-mediated 

restriction of retrotransposon activity. All A3s except A3G can restrict LINE-1 retrotransposition 

to various degrees [15, 165]. The LINE-1 RNA is reverse transcribed in the nucleus, and a 

cellular RNaseH degrades the LINE-1 RNA and exposes the (-) single-stranded DNA, enabling 

A3 deamination of cytosines [15, 166]. Although multiple labs have demonstrated that A3 

enzymes can restrict LINE-1 retrotransposition, it was not known until recently whether this was 

due to a deamination-dependent or deamination-independent mechanism [15, 166].  

There are two potential mechanisms that allow A3 to restrict the activity of LINE-1. First, 

since A3 enzymes bind RNA with high affinity, it was thought that the A3 enzymes would act as 

a roadblock to reverse transcription. Similarly, A3s could bind the LINE-1 RNA in the cytoplasm 

and cause it to accumulate in cytoplasmic RNA processing bodies (P-bodies), preventing nuclear 

import [167, 168]. DNA sequencing of integrated LINE-1 genomes had little evidence of 

cytosine deamination, which supports these mechanisms mediated by RNA binding. In addition, 

many A3 enzymes bind RNA in cells and can be purified from cells in a Ribonucleoprotein 

(RNP) mass [15, 83]. Second, if A3 deaminations occurred in the nucleus, the uracils formed on 

the exposed single-stranded (-) DNA would be recognized by the BER enzyme UNG and 

excised. If the uracils were numerous enough, this would result in DNA breaks and degradation 

of the LINE-1 (-) DNA [13] (Figure 1C). This mechanisms of DNA degradation may have more 

time to occur since LINE-1 relies on cellular polymerases and DNA repair enzymes to copy the (-
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) DNA to form a dsDNA LINE-1 [166]. This mechanism was supported by experiments using an 

UNG inhibitor, and demonstrated that A3A mediated inhibition of LINE-1 involved deamination 

of cytosines in LINE-1 single-stranded (-) DNA. Therefore, the primary fate of the LINE-1 was 

degradation, not integration of a mutated retrotransposons [166, 169]. However, it does not seem 

to be a common mechanism for other A3s since A3H uses a deamination independent mechanism 

to inhibit LINE-1[169]. Thus, although there are some parallels with HIV-1 restriction in that 

reverse transcription is needed to generate the ssDNA substrate, these restriction mechanisms 

need to be addressed to determine if A3s other than A3A can deaminate LINE-1 (-) DNA and 

identify the mechanism responsible for the deamination-independent restriction of LINE-1 

retrotransposition. Interestingly, the fate of deaminated LINE-1 (-) DNA is different than for 

HIV-1 or endogenous retroviruses. Perhaps due to the longer time that the LINE-1 (-) DNA may 

remain single-stranded owing to a dependence on cellular rather than self-encoded mechanism of 

(+) DNA synthesis, the A3-catalyzed uracils result in LINE-1 degradation more often than for 

HIV-1 or endogenous retroviruses. 

1.6 Role of APOBEC in somatic mutagenesis 

Despite these benefits of A3 enzymes for restriction of retroelements and viruses, there is 

evidence that there is a cost to this defense system caused by off-target A3-catalyzed mutations to 

our genomes during our lifetime. This happens when the expression of A3 enzymes occurs in the 

wrong cell, at the wrong time, and detrimental effects can be caused if deamination occurs in the 

a gene such as a tumor suppressor [170]. Usually, redundant DNA repair mechanisms can 

remove uracils and negate most of these promutagenic lesions [13]. However, with the 

development of Next Generation Sequencing technology and the availability of large sequence 

datasets, it has become clear that mutations in many cancers have a C/G→T/A bias, and most 

cancer cells or tumors also overexpress of A3B or A3H hap I mRNA, suggesting that A3s are 

inducing somatic mutations [16, 17, 171-175]. The uracils created by A3 mutations also can lead 

to C→G or C→A mutations depending on the repair pathway initiated by the abasic site after 

APE-mediated removal [176, 177] (Figure 1.2A). Several lines of evidence demonstrate that A3 

enzymes provide tumor cells with a “just right” rate of mutagenesis, which provides the genetic 

diversity for the tumor to adapt to selection pressures in the tumor environment [170]. For 

example, one report found that women diagnosed with Estrogen Receptor positive breast cancer 

that also have high A3B mRNA expression are associated with poor survival [178]. The resulting 
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increase in mutation rate has also been shown to lead to tamoxifen therapy resistance [179]. A3B 

is the best studied A3 in cancer mutagenesis and was identified to contribute to not only breast 

cancer progression but also head/neck, lung, bladder, cervical, and ovarian cancer [17, 175, 180, 

181]. Since A3 enzymes each deaminate cytosine in a specific nucleotide sequence context, A3B 

activity was identified by retroactive sequence analysis in combination with in vitro analysis of 

the preferred nucleotide sequence context [17, 175]. The A3B “footprint” is mutations at 5'ATCA 

(underlined base becomes mutated) [175, 182]. Additionally, studies have found the A3A 

mutational footprints of 5'TTCA or 5'CTCA in tumors, but no corresponding A3A expression, 

which suggested that A3A may be upregulated early in tumor development, but inactivated later. 

This may be due to A3A being the most active deaminase, which could cause cell death through 

its activity over time, rather than a selective advantage [182-184]. In addition or alternatively, 

A3H hap I is able to induce mutations in breast and lung cancer cells and there is a high 

association of the A3H hap I allele in an A3B-/- genetic background [174]. The A3H hap I 

footprint is 5'CTCA and overlaps with A3A [110, 174]. Thus more tumor based studies are 

needed to differentiate the activity of A3A and A3H hap I.  Interestingly, A3A has been 

demonstrated to deaminate methyl-cytosines (mC) with high efficiency, unlike A3H, and is able 

to deaminate mC in CpG islands (mCpG) [130, 185]. Differentiating mutational contexts from 

mCpG and CpG may allow further identification of the A3 involved in addition to A3B. 

Importantly, the A3 enzymes that induce somatic mutagenesis must localize to the nucleus and 

deaminate transiently available ssDNA created during the processes of transcription or 

replication. For a related family member AID, which normally deaminates the immunoglobulin 

genes to enable antibody maturation and class switching [11], targeting of AID to the correct 

genomic region and maximizing its access to both strands of the genomic DNA requires many 

interacting partner [186]. Although AID can access other regions of the genome, it is thought that 

interactions with transcription machinery occur to facilitate its specific role in deaminating 

cytosine in immunoglobulin genes [20, 21]. These protein-protein interactions may not only 

assist in targeting immunoglobulin genes during B-cell activation, but may be required for AID 

to catalyze deaminations since its catalytic rate is slow [187]. The slow catalytic rate of AID may 

be a protective mechanism against AID-catalyzed “off-target” activity [187, 188]. In contrast, in 

vitro studies indicate that the A3 enzymes relevant to cancer mutagenesis are able to deaminate 

cytosines during transcription or replication without the requirement for interacting partners 
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[189]. However, while no interacting partners have yet been identified, there is the potential that 

they may also facilitate A3 mutagenesis. In contrast to AID, studies in yeast and analysis of 

TCGA sequences have identified that A3 enzymes primarily deaminate ssDNA on the lagging 

strand during DNA synthesis, deaminate less on the leading strand, and do not show significant 

amounts of deamination during transcription [190-194]. These studies are based on the analysis 

of strand biases that would place deaminations either on the lagging strand or nontranscribed 

strand of DNA during transcription.  

Interestingly, in an understudied area of A3 biology, it has been proposed that cytoplasmic A3 

can deaminate incoming foreign DNA or stress associated cytoplasmic dsDNA released from 

mitochondria [12, 195, 196], and this may play a role in modulating dsDNA induced 

inflammation. Cytoplasmic dsDNA can activate RIG-I inflammatory pathways if it is transcribed 

into dsRNA by RNA polymerase III [12]. A3 enzymes presumably inhibits this proinflammatory 

process by deaminating the ssDNA generated during transcription, which leads to DNA 

degradation by UNG, or prevents reannealing of the DNA strands [12]. This transcription-

associated deamination also appears lack any targeting mechanisms. 

To avoid degradation by cellular enzymes like A3s, and to promote DNA processing the 

ssDNA generated during DNA replication, recombination, and transcription is protected by 

ssDNA binding proteins Replication Protein A (RPA) or RAD51 [197, 198]. A3 enzymes must 

be able to breach this protective barrier to access the ssDNA. Under normal replication 

conditions, The helicase moves along the leading strand immediately in front of the polymerase, 

However,  if the polymerase is blocked by a lesion in the DNA or imbalances in dNTP pools, 

then the helicase can become uncoupled and will unwind DNA without concomitant synthesis, 

generating long stretches of ssDNA [199, 200]. The ssDNA is then bound by the ssDNA binding 

protein RPA to protect from nucleases or other chemical damage. A3s must compete with RPA to 

access to the ssDNA substrate [199, 200]. Thus, in a normal cell, A3 must access ssDNA 

between the polymerase and helicase, which are usually traveling along the DNA rapidly [200, 

201] (Figure 1.10). Although there are ssDNA gaps on the lagging strand, which is probably why 

this strand is favored by A3 enzymes, access to the ssDNA on the lagging strand also requires the 

A3 to displace RPA (Figure 1.10).  

Replication stress is a hallmark of cell transformation and this stress causes the uncoupling of 

the polymerase, which facilitates A3 deamination by generating ssDNA targets [200, 202, 203].  
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Figure 1.10. Simplified view of a replication fork. At the replication fork, single stranded DNA in 
both the leading and lagging strand is protected by bound RPA. There is more RPA bound 
ssDNA in the lagging strand than the leading strand due to discontinuous synthesis of the lagging 
strand. In order for A3 enzymes to access the ssDNA formed in the lagging strand, they must be 
able to compete with RPA. Reprinted with permission from Adolph et al., 2018 [1].  
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The generation of increased amounts of ssDNA promotes the activity of A3 and increases the 

mutational frequency Thus, it is notable that A3B is not problematic until a cellular alteration 

occurs that increases A3B expression and increases replication stress [177, 192, 203]. In contrast,  

the ssDNA generated on the nontranscribed strand during transcription is accessible at multiple 

times during the cell cycle of a normal or transformed cell, especially during RNA polymerase 

stalling [20, 21]. Although A3 enzymes would still need to access transiently available 

nontranscribed ssDNA that interacts with the RNA polymerase, the ssDNA is solvent accessible 

[204]. Despite this, the A3 enzymes do not use ssDNA generated during transcription as a major 

substrate, in contrast to AID. This may be due to the lack of protein-protein interactions that 

recruit A3 enzymes to sites of transcription or a lack of temporal resolution in cellular studies.   

While the APOBEC3 enzymes were discovered to be antiviral enzymes over 15 years ago, 

there still remains many questions on the biochemical mechanisms the APOBEC3 enzymes use 

in order to find their target ssDNA. The focus of the presented work is to determine how these 

enzymes find the ssDNA substrates in vastly different biological contexts, both as an innate 

immune factors that restrict HIV replication and as a threat to genomic integrity by deaminating 

“off-target” genomic DNA. Despite the apparent differences in these two systems, the APOBEC3 

enzymes still must be able to have an efficient biochemical search mechanism to find and 

deaminate ssDNA that is transiently available during reverse transcription, replication and 

transcription. Through careful biochemical analyses of A3s on substrates that model those 

encountered in cells, the biological functions of the APOBEC3 enzymes can be better 

understood.  
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2.0 Hypothesis and Objectives  

 
2.1 Rationale and Hypothesis 

APOBEC3 enzymes are a family of host restriction factors originally expanded by gene 

duplication to restrict endogenous retroelements. While many of these original targets are now 

inactivated, their presence served to provide the evolutionary pressure to maintain the APOBEC3 

gene locus, and adapt the family to act on target single-stranded DNA for which they were not 

originally intended. The APOBEC3 family can be considered a “double-edged” sword. They act 

as essential components to our innate immune response, but if unregulated can cause damage to 

our genomic DNA. However, how the APOBEC3 enzymes can act on such diverse DNA 

substrates, both during HIV replication and cellular transcription and replication, remains 

unknown. Characterization of the HIV restriction capacity of A3 primate orthologs, further 

determining if the ability of A3 to manipulate retroelement polymerases in a deamination 

independent manner is a secondary restriction mechanism, and determining the biochemical 

mechanisms of A3 genomic mutation, will aid in defining the biochemical functions for these 

disparate roles of A3s. This understanding will aid in determining their suitability for HIV-1 

therapy and predict if the A3 enzymes are too detrimental for the host to maintain.  

My PhD thesis aims to determine the biochemical restriction mechanisms of primate A3 

enzymes in the presence and absence of Vif, the ability of the A3 enzymes to interfere with 

reverse transcriptase processes, and for A3 enzymes to catalyze mutations during transcription 

and replication. The central hypothesis to this work is that A3 enzymes utilize unique 

biochemical mechanisms to access ssDNA during viral replication and ssDNA generated during 

transcription and replication. Which mechanisms the A3s use is dependent on the biochemical 

characteristics of the enzyme.  

2.2 Objective  

The objectives of my PhD work are as follows: 

1. Characterize the HIV restriction capacity of the APOBEC3C enzyme through examination of 

the interaction of APOBEC3C with ssDNA substrates in vitro and in cells.  

2.  Characterize the deamination-independent mechanism of APOBEC3 restriction of HIV 

through modulation of reverse transcriptase processes.  

3. Characterize the ability of APOBEC3B to mutate genomic DNA through biochemical assays 

of transcription and replication.	 	
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3.0  A single nucleotide polymorphism in APOBEC3C enhances restriction of 

lentiviruses. 
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3.1 Abstract  

Humans express seven human APOBEC3 proteins, which can inhibit viruses and endogenous 

retroelements through cytidine deaminase activity. The seven paralogs differ in the potency of 

their antiviral effects, as well as in their antiviral targets. One APOBEC3, APOBEC3C, is 

exceptional as it has been found to only weakly block viruses and endogenous retroelements 

compared to other APOBEC3s. However, our positive selection analyses suggest that 

APOBEC3C has played a role in pathogen defense during primate evolution. Here, we describe a 

single nucleotide polymorphism in human APOBEC3C, a change from serine to isoleucine at 

position 188 (I188) that confers potent antiviral activity against HIV-1. The gain-of-function 

APOBEC3C SNP results in increased enzymatic activity and hypermutation of target sequences 

when tested in vitro, and correlates with increased dimerization of the protein. The I188 is widely 

distributed in human African populations, and is the ancestral primate allele, but is not found in 

chimpanzees or gorillas. Thus, while other hominids have lost activity of this antiviral gene, it 

has been maintained, or re-acquired, as a more active antiviral gene in a subset of humans. Taken 

together, our results suggest that APOBEC3C is in fact involved in protecting hosts from 

lentiviruses.  

3.2 Introduction  

The APOBEC3 locus encodes seven cytidine deaminase proteins that inhibit endogenous 

retroelements, lentiviruses such as HIV-1, and other viruses [205]. The APOBEC3 locus arose 

through duplication events on chromosome 22[206] of cytidine deaminase domains, resulting in 

single domain APOBEC3s (APOBEC3A, APOBEC3C, and APOBEC3H) and double-domain 

APOBEC3 genes (APOBEC3B, APOBEC3D, APOBEC3F, and APOBEC3G). In order for 

APOBEC3 proteins to restrict lentiviruses such as HIV-1, they are packaged into virions, brought 

to a target cell, and deaminate cytidines on ssDNA during reverse transcription, resulting in 

cytidine to uracil mutations in the viral genome. APOBEC3 proteins exert selective pressure on 

primate lentiviruses, which have evolved to encode a protein, Vif, which targets APOBEC3 

proteins for proteasomal degradation.  

Vif-mediated antagonism leads to non-synonymous mutations in APOBEC3 that allow for 

escape from Vif but maintenance of antiviral activity [207]. Lentiviruses, in turn, select for Vif 

alleles that target these APOBEC3 variants, leading to further adaptive evolution of APOBEC3 

genes through non-synonymous mutations. As such, enrichment of the rate of nonsynonymous 
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mutations (dN) compared to the rate of synonymous mutations (dS) is a common signature of 

antiviral genes [207]. This enrichment, or dN/dS>1, is referred to as positive selection. 

APOBEC3 genes involved in blocking viral replication are expected to exhibit signatures of 

positive selection. Specifically, APOBEC3s involved in lentiviral restriction should have 

signatures of positive selection at the Vif:APOBEC3 interface[208].  

There is considerable variation in the antiviral activity of each of the seven human 

APOBEC3 paralogs. APOBEC3G potently inhibits vif-deleted-HIV-1 (∆vif) [112] . Human 

APOBEC3D, APOBEC3F, and APOBEC3H also inhibit HIV-1 (∆vif), but to a lesser extent than 

APOBEC3G [58, 112, 115, 126]. In contrast, APOBEC3A and APOBEC3B do not potently 

block HIV infection of T cells [58, 112, 115, 209], which are the primary target of HIV (although 

a target-cell effect has been reported in monocytes for APOBEC3A) [6]. Instead, APOBEC3A 

and APOBEC3B drastically inhibit replication of endogenous retroelements and some DNA 

viruses [210-215]. In studies that compare the ability of the seven human APOBEC3s to restrict 

lentiviruses and endogenous retroelements, the only APOBEC3 that has weak activity against 

both lentiviruses and endogenous retroelements is APOBEC3C [58, 112-114, 211, 215-219]. For 

another APOBEC3 gene, APOBEC3H, the most common human variant does not block HIV 

infection although other haplotypes exist that potently restrict lentivirus replication [59]. In fact, 

one haplotype of APOBEC3H restricts HIV-1(Δvif) as potently as APOBEC3G [59] and has been 

shown to impact clinical outcomes in HIV-1+ patients[66, 220, 221]. Thus, we considered the 

possibility that while the common human haplotype of APOBEC3C encodes a protein with little 

antiviral activity, other variants of APOBEC3C may in fact encode more potent anti-lentiviral 

proteins. Compellingly, the Vif protein of HIV-1 targets human APOBEC3C for proteosomal 

degradation [222]. Moreover, APOBEC3C mRNA is highly expressed in the major HIV-1 target 

cells, activated T cells [223]. Thus, the high expression of APOBEC3C in HIV target cells and 

the antagonism of APOBEC3C by HIV-1 Vif are consistent with the hypothesis that APOBEC3C 

may have an overlooked role in combating lentivirus infection.  

In this study, we found that APOBEC3C has evolved under positive selection in primates 

in a manner that suggests that APOBEC3C has played a role in blocking primate lentiviruses. 

This provided motivation to determine if there are naturally occurring variants of APOBEC3C 

that potently block lentivirus replication. In humans, only one APOBEC3C coding variant is 

present at a frequency above 1% and this is a serine to isoleucine change at position 188, here 
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called APOBEC3C I188 [27].  Here, we show that the polymorphism APOBEC3C I188 is 

present at about 10% frequency in diverse populations throughout Africa, and thus did not 

recently arise in a particular subpopulation of humans, but is an ancient allele that has likely been 

circulating in humans for much of human history.  Moreover, we show that the APOBEC3C I188 

single nucleotide polymorphism (SNP) has about 10-fold more potent anti-lentiviral activity than 

the common human APOBEC3C variant and has greater in vitro cytidine deaminase specific 

activity.  The greater activity of APOBEC3C I188 in turn correlates with its ability to dimerize. 

Moreover, construction of a forced dimer of APOBEC3C S188 also gains enhanced antiviral 

activity to a level comparable to APOBEC3G.  We show that the APOBEC3C I188 allele is 

likely the ancestral state since all sequenced Old World monkeys and some great apes carry 

isoleucine at position 188. However, gorillas, chimpanzees and most humans carry the S188, the 

apparent loss of function allele. Taken together, our results suggest that APOBEC3C is involved 

in protecting hosts from lentiviruses, and we speculate that some humans may be afforded some 

level of additional protection from lentiviruses by a more active antiviral version of this protein.  

3.3 Results 

3.3.1 APOBEC3C has evolved under positive selection in primates suggesting an 

ancient role in protection from pathogens. In studies that compare the antiviral activity of the 

seven APOBEC3 paralogs, APOBEC3C consistently has poorer restriction activity than the other 

paralogs [58, 112, 113, 217, 218]. However, we reasoned that if APOBEC3C is in fact a bona-

fide restriction factor then we would expect that the gene has an evolutionary signature of 

positive selection [207]. We performed positive selection analyses of twenty-two APOBEC3C 

sequences derived from eighteen primate species with sequences representing diverse clades of 

catarrhines, a subdivision of primates including old world monkeys and apes (Figure 3.1A).  

Among these, multiple sequences were obtained from African green monkeys, because we chose 

to include three subspecies (vervet, tantalus, and sabeus). The sequences were aligned and tests 

for positive selection were conducted using maximum likelihood ratio tests comparing M8 (a 

model that allows positive selection across the gene) to M8a (a model that disallows positive 

selection). Our results indicate APOBEC3C shows a gene-wide signature of positive selection 

(p<0.0008) (Figure 3.1B). 

 We next analyzed individual lineages to determine which branches of the APOBEC3C 

tree have signatures of positive selection. Branch analysis identified two branches with  
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Figure 3.1. APOBEC3C is rapidly evolving in primates. (A) Twenty-two primate APOBEC3C 
coding sequences were obtained by PCR or from the NCBI sequence database. A phylogeny of 
APOBEC3C, indicating the branch analysis results of the positive selection tests. The ratio of rate 
of nonsynonymous changes (dN) and the rate of synonymous changes (dS) that occurred along 
each branch are shown above each branch. For dN/dS values = ∞, the total number of non-
synonymous changes (N) and synonymous changes (S) are shown (N:S) below the branch. The 
red asterisks mark the branches where the dN/dS is significantly greater than 1 across the entire 
gene. (B) Maximum likelihood tests for positive selection, with 2lnl values indicating twice the 
log difference between the model that allows for positive selection (M8) and the model that does 
not allow for positive selection (M8a), as well as a P-value to indicate whether the M8 model 
better fits the data than the M8a model.  (C) Sites under positive selection in APOBEC3C are 
shown in a cartoon diagram, comparing these sites to the Vif binding domain and the cytidine 
deaminase enzymatic domain (CD). Red triangles depict sites with a posterior probability >0.99 
(red triangle). The structure of APOBEC3C[149] is represented, with the Vif binding 
domain[149] shown in blue. Two of the seven positively selected sites (PP > 0.99) overlap with 
this domain, are shown with arrows. The cytidine deaminase domain is shown in green.  
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statistically significant signatures of positive selection, both in Old World monkeys (Figure 

3.1A), and while most were not statistically significant, many branches had a dN/dS >1 (Figure 

3.1A). Furthermore, we performed M8 vs M8a analysis of the hominoid and Old World monkey 

clades of the tree separately, and found that the Old World monkey clade has a statistically 

significant signature of positive selection (p<0.05) (Figure 3.1B). We did not see a statistically 

significant signature of positive selection in the hominoid-only branch (p=0.15), although this 

could be due to a smaller sample size (n= 7).  

For antiviral genes, sites under positive selection often correlate with sites of interaction 

with a viral antagonist [224]. APOBEC3C is antagonized by the lentiviral protein Vif and the 

interface of Vif binding has been extensively mapped [149]. If APOBEC3C is in fact an anti-

lentiviral gene, the Vif binding interface may be evolving under positive selection. Therefore, we 

performed a site-analysis to determine which amino acids are under positive selection across the 

tree. Our analysis indicated seven sites under positive selection (posterior probability > 99%) 

(Figure 3.1C). Next, we mapped the positively selected sites onto the structure of human 

APOBEC3C and compared these to the Vif interface of APOBEC3C. Of the seven positively 

selected sites, two of these, residues 106 and 77, are located within the two helices that are 

targeted by Vif (Figure 3.1C). Strikingly, residue 106 has been identified as the most important 

for Vif binding and this interaction has been documented in two separate studies [149, 222].  

Thus, APOBEC3C has evolved under selection, gene-wide, as well as at the Vif-binding 

interface. These results suggest that although the common human APOBEC3C variant does not 

potently block lentivirus replication, primate APOBEC3C may have evolved as an anti-lentiviral 

protein.  

3.3.2 Human APOBEC3C SNP I188 increases antiviral activity. Because the positive 

selection analyses suggested an ancient or ongoing role of APOBEC3C in lentiviral restriction 

(Figure 3.1), we re-evaluated human polymorphisms in APOBEC3C for potential variants with 

increased activity.  There is only one SNP in APOBEC3C above 1% frequency globally, and this 

is a serine to isoleucine change at position 188 [27]. To evaluate the potential significance of this 

SNP, we aligned this region of APOBEC3C to other human APOBEC3 genes.  Strikingly, we 

found that in contrast to APOBEC3C, the other ten APOBEC3 deaminase domains all encode a 

conserved isoleucine at the position homologous to APOBEC3C 188 (Figure 3.2). Thus, the 

human I188 polymorphism in APOBEC3C actually encodes an amino acid that is highly  
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Figure 3.2. I188 is a SNP in APOBEC3C and is the conserved residue in the other six human 
APOBEC3 paralogs.  Alignment of the seven APOBEC3 proteins, using both deaminase 
domains (N and C terminal) of the double-domain APOBEC3 proteins (11 domains total). The 
residue homologous to APOBEC3C in the other ten deaminase domains is conserved as an 
isoleucine, whereas APOBEC3C is the only domain with a serine at that position. However, 
human APOBEC3C is polymorphic at that position, with an isoleucine at an allele frequency of 
2.4% globally[27]. 
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conserved at this position across human APOBEC3s, while the more common APOBEC3C in the 

human population has a different amino acid at position 188.  

Since conserved sequences are often important for function and comparative studies 

indicate that human APOBEC3C (S188) has weak antiviral/anti-retroelement activity compared 

to the other human APOBEC3s, we posited that the serine change may contribute to the weak 

restriction activity of the common variant of APOBEC3C. Therefore, we directly compared 

APOBEC3C S188 and APOBEC3C I188 for their ability to restrict HIV-1. We transfected the 

two APOBEC3C variants, S188 and I188, along with VSV-G and an env- vif- deleted luciferase-

expressing HIV-1 provirus (Δenv, Δvif). Normalized amounts of virus were subsequently used to 

infect SupT1 cells and infectivity of the viruses was compared by measuring virus-encoded 

luciferase. Viral infectivity in the presence of no APOBEC3 is set to 100%. APOBEC3G was 

used as a positive control because it potently inhibits HIV-1 (Δvif). We found that APOBEC3C 

I188 restricts infectivity of HIV-1(Δvif) to a level approximately ten-fold greater than the 

common APOBEC3C, S188, (approx. 30% infectivity versus 3%, respectively) (Figure 3.3A) 

even though both proteins are expressed at similar levels. Furthermore, infectivity assays were 

conducted as a dose-response in the presence of decreasing concentrations of APOBEC3, and the 

188 isoleucine variant restricts HIV-1(Δvif) more potently for all conditions (Figure 3.3B) at 

similar protein expression levels.  

To determine if the APOBEC3C I188 variant has increased potency against another 

lentivirus, we evaluated its activity against SIVagm, which is a simian immunodeficiency virus 

that infects African green monkeys. As shown by others, the S188 variant of APOBEC3C 

restricted infectivity of SIVagm to a greater extent than HIV-1 [209]. However, the APOBEC3C 

I188 restricted SIVagm infectivity ten-fold more than the restriction caused by APOBEC3C S188 

(10 % versus 1% infectivity, respectively, p<0.05) (Figure 3.3C). Some APOBEC3s also restrict 

endogenous retroelements, such as LINE-1s [213, 214]. However, the APOBEC3C I188 variant 

does not confer increased restriction of LINE-1 as we have previously published [27] and have 

repeated for this study (Figure 3.4). Therefore, the human polymorphism in APOBEC3C at 

position 188 enhances restriction of at least two primate lentiviruses. Thus, we conclude that a 

SNP in human APOBEC3C has increased anti-lentiviral activity relative to the APOBEC3C 

encoded by most humans. 
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Figure 3.3. APOBEC3C SNP Isoleucine 188 confers increased antiviral activity. (A) Infectivity 
of HIV-1 ∆vif in the absence of APOBEC3 (No A3), APOBEC3G (A3G), APOBEC3C S188 
(A3C S188) and APOBEC3C I188 (A3C I188). 0.3µg of HA-tagged APOBEC3 was expressed 
in virus-producing cells, and viruses were collected and use for infection. Infectivity in the 
absence of APOBEC3 is set to 100%. Error bars indicate the standard deviation of triplicate 
transfections and infections, and this experiment was repeated four times with similar results. 
Intracellular expression of APOBEC3 was measured by Western Blot using an anti-HA antibody.  
A section of the blot was probed with an anti-tubulin antibody as a loading control. (B) Dose-
response analysis showing restriction of HIV∆vif in the presence of two-fold dilutions of 
transfected APOBEC3C S188, or APOBEC3C plasmids I188 along with Western blot analysis of 
APOBEC3C S188, and APOBEC3C I188 protein expression during virus production. This 
experiment was performed three times, and a representative result is shown. (C) Infectivity of 
Simian Immunodeficiency virus SIVagm∆vif, in the presence of APOBEC3C S188, APOBEC3C 
I188. Infectivity is set to 100% for infection with No APOBEC3 present. Error bars indicate the 
standard deviation of three independent experiments.  
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Figure 3.4. Inhibition of LINE-1 replication by APOBEC3A and S188 and I188 APOBEC3C. Ten 
times more APOBEC3C was used in this assay than APOBEC3A. The LINE-1 plasmid 
constitutively expresses renilla luciferase, and only expresses firefly luciferase upon 
retrotransposition. Values are shown as the ration of firefly luciferase expressed over renilla 
luciferase expression. Averages of three replicates are shown and this experiment was repeated 
twice. 
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3.3.3 Isoleucine at position 188 enhances enzymatic activity in vitro. We wished to 

investigate whether or not the more potent antiviral activity of APOBEC3C I188 compared to 

APOBEC3C S188 could be explained by differences in their inherent enzymatic activity. Thus, 

each protein was produced by expression in a recombinant baculovirus system, purified as 

described in the Materials and Methods, and tested for its ability to cause cytidine deamination. 

We examined APOBEC3C S188 and I188 activity using a ssDNA substrate containing two 

deamination target motifs (Figure 3.5, top sketch). 5' TTC deamination motifs were used because 

APOBEC3C preferentially targets this motif [218]. Reactions were carried out as a time-course 

over 60 minutes and next the substrates were incubated with uracil DNA glycosylase, which 

modifies uracil-containing DNA and makes it sensitive to cleavage at high pH. Cytidine to uracil 

mutations leading to DNA cleavage were detected based on a fluorescein label placed between 

the two deamination motifs. Substrate usage was calculated from integrated gel band intensity of 

cleaved product at either deamination motif relative to the uncleaved substrate. We found that at 

all time points substrate usage of APOBEC3 I188 was higher than S188, and by 60 minutes I188 

had led to twice as many cleavage events as S188 (Figure 3.5, top).  The specific activity of 

APOBEC3C was determined by calculating the picomoles of substrate used (or deamination 

events) per microgram of enzyme per minute on a 118 nt ssDNA. The specific activity values 

were calculated using initial reaction times where the substrate usage was in the linear range 

(Figure 3.5, bottom left). We found that APOBEC3C S188 had a specific activity approximately 

10-fold lower than I188 (0.010 pmol/µg/min vs 0.130 pmol/µg/min) (Figure 3.5, bottom right). 

Therefore, the I188 APOBEC3C more rapidly deaminated cytosines in vitro than S188. Since 

APOBEC3C I188 has greater cytidine deaminase activity in vitro than APOBEC3C S188 (Figure 

3.5), we predicted that it would also have a higher mutational frequency than the APOBEC3C 

S188. To test this prediction, we used a model in vitro system that reconstitutes reverse 

transcription of RNA to DNA, and observed the ability of APOBEC3 enzymes to induce 

mutagenesis. The template includes the gene lacZα, and blue/white screening was performed to 

identify mutated reverse transcription products. White colonies, representing templates that were 

mutated, were then sequencing and the number of mutations induced by each APOBEC3 were 

quantified. We found that addition of APOBEC3C I188 induced two-fold higher clonal mutation 

frequency compared to APOBEC3C S188 (Figure 3.6, 0.33 x 10-2 mutations/bp versus 0.15 x 10- 
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Figure 3.5. In vitro characterization of APOBEC3C S188 and I188. (Top) The specific activity 
of APOBEC3C S188 and I188 was determined by incubating the enzyme with a 118 nt ssDNA 
substrate with an internal fluorescein label (yellow star) and 2 possible sites for cytidine 
deamination (marked as “C”). Single deaminations of the 5'C and 3'C are detected as the 
appearance of fluorescently labeled 100 nt and 81 nt fragments, respectively; double deamination 
of both C residues on the same molecule results in a 63 nt labeled fragment. Substrate usage is 
quantified for below each lane of the gels. (Bottom) The substrate usage during a 60 min time 
course was plotted from three independent experiments (bottom left) and used to calculate the 
specific activity of the enzymes (bottom right).  
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Figure 3.6. In vitro reverse transcription assay. An in vitro HIV replication assay was utilized to 
determine the APOBEC3C enzyme ability to catalyze deaminations during proviral DNA 
synthesis. This system reconstitutes reverse transcription of (−)DNA and synthesis of (+)DNA by 
using a substrate which contains a polypurine tract (PPT), 120-nt of the protease gene (prot) of 
HIV, and a lacZα reporter. (Left) G→A mutations are scored for each clone and mutational 
spectra are plotted as the percentage of clones containing a mutation at a particular location (nt) 
in the 368 nt prot-lacZα construct. The number of mutations per base pair for each APOBEC3C 
is indicated above the spectra. (Right) Histograms depicting the population distribution of 
mutations per prot-lacZα for the APOBEC3C enzymes. 
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2 mutations/bp, respectively). For reactions containing APOBEC3C S188, 100% of clones had 

zero to one G→A mutation. In contrast, the presence of APOBEC3C I188 caused a noticeable 

shift in the number of G→A mutations with 32% of clones having more than one mutation and 

up to four to five mutations in some individual clones (Figure 3.6). Overall, isoleucine at position 

188 increased the APOBEC3C-induced mutagenesis of ssDNA in vitro. 	

