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Biochemical composition of particles and dissolved organic matter along an estuarine
gradient: Sources and implications for DOM reactivity

Antonio Mannino and H. Rodger Harvey1

Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, P.O. Box 38, Solomons,
Maryland 20688

Abstract

The chemical composition of high molecular weight dissolved organic matter (DOM) and particulate organic
matter (POM) was examined along the salinity gradient of the Delaware Estuary. DOM was collected and frac-
tionated by tangential-flow ultrafiltration into 1–30 kDa (HDOM; high molecular weight) and 30 kDa to 0.2 mm
(VHDOM; very high molecular weight) and compared to particles collected in parallel. Polysaccharides comprised
12–43% of particulate organic carbon (POC), 30–56% of VHDOM carbon, and 7.5–19% of HDOM carbon. Hy-
drolyzable amino acids comprised 17–38% of POC, 5.4–12% of VHDOM carbon, and 1.5–4.2% of HDOM carbon.
Only 7–43% of dissolved organic nitrogen in VHDOM and HDOM consisted of amino acids, indicating that organic
nitrogen is highly modified within the dissolved pool or an unidentified pool of dissolved organic nitrogen exists.
The composition of amino acids and distribution of polysaccharides are consistent with enrichment of structural
biopolymers from algae and vascular plants within DOM. Proteinaceous matter released during the growth of an
axenic diatom culture contains similar amino acid distributions across size fractions as in Delaware Bay samples.
The source of organic matter appears to be as important as microbial processing in determining amino acid content
and composition of DOM. Shifts in amino acid composition point to contrasting sources and extent of degradation
for organic matter along the estuarine gradient and among size fractions. The lower amino acid and carbohydrate
content and higher b-alanine content in HDOM suggests that this fraction is more highly degraded relative to POM
and VHDOM and provides geochemical evidence in support of the size-reactivity continuum hypothesis. Spatial
patterns in reactivity of organic constituents were also evident with more degraded organic matter in the turbid
middle estuary and the release of fresh DOM from diatoms in the lower estuary.

Dissolved organic matter (DOM) is the largest reservoir
of organic carbon in the ocean and is comparable to the
amount of CO2 in the atmosphere (0.66 3 1018 g C; Hedges
1992). The sources and cycling of DOM is thus a key com-
ponent of the global carbon cycle, but its dilute concentra-
tion within an ion rich solution and chemical heterogeneity
have resulted in much of the DOM (46–87%) to be uniden-
tified at the molecular level (e.g., Buffle 1988). Radiocarbon
measurements appear to reflect this chemical complexity.
Surface ocean DOM is on average .1,000 yr old (56% ,30
yr and 44% .6,000 yr), and deep ocean DOM is extremely
old, ;6,000 yr old, and thus appears highly refractory (Wil-
liams and Druffel 1987). Results from estuarine, continental
shelf, and slope waters suggest molecular size is an impor-
tant property with .10 kDa DOM being contemporary in
age (post-1950) with residence times of 1–30 d, whereas the
1–10 kDa fraction is much older (.1 kDa is 380–4,500 yr
old; Santschi et al. 1995). These observations suggest that
macromolecular DOM cycles rapidly within estuarine and

1 Corresponding author (harvey@cbl.umces.edu).

Acknowledgments
We thank the captain and crew of the R/V Cape Henlopen, D.L.

Kirchman for the invitation to participate in work on the Delaware
Estuary and for providing chlorophyll a and bacterial production
data, S.A. Macko for carbon and nitrogen measurements, and R.
Benner for advice on ultrafiltration. W.S. Gardner, M.A. Moran, and
an anonymous reviewer provided valuable comments on an earlier
version of this article. This work was supported by the NSF (OCE-
9617892 and OCE-9907069) and the donors of the Petroleum Re-
search Fund of the American Chemical Society.

coastal regions, with the most refractory DOM persisting in
the ocean for thousands of years. To understand the role of
terrestrial and autochthonous DOM as sources of energy and
nutrients in coastal systems and as contributors of recalci-
trant DOM to the ocean requires detailed information on its
chemical composition through the estuarine interface.

Primary production is ultimately the dominant source of
DOM to aquatic systems. Sources include direct algal release
via auto-lysis and extracellular excretions or indirectly
through sloppy feeding and egestion by grazers, microbial
degradation of detritus, viral or bacterial lysis of phytoplank-
ton cells, and the continual release and physical transport of
terrestrial material. Approximately 40–60% of autochtho-
nous primary production is cycled through bacteria (Cole et
al. 1988; Hoch and Kirchman 1993), which undoubtedly
leaves an imprint on the molecular distribution and chemical
composition of particles and DOM. Incubations of bacteria
with size-fractionated DOM from diverse environments re-
veal consistently greater utilization, growth, and respiration
rates for .1 kDa DOM (Amon and Benner 1996). In the
Mississippi River plume, Gardner et al. (1996) found that
ammonium and dissolved free amino acids stimulated bac-
terial utilization of high molecular weight (.1 kDa) DOM
more than lower molecular weight material, indicating that
the higher weight fraction contained the preferred carbon
source. These experimental results provide indirect evidence
for compositional differences among size fractions. They
also lend support for the size-reactivity continuum hypoth-
esis, which suggests that the diagenetic state of organic mat-
ter (seen as the extent of degradation or alteration) decreases
with increasing size (Amon and Benner 1996). Although
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Fig. 1. Map of the Delaware Estuary with station locations. In-
set map shows location of the Delaware Estuary in relation to the
U.S. Atlantic coast.

these results suggest that compositional differences do exist,
detailed chemical data that might explain such differences
remain sparse (e.g., Hedges et al. 1994; Skoog and Benner
1997).

