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1. Introduction

Fuels  and chemicals  derived from biomass are  regarded as  an environmentally  friendly
alternative to petroleum based products. The concept of using plant material as a source for fuels
and commodity chemicals has been embraced by governments to alleviate dependence on the
volatile petroleum market. This trend is driven not only by economics but also by social and
political factors. Global warming has been associated with CO2 emissions largely originating
from the combustion of fossil fuels.[1] This, together with depleting and finite carbon fossil fuel
resources, and insecurity of petroleum supplies has prompted a shift towards biofuels and
biomaterials.[1] The use of biomass as an economically competitive source of transport fuel was
initiated by the fuel crisis in 1970 and its commercialization was led by the USA and Brazil.[2]
In 2010, the USA and Brazil processing corn and sugarcane, respectively, produced 90% of the
world’s bioethanol. In 2008, the “food for fuel” debate emerged sparked by concerns that the use
of arable land for bioethanol and biodiesel crops was placing pressure on food demand for a
growing world population.[3] In June 2011, the World Bank and nine other international agencies
produced a report advising governments to cease biofuel subsidies as the use of food stock for
fuel production was linked to increasing food prices.[4] Subsidies were thus ended in the USA
when their Senate voted overwhelmingly to end billions of dollars in bioethanol subsidies.[5]
This reform resulted in USA bioethanol plants recording losses in the first quarter of 2012[6] and
is foreseen as the end of bioethanol production from corn at least in the USA.

Emerging from the “food for fuel” debate, the concept of commercializing second generation
biofuels was embraced by governments as a route to produce biofuels without diminishing
global food supplies.[7]. Second generation biofuels address concerns over designating arable
land to grow food crops for fuel production as lignocellulosic biomass may consist of waste
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materials such as plant residues.[8] In many proposed biorefinery setups, the food portion of
the crop is to be used for human consumption and the waste residues, for example, the leaves
and stalks, are to be processed for biofuels and chemicals.[8] An illustration of the processes for
1st, 2nd and 3rd generation biofuel production is shown in Figure 1. Third generation biofuel
production, the generation of biodiesel from algae, is included in the diagram for completeness.

All three of the processes outlined in Figure 1 rely on biotechnology for the conversion of
biomass to fuels. First generation bioethanol production traditionally incorporates two
biological transformations. The first stage uses commercialized saccharification biotechnology
which depolymerises starch into fermentable glucose units. The second stage is the fermenta‐
tion of sugar units to ethanol and again uses commercialized biotechnology generally with
yeast extracts.[1] Although the use of lignocellulosic biomass is socially widely supported, the
processes for its conversion are more complex and therefore more costly. The major cost-
adding component of 2nd generation bioethanol production compared to the 1st is the pretreat‐
ment step as the removal of the lignin is required for cellulose accessibility.[9] Whilst 1st

generation bioethanol production converts substrates high in starch (mainly corn, sugarbeet
and sugarcane), the effective utilization of lignocellulosic biomass requires at least separation,
if not complete conversion, of all plant components. The composition of plant material includes
lignin, cellulose and hemicelluloses and a diagram illustrating how these components relate
is shown in Figure 2. The percentage of these three plant components varies with species
(Figure 2) further complicating the processing of such biomass.

It has been reported that the separation and use of all plant components is required for
environmentally and economically viable biorefineries.[1, 8, 9] The application of biotechnol‐
ogy for all aspects of biomass conversion avoids toxic by-products and high energy inputs
encountered with chemical, thermal and mechanical processes often used. It is due to these
energy and environmental concerns that biochemical methods are feverously being investi‐
gated, as enzymatic processes are largely environmentally benign and low in energy demand.
Processes for the transformation of biomass need to be carbon efficient, otherwise the envi‐
ronmental objectives of biomass utilization are negated. It is with this in mind that the current
chapter is focused on advances using environmentally benign biocatalysts.

The use of biochemical techniques for processing of lignocellulosic biomass is covered herein.
This includes the bioprocessing of the plant components, lignin, cellulose and hemicellulose
and is focused on progress made in their biochemical conversion not only to ethanol but also
to value-added chemicals according to biomass fraction. The review of the literature is
concentrated on biocatalytic advances in the past decade and is delineated by the plant-derived
substrate. Strategies for the commercialization of 2nd generation biofuels and commodity
chemicals are discussed.

2. Biochemical pretreatment

Pretreatment of lignocellulosic biomass is required to increase holocellulose (cellulose and
hemicellulose) accessibility for its hydrolysis into fermentable sugars and only 20% of the
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theoretical sugar yield can be obtained from lignocellulose without pretreatment.[10, 11]
Currently, the biomass pretreatment step for producing 2nd generation bioethanol is the most
expensive component of the process after the raw material.[12] Thermal and mechanical
methods are energy intensive and therefore carbon costly as they indirectly produce CO2.
Chemical techniques result in contamination of the biomass producing biochemical inhibitors
as by-products[13, 14] and require costly neutralization processes.[15] Removal of the lignin
fraction using microorganisms has several advantages compared to other pretreatment
methods. Firstly, microorganisms function under ambient conditions thus eliminating thermal
and electrical energy inputs. When compared to chemical pretreatment methods, biochemical
pretreatment does not result in chemical by-products that often inhibit cellulose hydrolysis.