3.3.4 Dimerization correlates with enhanced antiviral activity of human APOBEC3C. 

Previous studies have reported that the S188 variant of APOBEC3C is a monomeric protein, both 

in solution [149] and in cells [51]. Indeed, by size exclusion chromatography we also found that 

baculovirus/Sf9-produced APOBEC3C S188 (the common variant) is monomeric (Figure 3.7A, 

apparent molecular weight 17 kDa).   However, the baculovirus-produced APOBEC3C I188 was 

in equilibrium between monomer and dimer forms (Figure 3.7A, apparent molecular weight 21 

kDa and 42 kDa, respectively). We confirmed this result using an alternative method of cross-

linking the proteins in solution followed by SDS-PAGE and Western blotting.  Baculovirus/Sf9-

produced APOBEC3C A3C S188 or I188 were incubated in the absence or presence of 10 µM 

bis(sulfosuccinimidyl)suberate (BS3), an amine-amine chemical crosslinker, and then visualized 

through SDS-PAGE and Western blotting (Figure 3.7B). A3C S188 remained monomeric in the 

presence of crosslinker, whereas A3C I188 was dimeric in the presence of the crosslinker. The 

observation that the isoleucine residue at position 188 was able to shift the oligomeric profile of 

APOBEC3C suggests that residue 188 is important for dimerization.  Dimerization has been 

previously correlated with improved APOBEC3 catalytic activity because it enables efficient 

scanning of ssDNA to find cytosine targets for deamination.[107]. This provides a potential 

explanation for the increased in vitro enzymatic activity of A3C I188. In order to further test the 

effects of dimerization of A3C on antiviral activity, we constructed an artificial dimer that 

consists of two tandem S188 APOBEC3Cs (Figure 3.8A) and tested the anti-lentiviral activity of 

this protein.   We used the linker that naturally exists between the N- and C-terminal domains of 

the two double-domain APOBEC3s, APOBEC3D and APOBEC3F, which are the APOBEC3 

proteins with the highest sequence identity shared with APOBEC3C. This linker consists of 

amino acids Arg-Asn-Pro followed by the second APOBEC3 domain starting at Met12 (labeled 

Met12’ here—see schematic at top of Figure 3.8A).  Western blot analysis shows that this 

artificial double domain APOBEC3C is expressed in cells and runs at about the same molecular  
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Figure 3.7. Purified APOBEC3C I188 forms dimers in solution. (A) Size exclusion 
chromatography profiles of the APOBEC3C S188 and I188 from a 10mL G200 Superdex column 
were used to calculate the oligomerization states of the enzymes. Molecular weights were 
calculated by comparing to a calibration curve (see inset on right).  When APOBEC3C S188 and 
APOBEC3C I188 were loaded onto the column, APOBEC3C S188 was a monomer in solution 
(apparent MW 21 kD in peak fraction), whereas APOBEC3C I188 could form dimers (apparent 
MW 42 kD in peak fraction) in addition to monomers (apparent MW 21 kD in peak fraction). 
Chromatograms were made using the integrated gel band intensities from three independent 
experiments of each protein fraction after resolution by SDS-PAGE.  A representative Western 
blot of the size exclusion chromatography fractions is shown. (B) A3C S188 or I188 were 
incubated in the absence or presence of 10 µM bis(sulfosuccinimidyl)suberate (BS3) crosslinker 
(indicated as -BS3 or +BS3) and then visualized through SDS-PAGE and Western blotting. The 
Western blot demonstrates that A3C S188 remained monomeric in the presence of crosslinker, 
whereas A3C I188 was both monomeric and dimeric in the presence of the crosslinker. Molecular 
weight standards are indicated.  
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Figure 3.8. A synthetic dimer of APOBEC3C has increased antiviral activity (A) Cartoon 
schematic showing the sequence of the double-domain APOBEC3C. Restriction of HIV-1 Δvif 
by APOBEC3G(A3G), APOBEC3C S188 (A3C S188), APOBEC3C I188 (A3C I188) and the 
double-domain APOBEC3C (S188-S188). 0.3µg APOBEC3 was used in this assay. Error bars 
represent standard deviation of four independent transfections and infections.  A Western blot for 
expression of the APOBEC3 proteins is shown, and is representative of three experiments.  (B) 
Packaging of APOBEC3C variants.  Left side:  Intracellular expression.  Right side:  Proteins in 
the pelleted virions. The intracellular blot was probed with antibody to the HA tag and with 
antibody to tubulin.  The virion pellet blot was probed with antibody to the HA tag and with an 
antibody to p24gag.  A background band in the virion blot with the HA antibody is marked with 
an asterisk.  The single domain APOBEC3C proteins are marked with a solid arrow, while the 
synthetic double domain APOBEC3C is marked with an open arrow.  Relative quantitation of the 
amounts of APOBEC3C is shown under the panels.  An HIV provirus is transfected in each 
condition; Lanes 1, no APOBEC3; lanes 2, APOBEC3C I188; lanes 3, APOBEC3C S188; lanes 
4; the double-domain APOBEC3C (S188-S188).  
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weight as the natural double domain APOBEC3 protein, APOBEC3G (Figure 3.8A).We 

examined the antiviral activity of the synthetic dimer APOBEC3C gene (with S188 in both 

domains, called S188-S188) compared to APOBEC3C S188 and APOBEC3C I188 (Figure 3.8A) 

against HIV-1Δvif).  Again, APOBEC3G was used as a positive control.  While the APOBEC3C 

I188 restricted 5-10 fold better than APOBEC3C S188 (Figure 3.8A: 30% infectivity compared 

to 8 % infectivity), strikingly, APOBEC3C S188-S188 dimer restricted infection as efficiently as 

APOBEC3G (Figure 3.7B: approximately 1% infectivity for both conditions). Importantly, the 

APOBEC3C S188-S188 synthetic dimer restricts infection far greater than two-fold more than 

the APOBEC3C S188 monomer (Figure 3.8A: 30% infectivity relative to 1% infectivity), 

suggesting that the increased antiviral activity is not simply the result of having twice as many 

active sites. Thus, these results indicate that forced dimerization is sufficient to induce anti-HIV 

activity of APOBEC3C regardless of the isoleucine at position 188. In a separate series of 

experiments, we also examined the ability of each of the A3C variants to be packaged into 

virions. We found that A3C I188 was not packaged to a greater extent than A3C S188 (compare 

Fig 3.8B lanes 2 (A3C I188) to Figure 3.8B lanes 3 (A3C S188). Thus the greater activity of A3C 

I188 correlates better with its increased enzymatic activity than with virion packaging. On the 

other hand, the synthetic dimer of A3C S188-S188 is packaged into virions 10-20 fold better than 

the single domain versions of A3C (Figure 3.8B). This increased packaging could additionally 

explain the enhanced antiviral activity of the synthetic dimer. This suggests that while natural 

dimers of APOBEC3C have increased enzymatic activity, a synthetic dimer of an APOBEC3 

protein can be created with improved antiviral activity due to increased packaging into virions. 

3.3.5 APOBEC3C variants are targeted by Vif. In the absence of direct clinical or 

cohort data, we next sought to further evaluate the relevance of APOBEC3C to HIV infection. 

Previous studies had found that APOBEC3C mRNA is well expressed in primary T cells [223]. 

We reasoned that if APOBEC3C is indeed a restriction factor relevant to HIV, then one would 

expect it to be antagonized by the viral Vif protein. To test this, we produced HIV-1 (either 

lacking vif, or expressing either HIV-1 or HIV-2 vif) in the presence of APOBEC3C. When we 

express APOBEC3C I188 during HIV production, the infectivity of the virus is reduced by more 

ten-fold. However, in the presence of APOBEC3 S188 or I188, both HIV-1 Vif and HIV-2 Vif, 

restored viral infectivity (Figure 3.9A). We also conducted western blots analysis to probe for 

APOBEC3C (S188 and I188) expression in the presence of HIV-1 and HIV-2 Vif proteins  
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Figure 3.9. APOBEC3C is targeted by Vif. (A) Restriction of HIV-1 Δvif by APOBEC3C S188 
(A3C S188), APOBEC3C I188 (A3C I188), and full recovery of infectivity by the presence of 
HIV-1 (LAI strain) and HIV-2 (ROD strains) vif.  0.4µg of APOBEC3 plasmid was used for each 
condition, and 0.6µg of each provirus was used. Infectivity of each virus is set to 100% for 
infection with No APOBEC3 (No A3) present. Error bars represent standard deviation of three 
independent transfections and infections.  Black bars indicate no Vif, orange bars indicate HIV-1 
(LAI) Vif, and green bars indicate HIV-2 (ROD) Vif (B) Vif degradation of APOBEC3C S188 
and I188 was detected by Western blot analysis. 0.4µg of APOBEC3C and 0.6µg of an HIV-1 
provirus (either Δvif) or containing  HIV-1 vif or containing HIV-2 vif) were used to transfect 
293T cells and lysates were probed for APOBEC3C expression. Tubulin was used as a loading 
control.  
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(Figure 3.9B). Consistent with other reports, A3C S188 protein levels are significantly decreased 

in the presence of HIV-1 Vif [149, 222] as well as HIV-2 Vif [225]. Likewise, the expression of 

the A3C I188 variant also dramatically decreased in the presence of HIV-1 and HIV-2 Vif. Thus, 

APOBEC3C I188 effectively antagonized by HIV-1 and HIV-2 Vif which suggests that even the 

more active form of APOBEC3C in its partial dimer form can still be targeted by both human 

lentiviral pathogens.  These results suggest that APOBEC3C is relevant to HIV infections since 

Vif has evolved to induce its degradation and APOBEC3C is expressed in HIV target cells.     	

3.3.6 APOBEC3C I188 is an ancient human polymorphism that is not found in other 

hominids. The APOBEC3C I188 variant is present at frequency of 2.4% in the 1000 Genomes 

Project [27]. Therefore, a relatively small proportion of humans carry a variant of APOBEC3C 

that is more enzymatically active against lentiviruses. To determine which allele is ancestral at 

position 188, we constructed a phylogeny of primate APOBEC3C sequences. All old world 

monkeys (N=15) analyzed encode an isoleucine at position 188 (Figure 3.10A). Moreover, 

orangutans, siamangs, and gibbons also encode isoleucine, but the serine change at amino acid 

188 occurred in the lineage leading to gorillas, chimpanzees, and humans (Figure 3.9A).  Thus, 

isoleucine at position 188 is likely the ancestral state, and changed during the evolution of 

hominids.  There are two possible explanations for the existence of the I188 in humans: 1) a 

reversion back to isoleucine may have occurred in a subpopulation or 2) a polymorphism has 

been maintained at this site for millions of years, since humans split from their ancestor with 

gorillas and chimpanzees. If a serine to isoleucine reversion mutation occurred in recent human 

evolution, we would expect it to be present only in a limited subset of humans. The frequency of 

the allele in the 1000 Genomes Project data is 8.9% in populations of African descent, less than 

1% frequency in the Americas, and not present in Asia and Europe [27] (Figure 3.10B). Humans 

are dramatically more genetically diverse in Africa than on any other continent, so the presence 

of the allele almost exclusively in Africa does not provide strong evidence that the isoleucine 

reverted only in African populations. Therefore, we sought to determine if the APOBEC3C I188 

allele is distributed across divergent populations in Africa, or if it is present in only a particular 

subpopulation. The APOBEC3C I188 allele is present in all six African subpopulations analyzed 

by the 1000 Genomes project, with a frequency ranging between 5.6% and 13% (Figure 

3.10B).  However, many of the sub-populations included in the 1000 Genomes Project live in  
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Figure 3.10. Isoleucine 188 changes to serine in some hominoids but was maintained or reverted 
back to isoleucine for some human populations. (A) A phylogram of catarrhines, along with an 
alignment of the C-terminus of APOBEC3C. All old world monkey sequences contained 
isoleucine at 188 (15 sequences total). (B) Allele frequency of Ile SNP in global human 
populations, as well as Homo neanderthalensis. (C) Allele frequency of Ile 188 in chimpanzees, 
bonobos, gorillas, and orangutans (n=79). Sequences were derived from the Great Ape Genome 
Project[226]. 
  



	 	50 

regions affected by the Bantu Expansion, a migration event when Bantu-speaking tribes swept 

across the continent approximately 3,000 years ago [227, 228]. To determine if the isoleucine 

allele is present in more diverse African genomes, we determined the APOBEC3C sequence from 

individuals from four hunter-gatherer groups (Hadza, Sandawe, Mbuti, and Khoe-San)[229, 230]. 

We found that one of the four Khoe-San individuals was heterozygous for the I188 allele, and 

two out of five Sandawe individuals were heterozygous for the I188 allele (Figure 3.10B). In 

conclusion, I188 seems to be a widely distributed SNP in African populations suggesting that the 

more active allele is very ancient, and may have even been circulating in humans since the birth 

of the species. Presence of the I188 in the ancient human relative Homo neanderthalensis would 

have provided evidence that the allele has been present in the Homo lineage for at least 600,000 

years but we failed to find the I188 SNP in the published Neanderthal genomes. To determine if 

other hominoids also possess variation at position 188 we probed the APOBEC3C sequences 

from the Great Ape Genome project[226], and found that none of the great apes included in the 

study (n=79) were polymorphic at position 188 (Figure 3.10C). Ten orangutans were included in 

the study, and all encoded isoleucine at position 188. In contrast, all gorillas (n= 31), and 

chimpanzees and bonobos (n=38), encoded serine at position 188. Humans, gorillas, and 

chimpanzees diverged from their most recent common ancestor approximately 10 to 20 million 

years ago [231, 232], and in this ancestral lineage the more active isoleucine allele was lost. 

However, since some humans express the I188 allele, it is possible S188 never rose to fixation 

and I188 was maintained as a minor allele for a long period of the evolutionary history of 

hominoids. Alternatively, it is possible that serine became fixed in the ancestor to gorillas, 

chimpanzees and humans, but more recently the serine reverted to isoleucine in a subpopulation 

of humans. Nonetheless, we find that the APOBEC3C I188 is relatively ancient to humans, but is 

not present to an appreciable extent in out-of-Africa human populations, nor have we found it in 

other hominids. 

3.4 Discussion 

APOBEC3C stood out among the seven human APOBEC3 paralogs as it has no known 

function. We observed that the six APOBEC3s with known functions possess a conserved 

isoleucine at the residue homologous to APOBEC3C position 188, whereas APOBEC3C encodes 

a serine at this position. However, human APOBEC3C is in fact polymorphic at this site, and 

some humans encode an isoleucine, the residue that correlates with APOBEC3 antiviral/anti-
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retroelement function. This led us to hypothesize that APOBEC3C may have an as yet 

overlooked role as a restriction factor, and that the I188 variant may have enhanced antiviral 

activity compared to the more common variant, S188.  APOBEC3C has evolved under positive 

selection in primates and within the interface of binding by the viral protein Vif, suggesting that 

this gene may have played a role in restriction of lentiviruses over primate evolution. 

Furthermore, we found that APOBEC3C I188 encodes a protein with increased antiviral activity, 

increased enzymatic activity, and the ability to dimerize in solution.  Consistent with this 

conclusion, an artificial forced dimer of APOBEC3C S188 has vastly increased antiviral activity.  

We find that the isoleucine at position 188 was lost during hominid evolution but was either 

reacquired by some humans since humans split with our most recent common ancestor with 

chimpanzees, or alternatively, has never been lost as an allele and has been maintained as a 

polymorphism through several million years of hominoid evolution.  

Positive selection of APOBEC3C in primates suggests an ancient role in antiviral defense 

Previous studies have shown that APOBEC3C binds to HIV-1 Vif and that E106 is important 

for Vif binding since mutation to lysine at position 106 completely abrogated HIV-1 Vif binding 

to APOBEC3C [149, 222]. We found that this residue within the Vif binding interface is 

evolving under positive selection, and another residue in the Vif-binding region, 77, is also under 

positive selection. Residue 77 is within the α-2 helix of APOBEC3C, which has also been shown 

to be important for HIV-1 Vif binding [149]. Additionally, it is possible that Vifs from other 

lentiviruses target APOBEC3C at different motifs, driving the positive selection in other regions 

of the protein. For example, APOBEC3C is under positive selection at residues 128 and 130. 

While these residues are not in the known APOBEC3C:HIV-1 Vif binding interface, the 

homologous residues of APOBEC3G are involved in HIV-1 Vif binding[148, 233]. Therefore, it 

is possible that other Vif proteins from other lentiviruses target APOBEC3C at positions 128 and 

130, or that ancient lentiviruses have targeted these residues in the past.  In summary, rapid 

evolution of APOBEC3C at the known APOBEC3C:Vif binding interface suggests that 

APOBEC3C has evolved to block lentiviruses in primates.  

Mechanism of increased activity of APOBEC3C I188 relative to APOBEC3C S188 

Our results indicate that the difference in the anti-HIV activity of the APOBEC3C variants 

S188 and I188 lies in the enzymatic efficiency of the two APOBEC3C proteins. We found that 

I188 more rapidly deaminates ssDNA in vitro. Furthermore, in an in vitro RT model system, the 
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presence of APOBEC3C cause a higher mutation frequency than APOBEC3C S188. A previous 

study correlated multimerization of APOBEC3s with the capacity to restrict lentiviruses [51], and 

our finding that the monomeric variant (S188) was less antivirally active than the dimer-forming, 

more active variant (I188), is consistent with this conclusion.  Therefore, our model is that 

isoleucine at position 188 of APOBEC3C enhances lentiviral restriction by improving 

dimerization and in turn, the enzymatic activity of the protein. One possible reason dimerization 

is important for APOBEC3C activity, is that it could improve the protein’s ability to scan DNA 

substrates for cytidine deamination motifs. In fact, I188 lies within α-helix 6, which has 

implicated as important for DNA scanning of another APOBEC3, APOBEC3G [108].  Ongoing 

work suggests that the APOBEC3C I188 is more processive (able to consecutively deaminate 

cytidine motifs without dissociating from substrate), than APOBEC3C S188 (Adolph, et al, 

manuscript in preparation). Taken together, these results bolster the model that the APOBEC3C 

I188 protein has greater antiviral activity than the more common APOBEC3C protein due to 

better enzymatic activity that correlates with increased dimerization. This model that 

dimerization is a key determinant of APOBEC3C activity is further supported by the fact that a 

synthetic dimer formed by linking two tandem S188 APOBEC3Cs drastically enhances antiviral 

activity. In fact, activity is improved even in comparison to I188, the more active variant. I188 

only partially dimerizes, and compared to S188 and S188-S188, has an intermediate ability to 

restrict HIV. Interestingly, the mechanism of increased antiviral activity of A3C S188-S188 is 

likely due to its increased ability to be packaged into virions.  These results suggest that artificial 

forms of human APOBEC3C proteins can have enhanced antiviral properties that may have 

therapeutic uses in controlling viral infection.   

Population genetics of human APOBEC3C suggests that the I188 polymorphism is ancient. 

The isoleucine at position 188 of APOBEC3C is present at approximately 10% frequency 

across diverse African populations, but almost absent from all other global populations. All 

human populations outside of Africa are thought to have descended from one or a few migration 

events out of Africa[234]. As such, humans from non-African populations may lack the 

APOBEC3C I188 allele because it was excluded in a population bottleneck during the 

migrations. Or, the allele may have been lost in non-African populations due to drift or a lack of 

selective pressure, and this possibility is consistent with the fact that no primate lentiviruses are 

known to originate outside of Africa. Alternatively, it is possible that loss of the allele was 
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selected for non-African populations. Expression of another APOBEC3, APOBEC3B, has been 

associated with increased risk of cancer [17, 175]. Therefore, the antiviral function of 

APOBEC3s may come at an evolutionary trade-off. In fact, this may have driven the maintenance 

of the less enzymatically active S188 allele for millions of years in humans and ancient human 

ancestors. Our phylogenetic analysis shows that APOBEC3C I188 is ancestral in primates, but 

changed to serine in the clade of apes including gorillas, chimpanzee, and humans. The fact that 

humans have a polymorphism that corresponds with the ancestral residue could be due to a 

reversion back to the amino acid present in other primates, but not in gorillas nor chimpanzees. If 

a reversion occurred it must have happened long ago in human history, since the allele is present 

in such deeply divergent populations across Africa. However, the allele was likely lost due to a 

bottleneck in the out-of-Africa populations because it is almost completely missing from non-

African populations.  Alternatively, it is possible that the isoleucine allele has continued in the 

human lineage through incomplete lineage sorting (the maintenance of a polymorphism after the 

divergence of species), since before humans split with their most recent common ancestor with 

gorillas more than 10 million years ago. Notably, the isloleucine codon, ATT, at position 188 is 

the same in the human SNP as in all other primates with an Ile at this position in APOBEC3C.   

While we did not find support for incomplete lineage sorting since we did not find any other 

hominids that were polymorphic at position 188, the limited number of great ape sequences were 

included does not allow us to completely rule out this second possibility.  Nonetheless, given the 

increased antiviral activity of APOBEC3C I188 and its fixation in primates other than hominids 

argues that the gain (or maintenance) of this allele in humans has been driven by a function for 

protection against pathogens. 

Potential impact on human health  

We discovered that an APOBEC3C single nucleotide polymorphism (SNP) that is common in 

Africa enhances anti-lentiviral activity. This polymorphism may impact human susceptibility to 

cross-species transmissions of lentiviruses because Vifs from other lentiviruses may not 

antagonize human APOBEC3C. HIV-1 and HIV-2 Vif are able to antagonize both variants of 

APOBEC3C so the I188 SNP may not block HIV transmission, so Vif may effectively counteract 

I188 activity during infection. However, the fact that APOBEC3C is antagonized by Vif does 

suggest that APOBEC3C is an important barrier that must be countered by the virus during 

natural infections. Alternatively, it is possible that APOBEC3C antagonism by Vif is an 
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unintended consequence due to Vif binding to another APOBEC3, APOBEC3F, as APOBEC3C 

has a Vif binding pocket that is nearly identical to the Vif binding pocket of APOBEC3F[149, 

151, 222]. Despite the ability of Vif to antagonize APOBEC3C, it is possible that APOBEC3C 

I188 influences HIV susceptibility. In infected individuals possessing the whole APOBEC3 

repertoire, Vif has to adapt to counteract multiple antiviral proteins and this may constrain Vif 

and weaken its activity. In fact, viral genomes sequenced from HIV-1-infected patient cells are 

extensively mutated by APOBEC3s despite the presence of Vif [235, 236] and the extent of 

APOBEC3-induced mutagenesis negatively correlates with disease progression rate [237]. As 

such, it is possible that APOBEC3C I188 may provide some level of protection from HIV 

transmission or pathogenesis.  

3.5  Materials and Methods 

3.5.1 APOBEC3C sequence. APOBEC3C was amplified by RT-PCR from total RNA 

extracted from chimpanzee, gorilla, orangutan, white-cheeked gibbon, siamang, baboon, sooty 

mangabey, and red-capped mangabey, and proboscis monkey cells (either fibroblast or lymphoid) 

obtained from Corriell Repository as well as from the vervet monkey cell line Vero, the tantalus 

monkey cell line CV-1, and the sabeus cell line V038 provided by the Nonhuman Primate 

Research Resource (NPRR). Primers were designed to amplify from the 3’ and 5’ UTRs of 

APOBEC3C mRNA transcripts (5’UTR: CTAAGAGGCTGAACATGAATC’3, 3’UTR: 

5’GGCTAGAGGAGACAGACCATGA’3). The APOBEC3C amplicons were cloned into pGEM 

vectors, and then sequenced. The S188-188 forced dimer was designed to mimic the linker 

between the two domains of the double-domain APOBEC3F. The N-terminal subunit consists of 

APOBEC3C residues 1–189 (residue 190 is removed), followed by the residues RNP, which 

serve as a linker. The C-terminal APOBEC3C begins at the second start codon, M12. The dimer 

S188-S188 APOBEC3C was constructed by overlap extension PCR. Two separate PCRs were 

performed for the N terminal and C terminal APOBEC3C subunits (1st domain, For: 

TTCAGGATCCATGAATCCAGAGATC, 1st domain, Rev: 

GCCTCCATTGGGTCCCGGAGACTCTCCCGTAGCCTTCTTT, 2nd domain, For: 

TCCAGGATCCATGAATCCACAGATC, 2nd Rev: GCCCTCTAGATTAGGCGTAGTCAGG), 

and these amplicons were annealed in a third PCR reaction using the 1st domain For and the 2nd 

domain Rev primers. 
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3.5.2 Sequence analysis. APOBEC3C genes were aligned using Geneious software. To 

test for positive selection, maximum likelihood tests were performed using the PAML statistical 

software suite [238]. The APOBEC3C genes were subjected to tests that allowed for positive 

selection (M8 model), or disallowed positive selection (M8a model). The analyses were 

performed with the F3X4 codon model, and multiple starting omega values were used, ranging 

between 0.5 and 1.4. Specific residues with signatures of positive selection with a posterior 

probability of 99% or greater were identified by Bayes Empirical Bayes analysis. Ancestral 

APOBEC3C sequences were reconstructed by the likelihood/Empirical Bayes approach using the 

codeml program in PAML. Brach analysis to identify particular primate branches with signatures 

of positive selection in APOBEC3C were performed in two ways. Overall dN/dS values were 

calculated with PAML, using the free ratio model. Additionally, a branch-site test to identify 

statistically significant signatures of episodic selection was performed using the Branch-site REL 

method in the HyPhy software suite [239] .  

3.5.3 APOBEC3, provirus, and LINE-1 plasmids. APOBEC3Cs were cloned into the 

BamHI and XhoI sites of pCDNA3.1 by PCR addition of restriction sites (BamHI and XhoI) to 

the N and C termini of APOBEC3C. The human APOBEC3C plasmid we previously obtained 

from the AIDS Repository contained the SNP rs11551111, which is not common (no reported 

frequency according to dbSNP). Therefore, we used site-directed mutagenesis to change the 

asparagine at position 31 to aspartic acid (For: GCCAACGATCGGGACGAAACTTGGC, Rev: 

GCCAAGTTTCGTCCCGATCGTTGGC). A hemagglutinin tag was inserted into the XhoI and 

XbaI sites of pCDNA3.1, at the C-terminus of each APOBEC3C sequence. APOBEC3G and 

APOBEC3A were also in a pCDNA3.1 backbone, with a Kozak sequence, as well as a 

hemagglutinin tag at the N-terminus. HIV∆env,∆vif, HIV∆vif  + HIV-1 vif,  HIV∆vif  +HIV-2 

vif have been described elsewhere [153]. SIVagm ∆env, ∆vif was kindly provided by Nathaniel 

Landau.  

3.5.4 Infectivity assays. Single round HIV-1 and SIVagm infectivity assays were 

performed as previously described [240]. 293T cells (American Type Culture Collection) were 

plated at a density of 5 X 103 cells per well of a 24-well plate. The next day, the cells were 

transfected with 0.3µg provirus encoding luciferase as a marker gene 0.1µg pL-VSV-G, and 

0.3µg pCDNA3.1.APOBEC3.HA or empty pCDNA3.1 plasmid. For the dose response 

infectivity assay, either 0.1 µg, 0.2µg, or 0.3µg APOBEC3 plasmid was used. For experiments 
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involving Vif expression, 0.2µg of APOBEC3 was used. Forty-eight hours after transfection, 

virions were harvested. For SIVagm infectivity assays, SupT1 cells were infected with 10µl of 

each virus and treated with 20µg/ml DEAE/dextran. For HIV infectivity assays, ELISA was 

performed to quantify p24, and virus equivalent to 2ng p24 was used for infections. For all 

infectivity assays, 5 X 104 were infected in a 96 well dish. Seventy-two hours later, infected cells 

were lysed in luciferase lysis reagent (Brightglo, Promega) and luciferase expression was 

measured on a luminometer (LUMISTAR Omega, BMG). Infectivity of each virus was compared 

by setting infectivity of the “No APOBEC3” control to 100%.  All HIV-1 constructs are based on 

the LAI strain. 

3.5.5 LINE-1 assays. To assay for restriction of LINE-1 retrotransposition 293T cells 

were transfected with 200ng LINE-1 plasmids pYX016 and pYX015[241], along with 100ng of 

APOBEC3C S188 or I188, APOBEC3C,  10ng APOBEC3A, or empty pCDNA3.1 plasmid. The 

next day, the cells were treated with 2.5 ug/ul puromycin to select for transformants. Three days 

later, expression of renilla and firefly luciferase were assayed using a luminometer. The LINE-1 

plasmids encode firefly luciferase disrupted by a splice site, so expression only occurs after 

retrotransposition, whereas renilla luciferase expression is not dependent upon retrotransposition. 

Percent retrotransposition is reported by setting retrotransposition (firefly luciferase values 

divided by renilla luciferase values) in the absence of APOBEC3 to 100%.   

3.5.6 Intracellular protein packaging and expression. Intracellular expression of the 

APOBEC3 proteins during virion production was evaluated by lysis of the virion-producing 293T 

cells with Radio Immunoprecipitation Assay buffer (RIPA), with protease inhibitor (50mM Tris, 

150mM sodium chloride, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, protease inhibitor 

cocktail cOmplete by Roche). Lysates were resolved on an SDS-PAGE gel in MES buffer, and 

transferred to a PVDF membrane for Western blot analysis, using and anti-HA (BioLegend) 

antibody and anti-tubulin (Sigma-Aldrich) antibody. Endogenous levels of APOBEC3C were 

measured by Western blotting with antibody purchased from Fisher (product # PA5- 27629). 

HRP-conjugated secondary antibodies (Santa Cruz) were used to detect primary antibodies.  

Packaging of APOBEC3 into virions was evaluated by co-transfection of 100 ng of each 

APOBEC3 expression plasmid with 500 ng of an HIV proviral clone (LAI) containing a deletion 

in vif in each well of a 12-well plate. Three days after transfection, 1 ml of supernatant was 

collected, filtered through a 0.2 micron filter, and concentrated by pelleting in a microcentrifuge 
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at 13K rpm for 60 minutes and resuspended in 80 µl. The amount of p24gag was determined by 

ELISA (Advanced Bioscience Laboratories). Equal quantities of p24gag were lysed and run on 

an SDS-PAGE gel. The Western blots were probed with an anti-HA antibody for A3C protein 

and with a p24gag antibody for virus production and HRP-conjugated secondary antibodies were 

used to detect primary antibodies. Cells were lysed as described above. The chemiluminescent 

signals from the Western blots were imaged using a ChemiDoc MP Imaging System (Bio-Rad) 

and quantified in the linear detection range. 

3.5.7 Recombinant protein expression and purification. Recombinant baculovirus 

production for APOBEC3C S188 was carried out in the pACG2T transfer vector (BD 

Biosciences), as described previously [111]. Recombinant baculovirus production for 

APOBEC3C I188 was carried out in the pFastbac1-GST-APOBEC3C vector according to the 

Bac-to-Bac expression system (Life Technologies) and as described previously [110]. 

Recombinant virus was then used to infect Sf9 cells.   Cells were harvested 72 hours after 

infection, lysed, treated with RNaseA, and clarified cell lysates were incubated with glutathione-

sepharose 4B resin (GE Healthcare) at 4°C and subjected to a series of salt washes, as described 

previously[102]. The APOBEC3C S188, APOBEC3C I188 enzymes were eluted from the 

glutathione-sepharose resin (GE Healthcare) with the GST tag, as previously described [102]. 

The samples were then treated with thrombin (GE Healthcare) for 6 hr at 21°C to cleave the GST 

tag. 

3.5.8 Size exclusion chromatography. The oligomerization states of the APOBEC3C 

enzymes were determined by loading 10 µg of purified enzyme on a 10 mL Superdex 200 (GE 

Healthcare) size exclusion column. The column was prepared by pouring the resin bed in a 

column with 16-cm height and 0.5-cm diameter. The running buffer contained 50 mM Tris pH 

8.0, 200 mM NaCl and 1 mM DTT. The Bio-Rad standard set was used to generate a standard 

curve from which molecular masses and oligomerization states of the enzymes were determined. 

3.5.9 Protein crosslinking by BS3. A3C S188 and A3C I188 (0.5 µM) were incubated 

with 10 µM BS3 in 20 mM Hepes (pH 7.5), 150 mM NaCl and 1 mM DTT for 1 hour at 21°C. 

Crosslinked proteins were resolved on a 12% SDS-PAGE gel, transferred to a nitrocellulose 

membrane for Western Blot analysis and visualized using primary antibody for native 

APOBEC3C (GeneTex) and secondary IRdye labeled goat anti-rabbit antibody compatible with 

the LI-COR/Odyssey system. 
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3.5.10 In vitro deamination assay. All ssDNA substrates were obtained from Tri-Link 

Biotechnologies as previously published [108]. Reactions were carried out under single-hit 

conditions (i.e. <15% substrate usage) to ensure that a single enzyme carried out the 

deaminations on the ssDNA[242]. A ssDNA substrate containing two 5′-TTC motifs (100 nM) 

was incubated with 350 nM of APOBEC3C I188 or 700 nM of APOBEC3C S188 for 5 to 30 min 

at 37 °C in RT buffer (50 mM Tris, pH 7.5, 40 mM KCl, 10 mM MgCl2, and 1 mM DTT). The 

reaction time was varied on each ssDNA according to the specific activity of the enzymes to 

ensure <15% substrate usage. Reactions were started by the addition of the ssDNA substrate. 

APOBEC3C-catalyzed deaminations were detected by treating the ssDNA with uracil DNA 

glycosylase (New England Biolabs) and heating under alkaline conditions before resolving the 

fluorescein-labeled ssDNA on 10 or 20% (v/v) denaturing polyacrylamide gels, depending on the 

sizes of the ssDNA fragments. Gel photos were obtained using a Typhoon Trio multipurpose 

scanner (GE Healthcare), and integrated gel band intensities were analyzed using ImageQuant 

(GE Healthcare). The specific activity was calculated from single-hit condition reactions by 

determining the picomoles of substrate used per minute for a microgram of enzyme. 