As zones that receive significant terrestrial input and
maintain high levels of primary production, estuaries and
coastal regions can arguably be considered the most complex
environments to examine the dynamic nature of particle-
DOM interactions. Yet the importance of estuaries in terms
of multiple sources of organic matter, the effect of physical
interactions, and biological processing on the chemical dy-
namics of DOM cannot be ignored. The principal goal of
this study is to begin to examine the sources and fates of
high molecular weight DOM and its link to particulate or-
ganic matter (POM) along the salinity gradient of the Del-
aware Estuary. Three questions were addressed. First, are
compositional differences between molecular weight classes
evident in the estuary, and do they support the size-reactivity
hypothesis? Second, do zones of high phytoplankton pro-
duction leave a chemical imprint on the composition and
distribution of DOM? Third, do the enhanced physical in-
teractions that occur at the estuarine turbidity maximum of
the Delaware and elsewhere influence the chemical compo-
sition and distribution of DOM? In this system, organic mat-
ter enters from the Delaware River as its major source of
freshwater, from tidal exchange with the Atlantic Ocean and
from in situ primary production. Algal blooms are found
primarily in the lower estuary and are isolated from the tur-
bidity zone due to light limitations imposed by the high par-
ticle load (Pennock and Sharp 1986). Here we focus on car-
bohydrates and amino acids because these biochemical
components comprise substantial portions of living biomass
(80% of algal carbon and 65% of terrestrial plant carbon)
and are important components of DOM in freshwater (e.g.,
Tranvik and Jorgensen 1995), in estuaries (e.g., Sigleo et al.
1983; Coffin 1989; Sigleo 1996), and in the ocean (e.g.,
Benner et al. 1992; McCarthy et al. 1996). A range of sites
spanning the entire salinity gradient was studied to see how
river discharge, physical interactions, and primary produc-
tion influence the partitioning and chemical composition of
these biochemical classes between particles and molecular
weight classes of DOM.

Methods

Sampling and bulk analyses—Seven stations were sam-
pled between 6 and 9 June 1996 along a transect of the
Delaware Estuary corresponding to riverine, turbidity max-
imum, downstream of turbidity maximum, chlorophyll a
maximum, downstream of chlorophyll a maximum, and two
stations within the estuarine plume on the inner continental
shelf (Fig. 1). Sample collection and filtration were described
previously (Mannino and Harvey 1999). Briefly, large-vol-
ume water samples (13–104 liters) for analysis of DOM
were collected at 1 m depth, and particles were removed by
sequential passage through cartridge filters of 3 mm and 0.2
mm pore size. The filtrate was then separated into three nom-
inal size fractions: 30 kDa to 0.2 mm (VHDOM; very high
molecular weight), 1–30 kDa (HDOM; high molecular

weight) and ,1 kDa (LDOM; low molecular weight) with
an Amicon DC-10L tangential-flow ultrafiltration unit with
the S10Y30 and the S10N1 ultrafilters. Because of the high
particle load at the turbidity maximum (Sta. 2), only 13 liters
were filtered for ultrafiltration and only the 1 kDa to 0.2 mm
fraction retained. Immediately following initial fractionation
and concentration, the two high molecular weight fractions
were desalted with the Amicon unit with 6–9 liters of low
organic deionized water. Samples for DOC analysis were
collected from the ,0.2 mm filtrate and each DOM size frac-
tion (stored frozen) and analyzed by high temperature com-
bustion in triplicate (S.D. #5%) with a Shimadzu TOC 5000
(Benner and Strom 1993). Remaining sample retentates were
stored frozen, concentrated further by rotary evaporation and
lyophilized to dry powders. LDOM carbon was analyzed for
mass balance purposes, but no further characterization was
made. For analysis of particles, additional whole water was
filtered through precombusted (4–6 h at 4508C) GF/F filters
by vacuum filtration. Organic carbon and total nitrogen con-
tent were measured with a CHN elemental analyzer for POM
and DOM samples.
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Fig. 2. Polysaccharide (TCHO) and total hydrolyzable amino
acid (THAA) concentrations in (A) particles, (B) VHDOM, and (C)
HDOM in the Delaware Estuary. Open symbols with dashed lines
indicate conservative mixing values based on salinity end-members
(Sta. 1 and 7 for HDOM; Sta. 1 and 6 for VHDOM) for polysac-
charides and THAA. Data for VHDOM at Sta. 2 are not available,
only the .1 kDa fraction was isolated and was designated as
HDOM.

Axenic diatom culture—An axenic culture of the diatom
Skeletonema costatum (CCMP1332) was grown to late-log
phase to examine the biochemical composition of DOM re-
leased during a diatom bloom in the absence of actively
growing bacteria. Delaware Bay is generally dominated by

diatoms, and S. costatum is the dominant bloom forming
species (Pennock and Sharp 1986). The axenic culture was
grown over a 14-d period in a 42-liter glass vessel containing
f/2 nutrient media plus Si and diluted seawater of ,1 kDa
nominal size. The sterile estuarine media was prepared with
filtered (0.2 mm filter) coastal seawater (30 psu), which was
then diluted to 15 psu with ultraviolet (UV)-oxidized Nan-
opure water, ultrafiltered to remove the .1 kDa nominal
fraction and autoclaved. The culture was grown under a 12
h light : 12 h dark cycle over 14 d to a cell density of 7.6 3
105 cells ml21. The culture was aerated under aseptic con-
ditions and maintained in suspension by gentle mixing with
a magnetic stirrer. Bacteria were monitored by epifluoresc-
ence microscopy with acridine orange (Hobbie et al. 1977).
Extremely low abundances of bacteria (,4,000 cells ml21)
were observed on day 14 when the culture was sampled.

Carbohydrates—Polysaccharide content was measured
with a modification of the MBTH method (Pakulski and
Benner 1992). Duplicate subsamples of lyophilized DOM or
dried filters for POM (select duplicates) were acidified in
50-ml serum vials with 1 ml of 12 M H2SO4 for 2 h at room
temperature, diluted with 9 ml of Nanopure water and hy-
drolyzed at 1008C for 3 h. After cooling, the pH of the hy-
drolysis solution was neutralized with NaOH. Triplicate al-
iquots of hydrolysis products (and triplicate blanks) were
placed in test tubes, and the aldehydes were reduced to their
respective alditols, oxidized to formaldehyde and reacted
with MBTH. Glucose standard curves were generated con-
currently, and total polysaccharide concentration was cal-
culated as glucose equivalents.