In nature, fungi are responsible for the biodegradation of lignin, thus the majority of research
into biochemical pretreatments has focused on fungi for the delignification of biomass. Early
research in the area was led by the pulp and paper industry and focussed on fungal treatment
as a method for removing the lignin fraction from wood to facilitate cellulose accessibility
and to lower pulping energy costs. In 1982, Eriksson and Vallander were able to achieve a
23%  reduction  in  refining  energy  by  incubating  wood  chips  with  the  white-rot  fungus

Figure 1. Examples of processes to produce 1st generation bioethanol from corn, 2nd generation bioethanol from
corn waste residues and 3rd generation biodiesel from algae.
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Phanerochaete chrysosporium  for 2 weeks.[16] Messner and Srebotnik[17] studied the same
species of fungus and reported similar results. Later studies by Akhtar et al.[18] also found
substantial  energy  savings  in  pulping  when  the  wood  was  treated  with  Ceriporiopsis
subvermispora. Others[19] studied soft and hard wood processes and reported a reduction in
refining energy from incubation with strains of white-rot fungi of 33% for soft-wood pulp
and more than 50% for hardwood. More recently, Liew et al.[20] reported a lignin loss of
26.9% in biopulping studies with Acacia mangium wood chips when incubated with the white-
rot fungi Trametes versicolour.

The amount of lignin present in the biomass directly affects enzymatic digestion of the holocel‐
lulose fraction. For example, a decrease from 22% to 17% lignin in biomass samples doubles the
sugar yield and samples with 26% lignin result in virtually no sugar.[21] However, the effective‐
ness of pretreatment is not only measured by the decrease in lignin content but also by holocel‐
lulose recovery and ultimately the saccharification percentage. Table 1 summarizes recent
studies conducted on the pretreatment of different biomass substrates. As stated earlier and
depicted in Figure 2, the amount of lignin, cellulose and hemicellulose varies greatly with biomass
source and it is therefore logical to assess the effectiveness of fungal pretreatment according to
substrate. It is important to note that direct comparisons are not always possible as the experi‐
mental techniques and measurements vary within many of the cited studies. For example, the
fungal incubation times listed in Table 1 vary from 2 to 120 days.
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Figure 2. Diagram of plant components cellulose, hemicelluloses and lignin and a graphical representation of their
weight percentage according to biomass source[10].
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Different species of white-rot fungi, Echinodontium taxodii,[22, 23], Coriolus versicolor[24] and
Trametes versicolor[23], have been studied for their ability to degrade lignin to promote cellulose
digestibility in bamboo residues. Zeng, Yang et al.[22] recently reported a 29% decrease in
lignin content in bamboo treated with Echinodontium taxodii however the aim of the work was
to improve the thermal decomposition of the bamboo and not to recovery and utilize the
holocellulose. Zhang, Xu et al.[24] reported an increase in saccharification rate of 37% when
bamboo residues were incubated with Coriolus versicolor. Zhang, Yu et al.[23] compared two
species of white-rot fungus for their effectiveness in increasing sugar yields and found that
incubation with both Trametes versicolor and Echinodontium taxodii improved sugar yields 5.15
and 8.75 times respectively. Cornstalk and corn stover have been pretreated with different
fungal strains for delignification. Impressive results were reported by Wan and Li[25] who
pretreated corn stover with Ceriporiopsis subvermispora and measured a 31.59% reduction in
lignin with only a 6% loss in cellulose. In 2010, Dias et al.[26] reported a nearly 4-fold increase
in saccharification of wheat straw treated with basidiomycetous fungi Euc-1 and Irpex lacteus.
Dichomitus squalens,[27] Pleurotus ostreatus[28] and Phaerochaete chrysosporium[28] were applied
to rice straw with varying effects (Table 1), with the most notable reported by Bak et al.,[27]
being a 58.1% theoretical glucose yield of rice straw treated with Dichomitus squalens. The
biochemical pretreatment of cotton stalks was studied by Shi et al. who reported 33.9% lignin
reduction[29] using submerged fungus cultivation and 27.6% lignin reduction[30] using solid
state cultivation of the same fungus, Phanerochaete chrysosporium. Hideno et al.[31] applied
Grifola frondosa for the pretreatment of sawdust matrix and reported a 21% reduction in lignin
with 90% cellulose recovery.