3.5.11 In vitro reverse transcription assay. Mutagenesis of ssDNA by A3 enzymes 

during reverse transcription of an RNA template was assessed using an in vitro assay, which 

models reverse transcription of an RNA template and second-strand synthesis. The method is 

described in detail in Feng and Chelico 2011 [107]. This system uses an in vitro synthesized 

RNA, which contains a polypurine tract (PPT), a protease gene (prot) of HIV, and a lacZα 

reporter for blue/white screening.  The RNA is reverse transcribed to (−)DNA by reverse 

transcriptase (RT) by annealing a DNA primer and after the RNaseH domain of RT removes the 

RNA, the PPT enables second-strand (+)DNA synthesis by acting as a primer. A 368-nt RNA 

template (50 nM) is annealed to a DNA primer (24-nt) and incubated with 1.5 µM of 

nucleocapsid (NC), 1.2 µM of reverse transcriptase (RT) and 500 µM of dNTPs in RT buffer in 

the presence or absence of 350 nM of each APOBEC3C enzyme. The RNA template contained 

an HIV-1 PPT, nucleotides (nt 2282–2401) from the HIV-1 clone 93th253.3 (accession number 

U51189), and lacZα. The resulting dsDNA that is synthesized from this in vitro system was PCR 

amplified using Pfu Cx Turbo Hotstart (Agilent Technologies) that can use uracils as a template 

with high fidelity. These amplicons were then cloned into a pET-Blue vector backbone that 
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allows for blue-white screening of the synthesized lacZα.  At least twenty-five mutated clones for 

each condition were tested. 

3.5.12 SNP analysis. 1000 Genomes Project data was mined for the presence of SNPs at 

position 188 of APOBEC3C (SNP ID rs112120857).  To further elucidate the frequency of the 

APOBEC3C I188 SNP across Africa, we analyzed the genomes reported by Schuster et al.[230] 

and Lachance et al.[229] for the presence of the I188 allele. To assay for the presence of SNP at 

position 188 in other hominoids, we mined the Great Ape Genome Project [233] (accession 

number SRP018689) sequences in the NCBI short read archive. 
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4.0  Examination of A3C orthologs for differences in enzymatic activity 

In Chapter 3, it was observed that the common A3C allele, S188, had weak HIV restriction 

ability. We found that the reason for this observed inactivity was due to the enzyme not being 

able to form dimers. This is in contrast to a single-nucleotide polymorphism (SNP) at amino acid 

position 188, I188 that formed dimers in solution. Strikingly, the requirement for dimerization 

was clearly demonstrated through the use of an artificial dimer of A3C. A3C that was dimerized 

through an engineered peptide linker had an increased restriction capacity over the I188 SNP and 

a reduction in virus infectivity similar to that of A3G. It is unique to A3C that dimerization seems 

to be the most important factor for improving the catalytic activity of the enzyme.  

We then were interested to examine whether this residue at position 188 was solely 

responsible for the HIV restriction activity for A3C. The human A3C shares a high level of 

sequence similarity with the chimpanzee and gorilla A3C orthologs and chimpanzee and gorilla 

A3C both possess a S188. This would suggest that the S188 chimpanzee and gorilla A3C were 

also not active against HIV (or SIV). We sought to determine the restriction activity of 

chimpanzee and gorilla A3C. We were also interested in determining whether the requirement for 

dimerization for increased human A3C activity would also extend to being essential for 

chimpanzee and gorilla A3C. The A3C oligomerization interface has not been previously 

determined. Altogether, the initial study on A3C activity presented in Chapter 3 has provided a 

framework for a further biochemical characterization of the enzyme.  

 

  



	 	61 

 

5.0  Cytidine deaminase efficiency of the lentiviral viral restriction factor 

APOBEC3C correlates with dimerization. 

 
Madison B. Adolph1, Anjuman Ara1, Yuqing Feng1, Cristina J. Wittkopp2,3,4, Michael 

Emerman3,4, James S. Fraser5, Linda Chelico1.  
1Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, 

Saskatchewan, Canada 
2Department of Microbiology, University of Washington, Fred Hutchinson Cancer Research 

Center, Seattle, WA, USA 
3Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 
4Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 
5Department of Bioengineering and Therapeutic Science and California Institute for 

Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA 

 

The information in this chapter was previously published: 

 

Adolph, M.B., Ara, A., Feng, Y., Wittkopp, C.J., Emerman, M., Fraser, J.S., Chelico, L. 

(2017). Cytidine deaminase efficiency of the lentivrial viral restriction factor APOBEC3C 

correlates with dimerization. Nucleic Acids Research, 45(6): 3378-3394. 

 

Copyright © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic 

Acids Research. This is an Open Access article distributed under the terms of the Creative 

Commons Attribution License, which permits non-commercial re-use, distribution, and 

reproduction in any medium, provided the original work is properly cited.  

 

All experiments in this chapter were performed by M.B.A. Figures 4.3B and 4.11 were 
modeled by J.S.F.. A.A. contributed to preliminary experiments. Y.F., C.J.W., M.E. provided 
reagents. M.B.A. and L.C. conceived and designed the experiments and analyzed the data. 
M.B.A., L.C., M.E., J.S.F. wrote the article. M.B.A., A.A., Y.F., M.E., J.S.F. revised the 
article. 
 

  



	 	62 

5.1 Abstract  

The seven APOBEC3 (A3) enzymes in primates restrict HIV/SIV replication to differing 

degrees by deaminating cytosine in viral (-)DNA, which forms promutagenic uracils that 

inactivate the virus. A polymorphism in human APOBEC3C (A3C) that encodes an S188I 

mutation increases the enzymatic activity of the protein and its ability to restrict HIV-1, and 

correlates with increased propensity to form dimers. However, other hominid A3C proteins only 

have an S188, suggesting they should be less active like the common form of human A3C. 

Nonetheless, here we demonstrate that chimpanzee and gorilla A3C have approximately 

equivalent activity to human A3C I188 and that chimpanzee and gorilla A3C form dimers at the 

same interface as human A3C S188I, but through different amino acids. For each of these 

hominid A3C enzymes, dimerization enables processivity on single-stranded DNA and results in 

higher levels of mutagenesis during reverse transcription in in vitro and in cells. For increased 

mutagenic activity, formation of a dimer was more important than specific amino acids and the 

dimer interface is unique from other A3 enzymes. We propose that dimerization is a predictor of 

A3C enzyme activity. 

5.2 Introduction 

The human APOBEC3 (A3) family of single-stranded (ss) DNA cytidine deaminases has 

seven members that act as host restriction factors against retroelements, retroviruses, and other 

DNA viruses that contain ssDNA intermediates [2]. For A3 enzymes to restrict HIV-1 in CD4+ T 

cells, they must first be encapsidated into the budding virion in order to facilitate cytosine to 

uracil deaminations on the (-)DNA synthesized by reverse transcriptase [243]. When the (-) DNA 

is copied to form the (+) DNA the uracils template the addition of adenine, which results in 

C/G→T/A transition mutations that reduce the infectivity of HIV-1 [67-69]. The A3 enzymes 

A3D, A3F, A3G, and A3H (haplotypes II, V, and VII) are able to restrict HIV-1 infection in this 

manner to varying degrees [58, 59, 65, 66, 126, 244, 245]. However, lentiviruses such as HIV-1 

have evolved a protein, Vif, which antagonizes the A3 proteins by inducing their degradation [52, 

66, 114, 126, 246-251]. Vif physically interacts with A3 enzymes and functions as a substrate 

receptor for a Cullin 5 E3 ubiquitin ligase complex inducing the polyubiqitination of the A3 

proteins followed by degradation in the proteasome [52]. Vif is stabilized in host cells by 

interacting with the transcriptional cofactor CBFβ and Elongin C [54, 55, 252].  
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For A3 enzymes that fortuitously escape Vif mediated degradation or in the absence of Vif, 

the encapsidated A3s must be able to induce enough mutations to inactivate the proviral DNA. 

To achieve high levels of mutations, the enzymes must efficiently find cytosines for deamination 

within their preferred target motif within a limited amount of time [2]. HIV-1 replication is a 

dynamic process with (-)DNA synthesis, RNA degradation, and (+)DNA synthesis occurring at 

the same time. A3 enzymes A3F, A3G, and A3H have been characterized to locate these targets 

on ssDNA by facilitated diffusion [2]. Facilitated diffusion is Brownian motion driven diffusion 

of enzymes on DNA that occurs in the absence of an energy source to drive the enzyme’s motion 

[104, 105]. Facilitated diffusion can involve one-dimensional sliding of the enzyme along the 

DNA phosphate backbone and three-dimensional translocations that are described as jumping or 

intersegmental transfer [104, 105]. Jumping is used to describe the movement of the enzyme as it 

diffuses within the charged domain of the DNA without directly interacting with the DNA 

phosphate backbone [104, 105]. Intersegmental transfer involves a doubly-bound state where the 

enzyme leaves the charged domain of the DNA and enters into the bulk solution to bind another 

DNA segment before releasing the first bound DNA [104, 105]. Sliding allows for deamination 

of cytosines that are closely spaced (< 20 nt) whereas the jumping or intersegmental transfer 

movements allow for deamination of more distantly spaced targets [106, 107, 253]. The A3 

enzymes that most efficiently induce mutagenesis in HIV-1 proviral DNA, such as A3G and 

A3H, use a combination of both one-dimensional short-range sliding and three-dimensional long-

range scanning movements which enables a rapid sampling of DNA for the preferred target motif 

[107, 110, 111, 254]. In contrast, A3F that is limited to using only long-range movements induces 

less mutagenesis than A3G and A3H [108]. However, A3G, A3H, and A3F are all processive 

enzymes, meaning they can deaminate multiple cytosines in a single enzyme-substrate encounter, 

but their level of processivity differs as a result of their scanning movements and this influences 

their mutagenic efficiency.  

The processive mechanism of A3C has not been characterized previous to this study, however, 

A3C has been found in the majority of studies to be weakly restrictive or not restrictive for HIV-

1 replication, yet it is still highly expressed in CD4+ lymphocytes and can be encapsidated [28, 

209, 218, 255-258]. Recently, a human (h) A3C polymorphism, S188I, which exists in 

approximately 10% of people of African descent was found to enable hA3C S188I to restrict 

HIV-1 replication 5- to 10-fold more than the common hA3C [27, 28]. The hA3C S188I was able 
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to dimerize in vitro, unlike the common hA3C [28, 149]. While this is usually required for 

encapsidation for other A3s, for hA3C both the common and hA3C S188I were able to 

encapsidate relatively equally [28]. These data suggested that the higher restriction levels induced 

by hA3C S188I in comparison to the common hA3C were due to differences in the enzymes 

inherent biochemical characteristics [28].  

Here, we investigated the mechanism by which hA3C S188I has greater activity than the 

common hA3C. Our biochemical analysis demonstrates that the hA3C S188I is more processive 

and more mutagenic during reverse transcription than the common hA3C. Since we had 

previously shown that the hA3C S188I mutation correlates with dimerization of the protein [28], 

we also analyzed the closely related chimpanzee (cA3C) and gorilla A3C (gA3C) enzymes since 

these encode an S188, like to the common hA3C version. Surprisingly, we found that cA3C and 

gA3C were efficient at inducing mutagenesis during reverse transcription despite the presence of 

an S188, suggesting another determinant for activity. We found that cA3C and gA3C have 

achieved this increased activity through dimerization that is mediated by a unique amino acid. 

These observations are consolidated by the finding that dimerization is required for A3C 

processivity and although the hominid A3Cs share a common dimer interface, they use different 

amino acids to form the dimer. Identifying these determinants enables prediction of A3C 

enzymatic activity.  

5.3 Results 

5.3.1 Human A3C S188I is a processive enzyme. We were interested in understanding 

why the hA3C S188I polymorphism encodes a more active enzyme than the more common hA3C 

S188. Since the ssDNA scanning mechanisms used by an A3 enzyme contributes to the 

efficiency of HIV-1 restriction we first examined the mechanisms by which hA3C scanned 

ssDNA [2]. By characterizing the ssDNA scanning mechanisms we are able to measure enzyme 

processivity, the ability of the enzyme to deaminate more than one cytosine in a single enzyme-

substrate encounter. An in vitro deamination assay was used in which A3C processivity was 

tested on different synthetic ssDNA substrates that contained two 5’TTC deamination motifs 

spaced varying distances apart. Processive deaminations are measured under single-hit conditions 

(<15% substrate usage) to ensure that each ssDNA substrate was acted upon by only one enzyme 

during the course of the reaction [242]. Under these conditions a processivity factor is calculated 

as the ratio of the processive deaminations occurring during the experiment, i.e., deamination of 
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both 5’TTC motifs in a single enzyme-substrate encounter, in comparison to the calculated 

theoretical number of deaminations that would occur independently at both 5’TTC motifs if the 

enzyme were non-processive (see Materials and Methods) [111]. As a reference for the range of 

processivity, a highly processive deaminase, such as A3G, has processivity factors ranging from 

4 to 8, depending on the ssDNA substrate (Figure 5.1) [107, 108]. An enzyme that is non-

processive, such as A3A, would have a processivity factor of 1.0 or an undetectable level of 

deamination of both motifs under the single-hit reaction kinetics of the experiment (Figure 5.1) 

[119].  

To measure processive sliding movements we used an ssDNA substrate with the deamination 

targets spaced 5 nt apart. For the common hA3C (S188, referred to as hA3C), a processive 

deamination band (5’ & 3’) was not detected under single-hit reaction kinetics (Figure 5.2A). 

Thus, hA3C was unable to processively slide to deaminate multiple cytosines. In contrast, on this 

substrate the hA3C S188I had a processivity factor of 1.4 (Figure 5.2A). This processivity factor 

meant that hA3C S188I was 1.4-fold more likely to catalyze processive deaminations of both the 

cytosine motifs in a single enzyme-ssDNA encounter than to catalyze both deaminations in 

separate enzyme-ssDNA encounters. To investigate if the A3Cs had differences in their ability to 

scan ssDNA by three-dimensional translocations, we utilized ssDNA substrates with more 

distantly spaced deamination targets (63 nt apart). The processivity factors indicated that hA3C 

S188I was 2-fold more processive than the more common form of hA3C (Figure 5.2B).  Thus 

differences in enzyme processivity could explain why hA3C S188I is able to restrict HIV-1 

replication more than hA3C [28]. 

5.3.2 Chimpanzee and gorilla A3C processivity is distinct from human A3C 

processivity. We previously showed the cA3C and gA3C encode a serine at position 188 [28], 

suggesting that they should be less active than hA3C S188I if the S188I mutation is the only 

mutation able to confer increased processivity for A3C. Surprisingly, however, on the substrate 

with deamination targets spaced 5 nt apart, cA3C and gA3C had processivity factors of 1.9 and 

2.1, respectively (Figure 5.2C). Similarly, on ssDNA substrates with deamination targets spaced 

63 nt apart, the processivity factors of cA3C and gA3C demonstrated that these enzymes were 

approximately 3-fold more likely to catalyze processive deaminations, but hA3C had a 

processivity factor of 1.4 (Figure 5.2D). To extend these results we tested the processivity of  
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Figure 5.1. Processivity of A3G and A3A. Processivity of A3 enzymes was tested on an ssDNA 
substrate that contained fluorescein-labeled deoxythymidine (yellow star) between two 5′CCC 
(A3G) or 5′TTC (A3A) deamination motifs. Deamination of a 118 nt ssDNA substrate with 
deamination targets spaced 63 nt apart. Single deaminations of the 5′ C & 3′ C are detected as the 
appearance of labeled 100- and 81- nt fragments, respectively; double deamination of both C 
residues on the same molecule results in a 63 nt labeled fragment. A measurement using the 
integrated gel band intensities determines a processivity factor that indicates the likelihood of the 
enzyme to deaminate both motifs in a single enzyme-substrate encounter (see Materials & 
Methods). If no 5′C & 3′C band was detected, the processivity was denoted with N.D. (not 
detected) and means that the enzyme is not processive. The measurements of enzyme 
processivity (processivity factor) and the S.D. are shown below the gels. All values are calculated 
from at least three independent experiments. 
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Figure 5.2. Analysis of A3C processivity on ssDNA oligonucleotides. Processivity of A3C was 
tested on ssDNA substrates that contain a fluorescein-labeled deoxythymidine (yellow star) 
between two 5′TTC deamination motifs separated by different distances. (A-B) hA3C S188I is 
more processive than hA3C. (A) Deamination of a 60 nt ssDNA substrate with deamination 
targets spaced 5 nt apart. Single deaminations of the 5′C & 3′C are detected as the appearance of 
labeled 42- and 23- nt fragments, respectively; double deamination of both C residues on the 
same molecule results in a 5 nt labeled fragment. (B) Deamination of a 118 nt ssDNA substrate 
with deaminated cytosines spaced 63 nt apart. Single deaminations of the 5′C & 3′C are detected 
as the appearance of labeled 100- and 81- nt fragments, respectively; double deamination of both 
C residues on the same molecule results in a 63 nt labeled fragment. (C-F) cA3C and gA3C are 
more processive than hA3C. (C) Deamination of a 60 nt ssDNA substrate as for panel (A). (D) 
Deamination of a 118 nt ssDNA as for panel (B). (E) Deamination of a 69 nt ssDNA substrate 
with deamination targets spaced 14 nt apart. Single deaminations of the 5′C & 3′C are detected as 
the appearance of labeled 51- and 32- nt fragments, respectively; double deamination of both C 
residues on the same molecule results in a 14 nt labeled fragment. (F) Deamination of an 85 nt 
ssDNA substrate with deaminated cytosines spaced 30 nt apart. Single deaminations of the 5′C & 
3′C are detected as the appearance of labeled 67- and 48- nt fragments, respectively; double 
deamination of both C residues on the same molecule results in a 30 nt labeled fragment. If no 
5′C & 3′C band was detected, the processivity was denoted with N.D. (not detected). The 
measurements of enzyme processivity (processivity factor) and the S.D. are shown below the 
gels. All values are calculated from at least three independent experiments. 
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hA3C, cA3C, and gA3C on substrates with deamination targets spaced 14- and 30- nt apart. 

Consistently, cA3C and gA3C were more processive than hA3C (Figure 5.2E-F).  

Due to the higher processivity factors of all A3Cs on the ssDNAs with distantly spaced 

deamination targets, these data suggest that the A3C enzymes were primarily using three-

dimensional translocations in order to locate the target cytosines. However, hA3C S188I, cA3C, 

and gA3C were more processive than hA3C. We also determined that the specific activity of 

cA3C and gA3C were similar to hA3C S188I and 5- to 8- fold higher than hA3C (Table 5.1). 

Altogether the data suggested that for cA3C and gA3C, increases in deamination activity did not 

require an I188, as for hA3C.  

5.3.3 Dimerization of hominid A3C is mediated through α-helix 6 or β-strand 4. We 

reasoned that by examining differences in hA3C, cA3C, and gA3C sequences we could identify 

amino acids that were unique to cA3C and gA3C and investigate if these amino acids enabled 

increased processivity and specific activity. From this analysis, only the amino acids at positions 

85 (β-strand 3), 99 (α-helix 3) and 115 (β-strand 4) that were different in both cA3C and gA3C 

from hA3C were candidates (Figure 5.3A). To aid in making mutations we examined the existing 

crystal structure of hA3C (Figure 5.3B) [149]. Although hA3C is a monomer in solution, the 

enzyme crystallized as a dimer [149]. Since dimerization was important for increased hA3C 

S188I activity [28], we hypothesized that cA3C and gA3C were more active than hA3C due the 

ability to dimerize. We thus began by mutating amino acids closest to the predicted dimer 

interface. The amino acid at position 115 was closer to the predicted dimer interface in the hA3C 

crystal structure than amino acid 85 or 99 (Figure 5.3B, β-strand 4). As a result, we converted the 

cA3C and gA3C amino acid at position 115 to the hA3C amino acid at that position, making a 

K115N mutant (Figure 5.3A). 

Using size exclusion chromatography (SEC) and a calibration curve, we determined the 

oligomerization states of cA3C, gA3C, and their K115N mutants. Consistent with increased 

processivity and specific activity, we found that cA3C and gA3C were able to form dimers, 

similar to hA3C S188I, but in contrast to hA3C (Figure 5.4A-C and Figure 5.5, apparent 

molecular weights 45 kDa (dimer) and 19 kDa (monomer)). The cA3C and gA3C SEC showed 

the presence of both monomer and dimer peaks indicating that the dimer and monomer forms 

were in equilibrium (Figure 5.4A-B). Interestingly, the hA3C crystal structure correctly predicted 

the key dimerization amino acid for cA3C and gA3C [149]. The cA3C K115N existed solely as a  
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Table 5.1. Specific activity of A3 enzymes on ssDNA. 
 
  

Enzyme Specific Activity (pmol/µg/min) 

hA3C 0.020 ± 0.005 

cA3C 0.100 ± 0.010 

gA3C 0.150 ± 0.010 

hA3C S188I 0.160 ± 0.050 

hA3C N115K 0.085 ± 0.020 

hA3C S188I/N115K 0.220 ± 0.020 

cA3C S188I 0.210 ± 0.030 

cA3C K115N 0.050 ± 0.007 

gA3C S188I 0.280 ± 0.030 

gA3C K115N 0.080 ± 0.002 
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Figure 5.3.  Sequence alignment and structural analysis of A3C. (A) Sequence alignment of 
hA3C, cA3C, and gA3C with amino acid differences shown in white. The sequence alignment 
was performed by a Clustal Omega multiple sequence alignment [259] and plotted using the 
program ESPript [260]. (B) Surface representation of a hA3C dimer from the crystal structure 
(PDB: 3VOW). Amino acids unique to hA3C that are potentially involved in the dimer interface 
are shown in purple (α-helix 6, S188; β-strand 4, N115) and other amino acids unique to hA3C 
are shown in yellow (β-strand 3, K85; α-helix 3, D99). 
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Figure 5.4. A3C dimerization is mediated through α-helix 6 or β-strand 4. (A-C) SEC profile for 
10 µg of (A) cA3C, cA3C K115N, and cA3C S188I; (B) gA3C, gA3C K115N, and gA3C S188I; 
and (C) hA3C, hA3C S188I, hA3C N115K, and hA3C S188I/N115K from a 10 mL Superdex 
200 column was used to calculate the oligomerization state of the enzyme from a standard 
calibration curve. An M denotes a monomer fraction and a D denotes a dimer fraction. (A) cA3C 
formed monomers and dimers (apparent molecular weights 19 kDa and 45 kDa, respectively), 
cA3C S188I formed a stable dimer (apparent molecular weight 45 kDa), and cA3C K115N 
formed monomers (apparent molecular weight 19 kDa). (B) The gA3C SEC profiles were similar 
to cA3C, except for gA3C K115N that was mainly monomers (apparent molecular weight 19 
kDa), but also retained a small proportion of dimers (apparent molecular weight 45 kDa). (C) 
hA3C formed monomers in solution (apparent molecular weight 19 kDa), hA3C S188I and hA3C 
N115K were an equilibrium of monomers and dimers (apparent molecular weights 17 kDa and 
45 kDa, respectively) and hA3C S188I/N115K was a stable dimer (apparent molecular weight 45 
kDa). The chromatograms were constructed by analyzing the integrated gel-band intensities of 
each protein in each fraction after resolution by SDS-PAGE (Supplementary Figure S3). (D) A3C 
enzymes were incubated in the absence or presence of 20 µM BS3 crosslinker and subsequently 
visualized with SDS-PAGE and immunoblotting. Monomeric A3C enzymes remained as 
monomers in the presence of crosslinker (cA3C K115N, hA3C). A3C enzymes that were able to 
form dimers according to SEC, were also present as monomers/dimers (cA3C, gA3C, gA3C 
K115N, hA3C S188I) or as dimers (cA3C S188I, gA3C S188I, hA3C S188I/N115K) in the 
presence of the crosslinker.  Molecular weight standards are indicated. (E) 
Coimmunoprecipitation of A3C-V5 with A3C-HA. The A3C-HA and A3C-V5 were transfected 
in combination and the immunoprecipitation of cell lysates used either anti-HA antibody or 
Rabbit IgG (mock) and was immunoblotted with antibodies against α-tubulin, HA, and V5. Cell 
lysates show the expression of α-tubulin, HA, and V5. (F-H) The apparent Kd of A3C enzymes 
from a 118 nt ssDNA was analyzed by steady-state rotational anisotropy for (E) cA3C, cA3C 
S188I, and cA3C K115N; (F) gA3C, gA3C S188I, and gA3C K115N; and (G) hA3C, hA3C 
S188I, hA3C N115K, and hA3C S188I/N115K. Apparent Kd values are shown in the figure. Hill 
coefficients for cooperative binding curves are (E) cA3C, 1.6; cA3C S188I, 1.7; (F) gA3C, 1.8; 
gA3C S188I, 2.1; (G) hA3C S188I, 1.6; hA3C N115K, 1.5; hA3C S188I/N115K, 1.9.  Error bars 
represent the S.D. from three independent experiments.  
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Figure 5.5. SDS-PAGE of size exclusion chromatography resolved fractions of A3C enzymes. (A) 
The standard curve obtained from the 10 ml Superdex 200 column from which molecular weight 
and oligomerization states where calculated (see Figure 3). (B-K) The chromatograms from the 
10 ml Superdex 200 column were constructed by analyzing the integrated gel band intensities of 
the protein in each fraction after resolution by SDS-PAGE (see Figure 3). The gels for each panel 
were resolved, stained with Oriole stain, and scanned in parallel. The gels show the size 
exclusion chromatography fractions resolved by SDS-PAGE for each A3C, as labeled on each 
panel. The molecular weight calculated from the standard curve are shown for the peak fractions.  
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monomer population, similar to hA3C (Figure 5.4A, C). The gA3C K115N formed a majority of 

monomers, however there were still a small proportion of dimers in solution (Figure 5.4B). This 

suggested that an amino acid unique to gA3C further stabilized dimerization. Only V133 is 

unique to gA3C, suggesting that the dimer interface in gA3C may directly or indirectly involve α-

helix 4 (Figure 5.3A). Further, in hA3C a K115 alone can mediate dimerization since a hA3C 

N115K mutant formed an equilibrium of monomers and dimers (Figure 5.4C). That the wild type 

cA3C and gA3C dimerization was similar to hA3C S188I and hA3C N115K (Figure 5.4A-C) 

was consistent with the conclusion that dimerization was enabling A3C to be more processive 

and have a higher specific activity (Figure 5.2 and Table 5.1).  

In order to more rigorously test this conclusion using deamination assays, we first created a 

panel of mutants at positions 115 and 188 in each of the three hominid A3C enzymes. We 

introduced the hA3C S188I mutation on α-helix 6 in cA3C and gA3C. Both cA3C S188I and 

gA3C S188I shifted from an equilibrium of monomer and dimer populations to a stable dimer 

(Figure 5.4A-B). We also mutated hA3C to form the hA3C S188I/N115K double mutant. The 

hA3C S188I/N115K formed a stable dimer (Figure 5.4C). Analysis of these mutants suggested 

that the hA3C, cA3C, and gA3C dimerization interfaces were the same, but were stabilized by 

different amino acids.  

To confirm the differences in oligomerization as determined by SEC, we used chemical 

crosslinking and co-IP. For crosslinking, the BS3 amine to amine chemical crosslinker enabled 

the resolution of A3C complexes by SDS-PAGE, which were then visualized by immunoblotting. 

Although the amount of protein added to each crosslinking reaction was the same (Figure 5.4D, -

BS3), the total intensities of crosslinked proteins as determined by immunoblotting appeared to 

be unequal, which may have been due to amino acids that reacted with the BS3 preventing the 

antibody from binding (Figure 5.4D, +BS3). Nonetheless, the crosslinked A3C data were 

consistent with the SEC and identified the same monomeric (cA3C K115N, hA3C), 

monomeric/dimeric (cA3C, gA3C, gA3C K115N, hA3C S188I), and dimeric (cA3C S188I, 

gA3C S188I, hA3C S188I/N115K) forms (Figure 5.4D). We also confirmed that the dimerization 

was physiological by demonstrating that A3C-HA could co-IP A3C-V5. The co-IP experiment 

was conducted in the presence of RNaseA to ensure that we were detecting protein-protein 

interactions. This was tested for hA3C, hA3C S188I, and hA3C S188I/N115K. We found that 
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hA3C S188I and hA3C S188I/N115K, but not hA3C, could co-IP from the lysates of 293T cells, 

consistent with the SEC and crosslinking data (Figure 5.4E).  

To determine if these differences in dimerization also occurred on ssDNA we used 

fluorescence depolarization to measure the rotational anisotropy of fluorescently labeled ssDNA 

when A3C was titrated into the solution. The binding of A3C to the fluorescently labeled ssDNA 

will result in a change in rotation speed (anisotropy) until the fluorescently labeled ssDNA is 

saturated with A3C. From these data an apparent dissociation constant (Kd) was determined. We 

observed that each A3C was able to bind ssDNA in the nanomolar range, with cA3C, gA3C, and 

hA3C S188I having less than a 2-fold higher affinity for ssDNA than hA3C (Figure 5.4F-H). 

This indicated that the minimal processivity observed for hA3C was not due to the enzyme 

having a weak interaction with the ssDNA (Figure 5.2). However, we observed that the nature of 

the interaction of the A3C enzymes with ssDNA was different. The cA3C, gA3C, and hA3C 

S188I bound ssDNA cooperatively (Figure 5.4F-H, Hill coefficients of 1.5 to 2.1), while hA3C 

bound ssDNA non-cooperatively (Figure 5.4H, data fit a rectangular hyperbola). This indicated 

that the cA3C, gA3C, and hA3C S188I monomers in solution were able to oligomerize by 

binding ssDNA and the dimers in solution were stabilized or oligomerized further upon binding 

ssDNA. This was not observed for hA3C that bound ssDNA non-cooperatively and indicated that 

hA3C remained a monomer even when bound to ssDNA (Figure 5.4H). With the mutants, we 

found that the A3C enzymes that were able to form dimers in solution bound to ssDNA 

cooperatively and the A3C enzymes that lacked the ability to dimerize bound ssDNA non-

cooperatively with saturation curves that best fit a rectangular hyperbola by least squares 

regression analysis (Figure 5.4F-H). The exception was gA3C K115N that had a minor dimer 

population, but bound ssDNA non-cooperatively (Figure 5.4B and 5.4G). These data demonstrate 

that the V133 amino acid is not sufficient to promote dimerization on ssDNA and either I188 or 

K115 are required for this function. Altogether, the SEC and binding data indicated that the 

oligomerization state and not the binding affinity for ssDNA differed between hA3C and hA3C 

S188I, cA3C, and gA3C. Thus, the higher processivity of hA3C S188I, cA3C, and gA3C 

correlated with their ability to form dimers.  

5.3.4  Dimerization correlates with efficient ssDNA scanning. Our analysis of A3C 

orthologs indicated that dimerization was required for processive ssDNA scanning. However, due 

to other amino acid differences between the A3C orthologs (Figure 5.3A) we analyzed the 
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monomer and dimer forms of each A3C ortholog individually to test that improved dimerization 

would lead to improved processivity. To test for short-range processivity due to sliding we used 

the substrate with deamination targets separated by 5 nt. We observed that for hA3C, 

dimerization through the S188I mutation enabled processive sliding and this increased further 

when the hA3C S188I dimer was stabilized by the N115K mutation (Figure 5.6A, short-range). 

For the cA3C S188I stable dimer we observed improved sliding compared to the wild type 

enzyme (Figure 5.6B, short-range). In contrast, the monomeric cA3C K115N was not processive 

(Figure 5.6B, short-range). The results with the gA3C mutants were similar to cA3C with the 

gA3C S188I having improved sliding from the wild type enzyme and the gA3C K115N having 

approximately 3-fold reduced sliding from the wild type enzyme (Figure 5.6C, short-range).  

To test for long-range processivity due to jumping or intersegmental transfer we used the 

substrate with deamination targets separated by 63 nt. For hA3C, the S188I mutation improved 

the processivity of the enzyme approximately 3-fold (Figure 5.6A, long-range). The formation of 

a stable dimer did not further improve processivity (Figure 5.6A-C, long range). However, the 

cA3C K115N and gA3C K115N mutants were approximately 1.5- to 2- fold less processive than 

the wild type enzymes (Figure 5.6B-C, long-range). The changes in oligomerization also resulted 

in changes to the specific activity of the enzymes. With the introduction of the hA3C S188I or 

hA3C S188I/N115K mutation, the hA3C specific activity was increased 8- to 11- fold from the 

wild type (Table 5.1). Stabilization of the cA3C or gA3C dimer with the S188I mutation resulted 

in a 2-fold increase in specific activity from the wild type enzymes (Table 5.1). The K115N 

mutation in cA3C and gA3C resulted in an approximately 2-fold lower specific activity than the 

wild type enzymes (Table 5.1). Since the amino acid differences were not in the active site, the 

data suggested that differences in catalytic activity were due to the different efficiencies in the 

ssDNA scanning mechanisms employed. 

5.3.5 A monomer-dimer equilibrium is required for scanning ssDNA by intersegmental 

transfer.  The long-range processivity movements can be of two types, either jumping or 

intersegmental transfer. We determined whether the A3C orthologs and their mutants were 

scanning ssDNA using jumping, intersegmental transfer, or both in order to determine if the 

stability of the dimer correlated with either of these types of movements.  

