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Abstract
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics
of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently.
In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture
effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers.
Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature.
In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate
method for a specific problem.
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I have come to believe that one’s knowledge of any

dynamical system is deficient unless one knows a

valid way to numerically simulate that system on a

computer.

Daniel T. Gillespie

INTRODUCTION
Biochemical networks, such as metabolism, signaling

pathways or gene regulation, are characterized by a

vast degree of interaction between many hetero-

geneous components. Often this results in complex

temporal behavior that is difficult to comprehend.

Therefore, computer simulations reproducing the

dynamics of these systems have become an essential

tool for researchers in the field [1, 2].

In most cases these simulations are based on deter-

ministic modeling. Here, the systems are assumed to

be continuous and to evolve deterministically. Their

change over time can be described using ordinary

differential equations (ODEs) [3]. The ODEs can

then be solved by numerical integration to yield

the dynamics of the system, and many efficient

algorithms for that can be found in the literature,

e.g. [4]. Since in the ODE approach, the biochemical

systems are modeled as being continuous and deter-

ministic, phenomena that occur due to the underlying

discreteness of the systems and random fluctuations

in molecular numbers, particularly in subsystems

containing only few particles, are neglected.

Already in the 1970s stochastic algorithms have

been devised that are able to account for fluctua-

tions in discrete particle numbers [5] (the relation-

ship between stochastic and deterministic models

is studied in [6, 7]). However, these methods can be

computationally demanding, and, therefore, numer-

ous different (optimized/approximate/hybrid) sto-

chastic algorithms have been developed recently in

order to speed up the calculation.

The present article provides a systematic and

comprehensive overview of the different stochastic

simulation methods in order to help researchers
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seeking the appropriate method for their problem

(see also [8–9]).

It should be mentioned that this review will be

concerned with spatially homogeneous models

only. When the spatial organization of biochemical

systems should be taken into account, one has to

resort to spatio-temporal simulation algorithms. For

brief reviews on stochastic spatial approaches see e.g.

[11–14]. Software capable of handling spatial models

include, e.g. MCell [15, 16], MesoRD [17–19],

Smoldyn [20, 21] or SmartCell [22, 23].

STOCHASTIC SIMULATIONS:
ASSETSANDDRAWBACKS
Even though the deterministic approach has proven

very successful, it comes with some issues:

� Small particle numbers in cellular subsystems

(e.g. in signaling pathways) lead to random fluc-

tuations which can change the dynamic behavior

considerably [24].

� Bi- or multi-stable systems can not be described

adequately [25].

� Stochasticity itself can be an important property

of the system, e.g. in evolution, noise-induced

amplification of signals or noise-driven divergence

of cell fates (for a review see [26]).

For very small particle numbers (e.g. single genes)

the concept of continuous concentrations is not

appropriate [27].

Inherent stochastic fluctuations in molecule

numbers can change the dynamic behavior of

biochemical systems both quantitatively and qualita-

tively [28, 29]. One example is the production of

proteins in random bursts [24]. Another example

is the lysis/lysogeny switch in �-phage-infected
Escherichia coli cells [25]. This is not restricted to

systems containing low-numbered species, but can

also happen in systems particularly sensitive to noise

or operating near a bifurcation point [30, 27].

Cells must act in a coordinated way despite ubiq-

uitous molecular noise. Therefore, specific cellular

systems to cope with or even exploit stochastic effects

are likely to be very important and deserve further

study. Stochastic modeling provides the appropriate

framework to investigate, for example, the robustness

of cells against random perturbations [31–38] or the

constructive effects of noise [25, 39–41].

In all the above cases, random fluctuations in

discrete particle numbers should be accounted for

and stochastic modeling and simulation is required.

Noise can even help with elucidating the func-

tioning of biochemical systems. Examples where

noise is exploited to study the underlying cellular

processes include [42–44].

However, stochastic simulations usually are much

more computationally demanding than determin-

istic methods. Exact methods take time proportional

to the number of single reaction events occurring

during the simulation time.

One other drawback of stochastic modeling is that

it still lacks behind in terms of appropriate analysis

methods, such as stochastic bifurcation analysis [45],

stochastic Metabolic Control Analysis (MCA) [46] or

stochastic sensitivity analysis [47].