Substrate  Species  Findings  Duration  Ref 
Bamboo  Echinodotium taxodi  29% reduction in lignin  30 days  [22] 
Bamboo 
residues 

Coriolus versicolor  Enhanced saccharification rate of 37%  2 days  [24] 

Bamboo 
culms 

Echinodontium taxodii  5.15‐fold increase in sugar yields  120 days  [23] 

Bamboo 
culms 

Trametes versicolor  8.75‐fold increase in sugar yields  120 days  [23] 

pCornstalk  Phanerochaete 
chrysosporium 

34.3% reduction in lignin with a maximum enzyme 
saccharification of 47.3% 

15 days  [32] 

Corn Stover  Ceriporiopsis subvermispora Lignin degradation reached 45%  30 days  [33] 
Corn Stover  Irpex lacteus CD2  66.4% saccharification ratio  25 days  [34] 
Corn Stover  Ceriporiopsis subvermispora 31.59% lignin degradation with less than 6% cellulose 

loss 
18 days  [25] 

Corn Stover  Cyanthus stercoreus  3‐ to 5‐fold improvement in enzymatic digestibility  29 days  [12] 
Wheat straw  Basidiomycetous fungi 

Euc‐1 
4‐fold increase in saccharification  46 days  [26] 

Wheatstraw  Irpex lacteus  3‐fold increase in saccharification  46 days  [26] 
Rice straw  Dichomitus squalens  58% theoretical glucose yield for remaining glucan  15 days  [27] 
Rice straw  Pleurotus ostreatus  39% degradation of lignin with 79% cellulose retention  48 days  [35] 
Rice straw  Phaerochaete chrysosporium 64.9% of maximum glucose yield from recovered glucan  15 days  [28] 
Cotton 
stalks 

Phaerochaete chrysosporium 33.9% lignin degradation with 18.4% carbohydrate 
availability 

14 days  [29] 

Cotton 
stalks 

Phaerochaete chrysosporium 27.6% lignin degradation  14 days  [30] 

Sawdust 
matrix 

Grifola frondosa  21% reduction in lignin and 90% recovery of cellulose  2 days  [31] 

 

   Table 1. Fungal strains studied for pretreatment of lignocellulosic biomass.
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3. Bioconversion of lignin to chemicals and fuels

During biochemical pretreatment, the lignin fraction is metabolized by the microorganism. In
chemical and thermal pretreament processes the lignin fraction often remains intact and is thus
able to be separated and utilized. After separation, microorganisms could in principle
transform the lignin into materials, chemicals and fuels. Despite efforts over a long period of
time, research into the bioconversion of lignin into economically viable products is still in its
infancy, primarily because of the complex and irregular structure of lignin (Figure 3). However,
advancements for the valorization of lignin are actively being pursued, as lignin is the second
most abundant carbon source in nature and contains valuable phenolic building blocks within
its structure.[36]

Although lignin has traditionally been burned as an inefficient energy source by-product from
bioethanol or pulping production, lignin derived value-added products are necessary to
improve biomass conversion economics.[37] Lignin has been used in the manufacture of wood
adhesives as a component of phenol-formaldehyde resins (LPF resins).[38, 39] Lignin-derived
commodity chemicals have been targeted through chemical and biological routes (Figure 3).
Vanillin and cinnamic acid are subunits of the complex lignin structure and are used com‐
mercially as food sweeteners, as additives for fragrances and as precursors for pharmaceuti‐
cals. Phenol is the most widely used starting material in the plastic and resin industry and
phenolic monomers have also been targeted from lignin. After the depolymerisation of lignin
into monomeric units, the substituted monomers are precursors of a range of products
including fuels such as cyclohexane.
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Figure 3. Examples of chemicals targeted from lignin.
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Although biochemical pretreatment methods generally use fungi as the lignin degrading
microorganism, it is unlikely that usable lignin-derived materials and chemicals will result
from fungal processes as white-rot fungi are known to mineralize lignin.[40] Thus bacterial
conversion of lignin into chemicals and fuels constitutes an attractive method for the valori‐
zation of lignin. Classes of bacteria capable of degrading lignin have been identified as
Actinomycetes, α-Proteobacteria and γ-Proteobacteria.[41-44] Recently, a range of metabolites
(Figure 4) have been isolated from the bacterial degradation of lignocelluloses. [40] Metabolites
A and B have been observed from lignocelluloses processed by the bacteria Pseudomonas
putida mt-2[43], Rhodococcus jostii RHA1[43] and Sphinogobium sp. SYK-6.[42] Furthermore
Sphinogobium sp. metabolizes β-aryl ether linked aromatics to vanillin.[42] Compounds C, D,
E and G were identified using GC-MS as bacterial degradation products of Kraft lignin.[45]
Ferulic acid as well as compounds F, H, I and J were identified by GC-MS as products of waste
paper effluent treated with Aeromonas formicans.[46] There are established chemical and
biochemical methods for converting lignin derived monomers, like those observed in the
bacterial degradation of lignin (Figure 4), into simpler aromatics like phenol (Figure 3) as well
as hydrocarbons like cyclohexane (Figure 3).
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Figure 4. Compounds isolated after bacterial conversion of lignin.[40]