Total hydrolyzable amino acids—Select duplicates of ly-
ophilized DOM, dried POM and a standard amino acid mix
were each placed in 4-ml vials and hydrolyzed with 1 ml of
6 N sequanal-grade HCl at 1508C for 2 h (modified from
Cowie and Hedges 1992a). L-g-Methyl-leucine was added
to samples prior to hydrolysis and served as an internal stan-
dard. After cooling, hydrolyzates were centrifuged at 1,200
3 g for 5 min and the supernatants transferred and dried by
vacuum centrifugation (Speed-Vac). Hydrolyzed amino acids
were derivatized to form their respective trifluoroacetyl iso-
propyl esters following the protocol described by Silfer et
al. (1991). Briefly, the carboxyl groups were esterified with
acidified isopropanol (4 : 1 mixture of high performance liq-
uid chromatography (HPLC) grade isopropanol and 991%
acetyl chloride) at 1108C for 1 h. Amino, hydroxyl, and thiol
groups were derivatized with trifluoroacetic anhydride at
1108C for 10 min. After repeated drying under a gentle
stream of N2, samples were dissolved in CH2Cl2 and ana-
lyzed by capillary gas chromatography with flame ionization
detection (GC-FID; HP-5890II) with a 60 m DB-5MS col-
umn (0.32 mm I.D., 0.25 mm film thickness). Hydrogen
served as the carrier gas (2 ml min21), and a temperature
program of 108C min21 from 508C to 858C followed by 3.58C
min21 to 2008C and 108C min21 to 2808C was used. Reagent
blanks processed simultaneously with each sample group in-
dicated no contamination from reagents or handling. Indi-
vidual amino acid standards and mixtures of amino acids
were derivatized as described above and analyzed by GC-



778 Mannino and Harvey

Table 1. Station locations, physical parameters and chemical characteristics for dissolved and particulate fractions through the Delaware
Estuary. Station numbers are illustrated in Fig., 1. Distance, distance upstream from bay mouth; TSP, total suspended particles; Chl a,
chlorophyll a (Kirchman unpubl. data); POC, particulate organic carbon; PN, particulate nitrogen; DOC, total dissolved organic carbon;
LDOM, ,1 kDa DOM; HDOM, 1–30 kDa DOM; VHDOM, 30 kDa to 0.2 mm DOM; ND, not determined.

Station Site descriptor
Distance

(km)
Salinity

(psu)
Chl a

(mg L21)
TSP

(mg L21)
POC
(mM)

PN
(mM)

DOC
(mM)

LDOM
(mM C)

HDOM
(mM C)

VHDOM
(mM C)

1
2
3
4
5
6
7

Riverine
Turbidity maximum
Turbid
Chl a maximum
High Chl a
Coastal ocean
Coastal ocean

197
100

66.4
45
28.4

216.3
251.5

0.11
0.67
9.07

13.19
22.58
29.42
29.48

4.1
10.8
9.7

21.6
21.0
1.7
2.1

10.7
92.0
42.3
8.5
4.3
1.5
1.4

95.8
318
147
162
152

53.4
54.4

10.9
30.6
15.9
24.8
21.7
7.5
7.4

218
218
330
224
205
136
170

112
81

262
177
112
101
120

89
133*

98
65
60
42
43

4.5
ND
1.9
2.4
3.4
1.2
3.3

* HDOM and VHDOM combined and designated as HDOM; only the .1 kDa fraction retained, since high particle density precluded filtration of the large
volume of water required for isolation of the VHDOM fraction.

FID and GC-MS (HP-5890II GC coupled to a HP-5970B
MSD) in parallel for confirmation of amino acid identity in
DOM and POM samples. Helium served as the carrier gas
for GC-MS, and the temperature program above was used.
The MSD was operated in electron impact mode at 70 eV
with acquisition over 50–600 a.m.u. range.

Individual amino acids were quantified on the basis of the
internal standard and corrected for individual responses from
a standard amino acid mix. Hydrolyzed amino acid standards
demonstrated that individual amino acids have different re-
sponses relative to methyl-leucine from 73% to 134% (mean
of 100%) for serine and phenylalanine, respectively, except
for arginine (48%) and methionine (57%). Amino acids with
both low concentration and low response were difficult to
detect. Histidine could not be quantified because of its low
concentration and low response. Glutamine and asparagine
are deaminated during hydrolysis and were quantified as glu-
tamic acid and aspartic acid, respectively. Although cysteine
and g-aminobutyric acid have high responses and thus low
detection limits with this procedure, neither were detected in
DOM or POM samples. In contrast to the more common
HPLC method with o-phthaldialdehyde derivatization, pro-
line and hydroxyproline could be quantified. Detection limits
for individual amino acids was typically at the low nanogram
level. Coefficients of variation from duplicate analyses were
on the order of ,6% for individual amino acids for DOM
samples (,2% for total amino acids) and ,10% for POM
(except for serine at 12%; ,5% for total amino acids).

Results

Bulk measurements—Maximal POC and DOC concentra-
tions were observed at or just downstream of the turbidity
maximum (Table 1). POC peaked at the turbidity maximum
(Sta. 2; 318 mM POC) with lower concentrations in riverine
and coastal ocean stations. A significant DOC peak occurred
at Sta. 3 (330 mM DOC; Table 1). POC and DOC concen-
trations remained elevated in the lower estuary (Sta. 4 and
5), where substantial algal biomass was present, with the
lowest concentrations for both observed at the coastal ocean
stations. LDOM comprised the bulk of DOC except at the
turbidity maximum where the concentration was 81 mM C,
but increased to its maximum at Sta. 3 (262 mM C). In

contrast, HDOM carbon concentration was highest at the tur-
bidity maximum (133 mM C) and lowest in the coastal ocean
(42 mM C). The general trend of declining DOC with in-
creasing salinity downstream of Sta. 3 was observed for total
DOC, LDOM, and HDOM carbon but not for VHDOM car-
bon. VHDOM comprised only a small portion of DOC
(,3%) with the highest concentration at the riverine station
and lowest at Sta. 6.

Polysaccharides and total hydrolyzable amino acids—On
a volumetric basis, polysaccharide and total hydrolyzable
amino acid (THAA) concentrations covaried for each size
fraction along the estuary (Fig. 2). Particles contained con-
sistently higher polysaccharide and amino acid concentra-
tions than either VHDOM or HDOM. The highest polysac-
charide concentrations for POM were found in the lower
estuary (1,199 mg L21 at the chlorophyll maximum and 1292
mg L21 at Sta. 5) and at the turbidity maximum (1,156 mg
L21; Fig. 2A). The distribution of THAA in particles gen-
erally followed the distribution of POC, with the highest
concentration occurring at the turbidity maximum (1,389 mg
L21 THAA) followed by the chlorophyll maximum (1,265
mg L21) and immediately downstream (Sta. 5; 1,134 mg L21).
Although POC was 50% higher at the turbid site (Sta. 3)
than at the riverine station, THAA concentration was higher
at the riverine station.