Now, the practical question arises when stochastic

simulation should be preferred over numerical inte-

gration of ODEs for a specific system one wants to

analyze. Definite indicators necessitating stochastic

modeling are (i) when the particle numbers are in a

range where the concept of continuous concen-

trations is no longer appropriate, or (ii) when phe-

nomena associated with stochasticity itself are the

object of research. Beyond that most often rules of

thumb based on the rough particle numbers in the

system have been used to answer the question. This

heuristic can be justified by the asymptotic equiva-

lence of the Master Equation and the chemical

Langevin equation (see Langevin method section)

and the observation that often the relative magnitude

of random fluctuations is inversely proportional to

the square root of the system’s particle numbers [26].

However, giving a general threshold for the particle

numbers, above which it is safe to employ deter-

ministic methods, is surely impossible. The emer-

gence of stochastic effects is very model-dependent

and this has to be checked in each individual case

[30, 27].

STOCHASTIC SIMULATION
METHODS
The stochastic approaches are based on the notion

of a stochastic reaction constant c� for each reaction

R� in the system. c�dt is the average probability

that a specific combination of substrate particles in

the system will react in the next infinitesimal

time step dt according to reaction R�. Multiplied

with the number of possible R� substrate particle
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combinations h� (see [5] for details) we get a

propensity a� for reaction R� as a� ¼ h�c� with:

a�dt ¼ the average probability that a reaction R�

will occur in the system in the next infinitesimal

time step dt: ð1Þ

a� can be derived from the conventional deter-

ministic reaction rate in the case of mass action

kinetics.

It turns out that within this framework, the

biochemical system can be identified with a (homo-

geneous) jump-type Markov process represented

by a so-called Chemical Master Equation (CME)

[5, 48], which describes the time evolution of the

system state probability distribution. In general, this

differential-difference equation is infinitely dimen-

sional. Solving it, either analytically or numerically,

still is a challenging task (the interested reader is

refered to [49–51]). Therefore, one resorts to

stochastic simulation methods that, using Monte

Carlo calculation schemes, generate instances of the

underlying stochastic process according to the Master

Equation. However, since each run yields only one

single trajectory, several runs have to be computed to

be able to calculate statistics.

Stochastic simulation algorithms (SSA) can

roughly be divided into exact, approximate or

hybrid methods depending on whether or not they

introduce approximations or combine different

approaches into one calculation scheme.

EXACT STOCHASTICMETHODS
The so-called exact stochastic methods correctly

account for inherent stochastic fluctuations and

correlations. In addition, the discrete nature of the

system is considered. Hence, they remain valid for

very small particle numbers.

However, since they explicitly simulate each reac-

tion event in the system, they have time complexity

approximately proportional to the overall number

of particles
P

Xi present in the system. Therefore,

they are prohibitively slow on large systems.

Gillespie [5] proposed two simple SSA, namely

the Direct Method and the First Reaction Method.

They are based on the so-called Reaction Probability

Density Function:

Pð�,�jx, tÞ ¼ a�ðxÞ exp �
XM
�¼1

a�ðxÞ�

 !
: ð2Þ

This function determines the probability

Pð�,�jx, tÞd� that starting in state x at time-point t
the next reaction in the system will occur in the time

interval ½t þ �, t þ � þ d�� and will be of type R�.

The reaction times are exponentially distributed

(homogeneous Poisson process).

By iteratively drawing random numbers accord-

ing to that density function and updating the system

state according to the chosen reaction’s stoichiome-

try the system can be simulated over time, one

reaction event after the other. The Direct Method

and the First Reaction Method, as well as the other

exact methods described below, are mathematically

equivalent but differ in how they calculate samples of

Pð�,�jx, tÞ.

Direct Method
The Direct Method [5, 52] uses two random

numbers per step to separately compute (i) the

stochastic time step � and (ii) the type of the next

reaction R�. A similar method was already proposed

in [53]. The algorithm proceeds as follows:

(1) First, the sum of all propensities for the M
possible individual reactions is calculated:

a0 ¼
XM
�¼1

a� ð3Þ

(2) The stochastic time step is calculated:

� ¼ �
1

a0
ln r1 ð4Þ

Here r1 is denoting a uniformly distributed

random number in the range ]0, 1].