For A3C that has a single DNA binding domain per polypeptide chain, intersegmental transfer 

movements would require dimerization to achieve a doubly bound state. We conducted an  
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Figure 5.6. Dimerization influences processive ssDNA scanning. Processivity of A3C mutants 
was tested on ssDNA substrates and compared to the wild type enzyme. (A-C) Processivity factor 
values are shown for short-range movements based on deamination of a 60 nt ssDNA substrate 
with deamination targets spaced 5 nt apart and long-range movements based on deamination of a 
118 nt substrate with deaminated cytosines spaced 63 nt apart for (A) hA3C, hA3C S188I, and 
hA3C S188I/N115K, (B) cA3C, cA3C S188I, and cA3C K115N, and (C) gA3C, gA3C S188I, 
and gA3C K115N. See Supplementary Figure S4 for a representative gel. (D) Intersegmental 
transfer ability of cA3C was determined by keeping an A3C/ssDNA ratio of 7:1 constant, but 
increasing the total reaction components. If the enzyme is able to undergo intersegmental 
transfer, the assay will result in an apparent decrease in the processivity factor with increasing 
concentrations of reaction components. The ssDNA substrate contained a fluorescein-labeled 
deoxythymidine (yellow star) between two deamination targets separated by 63 nt. The 
measurements of enzyme processivity (processivity factor) and the S.D. are shown below the gel. 
(E-F) Summary of intersegmental transfer assays shown in Supplementary Figure S5. (E) The 
monomer/dimer forms of A3C (cA3C, gA3C, hA3C S188I) are better able to undergo 
intersegmental transfer than the (F) stable dimer forms of A3C (cA3C S188I, gA3C S188I, hA3C 
S188I/N115K). For comparison, the hatched line in (F) denotes the decrease in processivity 
observed for monomer/dimer forms of A3C in (E). All values are calculated from at least three 
independent experiments.  
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intersegmental transfer assay by increasing the concentration of the A3C and ssDNA substrate 

while keeping the ratio of the components the same. In doing this, the reaction environment 

becomes crowded which makes the enzyme more likely to translocate to a different ssDNA than 

to translocate within the same ssDNA substrate [110, 261]. If intersegmental transfer is occurring 

this results in an apparent decrease in the enzyme’s processivity as the enzyme cycles between 

substrates [110, 261]. For example, for cA3C we observed that as the concentration of the 

reaction components increased, the processivity decreased (Figure 5.6D, cA3C processivity of 

3.0 decreased to 1.1). For cA3C the processivity decreased to 1.1, which is essentially non-

processive. This meant that the majority of the three-dimensional translocations for cA3C were 

due to intersegmental transfer and not jumping (Figure 5.2D and F). Since jumping occurs within 

the localized charged domain of the DNA it is insensitive to crowding of the reaction [2, 110, 

261]. To compare the A3Cs we summarized the intersegmental transfer assay data by calculating 

the relative decrease of processivity with increasing A3C and ssDNA concentration for the A3Cs 

that are monomer/dimer (Figure 5.6E) or dimer (Figure 5.6F). For the A3Cs with a 

monomer/dimer equilibrium, all could undergo intersegmental transfer relatively equally as 

demonstrated by the characteristic decrease of the processivity factor with increasing reaction 

components (Figure 5.6E). This suggested that for A3C, dimerization and not specific amino acid 

motifs was the main determinant for this ssDNA scanning mechanism. However, the stable dimer 

forms were not able to undergo intersegmental transfer as well (Figure 5.6F). The processivity 

factors did not decrease throughout the titration and plateaued (Figure 5.6F). However, the stable 

dimer forms of A3C did remain processive and had processivity factors that were not 

significantly different than the corresponding monomer/dimer A3C form at the initial A3C: 

ssDNA concentration used in the experiments (gA3C, compare Figure 5.7 panels A and C; 

hA3C, Figure 5.7 panels B and E; cA3C, compare Figure 5.6D and Figure 5.7D). These data 

indicate that jumping was used instead of intersegmental transfer (Figure 5.7). Thus, these forms 

of ssDNA scanning for A3C were interchangeable and did not depend on specific amino acid 

motifs, but were mediated by dimerization.   

5.3.6 Ability to processively scan ssDNA correlates with mutagenesis ability. Our 

results showing that cA3C and gA3C were more processive in comparison to hA3C would 

predict that they are also able to induce a higher frequency of mutations than hA3C [107, 108]. 

To investigate this we used an in vitro assay to test the mutagenic potential of the A3C enzymes  
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Figure 5.7. Intersegmental transfer ability of A3C is determined by the oligomeric state. The 
ssDNA substrate contained a fluorescein-labeled deoxythymidine (yellow star) between two 
5′TTC deamination motifs. The deamination targets were separated by 63 nt. Intersegmental 
transfer ability of (A) gA3C (monomer/dimer), (B) hA3C S188I (monomer/dimer), (C) gA3C 
S188I (dimer), (D) cA3C S188I (dimer), and (E) hA3C S188I/N115K (dimer) was determined by 
keeping an A3C/ssDNA ratio of 3:1 constant, but increasing the total reaction components. If the 
enzyme is able to undergo intersegmental transfer, the assay will result in an apparent decrease in 
the processivity factor with increasing concentrations of reaction components. The measurements 
of enzyme processivity (processivity factor) and the S.D. are shown below the gels. All values 
are calculated from at least three independent experiments. 
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in which we could add the same molar amounts of each enzyme. This assay recapitulates reverse 

transcription of (-) DNA and synthesis of (+) DNA in vitro (see Materials and Methods) [107, 

108]. The mutational spectra showed that hA3C induced at least 2.5-fold less mutations than 

cA3C and gA3C (Figure 5.8A-C, hA3C 0.13 x 10-2 mutations/bp; cA3C 0.33 x 10-2 mutations/bp; 

gA3C 0.40 x 10-2 mutations/bp). We also examined the difference in the mutational load per 

clone sequenced for each of the enzymes. For hA3C, all of the clones sequenced had at most one 

G→A mutation per clone (Figure 5.8D). Since clones were chosen for sequencing based on 

mutagenesis of the lacZα region (blue/white screening), when hA3C clones contained zero G→

A mutations, they were recovered due to other mutations induced by reverse transcriptase. This 

was in contrast to cA3C and gA3C that were able to cause a greater number of G→A mutations 

per clone (Figure 5.8E-F). We next tested the A3C mutants to determine if their mutagenic 

efficiency would correlate with processivity and dimerization. We summarized the mutation 

frequency of the A3C enzymes according to their oligomeric state (Figure 5.8G, monomer, 

monomer/dimer, dimer). In contrast to other A3C orthologs that formed dimers, the gA3C 

K115N could not oligomerize on ssDNA, despite forming a small amount of dimers in solution 

(Figure 5.4B and 5.4G). As a result, for the experiment, we considered this A3C to be a 

monomer. The results show that the in vitro mutation frequency increases with dimer formation. 

In comparison to the monomeric A3C forms, the increases were ~2-fold for monomer/dimer and 

3- to 4- fold for dimer and were independent of the A3C ortholog (Figure 5.8G). The 

improvement in overall mutations induced was also observed on a per clone basis (Figure 5.9).  

We also confirmed that these increases in mutagenic efficiency were relevant to virus 

restriction by conducting single-cycle infectivity assays with virus derived from a LAI Δvif 

construct. In this assay, an increase in A3-induced mutagenesis results in a decrease in virus 

infectivity. Consistent with previous studies using HIV-1 Δvif, hA3C does not restrict the virus, 

A3G highly restricts the virus, and hA3C S188I restricts the virus more than hA3C (~3-fold 

more) (Figure 5.8H) [28]. The single-cycle infectivity assays were in agreement with the in vitro 

mutagenesis assay and demonstrated that monomer/dimer and dimer A3C forms were more able 

decrease virus infectivity than monomeric A3C, regardless of the A3C ortholog. We confirmed 

that decreases in viral infectivity were the result of A3-induced mutations by PCR amplifying and 

sequencing a 351 nt portion of the protease gene from integrated proviral DNA (Table 5.2). It 

should be noted that the mutation frequencies recovered from the proviral DNA are not directly  
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Figure 5.8. Monomeric A3C induces lower levels of mutagenesis than dimeric A3C in vitro. An 
in vitro HIV replication assay was utilized to determine the enzymes abilities to catalyze 
deaminations during proviral DNA synthesis. (A-C) Spectra of mutations are plotted as the 
percentage of clones containing a G→A mutation at a particular location (nt) in the 368 nt prot-
lacZα construct for (A) hA3C, (B) cA3C or (C) gA3C. (D-F) Histograms illustrate the number of 
mutations that can be induced by (D) hA3C, (E) cA3C or (F) gA3C within individual clones. (G) 
Summarized G→A mutation frequency for A3C monomers (hA3C, cA3C K115N, gA3C 
K115N), monomers/dimers (hA3C S188I, cA3C, gA3C), and dimers (hA3C S188I/N115K, 
cA3C S188I, gA3C S188I). The graph denotes whether the A3C is from human (h), chimpanzee 
(c), or gorilla (g). Individual spectra and clonal mutation frequencies not included in Figure 5 are 
in Supplementary Figure S6. (H) HIV Δvif infectivity was measured by β-galactosidase 
expression driven by the HIV-1 5′LTR from HeLa CD4+ HIV-1 LTR-β-gal cells infected with 
HIV Δvif that was produced in the absence or presence of A3G or A3C orthologs. Relative 
decrease in virus infectivity is shown for A3G, A3C monomers (hA3C, cA3C K115N, gA3C 
K115N), A3C monomers/dimers (hA3C S188I, cA3C, gA3C), and A3C dimers (hA3C 
S188I/N115K, cA3C S188I, gA3C S188I). The graph denotes whether the A3C is from human 
(h), chimpanzee (c), or gorilla (g). Results normalized to the no A3 condition are shown with the 
Standard Deviation of the mean calculated from at least three independent experiments. 
Statistical significance of HIV Δvif restriction for each A3C ortholog was determined in 
comparison to the monomer form (hA3C, cA3C K115N, or gA3C K115N). Designations for 
significant difference of values were p≤0.001 (***), p≤0.01(**), or p≤0.05 (*). (I) 
Immunoblotting for the HA tag was used to detect A3 enzymes expressed in cells and 
encapsidated into HIV Δvif virions. The cell lysate and virion loading controls were α-tubulin 
and p24, respectively. Quantification of the relative amount of A3 was normalized to hA3C.  
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Figure 5.9. Ability to dimerize correlates with increased mutagenesis in vitro. An in vitro HIV 
reverse transcription assay was utilized to determine the mutant A3C enzymes abilities to 
catalyze deaminations during proviral DNA synthesis. (A–F) Spectra of mutations are plotted as 
the percentage of clones containing a mutation at a particular location (nt) in the 368 nt prot-
lacZα construct for (A) hA3C S188I, (B) hA3C S188I/N115K, (C) cA3C S188I, (D) cA3C 
K115N, (E) gA3C S188I, (F) gA3C K115N. (G-L) Histograms illustrate the number of mutations 
per clone that can be induced by (G) hA3C S188I, (H) hA3C S188I/N115K, (I) cA3C S188I, (J) 
cA3C K115N, (K) gA3C S188I, (L) gA3C K115N. 
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Table 5.2. Analysis of A3-induced mutagenesis of protease DNA from integrated HIVΔvif. 
 

A3C  Base pairs sequenced Total G→A mutations Mutations per kb 

hA3C 9477 3 0.03 

cA3C K115N 9477 2 0.02 

gA3C K115N 10179 4 0.03 

hA3C S188I 10179 8 0.07 

cA3C 8073 3 0.04 

gA3C 9126 6 0.06 

hA3C S188I/N115K 9126 15 0.16 

cA3C S188I 9126 11 0.13 

gA3C S188I 10179 17 0.17 
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comparable to the in vitro assay since the in vitro assay uses a selection process to recover 

mutated clones and the proviral DNA is sequenced without selection, thus, the latter mutation 

frequencies are lower. Nonetheless, consistent with the in vitro data (Figure 5.8A-F and Figure 

5.9), with increased dimerization we observed an increase in the total number of mutations (Table 

5.2) and an increase in the number of mutations per clone (Figure 5.10). Specifically, formation 

of a monomer/dimer resulted in a 2-fold increase in mutation frequency, stable dimers resulted in 

a 3- to 5-fold increase in mutation frequency, and formation of a monomer resulted in a 2-fold 

decrease in mutation frequency (Table 5.2). The only exception is that the cA3C mutation 

frequency is not as high as the other monomer/dimer forms (hA3C S188I and gA3C) (Table 5.2). 

This is also reflected in the similar decreases of infectivity induced by the monomer (cA3C 

K115N) and monomer/dimer (cA3C) forms (Figure 5.8H). This is likely due to cA3C 

encapisdating 2- to 4-fold less than other monomer/dimer A3C forms (hA3C S188I and gA3C) 

(Figure 5.8I). Notably, A3G encapsidation is at least 2.5-fold more efficient than A3C, which 

provides reasoning for why dimer forms of A3C are still not as effective as A3G in decreasing 

viral infectivity, although A3G is also more processive than A3C (Figure 5.8I and Figure 5.1). 

Despite the level of encapsidation being an additional determining factor to processivity in virus 

restriction between A3G and A3C, within the A3C orthologs, the decreases in infectivity in the 

majority of conditions correlates better with the processivity rather than encapsidation. For 

example, gA3C S188I is encapsidated 2-fold less than gA3C, but is able to restrict virus 

infectivity 2-fold more (Figure 5.8H), is the more processive A3C (Figure 5.6C), is able to induce 

more mutations (Table 5.2), and more mutations per clone (Figure 5.10). Similarly, hA3C 

S188I/N115K is encapsidated 2-fold less than hA3C, but is able to restrict virus infectivity ~2.5-

fold more (Figure 5.8H), is the more processive A3C (Figure 5.6A), is able to induce more 

mutations (Table 5.2), and more mutations per clone (Figure 5.10). Altogether, these data 

demonstrate the importance of an enzyme’s processive ssDNA scanning mechanisms for 

inducing mutagenesis in a dynamic system where there is a limited amount of time that the 

ssDNA is available.  

5.4 Discussion 

Our biochemical analysis has established that A3C dimerization correlates with 

processive DNA scanning. The hA3C S188I variant dimerizes, in contrast to the common hA3C 

(Figure 5.4). The cA3C and gA3C were able to dimerize despite containing an S188 by using an  
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Figure 5.10. Ability to dimerize correlates with increased mutagenesis in integrated proviral HIV 
Δvif DNA. A single-cycle infectivity assay was utilized to determine the ability of A3C enzymes 
to catalyze deaminations during proviral DNA synthesis. Histograms illustrate the number of 
mutations per integrated proviral DNA clone that can be induced by (A) hA3C, (B) cA3C 
K115N, (C) gA3C K115N, (D) hA3C S188I, (E) cA3C (F) gA3C, (G) hA3C S188I/N115K, (H) 
cA3C S188I, and (I) gA3C S188I. 
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amino acid unique to cA3C and gA3C, K115 (Figure 5.4). These data support the model that 

dimerization of A3C is primarily mediated through α-helix 6 (human S188I) or β-strand 4 

(chimpanzee and gorilla). The importance of these biochemical characteristics is that higher 

levels of A3C-mediated mutagenesis during reverse transcription requires a dimeric and 

processive enzyme. Altogether, these data provide a biochemical explanation for why hA3C 

S188I is able to restrict HIV-1 more than hA3C [28]. 

Modulation of catalytic activity in the AID/APOBEC family 

The A3C data on processivity and specific activity demonstrate that differences in 

catalytic activity were due to the different efficiencies in the ssDNA scanning mechanisms 

employed and that this was dependent on the oligomerization state (Figure 5.2 and Table 5.1). In 

the AID/APOBEC family there have been several common observations that amino acids outside 

of the active site can mediate catalytic activity. A3F specific activity can be increased by 

introducing sliding activity through mutations in α-helix 6, a structure that is located away from 

the active site [108, 262, 263]. A3G and A3A deamination activity can be enhanced by a 

secondary Zinc ion that binds loop 3, outside of the active site [264]. The Zinc ion is not used 

directly for catalysis, but stabilizes loop 3 in a conformation that promotes the correct orientation 

of substrate binding for catalysis [264]. A3A activity is also enhanced by cooperative 

dimerization [265]. Further, the related family member Activation Induced cytidine Deaminase 

(AID) that deaminates within specific regions of immunoglobulin genes to promote somatic 

hypermutation and class switching has been characterized as being a catalytically inefficient 

enzyme [188, 266, 267]. The low efficiency of catalysis is despite AID’s high processivity and 

ability to remain bound to ssDNA for an average of 5 min [268]. Data indicates that the low 

efficiency is due to an inaccessibility of the catalytic pocket to DNA [266]. It was proposed that 

this causes a high propensity of catalytically unfavorable ssDNA-AID binding conformations, 

which may afford some protection against off-target mutations in genomic DNA [188, 266]. This 

may also be why the majority of humans carry an A3H allele for a thermodynamically unstable 

enzyme (haplotypes I, III, IV, or VI) although this does not completely protect from the ability of 

A3H to contribute to mutations that arise during cancer [59, 60, 174]. The relative inactivity of 

A3C in the majority of humans due the loss of oligomerization may also be a mechanism to 

decrease off-target mutations, despite its ability to access genomic DNA in cells [28, 269]. 
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Processivity of A3C  

We observed that the primary mechanism used by the A3C enzymes to locate target 

cytosines on ssDNA was long-range translocations involving jumping or intersegmental transfer. 

Even though hA3C S188I, cA3C, and gA3C were able to slide on ssDNA, in contrast to hA3C, 

the processivity factors indicated that they were only 1.5- to 2- fold more likely to catalyze 

processive deaminations than non-processive deaminations on closely spaced cytosines (Figure 

5.2). Thus, the sliding was a minor component of their processive scanning mechanism. The 

long-range movements, mediated by jumping or intersegmental transfer, were more significant 

and enabled hA3C S188I, cA3C, and gA3C to undergo processive long-range movements ~3-

fold more than non-processive interactions with ssDNA (Figure 5.2). Notably, all the A3C 

enzymes we tested were 2- to 4- fold less processive and 1.7- to 20- fold less mutagenic during in 

vitro reverse transcription than other A3 enzymes that restrict HIV-1 characterized to date (Figure 

5.6 and Figure 5.8) [108, 110, 111]. This may explain why although A3C mutations during 

proviral DNA synthesis increased with dimerization, there was still a portion of proviral clones 

that only had one mutation even in the presence of a processive and dimeric A3C (Table 5.2 and 

Figure 5.10). In agreement with another study by Byeon et al., we found A3C to have less 

specific activity than other A3s [108, 110, 119, 254, 270-272]. However, the A3C in the study 

from Byeon et al. was produced from E. coli and is less active than our A3C produced from Sf9 

cells, similar to what has been found for AID produced from Sf9 and E. coli cells [270, 273]. 

Based on these data, we expect that hA3C S188I would contribute to mutagenesis along with 

other A3 enzymes rather than be able to fully suppress the virus independently of other A3s [28].   

The ability to oligomerize has been correlated with improved processivity and specific 

activity for A3G and A3H, although monomers of the enzymes are still catalytically active [99, 

107, 110, 254, 274]. Oligomerization of A3 enzymes allows for multiple binding and interaction 

domains, which imparts a larger selection of ssDNA scanning mechanisms to efficiently locate 

the target cytosine. Consistent with previous literature, the current data with A3C enzymes also 

found that those enzymes that were able to form dimers had higher processivity factors than the 

enzymes that were unable to dimerize [107, 110]. Further, the high processivity factors were due 

to the enzyme not only improving in processivity, but also gaining a processive mechanism, e.g., 

hA3C S188I improved long-range processivity, but also gained the ability to slide (Figure 5.6A). 

The A3C enzymes that formed stable dimers had the most improvement in their ability to 
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catalyze processive deaminations (Figure 5A-C, hA3C S188I/N115K, cA3C S188I, gA3C 

S188I).  

For A3C, a single Zinc coordinating domain (Z-domain) enzyme, dimerization is required 

for intersegmental transfer to occur. We initially expected that the stable dimer forms of A3C 

would have enhanced intersegmental transfer since the dissociation or reassociation of dimers on 

ssDNA would not be rate limiting. Rather, the data supports the conclusion that for A3C, 

intersegmental transfer required an unstable dimer (Figure 5.6D-F). The data suggest that the 

stable dimer is in a conformation where it is not favorable to bind two different ssDNA segments 

simultaneously. That stable dimer forms of A3C were unable to undergo intersegmental transfer 

may also explain why enzymes like A3G and A3F that have two DNA binding domains within a 

single polypeptide chain are unable to utilize intersegmental transfer, under the same reaction 

conditions tested with A3C [108], although under low salt buffer reaction conditions A3G may 

be able to undergo intersegmental transfer [254]. The improved processivity of the stable A3C 

dimer forms was through sliding and long-range movements, but the long-range movements were 

largely comprised of jumping (Figure 5.6 and Figure 5.7). We found A3C to use long-range 

movements similarly to A3H, in which jumping and intersegmental transfer are redundant 

processive mechanisms and for A3C either one can improve the mutagenic efficiency of the 

enzyme [110].  

Our study with A3C raises the possibility that the structures that mediate processivity are 

different for single and double Z-domain A3 enzymes. In contrast to A3G and A3F that contain 

two Z-domains, α-helix 6 was not directly involved in mediating A3C sliding [107, 108]. The 

hA3C, cA3C, and gA3C all had identical amino acids in the α-helix 6 despite differing abilities to 

slide along ssDNA (Figure 5.2). In A3C, the ability of α-helix 6 to mediate dimerization or be 

part of the dimer interface was the only requirement for sliding movements on ssDNA. In 

contrast, a monomer of A3G can still retain sliding ability and an oligomer of A3F is unable to 

slide unless specific mutations are made to the loop region extending from α-helix 6 [107, 108]. 

In a study of a single Z-domain enzyme, A3H, specific amino acid changes on α-helix 6 could 

influence sliding of the dimeric A3H [110]. Nonetheless, a β2-strand dimerization mutant had 

compromised sliding ability, despite a wild type α-helix 6 [110]. These results suggest that the 

dimerization interface in single Z-domain A3s creates a groove along the enzyme that promotes 

an interaction with ssDNA and facilitates sliding [275]. The double Z-domain enzymes A3G and 
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A3F may inherently have an extended interaction interface with ssDNA due to possessing two 

ssDNA binding domains in a single polypeptide chain. This appears to facilitate extensive 

ssDNA interactions that may also involve bending of the ssDNA around the enzyme [102, 253, 

276].  

Dimerization of A3C 

Consistent with previous studies in vitro and in cells, we determined that hA3C was a 

monomer [28, 51, 149]. This is in contrast to Stauch et al. that determined hA3C to be a dimer by 

co-IP [255]. Although Stauch et al. and our study used a similar co-IP strategy, the transfected 

plasmid amounts were different and Stauch et al. did not use RNaseA in their procedure. These 

factors can lead to nonspecific interactions in the co-IP [277, 278]. A surprising feature of our 

results was that the biochemical data we obtained support a model in which the hA3C dimer 

formed in the crystal structure did form on a physiologically relevant interface for hA3C S188I, 

cA3C, and gA3C (Figure 5.3B) [149]. However, it should be noted that multiple additional 

interfaces did form when hA3C was crystallized and these do not appear to represent the dimer 

interface in hA3C S188I, cA3C, or gA3C [149].  

Although the biochemical and co-IP data definitively show that amino acids 115 and 188 

mediate A3C dimerization, there is a caveat in our model that relies on the hA3C crystal 

structure. Namely, visual inspection of amino acids 115 and 188 on the structure of hA3C 

suggest that amino acid 115, but not amino acid 188, is directly involved in the dimer interface 

(Figure 5.3B). For hA3C the N115 is 4.7 Å away from the backbone of R44. In contrast, a model 

of cA3C K115 positions the backbone of R44 only 3.0 Å away (Figure 5.11A-B). Thus, the 

mechanism by which the K115 in cA3C promotes dimerization appears to be due to enabling a 

new hydrogen bond with R44 on the other subunit (Figure 5.11A-B). The interface between 

subunits is already surface complementary and this complementarity is unlikely to be disrupted 

by the change in the 115 side chain identity. Therefore, the new hydrogen bond formed by the 

K115 side chain and R44 backbone would mainly serve to strengthen the interface with minimal 

tradeoffs.  

Although the amino acid at position 188 mutation does not appear to be directly involved 

in the dimer interface by PISA analysis or in the structural model [149, 279], PISA analysis does 

suggest that amino acids surrounding position 188 on α-helix 6 are involved in dimerization. The 

most likely explanation for the role of the S188I mutation in altering the dimer affinity is that it  
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Figure 5.11. Models of A3C dimerization. (A) For hA3C, N115 (chain A) is 4.7 Å away from the 
backbone of R44 (chain B). (B) In contrast, a model of cA3C K115 (chain A) positions the 
backbone of R44 (chain B) only 3.0 Å away. This distance could indicate a new hydrogen bond 
with potential to stabilize the dimer between chains A and B. (C) In hA3C, S188, shown with van 
der Waal space filling dots, packs closely to F126 and N132, but does not clash with either. (D) 
In contrast, a model of hA3C shows how I188 would clash with F126 and N132 (arrows 
indicating overlap of van der Waal space filling dots). Conformational changes, potentially 
including a repositioning of the helix to enable formation of an A-B dimer, would be needed to 
accommodate this amino acid variant.  
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causes steric clash with other buried residues that are accommodated by shifting the position of 

helix 6.  This repositioning of the dimer interface could alter the surface complementarity and 

other interactions, leading to the change in affinity (Figure 5.11C-D). Based on our studies, the 

hA3C crystal structure gives a good approximation of the dimer interface, but more mutagenesis 

studies or crystallization of a dimer form of A3C is required to identify the interface in more 

detail [149]. 

A3C forms a dimer interface unique from other A3 dimer interfaces determined thus far 

[98, 99, 110, 262, 263, 265, 280, 281]. Notably, the other dimer interfaces characterized have 

been from the A3G N-terminal domain in the full length enzyme (Z2-Z1-type Z-domain 

organization), rhesus macaque A3G N-terminal domain alone (Z2-Z1-type Z-domain 

organization), A3F C-terminal domain alone (Z2-Z2-type Z-domain organization), A3A (a Z1-

type Z-domain), and A3H (a Z3-type Z-domain) [98, 99, 110, 262, 263, 265, 280, 281]. A3C is 

the first Z2-type single Z-domain to have the dimer interface characterized. However, the other 

Z2-type Z-domains that have been characterized structurally, A3F C-terminal domain and rhesus 

macaque A3G N-terminal domain further support the involvement of α-helix 6 [262, 280]. In the 

rhesus macaque A3G N-terminal domain structure, α-helix 6 and loop 7 are involved in the dimer 

interface [280]. There have been several A3F C-terminal domain (CTD) crystal structures solved 

and each with a different predicted dimer interface based on crystal contacts [262, 263, 281]. In 

one A3F crystal structure, the amino acid equivalent to A3C N/K115 in the A3F CTD, N298 is 

involved in a dimer interface [262]. It is not clear why the A3F Z2-type Z-domain CTD 

structures are not consistent with respect to the dimer contacts made in each of the crystal 

structures, however, this may be due to different constructs being used between labs to promote 

crystallization, that the A3F CTD is mutated to improve solubilization, and that it is not the full 

length A3F enzyme [262, 263, 281].  

Conclusions 

Our results with these three hominid A3C orthologs demonstrates that there is more than 

one mechanism to maintain enzyme processivity, although the common endpoint requires 

dimerization of the enzyme. Since A3C is a Z2-type domain, the dimer model may represent how 

other Z2-type domains such as A3F and A3D dimerize (both have Z2-Z2-type Z-domain 

organization). That the mechanism for achieving processivity in A3C is based primarily on 

dimerization rather than specific amino acid motifs that interact with the ssDNA substrate is 
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novel from other A3s and indicates that specific adaptations to maintain activity have been 

different for individual A3 enzymes. Although we have shown that the dimerization of hA3C 

through the S188I mutation increases processivity and mutagenic ability, thus providing a reason 

for why it is able to restrict HIV-1, in contrast to hA3C [28], it remains to be determined if the 

increased activity naturally found in cA3C and gA3C results in these enzymes restricting SIV. 

Despite their higher enzymatic activity it has not been demonstrated if cA3C and gA3C are able 

to encapsidate into SIV, which would be required for them to act as restriction factors. 

Alternatively, the naturally higher activity of cA3C and gA3C may be used to restrict viruses 

other than SIV or retroelements. Overall, the data support the model that A3 enzymes must be 

able to deaminate multiple cytosines processively to be efficient at mutagenesis during reverse 

transcription and for A3C this requires dimerization.  

5.5 Materials and Methods 

5.5.1 Cloning and site directed mutagenesis. The sequence for hA3C, cA3C, and gA3C 

have been previously described [27, 28]. The A3C sequences were cloned into a baculovirus 

transfer vector (pAcG2T or pFAST-bac1) containing an N-terminal GST tag or pcDNA3.1 with 

an N-terminal HA or V5 tag. Mutants were made by site-directed mutagenesis of the wild type 

sequences to create hA3C S188I, hA3C S188I/N115K hA3C N115K, cA3C S188I, cA3C 

K115N, gA3C S188I, and gA3C K115N. All constructed plasmids were verified by DNA 

sequencing.  

5.5.2 Protein expression and purification. Recombinant baculovirus production for 

expression of wild type and mutant hA3C, cA3C and gA3C in Sf9 cells was carried out using the 

pACG2T or pFast-bac1 transfer vector as previously described [110, 282]. Sf9 cells were infected 

with recombinant GST-A3C virus at an MOI of 1 (hA3C, cA3C, gA3C, cA3C S188I, hA3C 

S188I/N115K, gA3C S188I, and gA3C K115N) or an MOI of 5 (hA3C S188I, hA3C N115K and 

cA3C K115N). Recombinant baculovirus infected Sf9 cells were harvested after 72 hours of 

infection. Cells lysates treated with RNaseA were incubated with glutathione-Sepharose 4B resin 

(GE Healthcare) at 4°C and were subjected to a series of salt washes, as previously described 

[99]. The enzymes were eluted with the GST tag in elution buffer (100 mM Tris, pH 8.8, 150 

mM NaCl, 10% (v/v) glycerol, and 50 mM reduced glutathione). The A3C enzymes were then 

cleaved from the GST tag in solution at 21°C for 6 hours with Thrombin (GE Healthcare) before 

being dialyzed against 100 mM Tris pH 7.5, 250 mM NaCl, 10% (v/v) glycerol, and 1 mM DTT. 
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To purify A3C from the free GST and thrombin, the enzyme stock was diluted to achieve a 

solution of 50 mM Tris pH 7.5, 50 mM NaCl, 10% (v/v) glycerol and 1 mM DTT for loading 

onto a DEAE FF column (GE Healthcare). A3C was eluted with a linear gradient of NaCl. The 

A3C eluted at approximately 350 mM NaCl and was >95% pure, as determined by SDS-PAGE 

5.5.3 In vitro deamination assay.  All ssDNA substrates were obtained from Tri-Link 

Biotechnologies and have been published previously [108]. Reactions were carried out under 

single-hit conditions (i.e. <15% substrate usage) to ensure that each ssDNA reacted with at most 

a single enzyme [242]. Under these conditions, a processivity factor can be determined by 

comparing the quantified total amount of deaminations occurring at two sites on the same ssDNA 

with a calculated theoretical value of deaminations at these two sites if the deamination events 

were uncorrelated (not processive) [111]. A ssDNA substrate containing two 5′TTC motifs (100 

nM) was incubated with 350 nM (gA3C, hA3C S188I, gA3C S188I, cA3C S188I, hA3C 

S188I/N115K, and hA3C N115K) or 700 nM (hA3C, cA3C, cA3C K115N, gA3C K115N) of 

A3C for 2.5 to 30 min at 37 °C in RT buffer (50 mM Tris, pH 7.5, 40 mM KCl, 10 mM MgCl2, 

and 1 mM DTT). The reaction time was varied on each ssDNA according to the specific activity 

of the enzymes to ensure ~10% substrate usage. For intersegmental transfer assays, the 

A3C:ssDNA ratio (3:1 or 7:1) was kept the same, but increasing concentrations of enzyme and 

substrate was titrated in (ssDNA: 100-500 nM, A3C: 350-1750 nM or 700-3500 nM). Reactions 

were started by the addition of the ssDNA substrate. A3C-catalyzed deaminations were detected 

by treating the ssDNA with uracil DNA glycosylase (New England Biolabs) and heating under 

alkaline conditions before resolving the fluorescein-labeled ssDNA on 10 or 20% (v/v) 

denaturing polyacrylamide gels, depending on the sizes of the ssDNA fragments. Gel photos 

were obtained using a Typhoon Trio multipurpose scanner (GE Healthcare) and integrated gel 

band intensities were analyzed using ImageQuant (GE Healthcare). The specific activity was 

calculated from single-hit condition reactions by determining the picomoles of substrate used per 

minute for a microgram of enzyme. 

5.5.4 In vitro reverse transcription assay. Mutagenesis of ssDNA by A3 enzymes 

during reverse transcription of an RNA template was assessed using a previously established in 

vitro assay, which models reverse transcription of an RNA template and second-strand synthesis 

[107]. In brief, a synthetic (+)RNA that contains the poly-purine tract (PPT), the catalytic region 

of the protease gene (120 nt), and lacZα (248 nt) is used. In this construct the PPT is used as a 
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primer for (+)DNA synthesis and enables synthesis of dsDNA. The lacZα serves as a reporter 

gene for mutations by blue/white screening. To start the assay, the 368 nt RNA template (50 nM) 

is annealed to a DNA primer (24 nt) and incubated with 1.5 µM of nucleocapsid, 1.2 µM of 

reverse transcriptase and 500 µM of dNTPs in RT buffer in the presence or absence of 350 nM of 

each A3C enzyme. The resulting dsDNA that was synthesized from this in vitro system was PCR 

amplified using Pfu Cx Turbo Hotstart (Agilent Technologies) that can use uracils as a template 

with high fidelity. These amplicons were then cloned into a pET-Blue vector backbone that 

allows for blue-white screening of the synthesized lacZα.  At least twenty-five mutated clones for 

each condition were sequenced. 

5.5.5 Size exclusion chromatography.  The oligomerization states of the A3C enzymes 

were determined by loading 10 µg of purified enzyme on a 10 mL Superdex 200 (GE Healthcare) 

size exclusion column. The column was prepared by pouring the resin bed in a column with 16 

cm height and 0.5 cm diameter. The running buffer contained 50 mM Tris pH 8.0, 200 mM NaCl 

and 1 mM DTT. The chromatograms from the 10 ml Superdex 200 column were constructed by 

analyzing the integrated gel band intensities of the protein in each fraction after resolution by 

SDS-PAGE. The gels for each panel were resolved, stained with Oriole fluorescent gel stain, and 

scanned in parallel. The Bio-Rad standard set was used to generate a standard curve from which 

molecular weight and oligomerization states of the enzymes were determined. 