Salinity-based conservative mixing curves suggest that
fluctuations in dissolved polysaccharide and THAA concen-
trations were not due to estuarine mixing, particularly be-
tween Sta. 2 and 5 (Figs. 2B, C). Sources of polysaccharides
and THAA were observed for VHDOM and HDOM at Sta.
4 and 5 and for VHDOM at Sta. 7. In VHDOM, polysac-
charides ranged from 10.4 mg L21 at Sta. 6 to 54.6 mg L21

at Sta. 7 (Fig. 2B). THAA concentrations in VHDOM ranged
from 1.8 to 13.8 mg L21 at Sta. 6 and riverine site (Sta. 1),
respectively. For HDOM, polysaccharide concentrations
were maximal at the riverine site (428 mg L21) and lowest
at Sta. 3 (219 mg L21) and 7 (226 mg L21; Fig. 2C). The
concentration of THAA in HDOM was highest at the riv-
erine station (107 mg L21) and lowest in the coastal ocean
(Sta. 7; 32 mg L21).

Polysaccharides comprised a substantial portion of organ-
ic matter in particles and macromolecular DOM. Along the
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Fig. 3. Distribution of biochemical components in the Delaware
Estuary on a carbon and nitrogen normalized basis. (A) Polysac-
charide content (mean 61 SD), (B) total hydrolyzable amino acids
on a carbon normalized basis, and (C) THAA on a nitrogen nor-
malized basis. Error bars indicate the analytical variability of the
measurement. For symbols without error bars, the standard devia-
tion is smaller than the size of the symbol. Data for VHDOM at
Sta. 2 is not available.

estuarine gradient from the turbidity maximum into the low-
er estuary polysaccharide carbon generally increased (Fig.
3A). Particulate polysaccharides increased substantially
through the chlorophyll maximum to 43% of POC in the
coastal ocean. The VHDOM fraction was rich in polysac-
charides, particularly in the lower estuary and coastal ocean.
HDOM polysaccharides decreased from 16% of HDOM car-
bon at the riverine station to 7.5% at the turbid site (Sta. 3),
but returned to 19% of HDOM by Sta. 6. Similar or higher
carbohydrate measurements have been observed for HDOM
in a range of environments, including 17–40% in the Poto-
mac River (5 kDa to 0.4 mm; Sigleo 1996), 73–84% in the
Mid-Atlantic Bight (Aluwihare et al. 1997) and 54% at
ALOHA station near Hawaii (Benner et al. 1992).

The amount of carbon as THAA was highest for POM
(17% to 38%), decreasing with the molecular size of DOM
(5.4% to 12.3% for VHDOM and 1.5 to 4.2% for HDOM;
Fig. 3B). For POM, the highest amino acid carbon was found
in the coastal ocean; whereas in DOM, THAA was generally
higher at the riverine station and in the region of the chlo-
rophyll maximum. THAA nitrogen concentrations exhibited
similar patterns as for carbon with the lowest proportion of
THAA nitrogen observed for HDOM (7 to 26%; Fig. 3C).
The diatom culture demonstrated higher THAA-N with in-
creasing size as observed throughout the Delaware Estuary
(Fig. 4). For each size fraction, THAA comprised a higher
fraction of organic matter in the diatom culture than in Del-
aware Bay samples.

Distributions of several individual amino acids varied
along the estuarine gradient. On a mole % basis, glycine and
alanine were the dominant amino acids for POM and HDOM
throughout the estuary, except at the chlorophyll maximum
where threonine comprised 16% of POM-THAA, but ,8.2%
elsewhere (Table 2). Although alanine and glycine contrib-
uted 15–22% and 10–14% of VHDOM-THAA, respectively,
serine also comprised a substantial percentage of VHDOM-
THAA (11–19%), especially in the lower estuary. At the
riverine station, HDOM and VHDOM were enriched in thre-
onine and hydroxyproline relative to other stations. Within
the turbid region (Sta. 2 and 3), POM and DOM fractions
were enriched in glycine and b-alanine (DOM only) and
depleted in tyrosine and lysine. Aspartic acid comprised 11%
of VHDOM-THAA at the chlorophyll maximum and ,9%
elsewhere.

By averaging amino acid content throughout the estuary
by size fraction, differences in amino acid composition were
apparent between size fractions and in comparison to the
pure diatom culture. In general, the narrow deviations ob-
served for most of the amino acids reveal that THAA com-
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Fig. 4. THAA nitrogen content for HDOM, VHDOM, and
POM size fractions for the axenic diatom culture (average 61 SD
of duplicate analyses), Delaware High Chlorophyll (Sta. 4 and 5;
average 61 SD) and the Delaware Bay average (mean 61SD).

position among the size fractions varied slightly through the
estuary (Table 2; Fig. 5A). POM was enriched in leucine
(10–12 mole%), but HDOM was depleted in leucine (3.4–
3.9%; Fig. 5A). POM was also enriched in isoleucine and
phenylalanine, but depleted in aspartic acid and glutamic
acid compared to DOM fractions. VHDOM was enriched in
serine, but depleted in glycine and proline. HDOM was en-
riched in b-alanine (b-ala), aspartic acid, and glutamic acid
and depleted in valine, leucine, and isoleucine. On a mole%
basis, the S. costatum culture contained no b-Ala and lower
amounts of alanine and glycine for both cells and dissolved
fractions than seen in Delaware Bay (Fig. 5). However, as-
partic acid and glutamic acid contributions were much great-
er in S. costatum HDOM than in field samples. For particles,
phenylalanine was enriched in Delaware Bay compared to
the S. costatum culture. Hydroxyproline was observed in all
three size fractions of the diatom culture, but was highest in
VHDOM.

Amino acids were also categorized on the basis of side-
chain functionality and compared across size fractions and
to the diatom culture (Fig. 6). Although absolute concentra-
tions of each amino acid group varied substantially along the
estuary, the mole% values remained similar with the excep-
tion of the chlorophyll maximum. Neutral amino acids com-
prised the majority of THAA in particles and dissolved frac-
tions for both field and culture samples (Fig. 6). Aromatic
amino acids were more abundant in POM than in dissolved
fractions. At the chlorophyll maximum, hydroxyl amino ac-
ids showed a strong peak in particles. Acidic amino acids
comprised a greater portion of THAA in HDOM than in
either VHDOM or POM. For both HDOM and VHDOM,
acidic amino acids comprised a greater portion of THAA at
the chlorophyll maximum than upstream. Amino acid func-
tional group distributions in the S. costatum culture showed
similar patterns between size fractions as observed for the

Delaware Bay (Fig. 6). Nevertheless, diatoms and the re-
leased DOM contained lower amounts of neutral and hy-
droxyl amino acids and higher amounts of acidic and basic
amino acids than observed in the Delaware Estuary.