(3) Finally, the reaction taking place is determined.

For this purpose, a second uniformly distrib-

uted random number r2 is generated and the

reaction � chosen according to the following

criteria:

X��1

�¼1

a�
a0

� r2 �
X�
�¼1

a�
a0

ð5Þ

(4) The corresponding reaction R� is realized,

i.e. the number of the participating molecules

is increased or decreased according to the sto-

ichiometry, and the time is incremented by �.
The whole process (1–4) is repeated as many

times as necessary to reach the desired simulation

time.
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First Reaction Method
The First Reaction Method [5, 52] uses M random

numbers in each step to compute putative reaction

times �� for each of the M reactions R� in the

system. The �� are exponentially distributed with

parameter a�. The reaction with the smallest reaction

time �min ¼ minð�1, . . . , �MÞ, is executed and all

putative reaction times are recalculated before the

next step. Because of the wasteful use of random

numbers and redundant recalculations the First

Reaction Method is computationally inefficient.

However, it can be numerically advantageous

because, due to the machine-dependent resolution

of floating-point numbers, the Direct Method

cannot calculate rare reaction events amongst very

frequent reactions in the system.

Next Reaction Method
Gibson and Bruck [54] improved the computational

complexity of the First Reaction Method by the

intelligent use of data structures:

� A so-called dependency graph stores dependencies

between the reactions ! redundant recalculations

of a� are avoided.

� Absolute putative reaction times �� (since the

beginning of simulation) are used instead of

relative ones (since the last reaction event).

Random numbers are ‘recycled’ during a reaction

time update according to �� ¼ ða�, old=a�ðxÞÞ
ð��, old � tÞ þ t.

� An indexed priority queue contains all reactions

sorted according to their putative reaction times

! the next reaction can always be found in the

root of the tree in constant time.

In the Next Reaction Method recalculations of

a� are minimized, and, asymptotically, only one

random number per step is needed. Therefore it

performs well, in particular, in the case of many

reacting species and reactions.

Variants and extensions of the
exact methods
Cao et al. (Optimized Direct Method [55]) and

McCollum etal. (Sorting Direct Method [56]) reduce

the computational cost of the Direct Method by

sorting the reactions according to their propensities.

Li and Petzold (Logarithmic Direct Method [57])

use partial sums of propensities and a binary search

for the next reaction in order to accelerate the

computation.

Slepoy et al. [58] describe an algorithm that, in

each iteration, chooses the next reaction event in

constant-time independent of the number of

different reactions.

The Direct Method has also been extended to

accommodate delayed reactions often used to model,

e.g. transcription or translocation processes [59–62].

Finally, there exist fast implementations that uti-

lize special hardware, such as field-programmable

gate arrays (FPGA) [63, 64] or computer clusters [65].

APPROXIMATE STOCHASTIC
METHODS
The huge computational effort needed for exact

stochastic simulation entailed a lively search for

approximate simulation methods that sacrifice an

acceptable amount of accuracy in order to speed

up the simulation. The proposed methods often

involve a grouping of reaction events (Probability-

weighted Dynamic Monte Carlo (PW-DMC),

�-Leap Method), i.e. they permit more than one

reaction event per step.

One approximate stochastic method, StochSim,

does not primarily aim at speeding up the simulation

and shall be discussed first.

StochSim, mesoscopic approach
In the mesoscopic approach by Morton-Firth (now

Firth) [66–68] single particles are distinguished and

represented by separate software objects. Though,

their positions and velocities in the reaction volume

are disregarded. This characteristic makes StochSim

mesoscopic, residing on a middle conceptual level

between microscopic molecular dynamics and mac-

roscopic population-based approaches.

In each step two particles (or one particle and

one pseudoparticle for monomolecular reactions) are

randomly chosen. Whether a reaction event takes

place between the two, is then determined using a

random number and a look-up table.