5.5.6 Protein crosslinking.  A3C enzymes (0.5 µM) were incubated with 20 µM BS3 

(bis (sulfosuccinimidyl) suberate), an amine to amine crosslinker, in 20 mM HEPES (pH 7.5), 

150 mM NaCl and 1 mM DTT for 1 h at 21°C. Crosslinked proteins were resolved by SDS-

PAGE, transferred to a nitrocellulose membrane for immunoblotting, and visualized using 

primary antibody for native A3C (GeneTex) and secondary IRdye labeled goat anti-rabbit 

antibody compatible with the LI-COR/Odyssey system. 

5.5.7 Steady state rotational anisotropy.  Steady state fluorescence depolarization 

(rotational anisotropy) was used to measure the binding affinity of A3C-ssDNA and a 118 nt 

fluorescein-labeled ssDNA. Reactions were 60 µL and contained fluorescein-labeled ssDNA (10 

nM) in RT buffer. The enzyme was titrated into the solution until saturation. For saturation the 

required titrations used were: hA3C (0-1600 nM); hA3C S188I, cA3C S188I, gA3C S188I, 

cA3C, and gA3C (0-1200 nM); hA3C S188I/N115K, hA3C N115K, and cA3C N115K (0-1100 

nM); and gA3C K115N (0-1800 nM). A QuantaMaster QM-4 spectrofluorometer (Photon 
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Technology International) with a dual emission channel was used to collect data and calculate 

anisotropy. Samples were excited with vertically polarized light at 495 nm (6 nm band pass) and 

vertical and horizontal emissions were measured at 520 nm (6 nm band pass). Apparent 

dissociation constants (Kd) were obtained by fitting to a rectangular hyperbola or sigmoidal 

curve using Sigma Plot 11.2 software. 

5.5.8 Co-immunoprecipitation. Co-immunoprecipitation (Co-IP) assays were conducted 

as described previously [283]. Briefly, 293T cells (2.5 x 106 cells per 75 cm2 flask) were 

transfected with 1µg total DNA. Equal amounts of each plasmid for hA3C-HA and hA3C-V5, 

hA3C S188I-HA and hA3C S188I-V5, or hA3C S188I/N115K-HA and hA3C S188I/N115K-V5 

were used to transfect the cells. Genejuice transfection reagent (EMD Millipore) was used 

according to the manufacturer’s instructions. At 72 h post transfection, the cells were washed 

with PBS and lysed in IP buffer (50 mM Tris-Cl pH 7.4, 1% Nonidet-P40, 0.1% sodium 

deoxycholate, 10% glycerol, 150 mM NaCl) supplemented with RNaseA (20 µg/mL; Roche) and 

EDTA-free protease inhibitor (Roche). One half of the precleared supernatant was then incubated 

with Protein A-agarose conjugated polyclonal rabbit anti-HA antibody (2 µg, Santa Cruz 

Biotechnology) and the other half (mock) was incubated with Protein A-agarose-conjugated 

normal rabbit IgG (2µg, Santa Cruz Biotechnology) at 4°C for 2 h. Resin was washed and the 

samples were then resolved by SDS-PAGE and transferred to a nitrocellulose membrane. For 

detection of A3C-HA and A3C-V5 in cell lysates, the membrane was probed with polyclonal 

Rabbit HA (1:1000, Sigma) and polyclonal Rabbit V5 (1:200, Santa Cruz Biotechnology), 

respectively. For the loading control, monoclonal mouse anti-α-tubulin (1:1000, Sigma) was 

used. HA- and rabbit IgG- immunoprecipitated lysates were probed with anti-V5 mouse 

monoclonal antibodies. After incubation with Horse Radish Peroxidase (HRP) conjugated 

secondary antibodies, the blots were visualized with X-ray film using Super Signal West Pico 

chemiluminescence substrate (Thermo-Scientific). 

5.5.9 Single cycle infectivity assays.  The 293T cells were plated at a density of 5 x 104 

cells per well of a 12 well plate. The next day, the cells were transfected with 0.50 µg pLAI HIV 

Δvif, 0.15 µg pVSV-G, and 0.30 µg pCDNA3.1 A3C-HA or 0.10 µg pCDNA3.1 A3G-HA. 

Different levels of transfected DNA were used to achieve the same steady state expression levels 

in cells for A3C-HA and A3G-HA. All transfection amounts of DNA were equalized with empty 

pCDNA3.1 plasmid. Forty-eight hours after transfection, culture supernatants containing virus 
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were collected, filtered, and used to infect HeLa CD4+ HIV-1 LTR-β-gal cells (MAGI) cells 

[284]. To detect A3 by immunoblotting, harvested supernatants were centrifuged at 16 000 x g 

for 60 min to recover virions and cells from the same well were washed with PBS and lysed with 

Laemmli sample buffer. Forty-eight hours after infection of HeLa CD4+ HIV-1 LTR-β-gal cells, 

Pierce β-galactosidase assay reagent was used to lyse cells and detect β-galactosidase activity 

through colorimetric detection using a spectrophotometer. Infectivity of each virus was compared 

by setting infectivity of the “No A3” to 100%. Statistical significance of results was determined 

using an unpaired t-test. 

5.5.10 Quantitative immunoblotting. The 293T cells expressing A3C-HA and A3G-HA 

from the single-cycle infectivity assays were detected using anti-HA (1:1000; Sigma) in cell 

lysates (30 µg total protein) and virions (20 µl of concentrated virus). Loading controls for cell 

lysates (α-tubulin, Sigma) and virions (p24, Cat #3537, NIH AIDS Reagent Program) were 

detected using mouse monoclonal antibodies. Odyssey software was used to quantitate the 

amount of p24 in each lane and ensure that similar amounts of virus lysate were loaded. Proteins 

of interest and loading controls were detected in parallel by using the Licor/Odyssey system 

(IRDye 680-labeled goat anti-rabbit secondary and IRDye 800-labeled goat anti-mouse 

secondary antibody). Using Odyssey software, the relative amount of A3 on the blot was 

calculated by first normalizing each sample lane to the corresponding control. Normalized values 

were then converted to relative amounts of A3 by setting the hA3C band at 1.0 and calculating 

the relative amounts of A3 in other lanes. 

5.5.11 Sequencing of integrated proviral DNA.  Total DNA from infected 293T cells was 

extracted 48 h after infection using DNAzol reagent (Life Technologies). DNA was treated with 

DpnI (New England Biolabs) for 1 h at 37°C to remove possible contaminating plasmid DNA 

and the protease (nt 2280-2631) sequences were amplified by PCR using Q5 polymerase (New 

England Biolabs). Primers have been published previously [108]. The PCR products were 

purified and cloned with the CloneJET PCR cloning kit (Thermo Fisher). DNA was sequenced 

with kit-specific primers and carried out at the National Research Council of Canada (Saskatoon, 

Canada).  

5.5.12 Structural models of A3C. The dimer model used was present in the asymmetric 

unit of the crystal structure (PDB: 3VOW). The model mutations created were done by manual 
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mutagenesis in Coot (Crystallographic Object-Oriented Toolkit), selecting rotamers that 

minimized clashes to the surrounding residues. 
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6.0  Comparison of A3C orthologs to other A3 enzymes that restrict HIV.  
 

In chapter 3, A3C residues within the Vif interface were demonstrated to be undergoing 

positive selection. Specifically, residue 77, 128, and 130 all within the predicted A3/Vif interface 

were identified (Figure 6.1). Therefore, A3C is efficiently targeted for degradation by Vif, 

satisfying one of the major requirements to be considered a bona-fide restriction factor [285].   

As observed in chapter 3 and 5, dimerization of A3C is required for effective restriction of 

HIV. If Vif were able to disrupt this dimerization, the activity of these enzymes could be reduced. 

For A3G that is able to restrict HIV and is targeted by Vif, Vif can disrupt A3G oligomerization 

and reduce A3 activity, as a secondary mechanism of inhibition [283]. Conversely, Vif cannot 

fully disrupt oligomerization of A3H and A3H is partially resistant to Vif-mediated degradation 

[283]. Therefore, we aimed to assess the impact of Vif on A3C oligomerization to determine if 

either of these features characterized for other A3s were relevant to A3C. The Vif interaction 

interface on A3C includes α-helices 2, 3, 4, and β-strand 3 and 4. Residue 188, which is involved 

in hA3C oligomerization interface, is located on helix 6 (Figure 6.1). We hypothesized that an 

interaction between hA3C and Vif would not disrupt A3C oligomerization. We further 

hypothesized that this may promote resistance to Vif mediated degradation [142]. This was based 

on speculation that resistance to Vif might be the reason why human A3C has retained or 

regained the sequence I188. Conversely, residue 115 on β-strand 4 that is involved in chimpanzee 

A3C (cA3C) and gorilla A3C (gA3C) dimerization is within the Vif interaction interface. 

Therefore, we hypothesized that Vif would disrupt cA3C and gA3C oligomerization, as was 

observed for A3G [283]. 

To determine if Vif could disrupt oligomerization interface of A3C that overlapped with the 

Vif interaction interface, we compared the SEC profile of A3C alone, a VifHXB2 heterotetramer 

complex (Vif/CBFβ/Elongin B/Elongin C, VCBC), and A3C and VCBC in a equimolar mix to 

determine if there was a corresponding change in the A3C SEC profile (Figure 6.2). If Vif were 

able to change the oligomerization status of A3C we would expect the apparent molecular 

weights calculated from the SEC profile to show a 1:1 A3C:VCBC complex. If Vif does not 

change the oligomerization status of A3C, then we would expect the apparent molecular weights 

calculated from the SEC profile to show a 2:1 A3C:VCBC complex. As expected, the control 

profile of VCBC resolved as a 1:1:1:1 complex (molecular weight 66 kDa), comprised of 
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Vif/CBFβ/EloB/EloC [283]. If VCBC interacts with a dimer of A3C the combined expected 

molecular weight of the complex would be 111 kDa, however if VCBC interacts with a monomer 

of A3C the combined expected molecular weight of the complex would be 89 kDa. Using this 

information, we examined the SEC profiles of different A3Cs in complex with VCBC. 

When VCBC was resolved with human A3C (hA3C) S188I, which is an equilibrium of 

monomer and dimer populations, the VCBC-A3C complex resolved in fractions with molecular 

weights ranging from 111-52 kDa (Figure 6.2A), indicating that VCBC could interact with both 

monomer and dimer forms of hA3C S188I, and that Vif did not disrupt the dimerization of hA3C 

S188I. This is expected as residue 188 lies outside the Vif interface and would not interfere Vif 

binding. The interaction of VCBC with the stable dimer of hA3C, hA3C S188I/N115K, the A3C-

VCBC complex resulted in a 111 kDa species, indicating that VCBC interacted primarily with a 

hA3C S188I/N115K dimer (Figure 6.2B). However, there was a smaller molecular weight 

fraction at 73 kDa, which demonstrates that there is some ability of VCBC to disrupt the 

dimerization. As observed with hA3C S188I, when the dimer is formed through residue 188 it is 

insensitive to Vif binding and hA3C remains as a dimer in solution.  

To further investigate this interaction, we examined the interaction of VCBC and 

chimpanzee (cA3C), which dimerizes primarily through residue 115 located within the Vif 

interaction interface. HIV Vif  is able to be used in studies with cA3C, instead of the 

corresponding SIV Vif,  as it has been shown that cA3C is able to interact with an HIV derived 

Vif, unlike gorilla (gA3C) which is not sensitive to HIV Vif [246].  When we examined the SEC 

profile of cA3C in complex with VCBC we observed a molecular weight range of 78 to 37 kDa, 

meaning that VCBC is able to disrupt the dimerization of cA3C (Figure 6.2C) and interacts with 

a monomer form of cA3C. Therefore, cA3C dimerization is sensitive to Vif binding due to the 

location of residue 115 on β-strand 4, and the dimerization is subsequently disrupted. This is in 

contrast to the dimerization through residue 188 on helix 6, which is not contained within the 

interaction interface, and is unable to be disrupted by Vif. We confirmed this observation with a 

cA3C S188I mutant that forms a stable dimer through the helix 6 residue. Vif was unable to 

disrupt the dimer portion of this mutant (Figure 6.2D), similar to hA3C S188I (Figure 6.2A).  
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Figure 6.1. Residues of importance to Vif-mediated degradation in hA3C. A3C has the basic 
APOBEC3 structure that is comprised of a five stranded β-sheet core surrounded by six α-helices. 
Numerical assignments to β-strands and α-helices (h) are superimposed on the hA3C structure 
(PDB: 3VOW). Zinc atom shown as a blue sphere. Amino acids unique to hA3C from cA3C and 
gA3C are K85, D99, and N115 (green). Amino acid 133 is an amino acid unique to gA3C from 
hA3C and cA3C (cyan). The S188 amino acid has previously been identified to be the location of 
a SNP in hA3C (magenta, I188). Amino acids where Vif interacts with A3C are shown in red. 
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Figure 6.2. Vif can disrupt A3C oligomerization. (A-D) The size-exclusion chromatography 
profile of 10 µg of (A) hA3C S188I, VCBC, and hA3C S188I with VCBC; (B) hA3C 
S188I/N115K, VCBC, and hA3C S188I/N115K with VCBC; (C) cA3C, VCBC, and cA3C with 
VCBC; and (D) cA3C S188I, VCBC and cA3C S188I/VCBC from a 10 mL Superdex 200 
column was used to calculate the oligomerization state of the enzyme from a standard calibration 
curve. (A) Vif interacted with both a monomer and dimer form of hA3C S188I (apparent 
molecular weight 112-58 kDa). (B) Vif interacted with both a monomer and dimer form of hA3C 
S188I/N115K (apparent molecular weight 108-73 kDa). (C) Vif interacted with a monomer of 
cA3C (apparent molecular weight 78-37 kDa). (D) Vif interacted with both a monomer and dimer 
form of cA3C S188I (apparent molecular weight 109-50 kDa). The chromatograms were 
constructed by analyzing the integrated gel-band intensities of each protein (A3C, VCBC or A3C 
with VCBC) in each fraction after resolution by SDS-PAGE and quantitative western blotting. 
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Despite the inability of VCBC to disrupt dimers mediated through helix 6, Vif was able to 

degrade all A3Cs tested regardless of oligomerization status (Figure 6.3). We had initially 

hypothesized that when dimerization occurred through residues outside of the Vif interaction 

interface, Vif would be unable to disrupt these dimers and this would lead to resistance to 

degradation. However, this was not observed as A3C mutants were degraded in cell based Vif 

degradation assays regardless of which residues promoted dimerization. These data suggest that 

the A3C I188 was not retained or regained in humans to impart resistance to Vif-mediated 

degradation as hypothesized. Altogether, A3C dimerization is sensitive to Vif binding if the 

interfaces overlap between oligomerization and Vif interaction. However, dimerization of A3C 

outside this Vif interface does not impart resistance to Vif mediated degradation as seen for A3H, 

and therefore the positive selection and SNP observed for A3 was not to facilitate Vif resistance. 

If A3C S188I is truly an active version of A3C, it should possess common features with 

the other A3s known to restrict HIV replication efficiently. The ssDNA binding data showed that 

hA3C S188I could oligomerize on ssDNA, in contrast to hA3C S188 (Figure 5.4H). As a result, 

we investigated if the hA3C S188I could also restrict HIV by inhibiting RT activity, similar to 

what has been shown for A3G oligomers, and will be expanded on in Chapter 8 [283]. This may 

be an additional mechanism used by A3C to restrict HIV and would explain why A3C has 

undergone positive selection. Although, the hA3C S188I did not inhibit primer initiation or 

synthesis of DNA by RT (Figure 6.4), we reasoned that the slowing down of RT through 

oligomerization may alter the ability of RT to undergo template switching or affect its insertion 

fidelity. This was investigated in comparison to A3G, A3F, and A3H that are known to have 

restriction activities against HIV that is both deamination -dependent and -independent.  
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Figure 6.3.HIV Vif is able to promote the degradation of human and chimp A3C. (A) Degradation 
of hA3C-HA and cA3C-HA by VifHXB2. 293T cells were transiently transfected with A3C-HA 
expression plasmid with or without cotransfection of a VifHXB2 expression plasmid. Cell lysates 
prepared in Laemmli sample buffer were analyzed by immunoblotting with antibodies against α-
tubulin, HA, and Vif. (B) A bar graph depicting the % A3C remaining in the presence of Vif. 
Values were obtained from the integrated gel band intensites in the presence and absence of HIV 
Vif. Average and standard deviation were calculated from three independent experiments.  
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Figure 6.4 A3C does not inhibit the initiation of primer extension. An 18 nt 32P-labeled RNA 
primer containing a sequence complementary to the HIV-1 PBS was annealed to a 106 nt RNA 
containing the PBS (sketch). Complete extension of the primer results in a product of 82 nt 
(sketch). The p/t was used at a concentration of 10 nM. (A) Primer extension by RT (400 nM) in 
the absence (0∶1) or presence (4∶1, 8∶1, 32∶1,) of increasing amounts of hA3C S188I relative to 
the p/t concentration. Reactions were sampled at 10 and 60 min.   
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7.0  Investigation of the deamination independent restriction of HIV by 

APOBEC3s 
As discussed in section 1.4.3, A3 enzymes that possess multiple processive mechanisms are 

able to induce higher levels of mutagenesis to ensure inactivation of the virus. However, for those 

A3s that induce low levels of mutations and restrict viruses to a lesser degree, having secondary 

mechanisms of restriction can facilitate complete virus inactivation. The secondary mechanisms 

occur through deamination-independent modes of restriction. While A3G has weak deamination-

independent activity, other A3 enzymes, such as A3F and A3H, have potent deamination-

independent activity [74, 154, 169, 286]. A3C restricts LINE-1 retroelements by deamination-

independent mechanisms [167, 214]. Therefore A3C, and other A3s, may utilize deamination-

independent mechanisms in order to supplement the observed weak restriction activity (e.g., 

Figure 5.8). Deamination mediated mutagenesis, as well as deamination-independent restriction 

likely act in concert to increase the chances of complete inactivation of HIV [74].  

Despite many years of studying deamination –dependent and –independent mechanisms 

of A3 enzymes, the field is still divided on their contributions. Some studies have shown that this 

deamination-independent mode of restriction may be able to decrease the accumulation of reverse 

transcripts by up to 90%, while others suggest that catalytic activity of A3 enzymes cannot be 

removed from its restriction capacity [161, 287]. Our lab has recently shown that A3G and A3F 

are able to reduce the formation of late reverse transcript products (LRTs) independent of 

deamination activity [74]. While the evidence suggests that a deamination-independent mode of 

restriction exists, the exact mechanism of this restriction has yet to be conclusively determined. 

There is evidence that this non-catalytic mode of restriction occurs through direct or RNA-

mediated interactions that inhibit nucleocapsid mediated annealing or inhibit reverse transcriptase 

mediated DNA synthesis [71, 73, 155, 158]. Therefore, further investigation into the mechanism 

of deamination-independent restriction is warranted for hA3C S188I and other A3 enzymes.  
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8.0  Determining the mechanism of inhibition of HIV reverse transcriptase by 

APOBEC3s  
8.1 Abstract 

The APOBEC3 (A3) family is well studied for their ability to restrict HIV, in the absence of 

HIV Vif, through mutagenesis of the virus by cytosine deamination of single-stranded viral 

DNA. However, the APOBEC3s that are relevant to HIV restriction, A3G, A3F, A3H hap II and 

the recently characterized A3C S188I, may also possess deamination-independent modes of 

restriction in order to ensure complete viral inactivation. Previous observations indicate that A3G 

and A3F may competitively bind the RNA template and act as a roadblock to reverse 

transcriptase (RT) polymerization. Here we demonstrate that the roadblock imposed by A3s 

delays the progression of RT along the template and forces RT to undergo higher levels of 

template switching. We examined HIV RT template switching using an in vitro primer extension 

assay in which template switching results in a longer DNA product than without template 

switching. A3F bound the RNA template with higher affinity than the other A3s tested and 

promoted RT to form almost entirely longer template products, indicating higher levels of 

template switching, in our in vitro assays. When we created a mutant of A3G, A3G NPM, that 

increased the affinity of A3G for the template, we were able to observe an increase in longer 

product formation compared to wild type A3G, confirming that the roadblock model was 

promoting the template switch. Interestingly, we also observed that the A3s, other than A3F, 

were able to decrease the fidelity of RT in vitro, which would increase the mutational load in the 

virion. Altogether, these additional modes of deamination independent restriction of A3s may 

work in concert with the deamination dependent mechanisms to ensure complete inactivation of 

the virus. Increased template switching may cause higher frequencies of deletions or insertions, 

and decreased polymerase fidelity would lead to higher mutation rates. Both of these activities 

would promote increased likelihood of producing an inactive HIV provirus.  

8.2 Introduction  

The APOBEC3 (A3) deoxycytidine deaminases are a family of host restriction factors for 

retroviruses, retrotransposons, and endogenous retroviruses. The A3 enzymes are most well 

characterized for restricting replication of the human immunodeficiency virus-1 (HIV-1, referred 

to as HIV). For A3-mediated HIV restriction to occur, the A3 enzymes must become virion 
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encapsidated. The HIV-1 protein Vif induces the polyubiquitination and degradation of A3 

enzymes to prevent their encapsidation, but degradation of A3 enzymes is not complete and some 

A3s can become encapsidated at a low amount into virions in the presence of Vif. HIV restriction 

is primarily mediated by the deamination of cytosine (C) to uracil (U) on single-stranded (ss) 

DNA during synthesis of (-)HIV-1 DNA after virus entry into a target cell [288, 289]. These 

deaminations lead to guanine (G) to adenine (A) hypermutation of the virus genome when uracil 

is used as a template during HIV-1 reverse transcription [67-69]. The G to A hypermutation 

ultimately leads to inactivation of the provirus [67-69]. Of the seven human A3 deaminases, 

A3G, A3F, A3D, and A3H haplotype II (hap II) are able to restrict replication of HIV to varying 

degrees [2]. In addition, a rare human polymorphism of A3C (S188I) has HIV-1 restriction 

activity, while the more common S188 polymorphism of A3C does not. 

Although viral inactivation mediated by the A3 enzymes primarily occurs through cytosine 

deamination, deamination-independent mechanisms have been characterized. During reverse 

transcription, the RNaseH domain of reverse transcriptase degrades the RNA template, which 

leaves regions of single-stranded (ss) DNA available for deamination by A3 [289, 290]. As these 

ssDNA regions are only available for a limited amount of time, A3 enzymes must possess 

efficient ssDNA scanning mechanisms, and scan the template processively in order to locate 

target cytosines [111, 291]. The processive action is mediated through facilitated diffusion, which 

includes both one-dimensional sliding and three-dimensional translocations such as jumping and 

intersegmental transfer [104, 105]. A3 enzymes that scan processively and are able to use a 

combination of one-dimensional and three-dimensional movements and induce higher mutational 

loads than non-processive A3s [108-110]. However, certain A3s are able to additionally inhibit 

HIV through deamination-independent mechanisms that act in concert with the deamination 

activity [71-74, 155, 156, 159, 292]. A3 enzymes, such as A3G, A3F, A3H and A3C are able 

restrict both HIV-1 and the endogenous retroelement LINE-1 through deamination-independent 

modes [72, 73, 155, 156, 159, 169, 214, 286, 293-295]. A3G and A3F delay the initiation of 

primer extension by HIV-1 reverse transcriptase (RT) to varying degrees by binding to the RNA 

template and acting as a physical block to the scanning mechanism of RT. A3G also binds 

directly with RT and disrupts DNA synthesis [71, 74]. 

HIV reverse transcription requires both RT and nucleocapsid (NC). NC is a nucleic acid 

chaperone that promotes annealing of the host tRNALys3 to the primer-binding site (PBS), which 
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primes RT initiation of the minus strand (-) strong-stop DNA [61, 63]. NC is also required to 

facilitate the first-strand transfer of the minus strand (-) strong-stop DNA to the 3′ end of the 

genome in order for (-)DNA synthesis to proceed further [62, 296]. During reverse transcription, 

RT undergoes two separate template-switching events that are necessary to complete synthesis of 

(+) DNA [62, 296, 297]. It has been suggested that the low template affinity and low processivity 

of the RT is advantageous because it allows for these template-switching events to occur that are 

essential to producing the proviral DNA [297]. However, RT can also switch templates at other 

random locations in a homology directed fashion and this can create diverse retroviral 

populations if the switch occurs between distinct templates (intermolecular switch) [298-301] or 

lead to deletions of genomic regions if the switch occurs on the same RNA molecule 

(intramolecular switch) [302, 303].  

These inter- and intra- molecular template switches have been described to occur through 

either a dynamic copy choice or dynamic forced copy choice model. Both HIV and Murine 

Leukemia Virus (MLV) RTs utilize a dynamic copy choice model of recombination which is 

dependent on the equilibrium between the polymerase and RNAseH activity of RT [304-306]. A 

slow polymerase undergoes higher rates of template switching, whereas a slow RNase H domain 

causes lower rates of template switching compared to the wild-type equilibrium [304]. RT can 

also undergo what is known as a dynamic forced copy choice model, in which a roadblock to 

polymerization, or a nick in the template strand forces the RT to switch templates. Both models 

are supported by in vitro and cellular studies mutations and particularly strong evidence for the 

dynamic copy choice model comes from RT mutants that have disrupted dynamics between 

polymerization and RNaseH degradation that can promote RT to switch templates to varying 

degrees [304].  

RT does not have the ability to proofread its insertions due to a lack of 3’ to 5’ exonuclease 

activity [290]. Thus, HIV RT, like most other viral polymerases has a higher misincorporation 

frequency than many other non-viral replicative polymerases [307, 308]. Misincorporation of 

bases by RT leads to rapid virus evolution, escape from the host immune system, and emergence 

of viruses with resistance to HIV therapeutics [309]. Several studies have characterized the 

insertion fidelity of HIV RT, using both in vitro and cellular complementation assays, with the 

majority examining the role of nucleoside analogs on replication fidelity [47, 310-313]. However, 

the fidelity of the enzyme in vitro is significantly lower than that observed in cell based assays 



	 	111 

[310], likely due to reaction components and experimental conditions. Therefore, these 

experimental variables leave numerous questions about what affects RT insertion fidelity. 

Similarly, how restriction factors such as A3 enzymes may affect RT insertion fidelity has not 

been examined.  

We hypothesized that if an A3 inhibited RT-mediated DNA polymerization either through a 

“roadblock” or direct interaction, that it may also facilitate the dissociation of RT from the 

template and disrupt the equilibrium between polymerization and RNaseH degradation, thus 

affecting template switching. Although not known why, the frequency of template switching can 

influence the insertion fidelity of RT. To test this hypothesis we used A3s with the strongest HIV 

restriction ability, A3G, A3F, A3H hap II, and a recently characterized A3C S188I variant. Our 

data demonstrate that the deamination-independent functions of A3 enzymes can decrease the 

insertion fidelity of RT, and if they bind the template with high enough affinity, can promote 

template switching. Both of these events could increase the probability of generating a mutated 

and nonfunctional virus independent of cytosine deamination. 

8.3 Results  

8.3.1 Modulation of HIV-1 RT template switching by APOBEC3 enzymes. We 

hypothesized that a roadblock imposed by A3s could slow the polymerization down and alter the 

equilibrium between polymerization and RNAseH activity, or like a nick in the template, force 

RT to switch templates (Figure 8.1A).  The proposed dynamic copy choice model of template 

switching suggests that the equilibrium between the polymerization of the template and the 

RNaseH mediated degradation of the RNA behind the RT affects the rate of template switching 

observed [304, 306]. In order to test this hypothesis, we established an in vitro RT template-

switching model, similar to previously established experimental systems [305, 314-316]. We 

used the PBS region to establish a “donor region” that resembled the PBS region of the HIV 

genome and extends 150 nucleotides to the trans-activation response (TAR) element. (Figure 

8.1B). This region is sensitive to delays in initiation by A3 due to the inefficient initiation of 

DNA synthesis of RT from an RNA primer [317, 318]. We also used an “acceptor” template that 

does not contain the PBS, but possesses a 100 nucleotide region of homology with the donor 

template as well as unique bases that allow for a distinct acceptor template (Figure 8.1B). If 

template switching occurs between the donor and the acceptor then the resulting product should 

be up to 30 nt longer than that of the donor product alone.  
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Figure 8.1 Current models and schematic of template switching protocol. (A) Dynamic copy 
choice model (slow polymerase) and forced copy choice model (roadblock) adapted from Hwang 
et al.2001 [304] and Anderson et al. 1998 [319]. The black and blue lines represent RNA 
templates whereas the red arrow indicates the newly synthesized DNA template. The hashed line 
behind the polymerase indicates RNase H degradation of the RNA, and the efficiency of this 
degradation is depicted in the size of the dashes (short is fast RNaseH degradation and long is 
slow RNaseH degradation). In the presence of a slow polymerase or a road block, the newly 
synthesized template can base pair with the second template (blue) and promote RT to template 
switch.  (B) Schematic of template switching assay. A radiolabeled primer is annealed to the 
donor RNA template, which creates the primer/template. An acceptor template is included in the 
reaction that lacks the primer-binding site but has a region of homology with the donor template. 
Template switching from donor to acceptor template will generate a longer acceptor product after 
resolution on by denaturing PAGE. 
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 For our template switching assays we aimed to use physiologically relevant 

concentrations of each component as they would be found in a virion. Thus, based on evidence of 

approximately 100 molecules of RT in a virion and 2 RNA genomes in a virion, we used 400 nM 

of RT, 10 nM of donor template, and saturating amounts of nucleocapsid (NC) (1NC/7nt) in the 

in vitro assays  [71, 74]. In addition, we utilized a 40:1 acceptor to donor ratio to promote 

template switching, similar to previous reports that showed an excess of acceptor template is 

required to observe template switching in vitro [315, 316, 320]. We then examined the ability of 

RT to undergo template switching in the presence of varying amounts of A3 and primer/template 

(p/t). The A3:p/t ratios used were  0:1, 4:1, 8:1, 32:1. Interestingly, we found that in the presence 

of increasing amounts of A3G, there was a statistically insignificant but reproducible reduction in 

the amount of acceptor template, indicating less template switching, compared to the absence of 

A3 (Figure 8.2A, compare 0:1 and 32:1 lanes) with the amount of acceptor template decreasing 

from 21% to 16% (Figure 8.2E). However, in the presence of increasing amounts of A3F we 

observed the opposite trend. The presence of high amounts of A3F promoted the formation of the 

acceptor product only, indicating that the template switching efficiency was increased from 27% 

to 90% (A3F:p/t of 32:1, Figure 8.2B and Figure 8.2E). We also examined two other A3s known 

to exert a deamination-independent mode of restriction, A3H and A3C I188. There was no 

observable effect on template switching by these two enzymes, indicating that they are not able to 

modulate this function of RT (Figure 8.2C-D, and Figure 8.2E).   

8.3.2 RNA template binding by A3F promotes HIV RT template switching. To determine 

why A3F was able to promote template switching and the other A3s were not, we characterized 

how the A3 enzymes interacted with the primer/template complex (p/t). Using rotational 

anisotropy we determined the strength of the A3-p/t interaction. A3F bound the p/t in the 

nanomolar range (Kd of 0.06 µM, Figure 8.3B, Table 8.1). A3G also bound the p/t less well than 

previously observed for ssDNA and 13-fold less well than A3F binding the same substrate (Kd of 

0.82 µM, Figure 8.3A, Table 8.1) [108]. This suggests that the high affinity of A3F with the p/t 

induces more of a roadblock to RT than A3G, and promotes increased template switching due to  
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Figure 8.2. Effect of A3s on the template switching efficiency of RT. Sketch of the annealed 18-nt 
DNA primer to the 150 nt RNA template (p/t) in Figure 8.1B. Complete extension of the p/t (10 
nM) results in a 150 nt donor product, whereas in the presence of acceptor, template switching 
results in the production of a longer acceptor product. (A-D) Extension of the p/t by 400 nM of 
RT in the absence (0:1) or presence (4:1, 8:1, 32:1) of (A) A3G, (B) A3F, (C) A3H hap II, or (D) 
A3C I188. Reactions were sampled at 60 or 90 minutes. (E) Bar graph showing the quantified 
percentage of acceptor template at 0:1 and 32:1 A3 to p/t.  
  



	 	115 

 

 

Figure 8.3. Interaction of A3 with the DNA/RNA primer/template. The apparent dissociation 
constant (Kd) was determined by steady-state rotational anisotropy by titrating increasing 
amounts of (A) A3G, (B) A3F, (C) A3H hap II or (D) A3C I188 into a buffered solution 
containing 10 nM of fluorescently labeled p/t. The Kd is shown on the graph.  
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Table 8.1 Apparent dissociation constants for A3s binding the p/t. 

 

Enzyme Binding primer/template (µM) 

A3G 0.82 ± 0.10 

A3F 0.10 ± 0.04 

A3G NPM 0.20 ± 0.02 

A3F NAM 0.23 ± 0.05 

A3C I188 1.84 ± 0.10 

A3H hap II 1.30 ± 0.08 

HIV RT 0.50 ± 0.06 
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a slow polymerase. Consistent with this finding A3H and A3C both bound the p/t less well than 

A3G, and significantly less well than A3F, suggesting that the weaker interaction of the enzymes 

with the substrate does not allow for them to induce template-switching (Figure 8.3C-D, Table 

8.1). To further test this rationale, we repeated the binding assays using a previously described 

mutant of A3G having an enhanced ssDNA interaction and a converse mutant in A3F, that 

interacts weakly with ssDNA. The strongly ssDNA binding A3G (A3G NPM) mutant has an 

195NPM197 insertion in the connection loop between the NTD and CTD [108] that was derived 

from the amino acid sequence of A3F, and has been shown to impair A3F sliding movements on 

ssDNA, due to the enhanced ssDNA binding. The A3F mutant A3F NAM has a mutation at the 

rigid proline in the linker region, 190NAM192, and binds ssDNA with less affinity than wild-

type A3F [108]. We confirmed that these mutations changed the binding affinity as expected. 