Discussion

Only a handful of studies have examined the chemical
composition of macromolecular DOM and particles concur-
rently, especially in estuarine systems where multiple sourc-
es and processes result in inherently complex organic matter.
However, within the high chlorophyll region of the lower
estuary (Sta. 4 and 5) concomitant increases in polysaccha-
ride and amino acid concentrations (relative to upstream con-
centrations) for all three size fractions clearly indicate algal
production as the primary source of polysaccharides and
amino acids (Fig. 2). The release of polysaccharides from
particles, including extracellular polysaccharides from phy-
toplankton and bacterial cells (Decho 1990), may contribute
to the carbohydrate enrichment seen in VHDOM (Fig. 3A).
Copepod grazing may be the source of the higher polysac-
charide and amino acid concentrations at Sta. 7 (compared
to Sta. 6). Copepods were abundant at Sta. 7, and grazing
activity has been shown to be a source of DOM (Strom et
al. 1997). In addition, a shift in species composition was
observed in the coastal ocean versus the lower estuary with
fewer diatoms and a greater relative abundance of dinofla-
gellates and other flagellates (Mannino and Harvey 1999).
Low concentrations of inorganic nutrients were also ob-
served at the coastal ocean sites (Sta. 7: DIN 5 0.47 mM
and PO4 5 0.15 mM; Kirchman unpubl.) where carbohydrate
yields were high for HDOM, VHDOM, and POM (Fig. 3).
Either nutrient limitation, which can enhance biosynthesis of
carbohydrates over proteins, or shifts in plankton community
composition to species with higher carbohydrate content
(e.g., Brown 1991) would serve to elevate the polysaccha-
ride carbon content in POM in the coastal ocean versus the
lower estuary.

Although the application of tangential-flow ultrafiltration
in aquatic environments is now widespread, uncertainty re-
garding the consistency in molecular weight–based fraction-
ation and possible discrimination of organic constituents
warrants cautious interpretation. Potential problems includ-
ing contamination, breakthrough of high molecular weight
compounds, retention of lower molecular weight molecules,
physico-chemical interactions between macromolecules, and
adsorptive losses to the membrane itself, could all affect the
fidelity of size-based fractionations (e.g., Bauer et al. 1996;
Buesseler et al. 1996; Guo and Santschi 1996; Dai et al.
1998). Guo and Santschi (1996) obtained excellent repro-
ducibility in isolation of high molecular weight DOC by us-
ing a similar Amicon system, and found retention exceeding
93% for macromolecules .6 kDa (proteins). In our own test
with the S10N1 cartridge (1 kDa nominal size), the retention
coefficient for a 4.4 kDa fluorescein-labeled dextran (64 mg
L21 in 8.5 ‰ estuarine water) was .99% with 12% of the
labeled dextran unaccounted for in the retentate or filtrate.
In this study, the importance of ionic strength on the molec-
ular weight distributions of DOM and various organic con-
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Fig. 5. Mole percentage distributions of individual amino acids for particulate and dissolved
size fractions (A) across the entire Delaware Estuary (mean 61 SD) and (B) from the axenic diatom
culture (average 61 SD; N 5 2).

stituents must be considered. Although, Guo and Santschi
(1996) found no change in retention characteristics for Vi-
tamin B-12 (1.33 kDa) between deionized water and a so-
lution of seawater, the retention of raffinose (0.595 kDa) de-
creased at the high ionic strength. However, in the Delaware
Estuary shifts in the organic composition (polysaccharide
and THAA content; Fig. 3) among particles and dissolved
components along the salinity gradient appear to be site spe-
cific and unrelated to ionic strength. In addition, the amino
acid composition within each of the dissolved fractions was
very similar along the estuary as shown by the narrow de-
viations for each amino acid, with several notable exceptions
(Table 2; Fig. 5A). Such evidence suggests that discrimina-
tion of organic constituents by ultrafiltration due to changes
in ionic strength is of minor importance in this study.

Physico-chemical processing—Substantial variations in
organic content and composition were observed between the
riverine site and the turbid middle estuary, presumably due
to physico-chemical processes. Microscopic examinations of

particles revealed a high mineral grain content for the tur-
bidity maximum and Sta. 3 (4.2% organic carbon by
weight). The nonconservative behavior of total DOC and
each DOM fraction within the high turbidity zone illustrates
the importance of physical processes, i.e., sorption and floc-
culation, and perhaps additional inputs (Mannino and Har-
vey 1999). Under experimental conditions of particle free
seawater, sorption of several monomers including amino ac-
ids and glucose onto macromolecular DOM has been ob-
served (Carlson et al. 1985). Wang and Lee (1993) demon-
strated that sorption and desorption of small organic
molecules (free amino acids and methylamines) to organic-
free minerals and organic-rich sediments could occur within
a few hours. Keil and Kirchman (1993) proposed that de-
creases they observed in dissolved free amino acids at the
Delaware Bay turbidity maximum and corresponding in-
creases in dissolved combined amino acids resulted from the
adsorption of free amino acids onto ,0.2 mm clay minerals,
DOM, or both. Although our limited sampling in this region
do not allow small shifts in THAA concentrations to be fol-
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Fig. 6. Distributions of amino acid side-chain functional groups
in the (A) Delaware Estuary and the (B) Axenic diatom culture on
a mole percentage basis (mean 61SD). Neutral amino acids, Ala,
Gly, Val, Leu, Ile, Pro, and Met; Hydroxyl, Ser, Thr and H-Pro;
Acidic, Asp, and Glu; Aromatic, Phe, and Tyr; Basic, Lys and Arg.

lowed, it is apparent that sorption/desorption processes occur
at sufficiently short time scales to affect the molecular
weight distribution of DOC within turbid regions.