This procedure can be even more time-consuming

than the Direct Method when many nonreactive

selections are chosen. The advantages are that mul-

tistate particles are possible (with different reaction

rates for each configuration) and that the life-cycle

of single particles can be traced. However, this could

also be accomplished by extending one of the exact

algorithms to keep track of single molecules.
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The approach has also been extended to

cover simple 2D-spatial modeling with stationary

particles [69].

Probability-Weighted Dynamic
Monte Carlo
The PW-DMC [70] (PW-DMC method) is a rather

ad hoc approach in which reactions with high

probability are allowed to fire multiple times.

Instead of considering single fast reaction events

separately, several events are grouped together and

simulated as if they were one event. This reduces the

effective propensity a� of fast reactions and can

reduce computation times, but has the major

drawback that fluctuations can be misdescribed.

�-Leap Methods
In 2001, Gillespie [71] developed an approximate

stochastic simulation method named �-Leap Method

to accelerate the simulation procedure. This method

avoids the meticulous reconstruction of every

individual reaction event. Instead, it leaps along the

time axis in steps of length � containing many single

reaction events. � has to fulfill the so-called Leap

Condition: it must be small enough that no sig-

nificant change in the propensities a� during ½t, t þ ��
occurs. Then, the reaction channels effectively

decouple and the number of firings K� during time

�, starting from state x at time t, can be approximated

by Poisson distributed random variables:

K�ð�; x, tÞ ¼ Pða�ðxÞ, �Þ ð6Þ

with ProbfPða�, �Þ ¼ kg ¼ ða��Þ
k

k! e�a��.

In each step a Poisson random number k� is

drawn for each reaction R� and the system state is

updated according to:

xðtþ �Þ ¼ xðtÞ þ
XM
�¼1

k�v�: ð7Þ

Due to the drawing of Poisson random numbers,

each �-leap is more expensive than one step of the

Direct or First Reaction Method. However, since

many single reaction events can be leaped over when

� is large enough, the simulation can be much faster

after all. Figure 1 illustrates the procedure.

The most important question remaining is how

to choose an appropriate �-value. Determining this

value involves a trade-off between accuracy of the

simulation and computation time. In the original arti-

cle, Gillespie proposed a simple �-choosing strategy.

This has been improved upon in [72] and [73].

A number of variants and extensions of �-Leaping
have been developed recently that tackle some of the

issues of the �-Leap Method from 2001:

� Rathinam et al. [74] draw on the analogy to

numerical integration of ODEs and describe an

‘Implicit �-Leaping Method’ in order to deal with

stiffness in the system. This method has

been improved by Cao and Petzold in [75]. The

algorithm in [76] automatically switches between

explicit and implicit �-Leaping.
� Tian and Burrage [77] and Chatterjee et al. [78]
suggested to use (bounded) binomial random

numbers instead of Poisson distributed ones. This

so-called ‘Binomial �-Leaping’ avoids one of the

problems of the �-Leap Method, namely the gen-

eration of negative particle numbers in some cases.

An extension is the ‘Multinomial �-Leaping
Method’ in [79].

� An alternative approach to avoid negative parti-

cle numbers has been developed by Cao et al. [80].
In this ‘Modified �-Leaping Method’ exact sto-

chastic simulation, allowing only one reaction

event per step, is used for particle numbers that are

critically low.

� Burrage and Tian [81] constructed ‘Poisson

Runge-Kutta Methods (PRK)’ to increase the

efficiency of �-Leaping.
� The ‘R-Leaping’ in [82] and the ‘K-Leap Method’

in [83] are variants of the k�-Leaping method

described in [71].

� The ‘Unbiased �-Leap Method’ [84] attempts to

correct for the bias in �-Leaping.
� ‘Binomial �-DSSA’ [85] extends �-Leaping by

delayed reactions.

� Finally, there is also a version for spatial simula-

tions called ‘B�-SSSA’ by Marquez-Lago et al.
2007 [86].