A3GNPM bound the p/t 4-fold more tightly than wild-type A3G (Kd of 0.20 µM, Figure 8.4A, 

Table 8.1) and A3F NAM bound the p/t 2-fold less tightly than wild-type A3F (Kd of 0.23 µM,, 

Figure 8.4B and Table 8.1). To test whether that strengthening the association of A3G with the 

p/t affects RT template switching we assessed them in our in vitro template switching assay.  In 

support of our hypothesis, A3G NPM increased the production of template switched acceptor 

products compared to wild-type A3G, but 1.6-fold less than efficiently than A3F (Figure 8.4C 

and Figure 8.2A). This can be attributed to the weaker binding to the p/t of A3G NPM compared 

to A3F (Table 8.1). Similarly, we observed 1.4-fold less acceptor template extension in the 

presence of A3F NAM compared to A3F, as the binding affinity for the p/t is 2-fold less than 

wild-type A3F (Figure 8.4B and Figure 8.4D). However, we observed similar levels of template 

switching promotion in the presence of both A3G NPM and A3F NAM, which correlates with the 

similar affinity to the p/t by the mutants. Therefore, the higher affinity for ssDNA correlates with 

greater ability to promote template switching. 

8.3.3 Alteration of HIV RT insertion fidelity by APOBEC3. We also determined if the 

presence of the A3s on the RNA template could alter the insertion fidelity of the RT. It has been 

demonstrated previously that polymerase mutants that exhibit a higher frequency of template 

switching also alter the  misincorportation frequencies of the polymerase, though it remains 

unclear as to how template switching may affect the fidelity of the polymerase [321]. Therefore, 

the data obtained from the template switching assays would predict that A3 enzymes that bind the 
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Figure 8.4. Interaction of A3G NPM and A3F NPM with p/t and the effect on template switching. 
(A-B) The apparent dissociation constant (Kd) was determined by steady-state rotational 
anisotropy by titrating increasing amounts of (A) A3G NPM or (B) A3F NAM with 10 nM of 
fluorescently labeled p/t. The Kd is shown on the graph. (C-D) Complete extension of the 10 nM 
p/t results in a 150 nt donor product, whereas in the presence of acceptor, template switching 
results in the production of a longer acceptor product. Extension of the p/t by 400 nM of RT in 
the absence (0:1) or presence (4:1, 8:1, 32:1) of (A) A3G NPM, or (B) A3F NAM. Reactions 
were sampled at 60 and 90 minutes. (E) Bar graph showing the quantified percent acceptor 
template at 0:1 and 32:1 ratios of A3 to p/t. Hatched lines show percent acceptor for A3G and 
A3F at 32:1 for reference.  
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 RNA template with higher affinity and promote increased RT template switching may also 

exhibit increased insertion fidelity of RT. We utilized steady-state polymerase insertion kinetic 

analyses to examine the incorporation of either a right dNTP or a wrong dNTP into the template. 

We assayed RT insertion fidelity in the context of a standing start (mismatched base immediately 

follows primer) and a running start (mismatched base is 1 nt downstream of primer) and used a 

radiolabeled template in order to detect the incorporation of bases [322-324]. The templates were 

resolved on 16% PAGE gels and the integrated intensities of the bands quantified. For standing 

start experiments the initial velocity (v) is calculated as the percent p/t extended per minute. For 

running start experiments the initial velocity is calculated as the insertion of base 2 (mismatch) 

over the insertion of base 1 (correct base) and is represented by I2/I1, where I is the percent 

insertion [322]. Data were analyzed to determine Michaelis-Menten kinetics and we used a  

rectangular hyperbola to be fit to the curve (initial velocity versus dNTP concentration) in order 

to determine the Vmax and Km of both right (R) and wrong (W) base incorporation [322]. The 

insertion fidelity is calculated as follows:  

  Fins= (Vmax/Km)W / (Vmax/Km)R 

The schematics of the fidelity assays are included in Figure 8.5 and Figure 8.6. The in vitro 

insertion fidelity of HIV RT is 1.0 x 10-4 [325, 326]. Similar insertion RT fidelity kinetics of 4.4 x 

10-4 and 2.6 x 10 -4, were measured for standing and running start experiments respectively (data 

not shown). Notably, RT fidelity values obtained from in vitro studies are typically 3- to 4- fold 

higher than cell based assays. As a result, the data presented here is a relative measure of fidelity 

in the absence or presence of an A3. The in vitro fidelity assays were performed in the presence 

of a heparin trap, which does not allow for RT to re-associate with the p/t once dissociated, to 

ensure that only single enzyme and p/t encounters were considered when calculating the insertion 

fidelity.  

In order to determine the effect of an A3 on the fidelity of RT, we examined the incorporation 

of a dNTP in the presence of different A3 enzymes. We observed that in the presence of weakly 

p/t associating A3s, namely A3G, A3H and A3C I188, the insertion fidelity of RT was decreased. 

For example, A3G decreased the fidelity in standing start experiments 6-fold (Figure 8.5A, fins= 

3.0 x 10-3 and Table 8.2) and 30-fold in running start experiments (Figure 8.6A, fins= 7.5 x 10-3 

and Table 8.2). Similarly, A3H and A3C I188 induced decreases in the insertion fidelity in both 

standing and running start experiments. A3H decreased the insertion fidelity to 3.2 x 10-3 (7-fold)  



	 	120 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 	121 

Figure 8.5. Steady state standing start kinetics of RT insertion fidelity. (A-D) Standing-start 
velocities for extension of primer (P) by incorporation of a “right” C (G:C, left panel) or “wrong” 
G (G:G, right panel) in the presence of (A) A3G, (B) A3F, (C) A3H and (D) A3C I188 are shown 
as a function of corresponding dNTP concentration. A rectangular hyperbola fit to the data is 
used to determine Vmax/Km for right and wrong incorporations. The standing-start misinsertion 
frequencies, fins = (Vmax/Km)W/(Vmax/Km)R are shown in Table 7.2. 
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Figure 8.6. Steady state running start kinetics of RT insertion fidelity. (A-D) Running start 
kinetics are plotted as the Ratio (I2/I1) as a function of dNTP concentration in the presence of 200 
nM of (A) A3G, (B) A3F, (C) A3H and (D) A3C I188. The ratio I2/I1 is the velocity of extended 
primer where I2 is the band intensity at site 2 (A:T or A:G) and I1 is the band intensity at site 1 
(G:C). The running-start dCTP is kept at a constant concentration (50 µM) when measuring right 
incorporation of T opposite template A (A:T, left panel) and when measuring wrong 
incorporation of G opposite template A (A:G, right panel). A rectangular hyperbola fit to the data 
is used to determine Vmax/Km for right and wrong incorporations (see text for details). The 
running-start misinsertion frequencies, fins = (Vmax/Km)W/(Vmax/Km)R are shown in Table 7.2 
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Table 8.2. HIV RT insertion fidelity in the presence of A3s. 
 

Enzyme HIV RT fidelity 
(standing start) 

HIV RT fidelity 
(running start) 

No A3 4.4 x 10-4 2.6 x 10 -4 

A3G 3.0 x 10-3 7.5 x 10-3 

A3F 4.1 x 10-4 3.9 x 10-4 

A3C I188 4.1 x 10-3 5.1 x 10-3 

A3H hap II  3.2 x 10-3  9.9 x 10-3 
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and 9.9 x 10-3 (38-fold) and A3C I188 decreased the insertion fidelity to 4.1 x 10-3 (9-fold) and 

5.1 x 10-3 (20-fold) on standing and running start templates, respectively (Figure 8.5C-D, Figure 

8.6B-D, and Table 8.2). Interestingly, in the presence of A3F which binds the template with high 

affinity, the insertion fidelity remained essentially unchanged for standing and running start p/t 

unlike the other A3s (Figure 8.5B, fins=4.1 x 10-4, Figure 8.6B, fins= 3.9 x 10-4 and Table 8.2). 

Since A3F promoted almost complete template switching in our in vitro assay (Figure 8.2B and 

Figure 8.2F), it can be reasoned that this observed increase in template switching frequency in the 

presence of A3F prevented any effect on the incorporation frequency of RT, as shown in previous 

reports. This is in contrast to the effects of A3G, A3H, and A3C I188. Therefore, the A3 enzymes 

that have lower affinity for the RNA template decreased the fidelity of RT. In contrast, A3F that 

binds the template with high affinity forced the RT to switch templates to avoid the roadblock 

and had no effect the insertion fidelity.  

8.4 Discussion  

A3 enzymes are able to restrict viral replication through deamination-independent 

mechanisms in addition to the well-characterized deamination-dependent mechanism [73, 155, 

156, 169, 214, 286, 294, 295]. A3G and A3F delay the initiation of primer extension, which leads 

to production of less full-length extension products [71, 74]. A3G and A3F were also able to 

inhibit the formation of late reverse transcriptase products (LRTs) through delay of extension 

from the primer [74]. A3G has been found to interact with RT directly, which also leads to less 

full-length extension products being formed [71]. We sought to determine if the disruption of RT 

polymerase activity affects template switching and polymerase insertion fidelity.  

A3G and A3F have been found to act as a scanning block and delay RT polymerization 

[317]. We further extended the downstream effect of this roadblock model by examining the 

effect on RT template switching. Interestingly, A3F uniquely promoted RT template switching to 

90% (Figure 8.2B) and all but A3F, could decrease the insertion fidelity of RT (Figure 8.5, 

Figure 8.6, and Table 8.2). The data indicated that the high affinity binding of A3F to the p/t 

promoted template switching. For the other A3s tested, their inability to promote template 

switching was consistent with an ability to decrease the insertion fidelity.   

The data obtained here are in agreement with previous reports studying RT template 

switching, but in the absence of A3s. Studies from the Pathak lab have examined the dynamics of 

template switching, including mutants of RT. They observed that when the polymerase activity 
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was slowed through either single or double mutations within the polymerase domain, that the 

frequency of template switching was increased [304]. This observed increase is due to increased 

RNaseH cleavage behind the slow polymerase, which allows for increased base pairing with the 

acceptor template (Figure 8.1A, slow polymerase). Conversely, if there were mutations that 

affected the RNase H domain by decreasing RNaseH cleavage, then less template was available 

for template switching and the rate of switching was reduced [304]. Alternatively, the forced 

copy choice model suggests that a roadblock to polymerization, such as a nick in the RNA 

template or a competitive binder, stalls the progression of the polymerase and forces template 

switching (Figure 8.1A) [319]. We observed that the presence of the A3 bound to the template is 

able to copy the effect of a slow polymerase mutant as well as a roadblock on the template. This 

forces RT to switch templates, which it is able to do at high levels due to the increased RNase H 

degradation behind the stalled polymerase. 

 A previous report identified that increased template switching, correlates with reduced 

misincorporation of bases by RT [321]. The exact mechanism by which template switching 

reduces the misincorportation of bases remains to be elucidated. However, this model fits with 

our results, as all A3s except A3F, decreased template switching and decrease the insertion 

fidelity of RT, and A3F increased template switching and reduced misincorporation. Thus, A3s 

can modulate RT fidelity. To avoid the roadblock imposed by these A3s, RT must be able to 

circumvent the bound A3s on the RNA template either through dissociation and reassociation 

downstream or through template switching if a region of homology is present. Although our in 

vitro experiments used an excess of acceptor template to promote template switching, in virions, 

the two different viral genomes encapsidated in the confines of the virus particle, are more likely 

to recombine through template switching despite their equimolar ratio. This could lead to one of 

two outcomes: if intermolecular template switching occurs, this may promote recombination and 

virus evolution which would be detrimental to the host, or intramolecular switching may create 

regions of insertions and deletions that could inactivate the virus [302-304]. The presence of A3s 

on the RNA template may also increase the misincorporation frequency of RT. The increase in 

error rate may be a mechanism to ensure virus inactivation in the presence of Vif where the 

number of A3s encapsidated is low and the deamination induced mutations alone may not be 

enough to inactivate the virus. It is interesting that A3G was the only A3 that could decrease 
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template switching. Although not tested for other A3s, A3G can interact with RT directly [327], 

and this may enable A3G to uniquely decrease RT template switching.  

Overall, this study has found that A3 enzymes are not only able to decrease the initiation 

of primer extension, but are able to modulate RT processes of template switching and affect 

insertion fidelity. While these deamination-independent mechanisms alone are not likely to cause 

similar levels of viral inhibition observed for cytosine deamination by A3s, and therefore not as 

potent at restricting HIV as the deamination-dependent mechanisms, the additive effect of 

inhibiting RT processes and hypermutating viral DNA may ensure complete inactivation of HIV. 

The delay in polymerization is thought to allow for a longer time period for A3s to access and 

deaminate the viral DNA, and this roadblock also forces RT to compensate for the block in 

polymerization through template switching. Similarly, the competitive binding of A3s prevents 

proper sampling of the dNTP pool, increasing the frequency of errors. These effects on RT, in 

addition to deaminations of the viral DNA would cause higher levels of mutation, perhaps to 

better ensure viral inactivation.  

8.5 Materials and Methods  

8.5.1 Synthesis of RNA templates. For the PBS RNA donor template, a 150 nucleotide 

(nt) segment near the 5’-end of the HIV-1 genome (nt 521–676) encompassing the PBS and 

upstream region to the TAR site was PCR amplified. For the PBS RNA acceptor template, a 180 

nt segment of the HIV-1 genome (451-635 nt) was PCR amplified. The PCR amplicons were 

cloned into the BamHI and EcoRI sites of the pSP72 vector (Promega). Sequences were 

amplified from the HIV-1 clone 93th253.3 (GenBank accession number U51189) obtained 

through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, 

National Institutes of Health; p93th253.3 was from Dr. Feng Gao and Dr. Beatrice Hahn [328]. 

The sequences were verified and then used for synthesis of RNA template by linearizing the 

vector at the BamHI site and using it as a T7 RNA polymerase substrate according to 

manufacturer's instructions for the Ambion Megascript kit. All primers and templates used are 

listed in Table 7.3 

8.5.2 Protein expression and purification. Recombinant baculovirus for expression of 

GST-tagged NC, A3G, A3F, A3H, A3C I188, A3G NPM and A3F NAM was constructed as 

described previously [99, 107-111]. Sf9 cells were infected with recombinant A3 or NC at an 

MOI 1 for A3G and NC, MOI of 2 for A3F, MOI of 5 for A3C I188 and an MOI of 20 for A3H 
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hap II and were harvested after 72 h. Cells were lysed in the presence of RNaseA and purified as 

described previously to obtain proteins cleaved from the GST tag. NC, A3G, A3G NPM and 

A3H hap II were subjected to on-column cleavage from the GST tag with thrombin (GE 

Healthcare) at 21 °C for 18 h in thrombin digestion buffer (20 mM HEPES, pH 7.5, 150 mM 

NaCl, 10% glycerol, and 1 mM DTT). A3F, A3C I188 and A3F NAM were eluted with the GST 

in elution buffer (100 mM Tris, pH 8.8, 150 mM NaCl, 10% (v/v) glycerol, and 50 mM reduced 

glutathione) digested with thrombin to cleave GST in solution for 6 h at 21 °C and then dialyzed 

(100 mm Tris, pH 7.5, 250 mm NaCl, 10% glycerol, and 1 mm DTT) overnight at 4 °C. To 

purify A3 enzymes from the free GST and thrombin, the enzyme stock was diluted to achieve a 

solution of 50 mM Tris pH 7.5, 50 mM NaCl, 10% (v/v) glycerol and 1 mM DTT for loading 

onto a DEAE FF column (GE Healthcare). Enzymes were eluted with a linear gradient of NaCl. 

The Escherichia coli strain containing the plasmid to express HIV reverse transcriptase was 

provided by Stuart Le Grice (National Cancer Institute). Expression of HIV reverse transcriptase 

was carried out as previously described [329]. In brief, cell lysates produced using sonication 

were clarified by centrifugation and then purified using a HisTrap FF crude column (GE 

Healthcare) and HiTrap heparin HP (GE Healthcare) as described previously [329]. Protein 

fractions were stored at −80°C. All proteins used were ∼95% pure. 

8.5.3 In vitro template switching assays. The 150 nt donor template RNA containing the 

PBS (nt 571–674) was heat annealed to an 18 nt 32P-labeled RNA primer to mimic tRNALys,3 

primer binding. The p/t (10 nM) was then used in reactions containing RT buffer (50 M Tris, pH 

7.5, 40 mM KCl, 10 mM MgCl2, 1 mM DTT), 500 µM dNTPs, 175 nM NC, 400 nM RT, and 

400 nM acceptor RNA template for a 40:1 acceptor:donor ratio in the absence or presence of A3 

(40, 80, or 320 nM). Reactions were preincubated at 37°C for 1 min before the addition of dNTPs 

which were used to start the reaction. A negative control was used which contained all reaction 

components except reverse transcriptase to ensure there was no contaminating polymerase 

activity. A second negative control was used that contained all the reaction components except 

for the acceptor RNA template to demonstrate the band pattern of the donor template alone. 

Reactions were stopped by adding a 5-fold excess of 20 mM EDTA and 95% formamide. 

Template switching was visualized by resolving samples on a 16% denaturing 8 M urea 

polyacrylamide gel. Gel band intensities were measured by phosphorimaging with a Typhoon 

Trio multipurpose scanner (GE Healthcare). The integrated gel band intensities of all bands in a 
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lane were calculated with ImageQuant software (GE Healthcare) and used to determine the 

relative amounts of donor versus acceptor products. 

8.5.4 Steady state rotational anisotropy. Protein-p/t binding measurements were made 

by monitoring changes in steady-state fluorescence depolarization (rotational anisotropy). For 

measuring binding to the p/t, the 5′-end fluorescein (F)-labeled primer corresponding to the PBS 

primer used in template switching assay was heat annealed to the corresponding RNA template 

(PBS RNA) to form the binding substrate. The rotational anisotropy experiments (60 µL) were 

incubated at 21°C and contained RT buffer, p/t (10 nM) and increasing concentrations of RT or 

A3. Protein concentrations used ranged from 0–5 µM for measuring p/t binding affinities. 

Rotational anisotropy was measured with a QuantaMaster QM-4 fluorometer (Photon 

Technology International). Samples were excited with vertically polarized light at 495 nm (6 nm 

band pass), and both vertical and horizontal emissions were monitored at 520 nm (6 nm band 

pass). Apparent dissociation constants (Kd) were determined through regression analysis using 

Sigma Plot 11.2 software. 

8.5.5 In vitro polymerase fidelity assays. For standing start assays, the PBS donor 

template used above was heat annealed to a standing start primer (Table 5.3) to generate a 

standing start p/t [322, 324]. 10 nM of this template was then used in reactions containing RT 

buffer (50 M Tris, pH 7.5, 40 mM KCl, 10 mM MgCl2, 1 mM DTT), 175 nM NC, 400 nM RT, 

and 200 nM of the various A3s. To ensure the extension products contained only the insertion 

bands expected, reactions were preincubated at 37°C for 1 min before the addition of increasing 

amounts of dNTP and heparin sodium mixture (1 mg/mL) equal in volume to the preheated 

reaction components. This ensured that once RT dissociated there was no further association with 

the template. The reactions were allowed to proceed for 10 min before being stopped by the 

addition of a 5-fold excess of 20 mM EDTA and 95% formamide.  

For running start assays, the PBS donor template was heat annealed to a running start primer 

(Table 5.3) to generate a running start p/t. 10 nM of this template was then used in reactions 

containing RT buffer (50 M Tris, pH 7.5, 40 mM KCl, 10 mM MgCl2, 1 mM DTT), 175 nM NC, 

400 nM RT, and 200 nM of the various A3s as well as 50 µM of the running start base dCTP. To 

ensure the extension products contained only the insertion bands expected, reactions were 

preincubated at 37°C for 1 min before the addition of increasing amounts of dNTP and heparin 

sodium mixture (1mg/mL) equal in volume to the preheated reaction components. This ensured 
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that once RT dissociated there was no further association with the template. The reactions were 

allowed to proceed for 10 min before being stopped by the addition of a 5-fold excess of 20 mM 

EDTA and 95% formamide.  

Both standing and running start samples were resolved on a 16% denaturing 8 M urea 

polyacrylamide gel. Gel band intensities were measured by phosphorimaging with a Typhoon 

Trio multipurpose scanner (GE Healthcare). The integrated gel band intensities of all bands in a 

lane were calculated with ImageQuant software (GE Healthcare), and either initial velocity 

(standing start) or ratio of I2 over I1 (running start) was plotted against concentration of dNTP.  

  



	 	131 

Table 8.3. List of primers and templates. 

Name Sequence 

PBS donor (forward) AGC CTC AAT AAA GCT TGC CTT GA  

PBS donor (reverse) GTC CCT ATT AAC TTT CGC TTT CA  

PBS acceptor (forward) ACT GGG TCT CTC TTG TTA GGC  

PBS acceptor (reverse) CTG CTA GAG ATT TTT ACT CAG TC  

Protease template (forward) ATA GGA GGA CAA CTG AAA GAA GC  

Protease template (reverse) GAT AAA ACC TCC AAT TCC CCC TAT 
C 

PBS primer  GUC CCU GUU CGG GCG CCA 

Standing start primer GAT AAA ACC TCC AAT TCC C 

Running start primer GAT AAA ACC TCC AAT TCC CCC 

FAM-PBS primer Fam-GUC CCU GUU CGG GCG CCA 

PBS donor template AGC CUC AAU AAA GCU UGC CUU GAG 
UGC UUA AAG UGG UGU GUG CCC AUC 
UGU GUU AGG ACU CUG GUA ACU AGA 
GAU CCC UCA GAU CAC UCU AGA CUG 
AGU AAA AAU CUC UAG CAG UGG CGC 
CCG AAC AGG GAC UUG AAA GCG AAA 
GUU AAU AGG GAC 

PBS acceptor template ACU GGG UCU CUC UUG UUA GGC CAG 
GUC GAG CCC GGG AGC UCU CUG GCU 
AGC AGG GGA ACC CAC UGC UUA AAG 
CCU CAA UAA AGC UUG CCU UGA GUG  
CUU AAA GUG GUG UGU GCC CAU CUG 
UGU UAG GAC UCU GGU AAC UAG AGA 
UCC CUC AGA UCA CUC UAG ACU GAG 
UAA AAA UCU CUA GCA G 

Protease template AUA GGA GGA CAA CUG AAA GAA GCU 
CUA UUA GAU ACA GGA GCA GAU GAU 
ACA GUA UUA GAA GAU AUA AAU UUG 
CCA GGG AAA UGG AAA CCA AAA AUG 
AUA GGG GGA AUU GGA GGU UUU AUC 
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9.0  Biochemical determinants of deamination during transcription and 

replication by APOBEC3s. 
Since 2013, there has been increasing research into the role of the A3 family’s ability to 

mutate genomic DNA. If these enzymes are expressed at the wrong time or in the wrong cell type 

and have access to genomic DNA in the nucleus, there is the potential for deamination of 

genomic cytosines that can lead to mutations and cellular transformation [170, 330, 331].  A3B, 

A3A and A3H hap I have been demonstrated to contribute to cancer mutagenesis [17, 174, 175, 

184, 196]. Among these three enzymes, A3B has emerged as the leading contributor to 

mutagenesis [180, 332-336]. Typically, the expression of A3B is restricted to the germ cells and 

the lymphoid lineages, however inappropriate expression of A3B can lead to genomic instability 

[170]. A3B recognizes 5′TC motifs that are preferably preceded by a G or A, and this sequence 

context of mutations has been found in cancer genomes [17, 175, 182]. It is thought that during 

DNA replication, the cytosines in the exposed ssDNA on the lagging strand are susceptible to 

deamination by A3B [190-194].  If left unrepaired, these uracils will template addition of the 

incorrect base leading to C/G to T/A transition mutations [170]. This aberrant cytosine 

deamination activity of A3B contributes to mutations in multiple cancers, such as breast, cervical, 

lung (adeno- and squamous cell), bladder, and head and neck [17].    

Despite a large amount of cellular based data on the contribution of A3B to cancer 

mutagenesis, there is limited data on the biochemical mechanism of the wild-type enzyme, as 

well as the biochemical mechanisms used by other implicated A3s. For HIV restriction by A3 

enzymes, encapsidation into the virion is not sufficient for restriction, and the inherent 

biochemical properties of the enzyme determine the frequency of deaminations in viral DNA. 

[74, 108-110, 119] Therefore, it is reasonable to assume that availability of the ssDNA in the 

nucleus is not sufficient for deamination during transcription and replication, and that the 

biochemical mechanisms of these enzymes may impart this observed activity. It is also 

interesting to note that the enzymes known to restrict HIV, A3G, A3F, A3H (hap II, V, and VII), 

and A3D, are not the same enzymes implicated in genomic damage. Therefore, we hypothesize 

that there will be a mechanism unique to these genomic mutators, and different than the enzymes 

important for HIV restriction that allows for access to ssDNA during dynamic cellular processes. 

One clue that these mechanisms may be distinct is that A3A, previously characterized as a non-

processive enzyme [119], is an A3 relevant to genomic mutagenesis. Processivity is known to be 



	 	133 

a determinant for efficient HIV restriction by A3s, and therefore the processivity of the enzymes 

may not be as important for deamination during transcription and replication.  Further 

characterization of these mechanisms for A3B, A3H hap I and A3A on ssDNA will be outlined in 

Chapter 9, and will determine the ability to deaminate “off-target” substrates. 
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10.0  Enzyme cycling contributes to the efficient induction of genome 

mutagenesis by the cytidine deaminase APOBEC3B. 
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10.1 Abstract 

The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and 

APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic 

uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic 

processes of DNA replication or transcription, but the enzymatic mechanisms enabling this 

activity are not known. To study this, we developed a method to purify full length APOBEC3B 

and characterized it in comparison to APOBEC3A and APOBEC3H on substrates relevant to 

cancer mutagenesis. We found that the ability of an APOBEC3 to cycle between DNA substrates 

determined whether it was able to efficiently deaminate single-stranded DNA produced by 

replication and single-stranded DNA bound by replication protein A (RPA). APOBEC3 

deaminase activity during transcription had a size limitation that inhibited APOBEC3B tetramers, 

but not APOBEC3A monomers or APOBEC3H dimers. Altogether, the data support a model in 

which the availability of single-stranded DNA is necessary, but alone not sufficient for 

APOBEC3-induced mutagenesis in cells because there is also a dependence on the inherent 

biochemical properties of the enzymes. The biochemical properties identified in this study can be 

used to measure the mutagenic potential of other APOBEC enzymes in the genome.  

10.2  Introduction 

The APOBEC family of enzymes in humans has 12 members and is comprised of RNA 

and DNA cytidine deaminases [5]. The enzymes are named after APOBEC1, the first family 

member discovered, that edits the mRNA of apolipoprotein B in the intestine by converting 

cytosine to uracil and forming a stop codon [5]. Other family members with demonstrated 

deaminase activity have roles in immunity. Activation induced cytidine deaminase (AID) 

converts cytosine to uracil in single-stranded (ss) DNA created during transcription of 

immunoglobulin genes in activated B cells [11]. These uracils promote antibody maturation and 

class switching [11]. The APOBEC3 enzyme family has seven members (A-H, excluding E) that 

are expressed in germ cells, CD4+ T cells, or myeloid derived cells and are able to convert 

cytosine to uracil in ssDNA of invading viruses, endogenous retroviruses, and retrotransposons 

[2]. These uracils result in mutagenesis and functional inactivation of the virus [2]. APOBEC3A 

can also edit mRNAs in monocytes and macrophages [6]. In the APOBEC3 family some of the 

enzymes have only one Zn-coordinating deaminase domain (A, C, H) and others have two (B, D, 

F, G). There are also other members such as APOBEC2, APOBEC4, and APOBEC5 that have no 
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in vitro catalytic activity, although APOBEC2 appears to be involved in muscle development [8-

10, 337]. Despite the diverse beneficial functions of this family, there is one unifying 

characteristic; if the enzymes are expressed at the wrong time or in the wrong cell type and have 

access to the nucleus they can deaminate cytosines in genomic DNA and this can contribute to 

cellular transformation, cancer, and the ongoing mutagenic processes in tumors [170, 330, 331]. 

Thus far, three APOBEC3 (A3) enzyme family members have been characterized to contribute to 

cancer mutagenesis, APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3H haplotype I 

(A3H hap I) [17, 174, 175, 184, 196].  

A3B serves as a good example for the role of A3s in cancer since it has been most 

extensively studied in this context. A3B is localized to the nucleus and has cytidine deaminase 

activity on ssDNA [209, 338]. When A3B expression occurs in the wrong context, A3B promotes 

genomic instability at the nucleotide level that results in contributions to the mutations that arise 

in breast cancer and lead to resistance to the chemotherapeutic drug tamoxifen [175, 179]. A3B 

can also contribute to mutations that arise in a number of other cancers [17, 180, 332-336, 339, 

340]. A3B recognizes 5′TC motifs that are preferably preceded by a G or A, and this sequence 

context of mutations has been found in cancer genomes [17, 175, 341]. It is thought that during 

DNA replication, the cytosines in the exposed ssDNA on the lagging strand are susceptible to 

deamination by A3B [190-194]. If left unrepaired, these uracils will template addition of the 

incorrect base leading to C/G to T/A transition mutations [170]. The uracils can also induce the 

formation of double-strand (ds) DNA breaks or be repaired in an error-free or error-prone manner 

[170].  

Despite this understanding of A3B activity at a cellular level, biochemical 

characterizations have centered on using truncated forms of A3B that contain only the 

catalytically active C-terminal domain (CTD) [17, 175, 270, 341-346]. A biochemical analysis of 

full-length (fl) wild-type A3B on substrates relevant to cancer mutagenesis is lacking. Owing to 

poor solubility of A3B in heterologous E. coli expression systems and its mutagenic activity, 

purification of fl A3B has posed difficulties [58, 343, 345, 347]. Although the N-terminal domain 

(NTD) of A3B is not catalytically active, it does contribute to activity and the CTD alone is 10-

fold less active than fl A3B as measured by a mutator assay where A3B is expressed in E. coli or 

the in vitro activity of maltose binding protein tagged A3B [343, 346]. We have little knowledge 

of why the full length enzyme is more active than the CTD, how fl A3B can access ssDNA in the 
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genome, if it requires cofactors, or how it competes with other ssDNA binding proteins such as 

replication protein A (RPA) [270, 342, 344, 345]. Although A3A and A3H have been previously 

characterized biochemically, there is similarly little information on how at a biochemical level 

these enzymes would access ssDNA in the genome [110, 119, 174, 272, 348].  

To better understand the biochemical mechanisms underlying the ability of A3B, A3H 

hap I, and A3A to induce genomic mutagenesis we undertook an analysis of these enzymes on 

ssDNA and used in vitro phage based systems of transcription and replication to determine if 

these enzymes alone can deaminate dynamically produced ssDNA. Importantly, to complete this 

research, we purified fl A3B and for the first time provide a characterization of the enzyme, 

which shows that it is different than the commonly used A3B CTD, suggesting that the A3B 

CTD is not a functional substitute. We also find that deamination activity during DNA synthesis 

and when ssDNA is bound by RPA requires an enzyme that can rapidly cycle between DNA 

substrates. For deamination during transcription, we found that the larger oligomeric state of A3B 

inhibited its activity. These biochemical studies provide evidence that the intrinsic characteristics 

of the enzymes have a contribution to the mutagenic process, rather than the availability of 

ssDNA alone. The inherent biochemical characteristics common to A3A, A3B, and A3H hap I 

can be used to measure the mutagenic potential of other APOBEC enzymes in the genome.  

 

10.3 Results  

10.3.1 A3B is a processive enzyme that forms higher order oligomers. The purification of 

A3B has posed difficulties because even the basal expression levels of A3B from eukaryotic 

vectors when being amplified in E. coli results in the purification of mutated A3B vector 

sequences [58, 345, 347]. Some labs have overcome this by inserting an intron in the A3B [58, 

345]. However, since A3 enzymes are most soluble and active when expressed from recombinant 

baculovirus infected Sf9 cells [349], and this system is not amenable to splicing of intron 

containing A3B, we were unable to overcome expression difficulties in this manner (data not 

shown) [350]. Instead, we made a GST-tagged version of A3B that inactivated the enzyme and 

amplified this GST-A3B clone in a baculovirus transfer vector for subsequent generation of 

recombinant baculovirus. We confirmed that the GST-A3B becomes inserted in the baculovirus 

genome with no mutations (data not shown). The GST-A3B is then expressed and the GST tag is 

cleaved during purification to impart A3B activity.  
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The purified fl A3B has a specific activity on ssDNA of 1.60 pmol/µg/min, which is similar 

to A3G (Figure 10.1A and Table 10.1). In comparison to the literature, the Sf9 insect cell 

produced fl A3B is 32-fold more active than the Maltose Binding Protein tagged fl A3B 

produced from E. coli [346]. We also produced in Sf9 cells the two commonly used A3B CTD 

enzymes that contain amino acids 187-392 (187 CTD) or 193-392 (193 CTD) of A3B [342, 343]. 

The fl A3B is still 40-fold more active than the A3B 193 CTD that was reported to have 

increased activity over the more commonly used A3B 187 CTD (Figure 10.1A, Table 10.1, and 

Figure 10.2) [342, 343]. We did not detect in vitro catalytic activity for the A3B 187 CTD 

(Figure 10.1A, Table 10.1, and Figure 10.2). Thus, despite the A3B NTD not having catalytic 

activity, it appears to be able to facilitate enzyme activity. This is common to other A3 enzymes 

that contain two Zn2+ coordinating domains, such as A3G and A3F [107, 108]. The NTD in these 

enzymes is a processivity domain and mediates oligomerization [98, 107, 108]. The fl A3B may 

also oligomerize since it bound to ssDNA cooperatively as demonstrated by a best fit of the 

binding data to a sigmoidal binding curve (Table 10.1 and Figure 10.3A). To determine if fl A3B 

oligomerization occurred in solution and if it was different between fl A3B and the A3B CTDs, 

we used size exclusion chromatography (SEC). The SEC showed that fl A3B (46 kDa) formed 

predominantly tetramers (184 kDa) and a small proportion existed as dimers (92 kDa) (Figure 

10.1B and Figure 10.4A-B). In contrast, the A3B 187 CTD was monomeric and the A3B 193 

CTD was primarily monomeric with a small proportion of dimers, consistent with an earlier 

report (Figure 10.1C-D, Figure 10.4C-D) [343]. However, both A3B CTDs bound ssDNA non-

cooperatively with an apparent dissociation constant (Kd) that was ~4-fold higher than the fl A3B 

(Table 10.1, and Figure 10.3B, best fit to a rectangular hyperbola). This suggests that the CTD is 

mainly a catalytic center and that the NTD promotes ssDNA interaction and self-interaction. 