4. Biochemical conversion of cellulose

The use of starchy feedstock, such as corn and sugar cane, is problematic in relation to food
sustainability and biodiversity. Therefore, as mentioned, the focus in second generation biofuel
production processes has been on biomass consisting mainly of cellulose. A high percentage
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of cellulose (usually 35-50% dry weight) is consistently found in all plants despite the vast
genetic diversity that is observed within the plant kingdom.[47] For the production of ethanol,
cellulose is exposed during pretreatment, hydrolysed by either chemical or enzymatic
hydrolysis and then fermented into ethanol. The material, once stripped from other biopoly‐
mers surrounding it within the plant structure, also appears to have characteristics independ‐
ent of plant taxa. Cellulose is a linear polymer, composed of glucose monomers held together
by β-1,4-glucosidic bonds (Figure 5), in contrast to α-1,4-bonds found in other common glucans
such as starch and glycogen. Through interchain and intrachain hydrogen bonding as well as
Van der Waals forces, cellulose chains self-assemble on biosynthesis into protofibrils, then
microfibrils, which are in turn packed into fibres with high crystallinity, imparting the material
with high tensile strength and water insolubility.[48] These very properties that make it a
suitable structural polysaccharide are the cause of the main difficulties associated with the use
of biomass rich in cellulose, for the generation of products through fermentation. The addi‐
tional energy required to break down the rigid structure of cellulose is one of the main obstacles
towards commercialization of lignocellulosic biomass processing.

Cellulases, the enzymes responsible for cellulose hydrolysis, differ from other glucoside
hydrolases in that they are able to catalyse hydrolysis of β-1,4-glucosidic bonds. Cellulases
vary significantly and belong to several glycoside hydrolase families.[49] The main differences
between them relate to their mode of action. While endoglucanases are thought to randomly
hydrolyse the amorphous fraction of cellulose, exoglucanases process the polysaccharide
preferentially from a reducing or non-reducing end, releasing cellobiose (cellobiohydrolases)
or glucose (glucanohydrolases).[47] An important feature of the exoglucanase structure is a
distinct domain termed the carbohydrate binding module (CBM), which allows the enzyme
to remain attached to the cellulose chain during catalytic action. This aids enzymatic action
upon crystalline material by bringing the catalytic domain closer to the substrate and has been
suggested to also help catalysis by peeling fragments of cellulose from the cellulosic surface.
[50] β-Glucosidases are the third general category of cellulolytic enzymes; they act upon bonds
in soluble cellobiose or cellodextrins formed by the action of the other two types of cellulases.
The different types of cellulases act in coordination to efficiently hydrolyse cellulose, display‐
ing synergy and, depending on the host, may or may not form stable complexes of high-
molecular weight.[51] These complexes, although beneficial to penetration of cellulosic
material in vivo, when used in bioprocessing are generally considered problematic.[52]

The microorganism to receive by far the most attention in relation to sourcing of cellulolytic
enzymes has been Trichoderma reesei.[53] This fungus was identified by E.T. Reese as the culprit
for the rapid destruction of allied forces’ cotton tents during WWII. Since its isolation, it has
been extensively studied in relation to its cellulolytic capability and various cellulase hyper‐
producing strains have been developed, with RUT C30 currently the benchmark strain for
production of cellulases in high yields.[54] One of the problems associated with this fungus
has been the low expression of β-glucosidases, the enzymes responsible for liberation of
glucose from short oligosaccharides. This, however, has been overcome with genetic engi‐
neering and supplementation of commercial preparations with foreign β-glucosidases.[55]
Other promising fungal sources for cellulases exist, such as Acremonium, Penicillium and

Environmental Biotechnology - New Approaches and Prospective Applications46



Figure 5. Cellulose and hemicellulose, their sugar units and some potential chemical targets organized by carbon
chain number.