Sorption may have also influenced the composition of
amino acids within macromolecular DOM. It has been ob-
served that basic amino acids become enriched on particles
by adsorption onto clay minerals through ionic interactions
(Henrichs and Sugai 1993; Hedges et al. 1994). Yet in the
Delaware Estuary, we observed that HDOM was enriched
in lysine throughout the estuary while POM was depleted in
lysine (Table 2; Fig. 5). Furthermore, at the turbid sites (Sta.
2 and 3) where mineral content was high, particles were
relatively depleted in lysine (0.34 and 0.25 mole%), but
HDOM was relatively more enriched in lysine (1.1 and 1.9

mole%). The polyelectrolytic nature of humics, major com-
ponents of riverine and estuarine DOM, may also mediate
adsorption of basic amino acids such as lysine as well as
arginine, which comprised 1.2 mole% of HDOM-THAA at
the turbidity maximum and ,1 mole% elsewhere. Fine clay
minerals also include constituents of ,0.2 mm material and
have the potential to transfer basic amino acids into the mac-
romolecular dissolved pool. It seems that adsorption or en-
richment of basic amino acids may not be simply a particle
versus dissolved issue, perhaps due to differences in mac-
romolecular DOM composition as well as clay mineral con-
tent and composition.

In addition to changes in dissolved constituents, particle
composition was also affected, with a shift from dominance
by amino acids to polysaccharides between the turbidity
maximum (Sta. 2) and Sta. 3 (Fig. 2). The composition of
amino acids and d13C values (Mannino and Harvey 1999)
for POM remained similar at the two turbid stations, imply-
ing similar or related organic sources. Settling of particles
and sorption of dissolved polysaccharides to particles could
account for the declines in particulate THAA and dissolved
polysaccharide concentrations, respectively, and also the
compositional shift to higher polysaccharide content in par-
ticles between the turbidity maximum and Sta. 3. In addition
to sorption, formation of polymer gels through aggregation
of small molecules including carbohydrates (Chin et al.
1998), could explain the transfer of dissolved carbohydrates
to the particulate size fraction. Additional work within turbid
environments is needed to understand the processes that af-
fect the distribution of organic compounds among particulate
and dissolved size fractions.

Amino acid composition as indicator of source—The
composition of certain individual amino acids changed along
the estuarine gradient for each size fraction. Greater diver-
gence in THAA composition was observed among the size
classes in the riverine and turbid regions of the estuary (Ta-
ble 2). Previous work in Delaware Bay revealed no such
divergences in THAA composition among low and high mo-
lecular weight dissolved fractions (Coffin 1989; Keil and
Kirchman 1993). In contrast, Hedges et al. (1994) found
HDOM from the Amazon River to be enriched in aspartic
acid, glycine, threonine, and all nonprotein amino acids (b-
ala, g-aminobutyric acid, a-aminobutyric acid, and orni-
thine) relative to particles that were enriched in leucine and
tyrosine plus the basic amino acids, lysine and arginine.
Compared to phytoplankton, dissolved THAA from various
marine waters contained higher amounts of serine and gly-
cine and lower amounts of neutral and aromatic amino acids
(Buffle 1988 and refs. therein). Differences in amino acid
composition were also observed between size fractions in
Delaware Bay, shifting from relatively higher proportions of
neutral and aromatic amino acids to relatively more acidic
and hydroxyl amino acids with decreasing size (Figs. 5A,
6A). Similar THAA distributions among size fractions be-
tween Delaware Bay samples and the S. costatum culture
revealed that algal exudation could contribute to differences
in amino acid distributions between size fractions (Fig. 5).

Shifts in amino acid composition along the estuarine gra-
dient and among size fractions suggest changing organic
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Fig. 7. Hydroxyproline concentrations for high molecular
weight DOM fractions in Delaware Bay, (A) HDOM and (B)
VHDOM. Open symbols and dashed lines indicate estimated hy-
droxyproline concentrations that are based on conservative mixing
with salinity end-members (see Fig. 2 for details).

sources (Fig. 5A). Within the high chlorophyll region of Del-
aware Bay (Sta. 4 and 5), VHDOM was enriched in serine,
which suggests enrichment of cell wall material in VHDOM
(Table 2). Microscopic examination of particles revealed that
diatoms dominated the plankton community in the lower es-
tuary (Sta. 4 and 5) but were also present in the turbid mid-
dle estuary (Sta. 2 and 3) and coastal ocean (Sta. 6 and 7).
Diatom cell walls are enriched in serine and glycine versus
cytoplasmic amino acids (Hecky et al. 1973; Swift and
Wheeler 1992). The association of serine and glycine rich
proteins within the cell wall silica-protein matrix has been
proposed as a mechanism for preservation of serine and gly-
cine (Siezen and Mague 1978). Selective preservation (or
enrichment) of serine and glycine was found in coastal ma-
rine sediments (Cowie and Hedges 1992b), in particles from
the Pacific (Siezen and Mague 1978) and in POM from di-
atom decay experiments (Nguyen and Harvey 1997), but not
in high molecular weight DOM from the oligotrophic ocean
(McCarthy et al. 1996) where diatom production is minor.
The THAA composition from Delaware Bay, especially in
the lower estuary where primary production peaks, together
with the high polysaccharide content and observed serine
enrichment of VHDOM in the S. costatum culture are con-
sistent with enrichment of diatom cell wall material within
VHDOM (Table 2; Figs. 3, 5). The lower glycine content
for VHDOM in the lower estuary may be due to additional
sources of glycine at other sites.

Hydroxyproline, an atypical protein amino acid primarily
found in glycosylated cell wall proteins of higher plants
(Brett and Waldron 1990), certain algae (McConville 1982)
and within the collagen of animals, was detected in Delaware
Bay HDOM and VHDOM but not in particles. Distributions
of hydroxyproline in macromolecular DOM indicated three
source regions: (1) riverine site, (2) lower estuary (Sta. 4
and 5), and (3) coastal ocean Sta. 7 for VHDOM only (Fig.
7). Extensin, a hydroxyproline rich glycoprotein found in the
cell walls of higher plants (40% of amino acids as hydroxy-
proline; 50–60% carbohydrate by weight; Sommer-Knudsen
et al. 1998), may have contributed to the elevated hydroxy-
proline concentrations in HDOM (23 nM) and VHDOM (1.9
nM) at the riverine site (Fig. 7). Stable carbon isotopic sig-
natures and lipid composition were consistent with a pre-
dominantly terrestrial origin for HDOM and VHDOM at the
riverine site (Mannino and Harvey 1999). The association
of extensin with cellulose and lignin within vascular plant
cell walls (Brett and Waldron 1990) may enhance its pres-
ervation within the dissolved pool. Furthermore, the high
degree of glycosylation in extensin and other hydroxyproline
rich glycoproteins (Sommer-Knudsen et al. 1998) may con-
fer greater resistance to microbial attack than nonglycosy-
lated proteins (Keil and Kirchman 1993), permitting enrich-
ment of these proteins in the macromolecular dissolved pool.
However, at this time, other potential sources of hydroxy-
proline at the riverine site, which include collagen from an-
imals and hydroxyproline rich cell wall glycoproteins from
freshwater algae such as chlorophytes (Voigt et al. 1994),
cannot be excluded.