Altogether, the data strongly support that the A3B CTD is not a suitable replacement for the full-

length enzyme and we continued our study with fl A3B only (hereafter referred to as A3B). 

Since A3B is an ssDNA binding enzyme that deaminates only in a specific recognition 

motif, it must first find the motifs by searching the ssDNA non-specifically through a DNA 

scanning process called facilitated diffusion [104-106, 351]. In facilitated diffusion, electrostatic 

interactions of the enzyme with the DNA facilitate a search by enabling the enzyme to remain 

bound longer to the DNA than the time it spends in the bulk solution not bound to a substrate. 

The ssDNA scanning mechanism enables the enzyme to be processive and deaminate more than  
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Figure 10.1. A3B NTD mediates enzyme activity and oligomerization. (A) Time course of A3B, 
A3B 193 CTD, and A3B 187 CTD on a 118 nt fluorescently labeled ssDNA with two 5′ATC 
deamination motifs spaced 63 nt apart. Reactions were performed with 100 nM substrate DNA 
and 50 nM (fl A3B) or 2 µM (187 CTD, 193 CTD) for the indicated amount of time (5-60 min fl 
A3B or 30-120 min CTD mutants). (B-D) Size exclusion chromatography profiles of 10 µg (B) fl 
A3B, (C) 193 CTD, and (D) 187 CTD from a 10 mL Superdex 200 column was used to calculate 
the oligomerization state of the enzyme from a standard calibration curve. An “M” denotes a 
monomer fraction, a “D” denotes a dimer fraction, and a “T” indicates a tetramer fraction. (A) fl 
A3B formed tetramers (apparent molecular weight 184 kDa) and dimers (apparent molecular 
weight 92 kDa). (C-D) 193 CTD and 187 CTD resolved as monomers (apparent molecular 
weight 23 kDa). The chromatograms were constructed by analyzing the integrated gel band 
intensities of each protein in each fraction after resolution by SDS-PAGE (Figure 10.4).  
  



	 	140 

Table 10.1. Deamination activity and binding of APOBEC3 enzymes on oligonucleotide 
substrates. 

Enzyme 
Specific 
activity 

(pmol/µg/min) 1 

Apparent Kd, 
ssDNA                 

(Hill Coefficient) 

Specific 
activity,       
R-loop  

(pmol/µg/min) 

Apparent 
Kd,         
R-loop  

Apparent 
Kd, 

DNA/RNA            
(Hill 

Coefficient) 

fl A3B 1.60 ± 0.05 0.35 ± 0.02 µM 
(2.8) 0.54 ± 0.09 0.90 ± 

0.05 µM 
0.31 ± 0.03 
µM 

A3B 187 
CTD None detected 1.51 ±  0.50 µM Not 

determined 
Not 

determined 
Not 

determined 

A3B 193 
CTD 0.04 ± 0.01 1.30 ± 0.34 µM Not 

determined 
Not 

determined 
Not 

determined 

A3A 1.10 ± 0.10 9.10 ± 2.50 µM 
(1.7) 0.25 ± 0.07 > 16 µM 2 > 10 µM 2 

A3H hap I* 0.60 ± 0.02 0.29 ± 0.01 µM 
(1.6) 0.35 ± 0.08 > 7 µM 2 1.20 ± 0.16 

µM 

A3G 2.50 ± 0.15 0.09 ± 0.02 µM 
(1.9) 0.48 ± 0.10 1.30 ± 

0.15 µM 
0.16 ± 0.01 
µM (2.5) 
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Figure 10.2. Time course of deamination activity for fl A3B and CTD mutants. To determine the 
activity over time shown in Figure 1A, 100 nM of a 118 nt fluorescently labeled ssDNA with two 
5’ATC motifs separated by 63 nt was incubated with (A) 50 nM (fl A3B) or (B-C) 2 µM (187 
CTD, 193 CTD) for the indicated amount of time (5-60 min fl A3B or 30-120 min CTD 
mutants). The percent deamination at each time point is shown below the gel.   
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Figure 10.3. Interaction of A3 enzymes with nucleic acids. The apparent dissociation constant 
(Kd) of A3 enzymes on nucleic acids was determined by steady state rotational anisotropy. 
Steady state binding to ssDNA, DNA/RNA hybrids, R-loops, or dsDNA was determined. Panels 
show binding curves for (A) A3B, (B) A3B in comparison to A3B CTDs, (C) A3A, (D) A3H hap 
I*, and (E) A3G. The apparent Kd for these binding data are summarized in Table 9.1. Error bars 
represent the standard deviation from three independent experiments. 
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Figure 10.4. SDS-PAGE of size exclusion chromatography fractions. (A) Standard calibration 
curve used to calculate the molecular weights. (B-G) The chromatograms from the 10 ml 
Superdex 200 column in Figure 1b, c, d and Figure 3 e, f, g were constructed by analyzing the 
integrated gel band intensities of the protein in each fraction after resolution by SDS-PAGE. The 
gels for each panel were resolved, stained with Oriole stain, and scanned in parallel. The gels 
show the size exclusion chromatography fractions resolved by SDS-PAGE for each A3, as 
labeled on each panel. The molecular weight calculated from the standard curve are shown for 
the peak fractions.  
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one cytosine in a single enzyme-substrate encounter. Other A3 enzymes have been found to use 

facilitated diffusion [108-111]. Facilitated diffusion is also used by restriction enzymes and for 

DNA repair proteins, such as Uracil DNA glycosylase [351, 352].  

Using an in vitro deamination assay on a synthetic ssDNA substrate containing two A3B 

5'ATC deamination motifs we can measure processive deaminations that occurred by facilitated 

diffusion [111]. Essential to this assay is that the reactions are carried out under single-hit 

conditions (<15% substrate usage) to ensure that each ssDNA substrate was acted upon by only 

one enzyme during the course of the reaction [242]. If under single-hit conditions we observe 

deamination of both 5'ATC motifs we can conclude that the enzyme is processive and 

deaminated both motifs in a single enzyme-substrate encounter. To decrease the chance that 

cooperative binding of different A3B molecules at different times on the ssDNA resulted in an 

apparent processivity, the reactions took place with an excess of ssDNA to promote interaction of 

single molecules of A3B with the ssDNA, which may be either dimer or tetramer molecules from 

solution (Figure 10.1B). We also calculated a processivity factor which is a ratio of the observed 

deaminations at both 5'ATC sites to the calculated theoretical number of deaminations that would 

occur independently at both 5'ATC motifs if the enzyme were non-processive (see Materials and 

Methods) [111]. Facilitated diffusion encompasses a range of movements termed sliding, 

jumping or hopping, and intersegmental transfer [2, 104, 351, 353]. The sliding occurs along the 

phosphate backbone and for A3 enzymes moving on ssDNA is limited to a scanning length of 20 

nt or less [108, 253]. The jumping, hopping, and intersegmental transfer are long range 

movements where the enzyme can use a 3-dimensional search to sample distal DNA regions 

either by microscopic dissociations and reassociations along the DNA (jumping or hopping) or 

through a doubly bound state (intersegmental transfer) [2, 104, 351, 353]. 

To determine if A3B could slide along the ssDNA phosphate backbone, we conducted the 

deamination experiment with 5'ATC motifs that were separated by only 5- or 14- nt. A3B is able 

to slide and had a processivity factor of 4 to 6, depending on the substrate. The processivity 

factor indicates that A3B was at least 4-fold more likely to processively deaminate both 5'ATC 

motifs than to make a non-processive deamination of only one 5'ATC motif (Figure 10.5A-B). To 

determine if A3B could also move by 3-dimensional diffusion we tested deamination on a 

substrate where the 5'ATC motifs were separated by 63 nt. The A3B had a processivity factor of 

4, similar to the processivity exhibited on the substrates with closer spaced motifs (Figure 10.5C).  
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Figure 10.5. A3B is processive enzyme that both slides and moves 3-dimensionally on ssDNA. 
Processivity of A3B was tested on ssDNA substrates that contained a fluorescein-labeled 
deoxythymidine (yellow star) between two 5′ATC deamination motifs separated by different 
distances. (A) Deamination of a 60 nt ssDNA substrate with deamination motifs spaced 5 nt 
apart. Single deaminations of the 5′C & 3′C are detected as the appearance of labeled 42- and 23- 
nt fragments, respectively; double deamination of both C residues on the same molecule results 
in a 5 nt labeled fragment. (B) Deamination of a 69 nt ssDNA substrate with deamination motifs 
spaced 14 nt apart. Single deaminations of the 5′C & 3′C are detected as the appearance of 
labeled 51- and 32- nt fragments, respectively; double deamination of both C residues on the 
same molecule results in a 14 nt labeled fragment. (C) Deamination of a 118 nt ssDNA substrate 
with deaminated cytosines spaced 63 nt apart. Single deaminations of the 5′C & 3′C are detected 
as the appearance of labeled 100- and 81- nt fragments, respectively; double deamination of both 
C residues on the same molecule results in a 63 nt labeled fragment. (D) Deamination of a 118 nt 
ssDNA substrate as in (C) but with a 30 nt complementary DNA annealed between the 
deamination motifs. The measurements of processivity factor (P.F.) and the standard deviation 
(S.D.) from three independent experiments are shown below the gel.  
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Due to the distance between the motifs alone the data suggest that A3B can move 3-

dimensionally by jumping or intersegmental transfer. However, to confirm that A3B could move 

3-dimensionally, we annealed a double-stranded (ds) DNA between the two 5'ATC motifs. Since 

A3B binds dsDNA 13-fold less well than ssDNA (Figure 10.3A), the dsDNA acts to block A3B 

sliding in between the two 5'ATC motifs. Thus, to deaminate both A3B would have to transverse 

the dsDNA by 3-dimensional diffusion. Consistent with A3B not being able to slide across the 

dsDNA, we find that the processivity decreases 2-fold in the presence of the complementary 

dsDNA, but is not diminished completely (Figure 10.5D). The 2-fold decrease results from failed 

attempts to slide over the dsDNA, which results in enzyme dissociation [108]. This supports that 

A3B can move over the dsDNA to complete processive deaminations by either jumping or 

intersegmental transfer. In contrast, the A3B CTD is not processive on any ssDNA substrate 

tested (Figure 10.6).  

Having characterized the basic biochemical features of A3B we wanted to make a 

comparison to the other deaminases implicated in cancer mutagenesis to determine if they shared 

specific biochemical abilities. A3A has been previously characterized by multiple labs and 

consistent with these past studies we report that A3A is not processive and binds ssDNA in the 

high micromolar range (~9 µM) [119, 272, 348] (Figure 10.7A, Table 10.1, and Figure 10.3C). 

A3H hap I is not amenable for biochemical studies due to it being thermodynamically unstable 

[59, 174]. However, it is known that this is due to a Gly at position 105 and mutagenesis of this 

position to form a G105R mutant stabilizes the protein [59]. This A3H form is found in humans 

as haplotype VII [60]. For the purposes of our study the A3H hap I G105R (haplotype VII) was 

used as an A3H hap I proxy since the two enzymes are otherwise identical in their amino acid 

sequences. We refer to it as A3H hap I*. In contrast to A3A, the A3H hap I* is processive and 

binds ssDNA in the nanomolar range, similar to other A3H haplotypes previously characterized 

and A3B (Figure 10.7B, Table 10.1, and Figure 10.3D) [110].  

10.3.2 Processivity is not required for deamination during transcription. Deamination of 

genomic DNA undergoing transcription has not been identified as a major mechanism by which 

these enzymes access ssDNA in the nucleus [190-194]. We wanted to test whether this was due 

to inherent characteristics of the enzymes. To determine if A3B, A3A, and A3H hap I* could 

deaminate during active transcription, we used an in vitro transcription system driven by the 

phage T7 RNA polymerase. This is a minimal system where transcription requires only the RNA  
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Figure 10.6. Comparison of processivity for fl A3B and A3B 193 CTD. (A) Deamination of a 118 
nt ssDNA substrate with deaminated cytosines spaced 63 nt apart. Single deaminations of the 5′C 
& 3′C are detected as the appearance of labeled 100- and 81- nt fragments, respectively; double 
deamination of both C residues on the same molecule results in a 63 nt labeled fragment. (B) 
Deamination of a 60 nt ssDNA substrate with deamination targets spaced 5 nt apart. Single 
deaminations of the 5′C & 3′C are detected as the appearance of labeled 42- and 23- nt fragments, 
respectively; double deamination of both C residues on the same molecule results in a 5 nt 
labeled fragment. A processive enzyme has a processivity factor >1 (see Materials and Methods). 
The measurements of processivity factor (P.F.) and the standard deviation (S.D.) from three 
independent experiments are shown below the gel.  
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Figure 10.7. Deamination during transcription is mediated by size and not by processivity. (A-B) 
Processivity of (A) A3A and (B) A3H hap I* was tested on a 118 nt ssDNA substrate with 
deamination motifs (5′TTC, A3A; 5′CTC, A3H hap I*) spaced 63 nt apart. Single deaminations 
of the 5′C & 3′C are detected as the appearance of labeled 100- and 81- nt fragments, 
respectively; double deamination of both C residues on the same molecule results in a 63 nt 
labeled fragment. A processive enzyme has a processivity factor >1 (see Materials and Methods). 
(C) Deamination activity of A3B, A3A, A3H hap I*, A3G, and A3G F126A/W127A (FW) 
during T7 RNA polymerase transcription of a 66 nt dsDNA. The nontranscribed strand contained 
a single deamination motif for A3A (5′TTC), A3B (5′TTC), A3H hap I* (5′CTC), or A3G 
(5′CCC). Percent deamination was calculated from the integrated intensity of the product band 
resolved by PAGE (Figure 10.6).  (D) Deamination activity of A3B, A3A, A3H hap I*, and A3G 
on a 70 nt R-loop substrate with a fluorescein label at the 5′ end and a single deamination motif 
within the R-loop region. The motifs were 5′TTC (A3A, A3B, A3H hap I*) and 5'CCC (A3G). 
Each A3 enzyme (100 nM) was incubated with 100 nM of R-loop substrate for 5-20 min. Percent 
deamination was calculated from the integrated intensity of the product band resolved by PAGE 
(Figure 10.9). (E-G) Size exclusion chromatography profiles of 10 µg (E) A3A, (F) A3H hap I* 
and (G) A3G from a 10 mL Superdex 200 column was used to calculate the oligomerization state 
of the enzyme from a standard calibration curve. An “M” denotes a monomer fraction, a “D” 
denotes a dimer fraction, and a “T” indicates a tetramer fraction. (E) A3A resolved as a monomer 
(apparent molecular weight 23 kDa). (F) A3H hap I* formed a combination of tetramers 
(apparent molecular weight 92 kDa), dimers (apparent molecular weight 46 kDa), and monomers 
(apparent molecular weight 23 kDa). (G) A3G formed both dimers (apparent molecular weight 
46 kDa) and monomers (apparent molecular weight 23 kDa). The chromatograms were 
constructed by analyzing the integrated gel-band intensities of each protein in each fraction after 
resolution by SDS-PAGE (Figure 10.4). 
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polymerase, dsDNA substrate and rNTPs. In order to quantify enzyme activity as deamination 

over time, we used an oligonucleotide dsDNA substrate, rather than a plasmid based T7 system. 

Each dsDNA substrate used the same transcribed strand, but had a unique non-transcribed strand 

with a single deamination motif on the non-transcribed strand specific for each A3. We let the 

reaction proceed in the presence of an A3 and T7 RNA polymerase and then the non-transcribed 

strand was then sequenced using a poisoned primer assay to detect deaminations [354]. Although 

not absolute, deamination of the non-transcribed strand would be consistent with what has been 

observed for APOBEC enzymes in yeast model systems [20, 21, 190], but for the purpose of this 

experiment we sought to quantify deamination rather than test the propensity for an A3 to 

deaminate a specific strand in the transcription bubble. The data show that A3B is unable to 

deaminate within the transcription bubble, but A3A and A3H hap I* are able (Figure 10.3C and 

Figure 10.8). To further investigate why A3B was unable to deaminate during transcription, we 

used an R-loop substrate to determine if A3B could deaminate in a “static” transcription bubble. 

A3B could deaminate this substrate, but the activity was 3-fold less than on ssDNA (Figure 

10.7D, Table 10.1, and Figure 10.9A). Even A3A, which could deaminate the ssDNA created 

during transcription, was 4-fold less active on the R-loop substrate compared to fully ssDNA 

(Figure 10.7D, Table 10.1, and Figure 10.9B). The A3H hap I* had 1.7-fold less deamination 

activity on the R-loop substrate than ssDNA (Figure 10.7D, Table 10.1, and Figure 10.9C). 

Altogether, A3B did not appear to be deficient in deamination of an in vitro R-loop in 

comparison to A3A and A3H hap I*, suggesting that A3B activity was not limited by the small 

segment of ssDNA available (~8-20 nt) (Figure 10.7C-D). Although A3B could bind a 

DNA/RNA hybrid, the apparent Kd value was similar to that for ssDNA suggesting that A3B was 

not being sequestered away from the ssDNA through preferential binding to a DNA/RNA hybrid 

(Table 10.1). Notably, we could not reach saturation of the R-loop substrate in steady state 

binding experiments with A3A or A3H hap I*, despite demonstrated deamination activity, 

suggesting that the enzymes bound the R-loop with short residence times (Figure 10.7C-D, Table 

10.1, and Figure 10.3C-D). This was also observed for A3A with the DNA/RNA hybrid (Table 

10.1 and Figure 10.3C). 

To understand why A3B did not efficiently deaminate during the dynamic transcription 

assay in contrast to A3A and A3H hap I* we first conducted a comparative analysis. A3B is 

made up of four individual enzyme units (Figure 10.1B). In contrast, A3A is a monomer and  
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Figure 10.8. Deamination activity of A3 enzymes on dsDNA undergoing transcription. The non-
transcribed strand of a dsDNA substrate that underwent T7 RNA polymerase-mediated 
transcription in the presence of A3A, A3B, A3H hap I*, A3G, or A3G FW was sequenced using 
a poisoned primer assay. (A) Interpretation of sequencing data. The U/C label indicates the 
cytosine embedded within the preferred deamination motif for the A3 indicated. When the C is 
not deaminated, a stop band will be present at that position due to the reaction being poisoned by 
the inclusion of ddG in place of dG during the sequencing reaction. If deamination occurs, the 
presence of a U allows synthesis to bypass the U/C site, and the next C in the sequence will have 
a stop band with an intensity that is proportional to the amount of C deamination. (B) A 
representative sequencing gel that was used to calculate the deamination over time as presented 
in Figure 10.7C.   
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Figure 10.9. Deamination activity of A3 enzymes on R-loop substrates. To determine the activity 
of A3 enzymes on R-loops, 100 nM of A3 enzyme was incubated with 100 nM of a 70 nt R-loop 
substrate for 5-20 minutes. The substrate strand was fluorescently labeled at the 5' end (yellow 
star). An “S” indicates the 70 nt substrate band and a “P” indicates the 33 nt product resulting 
from deamination. Deamination was determined for (A) A3B, (B) A3A, (C) A3H hap I*, and (D) 
A3G. Percent deamination and standard deviation (S.D.) from three independent experiments are 
shown below the gel.  
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A3H hap I* is primarily a dimer (Figure 10.7E-F). Thus, the ability of A3B to stabilize itself on 

ssDNA may be diminished when the transcription bubble is moving since it has to account for 

eight nucleic acid binding domains, whereas A3A or A3H hap I* have only one or two to four, 

respectively (Figure 10.1B and Figure 10.7E-F). Although A3B bound ssDNA cooperatively, it 

did not bind the R-loop cooperatively suggesting that A3B bound the ssDNA during transcription 

at the oligomeric state observed in solution (Table 10.1 and Figure 10.3A). Nevertheless, the 

tetramer of A3B may become more readily destabilized by a moving substrate than an enzyme 

with less ssDNA binding sites.  

To test this line of reasoning we used another processive and double deaminase domain A3 

that has been extensively studied with regards to processivity and oligomerization [98, 99, 355, 

356]. A3G forms monomers and dimers in solution and further oligomerizes on ssDNA by 

binding cooperatively (Figure 10.7G, Table 10.1, and Figure 10.3E) [72, 99, 102]. Similar to 

A3B, A3G was unable to deaminate ssDNA undergoing transcription, but was able bind and 

deaminate an in vitro R-loop (Figure 10.7C-D, Table 10.1, and Figure 10.8, and Figure 10.9D). 

A3G also bound ssDNA with more affinity than the DNA/RNA hybrid (Table 10.1 and Figure 

10.3E). We then used a previously characterized monomeric form of A3G, an A3G 

F126A/W127A mutant (A3G FW) to determine if an A3G with less binding domains could 

deaminate during transcription [99]. The A3G FW was able to deaminate during transcription at 

an equivalent level to A3H hap I* (Figure 10.7C and Figure 10.8). The in vitro data support the 

conclusion that in a dynamic transcription system, the size of the enzyme is a determinant in 

activity and not substrate binding affinity or processivity. However, since R-loops or ssDNA 

generated during transcription have not been identified as a major source of mutations from 

whole genome sequencing data, there are other cellular factors not considered here that must 

protect the ssDNA at a genome level [190-194]. 

10.3.3 Enzyme cycling is required for efficient deamination during DNA replication. The 

deamination of the lagging strand of genomic DNA undergoing replication has been identified as 

a major source of A3 catalyzed cytosine deaminations [190-194]. This is especially true in cancer 

cells with a high amount of replication stress where ssDNA can accumulate from incomplete 

lagging strand synthesis, stalled replication forks, or excessive replication fork firing [192, 332]. 

As a result, there is a view that the ssDNA is simply left available for A3 enzymes to catalyze 
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deamination of cytosine [176, 341, 357]. To test this experimentally we set up a minimal phage 

replication system where the DNA polymerase of phage Φ29 can initiate rolling circle replication 

and strand displacement synthesis on a plasmid after random hexamer primers are annealed 

[358]. This continually generates ssDNA and due to the presence of a large excess of random 

hexamer primers, the ssDNA being created is constantly being primed, creating a substrate 

analogous to a lagging strand template, but in the absence of replisome complexes and ssDNA 

binding proteins. We could use this system to identify whether there is an inherent biochemical 

characteristic of the enzymes that promotes deamination of ssDNA generated during replication 

or if simply the availability of the ssDNA promoted deamination activity. We found that A3B, 

A3A, and A3H hap I* could all induce mutations on the replicated DNA approximately equally, 

suggesting that the availability of ssDNA promoted deamination (Figure 10.10A). To test this 

idea further we also included A3G in this assay system. Surprisingly, the mutation frequency 

induced by A3G was 4-fold lower than A3B and suggested that the A3s able to induce mutations 

during cancer did share a similar biochemical characteristic that was not common to A3G (Figure 

10.10A).  

To identify the difference between A3G and the other A3s tested, we used a more defined 

in vitro system with oligonucleotide ssDNA substrates. We first focused on A3A and A3G since 

we have previously conducted a side-by-side characterization of these enzymes [119]. The major 

differences between the two enzymes are that A3A is not processive and A3G is processive, A3A 

has a Kd in the micromolar range and A3G has a Kd in the nanomolar range, and A3A cycles 

through substrates more frequently than A3G. The processivity did not appear to be a 

differentiating factor, since A3B and A3H hap I* are processive and are similar to A3A in this 

assay (Figure 10.5, Figure, 10.8B, and Figure 10.10A). However, A3G has a long half-life on 

ssDNA, ranging from 3 to 5 min in contrast to A3A that cycles on and off ssDNA rapidly [72, 99, 

102, 119, 265, 359]. This difference between A3A and A3G suggested that cycling on and off 

ssDNA is a determinant in the efficiency of deamination during DNA replication. To test this we 

interrogated the ability of the enzymes to cycle through different amounts of unlabeled ssDNA 

substrate to find and deaminate motifs on a labeled ssDNA substrate (Figure 10.10B). First the 

enzymes were incubated with 5x or 50x excess unlabeled DNA substrate or no unlabeled DNA 

substrate (0x), in comparison to the amount of labeled substrate that would be added to the 

reaction. After an incubation period, the labeled substrate was added to monitor deamination  



	 	155 

 
 
Figure 10.10. A3-mediated mutagenesis during DNA replication requires enzyme cycling. (A) A 
minimal phage replication system was used where the DNA polymerase of phage φ29 can initiate 
rolling circle replication and strand displacement synthesis in the presence of random hexamer 
primers (sketch). The bar graph depicts the number of mutations induced by each A3 per kb 
sequenced. (B) The ability of an A3 enzyme to cycle through different ssDNA substrates was 
measured by adding increasing amounts of unlabeled ssDNA relative to the labeled ssDNA (0x, 
5x, or 50x). The labeled ssDNA had two deamination motifs separated by 30 nt for A3A (5′TTC), 
A3B (5′ATC), A3H hap I* (5′CTC), or A3G (5′CCC). (C-E) Intersegmental transfer ability of 
A3H hap I*, A3B, and A3G were determined by keeping an A3:ssDNA ratio constant, but 
increasing the total reaction components. The ssDNA substrate contained a fluorescein-labeled 
deoxythymidine (yellow star) between two deamination motifs for A3A (5′TTC), A3B (5′ATC), 
A3H hap I* (5′CTC), or A3G (5′CCC) separated by 63 nt. The measurements of processivity 
factor (P.F.), standard deviation (S.D.), and reaction rate (%) from three independent experiments 
are shown below the gel.  
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Figure 10.11. Deamination activity of A3 enzymes in the absence or presence of unlabeled DNA. 
The enzymes were preincubated with 0x, 5x, or 50x unlabeled DNA before the addition of the 
labeled ssDNA substrate. Deamination reactions were allowed to proceed for 10 min. 
Representative gels from the experiments that were used to calculate the deamination as 
presented in Figure 10.10B. The labeled ssDNA had two cytosine motifs separated by 30 nt with 
5′TTC for A3A, 5′ATC for A3B, 5′CTC for A3H hap I* and 5′CCC for A3G. On the 85 nt 
labeled substrate, single deaminations of the 5′C & 3′C are detected as the appearance of labeled 
67- and 48- nt fragments, respectively; double deamination of both C residues on the same 
molecule results in a 30 nt labeled fragment.  
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activity. Consistent with A3A cycling frequently, the 5x or 50x of unlabeled ssDNA did not 

diminish the deamination activity (Figure 10.10B and Figure 10.11). Consistent with increased 

concentrations of ssDNA making molecular collisions more favorable, the A3A activity  

increased up to ~1.5-fold at 50x concentration of unlabelled substrate DNA, although this value 

was highly variable (Figure 10.10B). In contrast, A3G deamination activity was increasingly 

inhibited by the A3G getting “trapped” in the pool of unlabeled ssDNA substrate and not cycling 

often enough to find and deaminate the labeled ssDNA substrate before the end of the reaction 

(Figure 10.10B and Figure 10.11). In this cycling assay A3B was similar to A3A and only had a 

20% decrease in relative deamination activity even in the presence of 50x unlabeled ssDNA 

(Figure 10.10B and Figure 10.11). A3H hap I* maintained its activity at a 5x level of unlabeled 

ssDNA, but could not cycle often enough to deaminate the labeled ssDNA efficiently in the 

presence of 50x unlabeled ssDNA (Figure 10.10B and Figure 10.11). 

These data support the hypothesis that frequent enzyme cycling improves deamination 

activity during DNA replication. However, it seemed counter intuitive that both A3B and A3H 

that were processive enzymes, were cycling frequently, since this could preclude the ability to 

search effectively on each ssDNA. Further, these enzymes had steady state binding constants for 

ssDNA in the nanomolar range that were similar to A3G and in contrast to A3A (Table 10.1). To 

reconcile these observations we conducted an assay to further dissect the processive mechanisms 

of A3B and A3H hap I*. Both A3B and A3H underwent 3-dimensional processive scanning 

movements, but the mechanism could be jumping or intersegmental transfer (Figure 10.5C and 

Figure 10.7B). Intersegmental transfer ability enables an enzyme to cycle between ssDNA 

substrates but through doubly bound intermediates, rather than fully dissociating at each transfer. 

This type of movement would resolve our disparate observations of the enzymes being 

processive and able to cycle frequently. In the intersegmental transfer assays, the total 

concentration of enzyme and ssDNA is increased while keeping their ratio constant. Since 

intersegmental transfer makes the enzyme sensitive to the local DNA concentration, the increased 

concentration of reaction components will increase the molecular collisions [261, 351, 360]. This 

can result in a decrease in the apparent processivity or an increase in the apparent reaction rate as 

the concentration of reaction components is increased [2, 109, 110].  

In our intersegmental transfer assay, we increased the enzyme:ssDNA concentration 5-fold 

using incremental steps. Under these conditions, A3H hap I* showed the distinct properties of 
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intersegmental transfer where there was a 2-fold decrease in the processivity factor and a ~2-fold 

increase in the reaction rate at the end of the titration (Figure 10.10C). These data suggest that 

A3H hap I* cycles from ssDNA to ssDNA rather than completely dissociating from the pool of 

ssDNA and then finding another ssDNA, like A3A. As a result, at the 50x concentration of 

unlabelled trap, despite A3H hap I* moving from ssDNA to ssDNA, the processivity on each 

ssDNA it encountered was low, causing a decrease in overall deamination activity (Figure 

10.10B). For A3B, the enzyme did not have an apparent decrease in processivity, but it appeared 

that A3B still underwent intersegmental transfer to cycle from one ssDNA to another because the 

reaction rate increased 6-fold (Figure 10.10D). The activities of A3H hap I* and A3B in this 

assay were different than A3G that did not have a decrease in processivity and had only a ~2-fold 

increase in the reaction rate (Figure 10.10E). It has been previously shown biochemically, by 

single-molecule FRET and by atomic force microscopy that A3G does not undergo 

intersegmental transfer, but jumps and slides on ssDNA [103, 111, 253]. Based on these data, 

A3B appears to be very efficient in that it can scan a single ssDNA and processively deaminate 

cytosines while also cycling from ssDNA to ssDNA using intersegmental transfer. The A3H hap 

I* data is similar to other A3H haplotypes where a decrease in processivity was observed but the 

increase in reaction rate is less pronounced [110]. These data indicating that A3B and A3H hap I* 

undergo intersegmental transfer also suggest that the cooperative binding of A3B and A3H 

observed with rotational anisotropy could be a combination of individual enzyme molecules 

binding ssDNA and then promoting the binding of additional enzyme molecules on the same 

DNA or promoting multiple ssDNA molecules to bind each enzyme subunit in the oligomer 

(Table 10.1). If the latter occurs, this would be in contrast to A3G that binds ssDNA 

cooperatively by recruiting additional A3G subunits on the same ssDNA [72]. In conclusion, 

although the mode of cycling is different for A3A, A3B, and A3H hap I*, probably based in part 

on their different binding affinities for ssDNA (Table 10.1), this appears to be a distinct feature 

required for efficient mutagenesis of ssDNA created during DNA replication. 

10.3.4 Enzyme cycling enables APOBEC3 enzymes to compete with RPA for ssDNA. In 

cells, the ssDNA exposed during replication stress would be coated with RPA [361]. It has been 

assumed that A3 enzymes cannot displace RPA and that they are limited to deaminating ssDNA 

at gaps in the RPA coating [357]. However, RPA is displaced to enable other recombination 

proteins to access the ssDNA, such as Rad51 [362, 363]. To determine if RPA would influence 
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A3 deamination activity we added RPA to an oligonucleotide ssDNA substrate at saturating 

concentrations and then tested A3 deamination activity and processivity. It has been shown 

experimentally that RPA can be competed off ssDNA by other proteins in excess through a 

mechanism known as facilitated dissociation, which can be caused by Rad 51 or excess RPA 

itself [362, 363]. Notably, the facilitated dissociation occurs when RPA is in excess and it is not 

displaced as readily when amounts are limited. Thus, we used an in vitro system where the 

amount of oligonucleotide ssDNA was constant, rather than the Φ29 replication system where the 

DNA concentration would be continually increasing and precluding achieving RPA saturation on 

ssDNA. For this experiment with oligonucleotides, RPA was pre-incubated with ssDNA and 

saturation was confirmed by an electrophoretic mobility shift assay (EMSA), in which the 

ssDNA was completely bound by RPA (Figure 10.12). An A3 enzyme was then added to 

determine if RPA could be displaced. Displacement of RPA was interpreted based on the A3 

deamination activity and processivity in comparison to naked ssDNA. We found that each A3 

enzyme tested was able to displace RPA from the ssDNA in order to catalyze deaminations on 

the substrate. However, both the specific activity and processivity of the enzymes was decreased 

in the presence of RPA. For the A3B, A3H hap I*, and A3G, the processivity decreased 2-fold 

(Figure 10.13A-C). Interestingly, this is similar to when a dsDNA segment is present between the 

deamination motifs (Figure 10.5D and Refs [107, 110]) indicating that RPA may be acting as a 

roadblock to the 1-dimensional sliding motion of the enzymes. The A3A remained 

nonprocessive, but active (Figure 10.13D). Notably, we determined that there was a correlation 

between the cycling ability of the A3 enzyme and the specific activity in the presence of RPA. 

A3A, which cycles the most efficiently, had no change in specific activity in the absence and 

presence of RPA (Figure 10.10B and Table 10.2). The presence of RPA decreased the specific 

activities of A3B and A3H hap I* 2- to 3- fold (Table 10.2). However, A3G, an enzyme that does 

not efficiently cycle between substrates, due to a long residence time on ssDNA, had a 10-fold 

decrease in specific activity in the presence of RPA (Table 10.2) [72, 99, 102]. These data 

indicate that the ability to sample multiple substrates through enzyme cycling is important in the 

presence of the ssDNA binding protein RPA.  