Biochemical Processes for Generating Fuels and Commodity Chemicals from Lignocellulosic Biomass
http://dx.doi.org/10.5772/55309

47



Chrysosporium strains.[52] Their cellulase properties are comparable to those of T. reesei,
however, they are unlikely to replace it as the standard enzyme source due to the amount of
improvement already achieved with the latter. Bacterial cellulases have been the focus of some
attention due to the higher robustness observed with some hyperthermophilic enzymes,
making them more adaptable to the harsh conditions of industrial processes.[56] However,
the production of cellulases as part of complexed systems (cellulosomes) in anaerobes, as well
as the much lower protein yields in bacteria, means that interest in these enzymes is mainly
restricted to their heterologous expression in fungi and use in consolidated bioprocessing
(CBP, see Consolidated fermentation).[47, 56]

5. Biochemical conversion of hemicellulose

Hemicellulose (Figure 5) is a mixture of several different polysaccharides, the composition of
which varies from plant to plant as well as within the same plant.[57] While cellulose is built
from a single building block, a number of different monomers compose hemicellulosic
heteropolymers including pentoses, hexoses and sugar acids. Commonly xylans, glucomann‐
ans, arabinogalactans and different types of glucans are found in hemicellulose. Xylans are
comprised of β-1,4-linked xyloses interspersed with arabinose and glucuronic acid, while
glucomannans are a mixture of β-1,4-linked glucose with α-1,6-substituted mannose side
chains (Figure 5]. The presence of acetyl substitutions on hydroxyl groups of carbohydrates in
hemicellulose is not completely understood, but may pose difficulties in hydrolysis due to the
generation of acetate which acts as an enzyme and microorganism inhibitor.[58] The network
of hemicellulosic chains is highly branched, cross-linking with cellulose microfibrils and lignin,
creating a very compact material from which plant cell walls are composed. It is generally
agreed that economically viable bioprocessing of lignocellulosic biomass requires efficient
extraction and conversion of the hemicellulosic sugars.

As is the case with cellulases, hemicellulases constitute a useful tool for the generation of
fermentable sugars from hemicellulose and are sometimes classed as cellulases themselves.
Due to the diversity of components and complexity of structure found in this polymer it is
only natural that a myriad of enzymes with different catalytic functions have been produced
by microorganisms to effectively attack this matrix.[53, 59] Therefore, for example, endoxyla‐
nases, exoxylanases and β-xylosidases have been identified to break the linkages between
xylose moieties, while esterases releasing acetyl and ferulic acid groups are also found amongst
this category of enzymes. These enzymes sometimes display relative promiscuity towards the
type of bond they hydrolyse, making it extremely difficult to measure a specific enzymatic
activity. They also display significant synergy between themselves as well as with other
lignocellulose hydrolysing enzymes.[52] As expected, microorganisms that express cellulose
degrading enzymes also possess the ability to degrade hemicellulosic polymers. Accordingly
it has been highlighted that Trichoderma and Penicillium fungi contain efficient hemicellulolytic
catalysts.[59] Another group of fungi identified for their important xylan degrading capabili‐
ties have been Aspergillus spp.[60]
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6. Fermentation to fuels and chemicals

The vast amount of available know-how, due to the fact that this process is one of man’s earliest
biotechnological applications, continues to set the use of Saccharomyces cerevisiae for the
production of ethanol as the benchmark fermentation system employed for second generation
biofuel processes. This yeast’s properties, particularly in relation to robustness, toxicity,
ethanol productivities approaching the theoretical maximum and ease of genetic manipulation
make it an extremely suitable microorganism for the fermentation step of lignocellulose
conversion.[61, 62] As a result, much has already been accomplished in production of efficient
yeast strains for the conversion of hexoses from starchy feedstock in first generation biofuel
production. The issues that require addressing for carrying over these microorganisms to
second generation biofuel production processes relate to tolerance to by-products of lignocel‐
lulose pretreatment and digestion, and the ability to ferment pentoses generated by the
hemicellulosic fraction of the biomass. Furthermore, the possibility of combining efficient
pentose and hexose utilisation as well as production of lignocellulose hydrolysing enzymes
within a single host would allow the combination of hydrolysis and fermentation steps, greatly
reducing the overall cost of the production process.

Other types of microorganisms have also been investigated as alternatives, mainly for the
coproduction of other compounds. A recent review by Jang et al.[63] lists organisms according
to their corresponding C2-C6 platform chemical products (Figure 3 and Table 2). Anaerobic
clostridial strains have been of particular interest due to their ability to efficiently generate
butanol as well as their tolerance to other common metabolites (acetate, lactate) which, they
are able to use as nutrients for the further production of alcohols.[64, 65] As a result the use of
microorganisms such as Clostridium acetobutylicum has been proposed for acetone-butanol-
ethanol (ABE) bioprocesses, since butanol is an attractive alternative to ethanol as a biofuel
due to its lower vapour pressure and higher energy density.[66] Clostridia are also interesting
because of the broad spectrum of chemicals that they are able to produce, as well as recent
advances in their genetic manipulation.[67]

Related  types  of  yeast  have  also  been  investigated  as  alternatives  in  order  to  produce
microorganisms with  superior  properties.  Thermophilic  yeasts  show increased ability  to
work at elevated temperatures which may present great advantages, particularly in relation
to in situ evaporative removal of the product in batch processes, a procedure that is generally
considered essential for the reduction of down-stream costs as well as minimising prod‐
uct toxicity issues.[123]