Figure 1: Schema of the �-Leap Method.
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Langevin Method
If the value of � can be chosen big enough such that

every reaction channel on average produces a very

large number of firings (hPða�ðxÞ, �Þi ¼ a�ðxÞ� � 1)

while still satisfying the Leap Condition, the Poisson

random variables can be approximated by normal

random variables N� [87]:

K�ð�; x; tÞ ¼ P�ða�ðxÞ; �Þ

� N�ða�ðxÞ�; a�ðxÞ�Þ ð8Þ

¼ a�ðxÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a�ðxÞ�

p
�N�ð0; 1Þ ð9Þ

In this case, the � value is called to be ‘macro-

scopically infinitesimal’. The Poisson random vari-

ables for the system state update can be replaced

by normal random variables which are easier

to calculate. Conceptually, the procedure is now

equivalent to the (chemical) Langevin equation, a

stochastic differential equation (SDE):

xðtþ �Þ ¼ xðtÞ þ
XM
�¼ 1

v�a�ðxÞ� þ
XM
�þ1

v�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a�ðxÞ�

p
� n�

ð10Þ

with n� unit normal random variables.

In the limiting case a�ðxÞ� ! 1, the last (noise)

term becomes negligibly small compared with the

second (see [87]) yielding the Euler update method

for the numerical integration of ODEs. The

Langevin Method therefore illustrates how the SSA

are connected to the deterministic method through a

series of approximations (SSA ! �-Leap Method !

Langevin Method ! deterministic reaction rate

equations).

Complex stochastic kinetics
The stochastic formalism is based on irreversible

elementary reactions.

How to correctly handle derived kinetics, where a

number of elementary reactions have been lumped

into one complex reaction, is an important question

because they are used in many models and often

kinetic parameters for the underlying elementary

reactions are not even known.

Bundschuh et al. 2003 [88] observed that a naive

direct stochastic simulation of higher order kinetics

can lead to a failure of correctly describing the

fluctuations and even the mean of particle numbers.

Nevertheless, in many cases the use of higher order

terms in stochastic simulation is indeed justified as

is discussed in Rao and Arkin [89] and Cao et al. [90]
for the stochastic quasi-steady-state approximation

(QSSA) and Michaelis–Menten kinetics (see also the

Stochastic quasi-equilibrium approximations section

below).

Hybrid methods
The basic idea of hybrid simulation methods is to

combine the advantages of complementary simula-

tion approaches: the whole system is subdivided into

appropriate parts and different simulation methods

operate on these parts at the same time. Figure 2

shows an exemplary schematic view of this proce-

dure. Here, we have two subsystems containing the

fast and slow reactions, respectively. Fast reactions

often involve high-numbered species, e.g. in meta-

bolism. Slow reactions or reactions involving low-

numbered species can frequently be found in signal

transduction or gene expression systems. The two

subsystems are simulated iteratively by using ade-

quate simulation methods, for instance, numerical

integration of ODEs and stochastic simulation,

respectively.

Mathematically, this corresponds to a partitioning

of the CME (for a rigorous derivation of the par-

titioning process and mathematical details of the

approximations employed, see [91–93]).

In between two reaction events in the slow/

discrete subset of reactions, the fast subset evolves

due to the action of the fast reactions only. This

means that, during that time, its behavior can be

approximated using ODEs, SDEs or approximate

stochastic simulation methods independently of the

slow subset.

However, the reaction propensities a� of slow

reactions are, in general, also dependent on species

whose concentrations are changed by fast reactions.

Taking this into account, the slow subset no longer

constitutes a homogeneous Poisson process. Instead,

Figure 2: Schematic viewof anexemplaryhybrid simu-
lationmethod.
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it has to be described by a Master Equation with

time-varying transition propensities a�ðtÞ. Gillespie
[94] derives the correct Reaction Probability Density

Function for this case:

Pð�; �jx; tÞ ¼ a�ðtþ �Þ exp �

Z tþ�

t

X
1::M

a�ðtÞdt

 !
: ð11Þ

Fast reactions involving high-numbered species

(e.g. metabolism) can be simulated efficiently with

hybrid algorithms. These reactions, in particular,

would slow down a pure stochastic simulation con-

siderably. This potential speed-up and that random

fluctuations are considered where necessary are the

main advantages of hybrid approaches.