Increasing concentrations of hydroxyproline in DOM
from the lower estuary (Sta. 4 and 5) likely originate from
diatoms. Hydroxyproline containing glycoproteins comprise

a substantial component of the cell wall proteins in diatoms
(Kroger et al. 1994). In addition, hydroxyproline was found
in S. costatum (0.12 mole%) and the macromolecular DOM
released during its growth (Fig. 5B). The serine enrichment
in VHDOM at Sta. 5 paralleled the higher concentration of
hydroxyproline in VHDOM at this station, providing further
support for enrichment of diatom cell wall material in
VHDOM. The much higher concentration of hydroxyproline
observed in VHDOM at coastal ocean Sta. 7 (1.5 nM) com-
pared to Sta. 6 (0.23 nM) indicated additional sources. Var-
ious phytoplankton taxa and also copepods were observed
at station 7, and potential sources of hydroxyproline include
both collagen from copepods and algal derived proteins. To
our knowledge, these results are the first evidence of hy-
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Fig. 8. Distribution of polysaccharides and amino acids along
the Delaware Estuary and the S. costatum culture (SKEL), (A)
POM, (B) VHDOM, and (C) HDOM. Figure includes lipids (Man-
nino and Harvey 1999) and lignin phenols (Mannino and Harvey,
in review) from identical fractions. * 21 kDa to 0.2 mm DOM.

droxyproline in high molecular weight DOM. Due to its lim-
ited distribution in proteins, hydroxyproline is a potential
biomarker for distinguishing algal, terrestrial plant, or meta-
zoan sources of proteinaceous matter in DOM when used in
combination with compound specific stable isotope analysis.

Reactivity patterns—THAA and polysaccharide concen-
trations were similar in particles, whereas, in both DOM
fractions polysaccharide concentrations were much higher
than amino acids with similar patterns for carbon normalized
values (Figs. 2, 8). This compositional shift from POM to
dissolved fractions suggests that as particles are hydrolyzed
to DOM and metabolized by microbial consumers, a greater
portion of dissolved polysaccharides are inherently more re-
sistant to bacterial degradation. However, in the diatom cul-
ture the chemical composition and THAA distributions for
particles and dissolved fractions (Fig. 8) revealed that com-
positional differences between size fractions in natural wa-
ters are in part related to different sources of organic matter
in the size classes rather than solely due to microbial de-
composition of particles. Polysaccharides and THAA com-
prised similar amounts of VHDOM-C and HDOM-C in the
S. costatum culture, with slightly higher amounts of both
organic components in VHDOM (Fig. 8). For the diatoms,
lipids and THAA comprised a substantially higher propor-
tion of carbon than found in the dissolved fractions. The
substantial difference in composition between HDOM from
the diatom culture and Delaware Bay suggests that a portion
of algal exudates within the HDOM fraction is utilized too
rapidly by the microbial community to accumulate in the
estuary and also that an uncharacterized refractory pool of
HDOM persists throughout the estuarine gradient, as indi-
cated by small shifts in HDOM-d13C between Sta. 2 and 5
(Mannino and Harvey 1999). Similarities in VHDOM com-
position between the culture and estuarine waters may be
related to the low concentration of VHDOM (,3% of DOC),
which could hinder its utilization. Statistical analyses re-
vealed no significant correlations between the biochemical
composition of POM and DOM in our Delaware Bay sam-
ples and in situ bacterial production rates or turnover rates
of glucose and free amino acids conducted at the time of
sample collection (Kirchman et al. unpubl. data). However,
leucine-based bacterial production measurements were cor-
related with VHDOM carbon (r 5 0.87; P , 0.03; n 5 6)
and nitrogen (r 5 0.90; P , 0.02; N 5 6). Over short time
scales bacteria might consume only the most labile portion
of organic matter, which may not reflect the polysaccharide
or THAA content of each size fraction.

The most labile components of DOM are monosaccha-
rides, primarily glucose, and dissolved free amino acids
(DFAA). Low background concentrations of monosaccha-
rides and DFAA are typically observed in natural waters
because these compounds are utilized too rapidly to accu-
mulate. Despite low concentrations, the turnover of glucose
and DFAA provide substantial contributions to bacterial pro-
duction, 5–33% from glucose (Rich et al. 1996; Skoog et al.
1999) and 14–100% from DFAA (Fuhrman 1987; Middel-
boe et al. 1995). Recent evidence indicates that uptake mea-
surements of free glucose include glucose released by en-
zymatic hydrolysis of dissolved polymers (Skoog et al.

1999). A similar mechanism for the release of DFAA and
subsequent assimilation by bacteria would provide a path-
way for the rapid turnover of dissolved labile proteins and
polysaccharides. The observed correlations between bacte-
rial production and VHDOM carbon and nitrogen in the Del-



786 Mannino and Harvey

aware Estuary would be consistent with such a mechanism
and can also explain the low concentrations of VHDOM.
The rate limiting step for the consumption of glucose or
DFAA would thus be the hydrolysis of polysaccharides or
proteins.

Lipids and stable carbon isotopes reveal a changing pat-
tern of sources along the estuary with a mixture of algal and
terrestrial material in the river and turbid middle estuary and
a predominantly algal/planktonic signal in the lower estuary
and coastal ocean (Mannino and Harvey 1999). The bio-
chemical composition of particles and high molecular weight
DOM fractions in the Delaware Estuary suggest that POM
and VHDOM more closely resemble living biomass (pri-
marily plankton) than HDOM. d13C signatures of POM and
VHDOM are more similar in the plankton dominated regions
of the lower estuary and coastal ocean, indicating similar
sources (Mannino and Harvey 1999). Moreover, HDOM ac-
counted for a lower fraction of organic matter as polysac-
charide or THAA throughout the estuary (Figs. 3, 8). Yields
and distributions of aldoses (neutral carbohydrates) in POM,
.1 kDa DOM and LDOM from surface and deep waters of
the Gulf of Mexico and equatorial Pacific Ocean indicated
that POM was the most reactive fraction (i.e., contained the
highest aldose yields and an aldose composition most similar
to plankton), and LDOM the most recalcitrant (Skoog and
Benner 1997). Polysaccharide and amino acid content as
well as amino acid distributional patterns of POM and DOM
in Delaware Bay and from the S. costatum culture also con-
cur with the size-reactivity continuum model of Amon and
Benner (1996), which postulates that the lability of organic
matter generally declines along a size spectrum from POM
to LDOM, with the exception of highly labile compounds
such as glucose and DFAA. Other low molecular weight
molecules may also cycle too rapidly to be measured by
geochemical techniques. Within the turbid region of the es-
tuary where photosynthesis is limited by light, polysaccha-
rides and THAA accounted for the smallest fraction of
HDOM carbon, whereas lignin comprised a significant por-
tion of characterized HDOM (6.2% of characterized HDOM-
C at Sta. 3; Mannino and Harvey, in review), suggesting a
more highly degraded pool of material (Fig. 8). Since pro-
teins and carbohydrates typically comprise 65% of terrestrial
plant carbon (#10% as THAA; Cowie and Hedges 1992b)
and 80% of algal carbon (19–42% as THAA; Cowie and
Hedges 1992b; Nguyen and Harvey 1997) with lipids con-
tributing an additional 10%, the majority of HDOM carbon
does not resemble its original biological precursor, neither
algae or terrestrial plants.