The pretreatment and hydrolysis of the complex mixture of lignocellulose, unlike the simple
hydrolysis of starch, yields a number of additional by-products. These may pose problems to
the growth of the microorganism fermenting the simple sugars as feedstock for fuel or chemical
production. Toxic compounds encountered in lignocellulosic hydrolysates normally consist
of phenolic compounds, weak organic acids and furan aldehydes.[61] Complex strategies have
been employed to combat the effects of the presence of these compounds. Genetic engineering
approaches have aimed at overexpression of pathways which, metabolise the inhibitors.[62]
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Platform 

chemical 
Leading host Substrates and/or conditions 

Titer 

(g/L) 

Yield 

(g/g) 

Productivity 

(g/L/h) 
Ref 

C2 Ethanol S. cerevisiae 
Ammonia fiber expansion (AFEX)-corn stover 

(CS)-hydrolysates, batch fermentation 
40 0.46 0.8 [68] 

  S. cerevisiae 
Cellobiose, xylose, and glucose, batch 

fermentation 
48 0.37 0.8 [69] 

  Z. mobilis Glucose and xylose, batch fermention 62 0.46 1.29 [70] 

  E. coli Xylose, batch fermentation 23.5 0.48 n/a [71] 

 Acetic acid A. aceti Ethanol, batch fermentation 111.7 n/a 0.6 [72] 

C3 Propionic acid P. acidipropionici 
Glycerol, fed-batch fermentation in fibrous bed 

bioreactor 
106 0.56 0.035 [73] 

 Lactic acid Sporolactobacillus 
Glucose, fed-batch supplemented with 40g/L 

peanut meal 
207 0.93 3.8 [74] 

  E.coli Glucose, fed-batch fermentation 138 0.86 3.5 [75] 

 

3-

Hydroxypropio

nic acid 

K. pneumonia Glycerol, fed-batch fermentation 16 n/a 0.01 [76] 

  E. coli Glycerol, fed-batch fermentation 38.7 0.34 0.53 [77] 

 Propanol E. coli Glucose, flask culture 3.9 n/a 0.04 [78] 

 Iso-propanol C. acetobutylicum Glucose, anaerobic flask culture 5.1 n/a n/a [79] 

  E. coli Glucose, batch-fed fermentation 13.6 0.15 0.28 [80] 

 1,2 propanediol 
C. 

thermosaccharolyticum 
Glucose, anaerobic batch fermentation 9.1 0.20 0.35 [81] 

  E. coli Glycerol, batch fermentation 5.6 0.21 0.077 [82] 

 1,3 propanediol C. acetobutylicum Glycerol, anaerobic fed-batch fermentation 83.6 0.54 1.70 [83] 

  E. coli Glucose, fed-batch 10L fermentation 135 0.51 3.5 [84] 

C4 Butyric acid C. tyrobutyricum Glucose fed-batch fermentation 
32.5-

41.7 

0.38-

0.42 
0.24-0.68 

[85, 

86] 

  C. tyrobutyricum 
Glucose, repeated fed-batch fermentation by

immobilized cells in a fibrous bed bioreactor 
86.9 0.46 1.1 [87] 

 Succinic acid 
Engineered rumen 

bacteria 
Glucose, anaerobic fed-batch fermentation 52-106 

0.76-

0.88 
1.8-2.8 

[88, 

89] 

  E. coli Glucose, fed-batch fermentation 73-87 0.8-1.0 0.7-0.9 
[90-

92] 

  C. glutamicum Glucose, fed-batch fermentation 
140-

146 

0.92-

1.1 
1.9-2.5 

[93, 

94] 

 Malic acid Aspergillus flavus Glucose, batch fermentation 113 0.95 0.59 [95] 

  S. cerevisia Glucose, fed-batch fermentation 59 0.31 0.19 [96] 

  E. coli Glucose, two-stage fermentation 33.9 0.47 1.06 [97] 

 Fumaric acid 
R. arrhizus  

NRRL 2582 
Glucose, batch fermentation 97.7 0.81 1.02 [98] 

 GABA L. brevis NCL912 Glucose and glutamate, fed-batch fermentation 103.7 n/a n/a [99] 

  C. glutamicum Glucose, batch fermentation 2.2 n/a 0.01 [100] 

 1-butanol C. acetebutylicum Glucose, anaerobic batch fermentation 16.7 n/a 0.31 [101] 

  E. coli Glucose, batch cultivation 14-15 
0.33-

0.36 
0.20-0.29 

[102, 

103] 

 Isobutanol E. coli Glucose, batch cultivation 20 n/a n/a [104] 

  C. glutamicum Glucose, fed-batch fermentation 13.0 0.20 0.33 [105] 

 1,4-butanediol E. coli Glucose, microaerobic fed-batch fermentation 18 n/a 0.15 [106] 