Nevertheless, there are still some open questions:

� Synchronization of the subnetworks? (Provision

for time-varying a� in the slow subnet. Conver-

sion between continuous concentrations and dis-

crete particle numbers.)

� Reliable criteria for the partitioning?

� How to handle fast reactions with small particle

numbers involved?

� Dynamic repartitioning ! additional computa-

tional overhead.

For instance, dynamic/automated (re-)parti-

tioning is not only important when the system

state varies considerably over time, e.g. in oscillating

systems. It also makes the methods much more user

friendly by avoiding tedious modeler intervention.

However, since dynamic partitioning causes compu-

tational overhead, the decision whether it should be

used or not is always associated with a trade-off

between user friendliness/accuracy and simulation

speed. For very small systems it is probably not

worthwhile to employ dynamic partitioning. A fixed

partitioning can also be used when the subsystems are

clearly different in terms of reaction velocities, for

instance metabolic pathways coupled to signaling or

reaction systems coupled by fast diffusion.

Likewise, on the one hand, taking into account

time-varying a�ðtÞ in the slow/discrete subsystem

requires algorithms that are mathematically more

involved. On the other hand, the increase in

accuracy associated with it renders additional updates

of the propensities a�ðtÞ unnecessary so that larger

steps can be taken.

Partitioning strategies based on reaction velocities

usually aim at speeding up the simulation by taking

the fast reactions out of the stochastically simulated

subsystem. In contrast, particle number-based parti-

tioning is more concerned with correctly treating

reactions when particle numbers are so low that the

system cannot be assumed continuous any longer.

Usually a combination of different criteria are used

for partitioning.

A number of hybrid algorithms [95–99] are based

on a partitioning of the reaction system and the

simulation of the slow subsystem using a stochastic

algorithm which considers time-varying a�, as

described above. However, they differ in how

exactly the nonhomogeneous Poisson process is

sampled. Also, the partitioning strategies used are

different, e.g. based on particle numbers, reaction

velocities or (relative) level of fluctuations in particle

numbers.

The hybrid methods in [91, 100, 101] also use a

combination of stochastic simulation and numerical

integration of ODEs/SDEs on a partitioned system,

but do not consider time-varying a� in the slow

subsystem. Instead, for instance, the method by

Haseltine and Rawlings [91] introduces a ‘probability

of no reaction’ in order to limit the approximation

error.

Other methods, e.g. combine the Next Reaction

Method with �-Leaping [102], employ agent-based

frameworks [103] or meta-algorithms [104], use an

implicit partitioning scheme [105], or integrate three

[106] or even four [107] different methods into a

hybrid simulation scheme.

Table 1 gives an overview of the different hybrid

simulation methods. They are characterized along

different dimensions, namely which methods they

integrate, whether the partitioning is dynamic/

automated or user-defined, which partitioning

policy is used and whether or not time-varying

a�ðtÞ in the slow/discrete subsystem(s) are considered

or not (! synchronization).

Hybrid modeling and simulation might become

particularly important in the future because of the

emergence of ever more complex and heteroge-

neous models that integrate signaling, metabolism

and gene expression and, as such, require a

simulation on multiple scales.

Stochastic quasi-equilibrium
approximation
Several authors proposed the use of quasi-equilibrium

approximations (QEA) in stochastic simulations, e.g.

[92, 93, 108–112].
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For instance, Cao et al. [93] devised the ‘Slow-

Scale Simulation Method’ in which the system is

subdivided reaction- and species-wise into a fast and

a slow subsystem. A ‘virtual fast process’ is defined

which consists of the fast species evolving under only

the fast reactions, i.e. all slow reactions are turned off.

This process needs to be stable in a way such that its

relaxation time is much faster than the expected time

to the next slow reaction. Then, on the slow time

scale, it can be approximated using its asymptotic

solution. Finally, the system is simulated considering

only the slow reaction events explicitly. For this, the

Direct Method can be used with modified a� (‘slow-

scale propensity functions’). In each step, values for

the fast species are determined by drawing random

samples from the asymptotic probability distribution.

Cao et al. give two simple examples for calculating

the slow-scale propensities a� in their article, but this

can be difficult for more complex models.