10.4  Discussion 

The deoxycytidine deaminase activity of A3B, A3A, and A3H hap I has been implicated 

in having a driving role in cancer and tumor evolution by providing the cells with a diverse pool  
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Figure 10.12. Electrophoretic mobility shift assay of RPA bound to ssDNA. RPA at a 1:1 or 3:1 
(saturating) ratio to ssDNA was incubated for 5 min at 21°C before resolving the ssDNA-RPA 
complex on a 5% native acrylamide gel to determine the amount of RPA necessary to saturate the 
substrates used in Figure 10.13. The assays in Figure 10.13 used a 3:1 RPA:DNA ratio and were 
completely bound by RPA before the addition of the A3. 
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Figure 10.13. A3 enzymes can compete with RPA to deaminate ssDNA. The ability of A3 
enzymes to deaminate cytosines on ssDNA in the presence of saturating amounts of RPA was 
examined on a fluorescently labeled (yellow star) 69 nt ssDNA with deamination motifs for A3A 
(5′TTC), A3B (5′ATC), A3H hap I* (5′CTC), or A3G (5′CCC) separated by 15 nt. To prepare the 
substrate, 100 nM of ssDNA was preincubated with 300 nM RPA (for a 3:1 ratio) and 50 nM of 
(A) A3B, (B) A3A, (C) A3H hap I*, or (D) A3G was added to initiate the reaction. Single 
deaminations of the 5′C & 3′C are detected as the appearance of labeled 51- and 32- nt fragments, 
respectively; double deamination of both C residues on the same molecule results in a 14 nt 
labeled fragment. The measurements of processivity factor (P.F.) and standard deviation (S.D.) 
from three independent experiments are shown below the gel. 
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Table 10.2. Specific activity of A3 enzymes on ssDNA in the absence or presence of RPA. 
 
 

 

 

 

 

 

 

 

  

Enzyme 
Specific Activity, 
ssDNA 
(pmol/µg/min) 

Specific Activity,  
ssDNA with RPA 
(pmol/µg/min) 

A3B 1.6 ± 0.7 0.9 ± 0.2 

A3A 1.1 ± 0.1 1.3 ± 0.2 

A3H hap I* 1.7 ± 0.2 0.7 ± 0.1 

A3G 2.5 ± 0.2 0.3 ± 0.1 
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of mutations [170, 357]. Beyond analysis of mutational signatures and mRNA levels, there has 

been a paucity of biochemical data characterizing how these enzymes act on substrates relevant 

to deamination of genomic DNA [119]. Here we provide the first biochemical characterization of 

A3B and compare properties of A3B, A3A, and A3H hap I* on substrates relevant to catalyzing 

cytosine deaminations in genomic DNA. Specific to A3B, the data demonstrate that using an 

A3B CTD is not a suitable replacement for the fl A3B (Figure 10.1). In regards to how A3 

enzymes access ssDNA in the genome during transcription or replication, we find that 

deamination during transcription is more selective than during replication (Figure 10.7C and 

Figure 10.10A). A3B was unable to deaminate during transcription and by comparison to other 

A3 enzymes we demonstrated that this is due to its propensity to form tetramers. Although all 

enzymes tested could deaminate during DNA replication or on ssDNA bound by RPA, the 

amount of deamination correlated with the enzyme’s ability to cycle between ssDNA substrates 

(Figure 10.10B, Figure 10.13, and Table 10.2). These data support a model in which the inherent 

properties of the A3 enzyme determine the amount of A3-induced mutagenesis, not solely the 

availability of ssDNA. 

A3 enzymes have been most extensively studied for their role in HIV-1 restriction where 

their cytosine deamination activity can inactivate HIV-1 proviral DNA through lethal 

mutagenesis [2]. In this scenario, the relevant A3 enzymes, A3D, A3F, A3G, and A3H (hap II, V, 

or VII), which are notably different than the ones that contribute to cancer mutagenesis, contend 

with a transient ssDNA substrate that is undergoing replication during the time when the enzymes 

must catalyze deaminations [2]. Studies from our lab have shown that a primary determinant in 

the mutagenic efficiency of the enzyme is their ability to scan the ssDNA efficiently for the 

preferred deamination motif and to processively deaminate these motifs [107-109, 150]. 

Although both the HIV-1 replication and genomic DNA replication and transcription processes 

are dynamic, they did not require the same biochemical characteristics. Processivity was not 

detrimental to deamination during transcription, replication, or ssDNA bound by RPA, but it was 

also not required as exemplified by A3A (Figure 10.7A, C, Figure 10.10A, Figure 10.13, and 

Table 10.2). This difference may be due to the HIV-1 reverse transcriptase replicating the viral 

DNA at a slower rate than the eukaryotic polymerases [364, 365]. During HIV-1 replication, an 

A3 enzyme can use processive ssDNA scanning to compete for ssDNA with the less processive 

reverse transcriptase and the rapidly cycling HIV-1 nucleic acid chaperone, nucleocapsid [63, 
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364]. However, in genomic DNA the RPA binds much more stably to ssDNA than nucleocapsid 

and the polymerases synthesize DNA faster and can use PCNA to increase processivity [361-363, 

365]. As a result, the ability to more stochastically interact with ssDNA by cycling to different 

substrates or regions of the same substrate could provide an advantage. Processively tracking 

along the ssDNA with the polymerase is not possible since A3 enzymes move on ssDNA without 

an energy source by facilitated diffusion [2]. Rather, repetitive sampling of ssDNA regions in 3-

dimensions by macroscopic cycling or intersegmental transfers may enable better access to the 

available ssDNA pool that would be constantly changing. There is evidence that this type of 

cycling can approximate the benefits of processivity for A3A [119]. Nevertheless, this conclusion 

was unexpected considering the number of processive DNA repair and replication proteins [353]. 

However, these other proteins that are normally functional in the genome usually bind and scan 

dsDNA, which is a key difference with A3 enzymes that scan ssDNA or, for A3H, scan ssDNA 

and DNA/RNA hybrids [2, 110]. 

Previous work has shown that A3 enzymes primarily deaminate genomic DNA during 

replication and favor the lagging strand of genomic DNA during replication due to the greater 

abundance of ssDNA from discontinuous synthesis [190-194]. However, in order to access this 

ssDNA, A3 enzymes would still have to displace RPA [361]. In the APOBEC family there were 

two opposing studies on how these enzymes could deaminate ssDNA bound by RPA. For AID, a 

physical interaction with RPA occurred and promoted AID-catalyzed deaminations in 

immunoglobulin variable genes and switch regions [366, 367]. However, A3G was characterized 

to have decreased specific activity and processivity in the presence of RPA [368]. The study with 

A3G agrees with our data (Figure 10.13C and Table 10.2) and we provide a mechanism for why 

A3G activity decreases in the presence of RPA. The long lifetime of the enzyme on ssDNA that 

is beneficial for deamination of HIV-1 proviral genomes is not conducive to competition for 

ssDNA with RPA (Figure 10.10B, Figure 10.13 and Table 10.3) [99, 107]. Rather the ability to 

cycle on and off or between substrates is required (Figure 10.10). A3 enzymes are not the only 

proteins that must compete with RPA for ssDNA. RPA mainly serves to protect ssDNA from 

nucleases and signal for subsequent processing of ssDNA if replication cannot be completed 

[361-363]. Thus, other proteins such as Rad51 must also be able to displace RPA. Since RPA 

facilitated dissociation occurs when RPA is in excess to the ssDNA [362, 363], during replication 

stress, where there is an increased amount of ssDNA bound by RPA, the A3A, A3B, or A3H hap 
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I should be able to compete with RPA for ssDNA as demonstrated in our assay (Figure 10.13 and 

Table 10.2). In support of this, in a study using 293T cells stably expressing A3B, the A3B-

induced mutations were shown to significantly increase after DNA replication stress, suggesting 

that A3B can effectively compete with RPA [203]. 

Although A3A could deaminate ssDNA generated during active transcription and in R-

loops (Figure 10.7C-D), this mechanism of accessing ssDNA in the genome is not a major source 

of mutations from genome wide sequencing analyses that considered the strand bias of mutations 

[190-194]. A3A was only found in one study to be capable of deaminating during transcription, 

but at a low level, which led the authors to conclude that instances where A3A can access ssDNA 

generated from transcription are limited [190]. A3H hap I induced mutations in cells have not 

been analyzed in this manner. Altogether, these data indicate that the cellular conditions prevent 

excessive deamination during transcription. This may be because ssDNA generated during 

transcription is most accessible only during extremely high levels of transcription, RNA 

polymerase pausing, R-loop formation, or if specific targeting mechanisms exist as they do for 

related family member, AID [20, 21, 186, 369]. In support of this, our study confirms that 

deamination during transcription and transcription related structures such as R-loops is more 

selective than during replication (Figure 10.7C-D and Figure 10.10). For example, a recent study 

in yeast found that although A3B is unable to deaminate during transcription of mRNA genes, it 

can deaminate during transcription of tRNA genes [370]. The ssDNA generated during tRNA 

gene transcription is thought to be more prone to form R-loops, which consistent with our in vitro 

data, would be required for A3B to exhibit deaminase activity (Figure 10.7C-D) [371]. However, 

the resulting uracils in tRNA regions are thought to be repaired faithfully and to not contribute to 

cancer mutagenesis [370].  

Although A3B is similar in oligomeric state and processivity to the other double 

deaminase domain enzymes A3G and A3F, it is uniquely able to cycle through ssDNA substrates 

in contrast to A3G and A3F that have long lifetimes on single ssDNA substrates [99, 108] 

(Figure 10.10B, D, E). A3A is still unique among other A3 enzymes because despite not being 

processive, it has one of the highest specific activities and the highest genotoxicity when 

ectopically expressed in cell culture [119, 184, 196, 271]. Our studies demonstrate that this is due 

the ability of A3A to cycle through different substrates so that it is able to sample a larger amount 
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of transient ssDNA during replication or transcription (Figure 10.10B). The A3H hap I* appears 

to have features of both A3B and A3A that enable it to also contribute to genomic mutagenesis.  

Another aspect of A3 activity not directly addressed in our study is the active site 

accessibility and the molecular conformation of ssDNA substrate binding. A3A activity is not 

only high because of its ability to cycle through different substrates, but also because of its highly 

accessible catalytic pocket that is normally in an open conformation [344, 372]. This is in 

contrast to A3B CTD that has a closed catalytic pocket [342, 344, 372]. While it has been 

proposed by others that the closed catalytic pocket state serves as protective measure to reduce 

off-target mutations by APOBEC family enzymes [188, 372], these conclusions for A3B CTD 

may need to be reconsidered since the fl A3B is 40-fold more active (Figure 10.1A). It remains to 

be determined whether increased fl A3B activity is due to different catalytic pocket accessibility 

in the fl A3B than A3B CTD, if the NTD of A3B is better able to guide the ssDNA substrate into 

the catalytic pocket, if increased processivity enables a more efficient search for potential 

deamination motifs, or a combination of all of these factors. Recently, it has been shown that 

A3A and A3B CTD bend the ssDNA substrate in the active site [344, 373, 374]. How this relates 

to processivity and if the enzymes can induce the ssDNA bending of larger substrates, such as 

dynamic ssDNA exposed during replication or transcription remains to be studied. However, it is 

interesting to speculate on this based on single-molecule data from a study with A3G. It was 

found that A3G scanned ssDNA very rapidly and bi-directionally, but when A3G encountered a 

deamination motif, the enzyme movement slowed down and A3G “hovered” over the 

deamination motif [253]. Perhaps DNA bending for A3G, which has been observed in single-

molecule and bulk studies, serves to slow down the diffusion to enable deaminations to take place 

[102, 253]. If this is true for all processive A3 enzymes, including A3B, then there may be 

different ssDNA interactions that occur for either processivity (fast diffusion) or deamination 

(slow diffusion and DNA bending). For A3A, perhaps the DNA bending creates a more stable 

interaction to offset the low affinity interaction with ssDNA. These molecular features of A3H 

are understudied compared to A3A, A3B, and A3G and there are many aspects of its interaction 

with ssDNA that still require further study.  

Altogether the data presented here demonstrate not only a system for purifying sufficient 

quantities of fl A3B for biochemical studies, but provide a number of biochemical systems for 

mechanistic study of A3 enzymes on DNA substrates relevant to mutagenesis of genomic DNA. 



	 	167 

The studies presented here further our understanding of the dynamics of how A3 enzymes can so 

efficiently induce deaminations that are actually “off-target” events and not part of their normal 

cellular functions. 	

10.5  Materials and Methods 

10.5.1 Cloning and site directed mutagenesis. The fl A3B (a.a. 1-382), A3B 187 CTD 

(a.a. 187-382), and A3B 193 CTD (a.a. 193-382) sequences, as well as A3G and A3H haplotype 

I* were cloned into a baculovirus transfer vector (pAcG2T or pFAST-bac1) containing an N-

terminal GST tag as described previously[110, 375]. All constructed plasmids were verified by 

DNA sequencing. 

10.5.2 Protein expression and purification.  Recombinant baculovirus production for 

expression of proteins in Sf9 cells was carried out using the pACG2T or pFast-bac1 transfer 

vector as previously described[110, 375]. Sf9 cells were infected with recombinant GST-A3 virus 

at an MOI of 1 (A3B 187 CTD and A3B 193 CTD) or an MOI of 10 (fl A3B). The infection 

conditions for A3A, A3G, and A3H have been previously described[99, 110, 119]. Recombinant 

baculovirus infected Sf9 cells were harvested after 72 hours of infection. Cells lysates treated 

with RNaseA were incubated with glutathione-Sepharose 4B resin (GE Healthcare) at 4°C and 

were subjected to a series of salt washes, as previously described[99]. For all the enzymes, except 

the full-length A3B, on-column cleavage from the GST tag with thrombin (GE Healthcare) was 

performed at 21 °C for 18 h in thrombin digestion buffer (20 mm HEPES, pH 7.5, 150 mm NaCl, 

10% glycerol, and 1 mm DTT). Due to the lower yield of full-length A3B, the enzyme was eluted 

with the GST tag in elution buffer (100 mM Tris, pH 8.8, 150 mM NaCl, 10% (v/v) glycerol, and 

50 mM reduced glutathione). A3B was then cleaved from the GST tag in solution at 21°C for 4 

hours with Thrombin (GE Healthcare) before being dialyzed against 100 mM Tris pH 7.5, 250 

mM NaCl, 10% (v/v) glycerol, and 1 mM DTT. To purify A3B from the free GST and thrombin, 

the enzyme stock was diluted to achieve a solution of 50 mM Tris pH 7.5, 50 mM NaCl, 10% 

(v/v) glycerol and 1 mM DTT for loading onto a DEAE FF column (GE Healthcare). A3B was 

eluted with a linear gradient of NaCl. The A3B eluted at approximately 300 mM NaCl. Enzymes 

were assessed as >90% pure by SDS-PAGE (Figure 9.14). The RPA was generously provided by 

Dr. John Turchi (Indiana University School of Medicine). 
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10.5.3 In vitro deamination assays. All ssDNA substrates were obtained from Tri-Link 

Biotechnologies and have been previously described or are in Table 9.3 [108, 110]. Substrates 

with complementary oligonucleotides annealed were formed by mixing the oligonucleotides in  

buffer containing 50 mM Tris, pH 7.5 and 100 mM NaCl before heating at 95 °C for 10 min and 

then slowly cooling (1 °C per minute). For all deamination assays, except the R-loop, the 

substrates contained specific motifs for each A3 enzyme which were: 5’TTC (A3A), 5'ATC 

(A3B), 5’CTC (A3H hap I*), or 5’ CCC (A3G). The R-loop substrates used only 5’ TTC (A3A, 

A3B, and A3H hap I*) or 5’ CCC (A3G). Unless otherwise indicated, reactions were conducted 

at 37 °C in RT buffer (50 mM Tris, pH 7.5, 40 mM KCl, 10 mM MgCl2, and 1 mM DTT). 

Processivity reactions were carried out under single-hit conditions (i.e. <15% substrate 

usage) to ensure a single enzyme-substrate encounter. Under these conditions, a processivity 

factor can be determined by comparing the quantified total amount of deaminations occurring at 

two sites on the same ssDNA with a calculated theoretical value of deaminations at these two 

sites if the deamination events were uncorrelated (not processive). Since the processivity factor is 

a ratio, a value of 1.0 means that the enzyme is not processive. Alternatively, a non-processive 

enzyme may not have a visible amount of deamination at two sites under the single-hit conditions 

of the reaction. A ssDNA substrate containing two deamination motifs (100 nM) was incubated 

with 50 nM of enzyme for 2.5 to 20 min. The reaction time was varied on each ssDNA according 

to the specific activity of the enzymes to ensure ~10% substrate usage. Reactions were started by 

the addition of the ssDNA substrate. The specific activity was calculated from these single-hit 

condition reactions by determining the picomoles of substrate used per minute for a microgram of 

enzyme. 

For the time course of A3B in comparison to the CTD mutants, 100 nM of a 118 nt ssDNA 

was incubated with 50 nM (A3B) or 2 µM of the CTD mutants for 5-60 min (A3B) or 30-120 

min (CTD mutants) in order to compare their activities. Reactions were started by the addition of 

the ssDNA substrate.  

For intersegmental transfer assays, the A3:ssDNA ratio was kept the same, but increasing 

concentrations of enzyme and substrate was titrated in (118 nt ssDNA: 100-500 nM, A3: 50-250 

nM). Reactions were started by the addition of the ssDNA substrate.  
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Figure 9.14. SDS-PAGE of purified A3 enzymes. A3 enzymes were purified as detailed in the 
Materials and Methods and resolved on a SDS-PAGE gel to estimate purity.  
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Table 9.3. DNA substrates 

Name  Sequence 

60 nt ATC with 
deamination motifs 
5 nt apart 

5' AAA GAG AAA AGT ATA ATC A{dT-FAM}A  ATC ATA GAG TAA 
AGT TAG TAA GAT GTG TAA GTA TGT TAA 

69 nt ATC with 
deamination motifs 
14 nt apart 

5' AAA GAG TTA GGG TGA ATC AAA ATT {dT-FAM}AA AGA ATC 
AAA TGT TAG ATA TGT TAA TGT GTG TGA TGA TGT TGA 

85 nt ATC with 
deamination motifs 
30 nt apart 

5' AAA GAG AAA GAG TAA ATC AAA GAG TAA AGT {dT-FAM} AAG 
TAG AGA GAT TAT ATC AAA GAG TAA AGT TAG TAA GAT GTG TAA 
GTA TGT TAA 

118 nt ATC with 
deamination motifs 
63 nt apart 

5' GAA TAT ATG AGT TGA ATC AAA GTA ATG AGA GAG AAT {dT-
FAM} TAG ATG AGT GTA ATG TGA TAT ATG TGT ATG AAA GAT 
ATA AGA ATC AAA GAG TAA AGT TGT TAA TGT GTG TAG ATA TGT 
TAA 

5' TTC R-loop top 
strand 

5' {FAM} AAA GAG AAA GTA ATA AGG AAA GAG TAT TAA ATA TTC 
AAA ATT TCA ATC ATT CTA CAC ATT CAT ACA ATT T 

5' CCC R-loop top 
strand 

5' {FAM} AAA GAG AAA GTA ATA AGG AAA GAG TAT TAA ATA CCC 
AAA ATT TCA ATC ATT CTA CAC ATT CAT ACA ATT T 

Bottom strand (R-
loop) 

5' A AAT TGT ATG AAT GTG TAG AAT GAT TGT TTA AAA TGA ATA 
ACT TTA CTC TTT CCT TAT TAC TTT CTC TTT 

Complementary 
RNA (R-loop) 

5' rUrUrArUrUrCrArUrUrUrU 

69 nt unlabeled 
ssDNA for cycling 
assay 

5' AAA GAG AAA GTA ATA AGG AAA GAG TAA AGT ATA ATC AAA 
TAA ACA ATC ATT CTA CAC ATT CAT ACA ATT 
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For the detection of deaminations on R-loop substrates 100 nM of an R-loop substrate was 

incubated with 100 nM A3 enzyme for 5-20 min. Reactions were started by the addition of the 

ssDNA substrate.  

For cycling assays, 100 nM of A3A, A3B, A3H hap I*, or A3G was incubated for 3 min at 

21 °C with 100 nM of an unlabeled 69 nt ssDNA. To start the reaction, 100 nM of a labeled 118 

nt ssDNA was added and the reaction was allowed to proceed at 37 °C for 10 min.  

For deamination in the presence of RPA, saturating amounts of RPA (300 nM) was 

preincubated with 100 nM of ssDNA for 5 min before the addition of 50 nM A3 enzyme to 

initiate the reaction. Reactions proceeded for 10-30 min.  

All A3-catalyzed deaminations were stopped using a Phenol: chloroform extraction and 

cleaned using two additional chloroform extractions. The deaminations were detected by treating 

the substrates with uracil DNA glycosylase (New England Biolabs) and heating under alkaline 

conditions before resolving the fluorescein-labeled ssDNA on 10, 16 or 20% (v/v) denaturing 

polyacrylamide gels, depending on the sizes of the ssDNA fragments. Gel photos were obtained 

using a Typhoon Trio multipurpose scanner (GE Healthcare) and integrated gel band intensities 

were analyzed using ImageQuant (GE Healthcare).  

10.5.4 Electrophoretic mobility shift assay.  A fluorescently labeled 70 nt ssDNA (100 

nM) was incubated with 300 nM of RPA for 5 min at 21°C in the presence of RT buffer and 40% 

glycerol to facilitate gel loading. The samples were run on a 5% (v/v) Native-PAGE gel at 4°C. 

Gel images were obtained using a Typhoon Trio multipurpose scanner (GE Healthcare). 

10.5.5 Size exclusion chromatography.  The oligomerization states of the enzymes were 

determined by loading 10 µg of purified enzyme on a 10 mL Superdex 200 (GE Healthcare) size 

exclusion column. The column was prepared by pouring the resin bed in a column with 16 cm 

height and 0.5 cm diameter. The running buffer contained 50 mM Tris pH 8.0, 200 mM NaCl and 

1 mM DTT. The Bio-Rad standard set was used to generate a standard curve from which 

molecular weight and oligomerization states of the enzymes were determined. 

10.5.6 In vitro transcription assay.  Transcription-dependent deamination reactions were 

performed as described previously[354, 375]. The dsDNA substrates contain a T7 RNA 

polymerase promoter and either a single 5′TTC (A3A, A3B), 5'CTC (A3H hap I*), or 5′CCC 

(A3G, A3G FW) motif on the non-transcribed strand. Substrates were previously reported, except 
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for the 5'CTC substrate, but the DNA sequences are identical other than the deamination 

motif[119]. The dsDNA substrates (30 nM) were reacted with 90 nM A3A, A3B, A3H hap I*, 

A3G, or A3G FW in the presence of ribonucleotide triphosphates (500 µM), T7 polymerase (1 

unit, Promega), and DNase-free RNase A (5 ng/µl, Roche Applied Science) in transcription 

buffer (50 mM Tris, pH 7.4, 10 mM MgCl2, 1 mM DTT) at 37 °C. Control reactions either 

contained no T7 Polymerase or no APOBEC3 enzyme to ensure that deamination was 

transcription dependent. Sequencing of the non-transcribed strand for detection of deamination 

was performed using Thermo Sequenase (Affymetrix) as described previously[354]. 

10.5.7 In vitro DNA replication assay. Deamination of ssDNA by A3 enzymes during 

DNA synthesis was assessed using a circular template (pUC19). The pUC19 was heated and 

slowly cooled to facilitate annealing of random hexamer primers (New England Biolabs). The 

primed pUC19 was then incubated with Φ29 DNA polymerase that initiates rolling circle 

replication and strand displacement synthesis on subsequent DNA synthesis rounds. Specifically, 

the circular template was mixed with 4 µg BSA, 200 µM dNTPs, 200 nM random hexamer 

primers, and Φ29 buffer (Thermo Fisher) for DNA synthesis in the absence or presence of 200 

nM A3 enzyme. The reaction was incubated at 30°C for 6 hr, and inactivated at 65°C for 10 min 

before treatment with DpnI (New England Biolabs) for 1 hr at 37°C to remove contaminating 

plasmid DNA. A 345 nt region of the plasmid (nucleotides 473-818) was PCR amplified using 

Pfu Cx Turbo Hotstart (Agilent Technologies) that can use uracils as a template with high fidelity. 

These amplicons were then cloned with the CloneJET PCR cloning kit (Thermo Fisher). At least 

25 clones were sequenced with primers specific to pUC19 at the National Research Council of 

Canada (Saskatoon, Canada). 

10.5.8 Steady state rotational anisotropy.  Steady state fluorescence depolarization 

(rotational anisotropy) was used to measure the binding affinity of the enzymes to fluorescein-

labeled ssDNA, DNA/RNA, R-loop, and dsDNA. Reactions were 60 µL and contained 

fluorescein-labeled DNA substrate (10 nM) in RT buffer and the enzyme was titrated into the 

solution until saturation. A QuantaMaster QM-4 spectrofluorometer (Photon Technology 

International) with a dual emission channel was used to collect data and calculate anisotropy. 

Samples were excited with vertically polarized light at 495 nm (6 nm band pass) and vertical and 

horizontal emissions were measured at 520 nm (6 nm band pass). Apparent dissociation constants 
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(Kd) were obtained by fitting to a rectangular hyperbola or sigmoidal curve using Sigma Plot 11.2 

software.  
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11.0 General Discussion and Future Directions  
The main focus of this presented work was to characterize mechanistically how A3 enzymes 

find their ssDNA substrate in different biological contexts such as during HIV proviral DNA 

synthesis and the “off-target” genomic DNA substrate. We also examined how weakly restrictive 

A3s may compensate for their reduced activity by modulating RT processes. The major 

conclusion of this work is that these enzymes must be able to bind to and efficiently deaminate 

transiently available single-stranded DNA during reverse transcription, replication, or 

transcription. A summary of these processes is highlighted in Figure 11.1. Specific biochemical 

characteristics promote binding and deamination in each situation to increase enzyme efficiency 

through processivity, rapid enzyme cycling between substrates, or oligomerization state. 

Interestingly, what makes the A3 enzymes able to effectively find these deamination targets 

differs between the ssDNA available during HIV replication and the ssDNA available in the 

nucleus. The biochemical differences in A3 enzymes involved in viral restriction versus genomic 

damage may allow for a prediction tool for the role of the A3 being studied.  

 For HIV restriction, we examined the ability of A3C to utilize facilitated diffusion to 

efficiently search for ssDNA substrates [104, 105]. Examining the facilitated diffusion 

mechanisms of the enzymes in our deamination assays allows for determination of the processive 

nature of the A3s. We examined whether the enzymes can use one-dimensional (sliding) or three-

dimensional (jumping and intersegmental transfer) movements. Prior examination of these 

mechanisms has provided insight on how A3s access ssDNA during reverse transcription, and 

enables prediction of restriction capacity. Enzymes that possess multiple ssDNA scanning 

mechanisms (i.e., both one-dimensional and three-dimensional processes) are able to more 

effectively search for ssDNA in the finite amount of time that it remains single stranded [107-

111, 119]. 

 Work in our lab has previously shown that processivity of the A3s is mediated by specific 

residues on either loop 7 or helix 6 [107, 108, 110]. Mutating residues on or near these regions 

allowed for enzymes like A3F, which is unable to slide, to gain this processive mechanism [108]. 

Similarly, mutating residues on these regions on processive A3s like A3G and A3H decreased the 

processive action of these enzymes [107, 110]. However, when we applied this knowledge to the 

study of A3C, we found this to not hold true. Human A3C is a weakly processive enzyme and is 

not able to restrict HIV in infectivity assays to a high level. In collaboration with the Emerman  
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Figure 11.1 Model for A3 activity on disperse ssDNA substrates. As an innate immune factor in 
CD4+ T cells, A3 enzymes that are encapsidated into HIV virions can access and deaminate viral 
ssDNA during reverse transcription. Here, the A3 (purple) is able to displace the weakly 
associated nucleocapsid (NC, green) and is free to act processively to find target cytosines. 
Processive deamination abilty of an A3 enzyme correlates with its mutagenic ability on HIV (-) 
DNA. When unregulated expression of A3s occurs in various tissues, certain A3s can deaminate 
genomic DNA. In this context, the A3 (purple) must displace the tightly associated RPA (grey) 
by efficiently cycling on and off ssDNA on the lagging strand of the replication fork, which can 
promote facilitated dissociation of RPA. In genomic DNA, processivity of A3 enzymes is not 
required.   
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lab, we discovered that a SNP existed in a subset of the human population that improved the 

restriction activity of A3C, namely hA3C S188I [27]. This SNP existed on helix 6, so it was 

initially expected to improve the processive mechanisms of the enzyme and therefore increase the 

mutagenic potential. However, we discovered that the improvement in restriction capacity 

observed was due to hA3C S188I being able to dimerize. Interestingly, chimpanzee and gorilla, 

which also possessed the less active residue at position 188, had higher processivity factors and 

increased restriction capacity despite this inactivating residue. This suggested that a separate 

residue was also important for the activity of A3C. The chimpanzee and gorilla A3Cs were also 

able to form dimer populations. We identified this residue involved in activity and dimerization 

of chimpanzee and gorilla A3C as amino acid 115 on β-strand 4.  Mutation of this residue in 

hA3C to the chimpanzee/gorilla form stabilized the dimer in hA3C and further improved the 

activity. The converse was true for chimpanzee and gorilla, that processive movements could be 

reduced when the dimers were no longer present. We therefore concluded that dimerization alone 

was sufficient to improve the processivity of A3C, unlike the other A3s in which specific 

residues mediated the ssDNA scanning mechanisms.  

 We had also identified in studies with A3H, that residues along helix 6 allowed the 

enzyme to undergo intersegmental transfer, a type of three-dimensional translocation [110]. This 

type of movement requires a doubly-bound state, and therefore single domain enzymes such as 

A3H and A3C would require oligomerization in order to facilitate this type of movement. It is 

interesting to note that initial assumptions that enzymes that had two DNA binding domains 

could undergo intersegmental transfer are not entirely correct, as double-domain enzymes A3G 

and A3F are not observed to use this mechanism [110]. Therefore, the exact mechanics of 

intersegmental transfer remain to be elucidated. We examined intersegmental transfer through an 

assay in which the ratio of enzyme to ssDNA remains constant, but the concentration of these 

components increases. By crowding the reaction, intersegmental transfer can be promoted, as the 

presence of increased amounts of substrate will make an enzyme more likely to transfer to a 

distal site on the same substrate, or a second substrate than remain on the same site. We conclude 

that an enzyme is able to undergo intersegmental transfer if the processivity factor decreases, the 

reaction rate increases, or both. For A3C, intersegmental transfer required a monomer-dimer 

equilibrium, and A3C enzymes that were stable dimers were unable to undergo these types of 

movements, likely due to conformational restrictions. This is unique to A3C, as A3H is a stable 
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dimer and can undergo intersegmental transfer  [110]. Further, intersegmental transfer in A3H 

can be disrupted through a single residue on helix 6, without disruption of dimerization  [110].  

 Despite processive movements on ssDNA, A3s like A3F and A3C I188 still restrict HIV 

less well than A3G or A3H. Therefore, it is important for A3s to have multiple mechanisms in 

order to ensure that the virus is completely inactivated. We had previously demonstrated that 

A3G and A3F can delay RT initiation and decrease in the production of full-length products by 

[71, 74]. Therefore, it appears that the A3s are creating a roadblock to RT polymerization. This 

roadblock requires RT to circumvent the block in order to fully extend the template, and is 

observed as an increase in template switching. Similarly, this competitive binding was shown to 

hinder the proper sampling of dNTPs by RT, leading to an increase in mutation errors by RT. 

While alone these observations may not lead to drastic changes in the restriction of the virus, in 

combination with the mutational load imposed by the A3 or other A3s additively, it is expected 

the virus will be inactivated. The results observed in Chapter 7 also emphasize the importance of 

complete inactivation of the virus, as changes in template switching and mutational frequency if 

not accompanied by virus inactivation may lead to viral recombination and evolution. The effect 

of the A3s on these processes of RT is still not entirely clear, and more work on these 

deamination-independent mechanisms is warranted. 

 While processivity and oligomerization of the A3s on the ssDNA during HIV replication 

leads to higher levels of restriction, we found that these determinants of activity could not be 

extended to the more dynamic processes of replication and transcription of genomic DNA. In 

these systems, the environment of the replisome and the transcription bubble is much more 

competitive, and the ssDNA is available for very limited amounts of time. Therefore, maintaining 

processivity on these substrates would limit the ability to induce multiple deaminations. 

Interestingly, A3 enzymes that formed oligomers on ssDNA (A3G, A3B) were unable to 

deaminate within a moving transcription bubble. This suggests that while oligomerization may 

impart more processive movements for A3 enzymes in HIV restriction, this same mechanism 

excludes the A3s from the transcription complex. We found that A3s that are able to cycle readily 

through substrates have higher levels of observed deaminations in our model system of 

replication. This cycling mechanism also facilitated the A3 enzymes ability to displace bound 

RPA from the DNA, and A3G, which remains bound to ssDNA for longer periods of time and 

cannot cycle, was not able to compete with RPA as readily as the A3 enzymes that could cycle. 
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These observations also seem to suggest that A3s are more likely to induce mutations during 

replication breakdown, where replication stress creates more single-stranded due to stalled and 

misfired replication forks. While the data presented in Chapter 9 provides initial insight into how 

A3s are able to access and deaminate ssDNA during transcription and replication, further studies 

are required that utilize more of the replisome components in addition to RPA, as the replication 

fork is a complex and dynamic system. More complex assays including additional replication 

proteins such as Rad51, and assays in cells examining the dynamic replisome are required.  

Despite different functions and substrates, A3 enzymes share many similar features with 

other DNA binding and modification enzymes. For example, many DNA repair enzymes scan 

DNA rapidly by facilitated diffusion and slow down to hover over their target motif or lesion, 

much like what has been observed for A3G [253, 353, 376, 377]. Where a DNA repair enzyme is 

charged with being an efficient enzyme that searches dsDNA for lesions that need to be repaired, 

A3 enzymes must search for deamination motifs before the ssDNA is covered up by the 

complementary strand or other DNA binding proteins. Considering the A3A, A3B, and A3H hap 

I data indicating that some A3 enzymes can actively compete with RPA and are not just 

opportunistic in how they access ssDNA in the genome, perhaps more parallels can be drawn 

between A3 enzymes and proteins involved in genomic DNA binding and modification. Merging 

the insights from A3 biochemical studies and the existing understanding of DNA replication 

proteins may offer key insights into mechanisms of A3-induced somatic mutagenesis.     
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