 2,3-butanediol K. pneumonia SDM Glucose, fed-batch fermentation 150 0.48 4.21 [107] 

  S. marcescens Glucose, fed-batch fermentation 152 0.46 2.67 [108] 

 Putrescine E. coli Glucose, fed-batch culture 24.2 n/a 0.75 [109] 

C5 Itaconic acid 
Aspergillus terreus 

IFO-6365 

Glucose and corn steep, flask and 100 L batch 

fermentation 
82-85 0.54 0.57 [110] 

  E. coli Glucose, flask batch culture 6 0.61 0.06 [111] 

 
3-

hydroxyvalerate 
P. putida 

Glucose and levulinic acid, flask batch 

cultivation 
5.3 n/a n/a [112] 

  E. coli Glucose and threonine, flask batch cultivate 1.3 n/a n/a [112] 

  E. coli Glucose, flask batch cultivation 0.81 n/a n/a [112] 

 1-pentanol E. coli Glucose 0.5 n/a n/a [113] 

 
2-methyl-1-

butanol 
E. coli Glucose 1.25 n/a 0.17 [114] 

 
3-methyl-1-

butanol 
E. coli Glucose 1.28 n/a 0.11 [115] 

 Xylitol C. tropicalis 
Xylose, oxygen-limited condition with cell 

recycling 
1.82 0.85 12.0 [116] 

  E. coli Glucose and xylose, fed-batch fermentation 38 n/a n/a [117] 

 Cadaverine E. coli Glucose, fed-batch fermentation 9.61 n/a 0.12 [118] 

C6 Glucaric acid E. coli Glucose, flask culture 2.5 n/a n/a [119] 

 Anthranilic acid E. coli Glucose, fed-batch cultivation 14 0.20 0.41 [120] 

 Phenol P. putida S12 Glucose, flask batch culture 0.14 3.5 0.006 [121] 

 Catechol P. putida ML2 3-Dehydroshikimate 4.2 n/a 0.12 [122] 

Table 2. Current status of the production of platform chemicals using microorganisms. Duplicated with permission.[63]
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Another approach is adaptation of the microorganism to an inhibitor rich environment
through evolutionary processes. It has been observed that the stress imposed stimulates
changes in the resulting strains, usually in relation to glycolytic enzyme activity, levels of
intracellular materials and expression of inhibitor metabolising enzymes, which impart
increased tolerance. The new strains are generally able to grow at higher hydrolysate, and
consequently inhibitor, concentrations thus reducing processing time and cost.[124] Cell
viability is also threatened by the target products of fermentation, as these may cause damage
to cell membranes and interfere with physiological processes. Tolerance to these compounds
without decreasing the process yield may be achieved by regulation of membrane transporters
such as efflux pumps, modification of the membrane composition or regulation of heat shock
proteins that have been found to be linked to stress response in cells.[125] An added benefit
to the increase of tolerance in some cases may be an increase in product yield.[126, 127]

Strain Inhibitor Approach Reference

S. cerevisiae acetate
Deletion of HRK1 gene regulating membrane

transporter activity
[128]

S. cerevisiae PK113-7D formate, acetate
Expression of formate dehydrogenase structural gene

FAHD2
[129]

S. cerevisiae vanillin
Overexpression of laccase gene lacA from Trametes sp.

AH28-2
[130]

E. coli
biodiesel,

biogasoline
RND efflux pumps heterologously expressed [131]

C. acetobutylicum butanol Overexpression of GroESL heat shock protein [127]

E. coli isobutanol Simultaneous disruption of five unrelated genes [132]

S. cerevisiae ethanol, glucose
Global transcriptional machinery engineering, also

improved ethanol yield by 15%
[126]

Table 3. Examples of engineering microorganisms for improved tolerance to inhibitors in lignocellulosic biomass
processing.

Microorganisms naturally capable of fermenting pentoses such as Pichia stipitis, Kluyveromyces
marxianus, Clostridium saccharolyticum and Thermoanaerobacter ethanolicus exist and may well
be employed in processes for the production of ethanol as well as other chemicals.[62]
However, considerable effort has been put into engineering pentose fermentation capability
into strains traditionally used for ethanol production, such as S. cerevisiae, with great success.
This yeast is able to take up pentose with hexose transporters, however the ability to metabolise
these sugars had to be introduced with expression of bacterial and fungal gene insertion. This
has also led towards engineering hexose/pentose efficient cofermentation, something that has
not been identified in native microorganisms. The ability to coferment xylose, arabinose and
glucose has been successfully introduced to S. cerevisiae, however modern approaches to
metabolic engineering need to be employed in order to improve on this, concentrating more
on non-traditional aspects of cell engineering, such as catabolism repression mechanisms and
stress response.[133]
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7. Consolidated fermentation