Stochastic QEA can be regarded as residing in

the middle between exact stochastic simulation

methods and hybrid approaches. The system is

partitioned into subsets of reactions or species as in

hybrid simulation methods. However, only the

slow/discrete subset is explicitly simulated.

CONCLUSIONS
Stochastic modeling and simulation is important

whenever fluctuation phenomena play a role either

as a destructive or constructive element.

Despite of the multitude of proposed stochastic

methods, there seems to be none that fits all

problems. For smaller models in terms of particle

numbers and whenever a correct treatment of the

fluctuations is required, one of the exact methods

should be used. There exist a number of correspond-

ing software tools (Table 2), e.g. Copasi or Dizzy

[113, 114] (see Table 2), and these methods are also

relatively straightforward to implement.

For an accelerated stochastic simulation of bigger

systems, one of the approximate methods could be

considered. However, some of them are ad hoc pro-
cedures tailored to specific problems rather than

general stochastic solvers. The particle-based Stoch-

Sim algorithm might suit, if one wants to model

multistate molecules or to trace the life-cycle of

single particles. The �-Leap Method or one of its

variants seems to be a promising approach. However,

this scheme is affected by stiffness which is often

present in biochemical models. All approximate

methods should be used with care. Their assump-

tions have to be thoroughly checked in each case.

Otherwise they can misdescribe the fluctuations

(e.g. the PW-DMC method and different forms of

lumping) in some cases. With the exception of the

�-Leap Method (implemented in [22, 114–116]

general software tools have been mostly missing.

However, this has already started to change (see e.g.

[117]). Some of the approximate methods are rather

cumbersome to implement and they often need

intervention by the modeler.

Table 1: Overview and systematic classification of the different hybrid simulationmethods

Hybrid approaches Methods combined Dynamic
partitioning

Partitioning criteria Time-varying a�

Alur et al. [103] Direct Method/ODE 3 Particle no.
Haseltine and Rawlings [91] Direct Method/ODE or SDE Heuristics 3/�
Pahle [100, 101] Next Reaction Method/ODE 3 Particle no.
Adalsteinsson et al. [118] Direct Method/ODE User defined
Bentele and Eils [95] Next Reaction Method/SDE 3 Relat. fluct., particle no. 3

Burrage et al. [106] Direct M./�-Leap/SDE 3 Propensities, particle no.
Kiehl et al. [120] Direct Method/ODE User defined 3/�
Neogi et al. [96] Stoch. Sim./ODE 3 Particle no. 3

Puchalka and Kierzek [102] Next Reaction M./�-Leap Method 3 Substrate no., relat. prop.
Takahashi et al. [104] Next Reaction Method/ODE User defined
Vasudeva and Bhalla [105] Direct Method/ODE 3 Propensities, particle no.
Alfonsi et al. [97] Next Reaction Method/SDE 3 Propensities 3

Salis and Kaznessis [121, 98] Next Reaction Method/SDE 3 Propensities, particle no. 3

Griffith et al. [99] Direct Method/ODE 3 Propensities, particle no. 3

Harris and Clancy [107] Direct M./�-Leap/Langevin M./ODE 3 Propensities
Wagner et al. [122] First Reaction M./discr.Gauss/ODE 3 Error criterion

3/� denotes that the authors describe how this feature can be realized in principle butdo not demonstrate it in their examples or implementation.
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A very promising direction is the development of

hybrid methods because they directly deal with the

important problem of stiffness, which is often present

in biochemical models. They appear to be flexible

enough to allow for general stochastic solvers in the

future even for very big and heterogeneous models.

However, for the time being an established type of

partitioning (reaction-wise and/or species-wise) and,

above all, reliable criteria for an automatic and

adaptive partitioning during the simulation are still

missing. Hybrid algorithms are the most challenging

methods to implement. Most of them also still need

much user intervention. There exist already a few

software tools, which allow for hybrid simulation,

e.g. [65, 98, 101, 118], and this number is expected

to grow in the future.

See Table 2 for a list of selected software systems

which support stochastic simulation of biochem-

ical systems. In addition, there is also the SBML

stochastic test suite [119], which facilitates testing the

accuracy of stochastic simulation software.
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