As seen for carbon, the bulk of organic nitrogen in HDOM
and VHDOM does not consist of THAA, even though pro-
teins comprise 30–88% of living algal/vascular plant nitro-
gen (Cowie and Hedges 1992b). Although the low amounts
of dissolved THAA-N can result from the composition of
molecules released by algae (Fig. 4), these results illustrate
that much of the high molecular weight dissolved organic
nitrogen (DON), especially for HDOM, is not in the form
of hydrolyzable amino acids. In waters off the coast of Geor-
gia, dissolved THAA comprised only 20% of total DON
(Gardner and Stephens 1978). McCarthy et al. (1997) ob-
served that THAA comprised only 8–9% of macromolecular

DON in the oligotrophic ocean but other amide nitrogen
(protein or chitin like polymers) distinguishable by 15N-
NMR constituted 65–86% of the remaining nitrogen. Chitin
originating from diatoms such as S. costatum or amino sug-
ars from bacterial cell walls may contribute to some of this
unidentified nitrogen. Lara et al. (1997) observed that in ad-
dition to excreting amino acids, diatoms also excrete signif-
icant amounts of other hydrophilic nitrogenous molecules.
Yet, the higher release rates of amino acids from vapor-phase
hydrolysis of dissolved combined amino acids (DCAA) from
Delaware Bay compared to liquid-phase hydrolysis suggest
the presence of modified amino acids (up to 50% of DCAA)
not recognizable as proteins by standard methods (Keil and
Kirchman 1993). Since nonmodified proteins comprised only
1–10% of DCAA, Keil and Kirchman (1993) concluded that
most DCAA in Delaware Bay was material similar in lability
to glycosylated proteins. Modified proteins or those sorbed
to clays or to macromolecular DOM may account for a por-
tion of the unidentifiable nitrogen component we observed
in VHDOM and HDOM (Fig. 3C). DOM fractions from the
S. costatum culture contained much lower amounts of THAA
than particles, implying that protein modification for the dis-
solved pool may occur prior to microbial attack. The low
THAA-N content in HDOM may explain why bacteria uti-
lize DFAA and ammonium as their primary source of nitro-
gen in Delaware Bay (primarily DFAA; Middelboe et al.
1995 and refs. therein) and in other systems (Kirchman 1994
and refs. therein).

It has been suggested that increases in the mole% of b-
ala plus g-aminobutyric acid (g-aba) can be used to gauge
the extent of degradation for specific fractions of particulate
and dissolved organic matter (Lee and Cronin 1982; Cowie
and Hedges 1992b; Hedges et al. 1994). Although b-ala plus
g-aba mole% increased within POM-THAA during decay
sequences of diatom and cyanobacteria laboratory bloom
simulations, no increase was observed for a similar dinofla-
gellate decay sequence (Nguyen and Harvey 1997). Nguyen
and Harvey (1997) hypothesized that enrichment patterns for
b-ala and g-aba within algal detritus and sediments may be
due to sorptive processes related to its surrounding matrix
rather than preferential preservation. In the Delaware Estu-
ary, HDOM contained higher mole% values of b-ala and
lower amino acid nitrogen content than either VHDOM or
POM (Figs. 3C, 5A) consistent with this fraction containing
more degraded material. In addition, b-ala mole% contri-
butions to HDOM-THAA and VHDOM-THAA were highest
at the turbidity maximum and Sta. 3 (Table 2) where rela-
tively high amounts of lignin and lower polysaccharide and
THAA content also suggest a greater proportion of degraded
material in HDOM and VHDOM (Fig. 8). Fresh algae are
an unlikely source of b-ala as none was detected in particles
or dissolved fractions from the S. costatum culture. Although
the effects of sorption on b-ala distributions remain unclear,
b-ala may be a useful diagenetic biomarker for high molec-
ular weight DOM.

Conclusions

Estuarine systems such as the Delaware represent complex
systems where multiple organic sources, physical interac-
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tions, and biological processes collide. The release of DOC
through physical and biological processes was evident along
the estuarine gradient. Amino acid composition reveals con-
trasting sources and extent of organic degradation along the
estuarine gradient and among size fractions. HDOM con-
tained lower amounts of polysaccharides and amino acids
and higher mole% content of b-ala than VHDOM or POM,
suggesting that HDOM was more degraded. Consequently,
the geochemical evidence from the Delaware Estuary shows
general agreement with the size-reactivity continuum hy-
pothesis proposed by Amon and Benner (1996). Neverthe-
less, a portion of dissolved molecules released by algae,
which cycle too rapidly for geochemical analysis, may not
conform to the size-reactivity continuum. Phytoplankton
production within the lower estuary generates a chemical
signature in high molecular weight DOM with higher poly-
saccharide and amino acid concentrations and discernible
changes in amino acid composition. Within the turbid region
of Delaware Bay, where tidal flow begins to influence salin-
ity, physical processes such as sorption/desorption alter the
concentration and molecular weight distribution of DOC and
biochemical components. Our results also suggest that struc-
tural biopolymers that are inherently more resistant to mi-
crobial degradation become enriched in macromolecular
DOM, some of which may be released directly by algae.
Thus, in addition to modifications of biopolymers during mi-
crobial and/or abiotic hydrolysis, the structural nature of the
organic matter released by phytoplankton may confer a de-
gree of recalcitrance to HDOM.
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