One of the great advantages of biochemical methods of biomass conversion is that they all
require mild conditions, which makes them relatively compatible, allowing for potential
consolidation of processing steps. This has been identified as an area of great potential in
relation to process optimization, cost reduction and ultimately biorefinery commercialization.
Instead of applying four distinct biochemical processing steps (cellulose production, cellulose
hydrolysis, hexose fermentation, pentose hydrolysate fermentation), a setup termed Separate
Hydrolysis and Fermentation (SHF), two or more steps may be consolidated leading to
alternate process configurations for biomass conversion.[47] This requires generation of
biocatalysts with properties suited to the optimum processing conditions, or engineering of
microorganisms with more than one processing capability. Simultaneous Saccharification and
Fermentation (SSF) involves performing cellulase-catalysed cellulose hydrolysis in the
cellulose hydrolysate fermenter, after the enzymes are produced in a separate fermentation.
Further consolidation may include cofermentation of the hemicellulose hydrolysate, either by
a separate pentose utilising microorganism or by an engineered strain capable of efficient
cofermentation of hexoses and pentoses. This configuration is termed Simultaneous Saccha‐
rification and Cofermentation (SSCF). The most desirable setup that minimises utility costs is
direct fermentation of biomass to the product of choice with the aid of a cellulase expressing,
hexose/pentose cofermenting microorganism. This approach was first introduced in 1996 as
consolidated bioprocessing (CBP).[53, 134]
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Figure 6. Consolidated fermentation processes.
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8. Future outlook for commercialization

Inedible crops are a renewable and sustainable source of fuels and chemicals and it has been
estimated that replacing corn with cellulosic stock would result in an 82% increase in bioe‐
thanol production. Despite this, 2nd generation biofuel and chemical production is yet to be
commercialized.

Finding economical pretreatment methods has been recognized as one of the hurdles to
commercializing 2nd generation biofuels and chemicals. The results listed in Table 1 show that
fungal treatment can reduce lignin content of biomass and in most cases improve sugar yields.
However, chemical methods are deemed more economical at present, mainly due to the long
incubation times as well as the loss of holocellulose during biological pretreatment. With
further screening studies, it is to be expected that fungal strains with selectivity for lignin and
faster metabolic processing will be discovered, thus reducing the overall process cost. Bacteria
present advantages for biotechnological applications in terms of growing times and being
more prone to metabolic manipulation. As discussed above, bacterial strains have been
identified that convert lignin into valuable phenolic monomers. The conversion of all plant
components, and in particular the lignin fraction, is the basis for 2nd generation biorefineries,
where a vast array of products may be prepared in conjunction with a central fermentation for
biofuel production. Therefore integration of bacterial utilization of lignin will greatly contrib‐
ute to the economic viability of these processes.

The cost of hydrolytic enzyme production greatly influences the overall cost of cellulosic
biomass conversion thus hindering commercialization.[135] There have been great strides
forward in this respect with the estimated cost being driven down from US$5.40 to US$0.20
per gallon of ethanol produced, according to claims of major enzyme producers.[136] The use
of such information however in techno-economical analysis of biomass conversion is prob‐
lematic. These values relate to the production of a specific target, usually ethanol, and depend
on a range of variables other than enzyme production. Klein-Marcuschamer et al. prepared a
model for the calculation of the cost for the production of cellulases from T. reesei that could
then be applied to another model for the estimation of its contribution to the cost of ethanol
production.[137] The results showed that there is systematic underestimation of the contribu‐
tion of enzyme costs to biofuels production in the literature, as conservative calculations
pointed to around US$1.00 per gallon ethanol. The authors highlighted that approaches aiming
to decrease enzyme loading in the pretreatment steps should become a focus point. It seems
that lowering the enzyme production cost will be a significant obstacle towards the commer‐
cialization of any process based on lignocellulosic feedstock.

Despite the hurdles that need to be overcome for commercialization, there is much anticipation
from federal governements that biofuels and chemicals derived from lignocellulosic biomass
will play a central role in overcoming fossil fuel dependence. In October 2012 the EU com‐
mission issued a proposal stating that advanced biofuel development has to be encouraged
due to their high greenhouse gas savings and lower risk of land use change, and this should
be mirrored in post-2020 renewable energy policies.[138] In accordance with this a directive
was proposed to limit the allowed contribution of food crop derived biofuels, towards the 10%
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2020 renewable transportation fuel objective, to only 5%. This means that a greater contribution
from lignocellulosic biomass and especially agricultural waste derived biofuels will be
required. Experts including those from Shell Corporation recognized that substantial research
and development from industry and academia is still required in order to achieve this target.
However, it is generally agreed upon that the rapid advances in enzyme, microbial and plant
engineering as well as biocatalyst optimization suggest that biochemical processes are much
more likely to provide the necessary breakthroughs that will propel second generation biofuels
and chemicals into the marketplace.
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