Biochemistry of Antimicrobial Action

BIOCHEMISTRY OF Antimicrobial Action

T. J. Franklin and G. A. Snow

in collaboration with

K. J. Barrett-Bee and R. D. Nolan

ICI Pharmaceuticals Division Alderley Park Macclesfield Cheshire

FOURTH EDITION

London New York CHAPMAN AND HALL First published in 1971 by Chapman and Hall Ltd 11 New Fetter Lane, London EC4P 4EE Second edition 1975, third edition 1981 Reprinted 1985, Fourth edition 1989 Published in the USA by Chapman and Hall 29 West 35th Street, New York NY 10001

ISBN-13: 978-94-010-6857-4 e-ISBN-13: 978-94-009-0825-3 DOI: 10.1007/978-94-009-0825-3

© 1971, 1975, 1981, 1989 T. J. Franklin and G. A. Snow Softcover reprint of the hardcover 1st edition 1989

Typeset in 10/12pt Baskerville by Acorn Bookwork, Salisbury, Wiltshire

This title is available in both hardbound and paperback editions. The paperback edition is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

Franklin, T. J. (Trevor John)
Biochemistry of antimicrobial action
4th ed.
1. Antimicrobials. Biochemistry
I. Title II. Snow, G. A. (George Alan)
615'.7

Library of Congress Cataloging in Publication Data

Franklin, T. J. Biochemistry of antimi

Biochemistry of antimicrobial action / T. J. Franklin and G. A. Snow; in collaboration with K. J. Barrett-Bee and R. D. Nolan.—4th ed. p. cm. Includes bibliographies and index.

 1. Anti-infective agents—Physiological effect.
 2. Microbial metabolism.
 3. Micro-organisms—Effect of antibiotics on.
 I. Snow,
 G. A. II. Title. [DNLM: 1. Antibiotics—pharmacology.
 2. Anti-Infective agents pharmacology.
 QV 350 F834b] QR97.A57F73 1989 616.9'0461-dc19 DNLM/DLC for Library of Congress
 88-20222

Contents

Preface Preface to the fourth edition		vi
		vii
1	THE DEVELOPMENT OF ANTIMICROBIAL AGENTS, PAST,	
	PRESENT AND FUTURE	1
	The social and economic importance of antimicrobial agents	1
	An outline of the historical development of antimicrobial agents and of chemotherapeutic theories	2
	Reasons for studying the biochemistry of antimicrobial compounds	12
	Development of biochemical knowledge of antimicrobial action	13
	Scope and layout of the present book	18
2	THE BACTERIAL CELL WALL – A VULNERABLE SHIELD	20
	Functions of the wall	20
	Wall structure	20
	Structure and biosynthesis of peptidoglycan	26
	Antibiotics that inhibit peptidoglycan biosynthesis	36
3	ANTISEPTICS, ANTIBIOTICS AND THE CELL MEMBRANE	55
	Microbe killers: antiseptics and disinfectants	55
	Polypeptide antibiotics	61
	Ionophoric antibiotics	64
	Polyene antibiotics	71
	An inhibitor of membrane phospholipid biosynthesis	71
4	INHIBITORS OF NUCLEIC ACID SYNTHESIS	73
	Compounds affecting the biosynthesis of nucleotide precursors	74
	Inhibitors of nucleic acid synthesis at the polymerization level	85
5	INHIBITORS OF PROTEIN SYNTHESIS	112
	Ribosomes	112
	Stages in protein biosynthesis	114

vi Contents

	Puromycin	118
	Inhibitors of aminoacyl-tRNA formation	120
	Inhibitors of initiation-complex formation and tRNA-ribosome interaction	120
	Inhibitors of peptide bond formation and translocation	128
	Nucleic acid synthesis during inhibition of protein synthesis	134
	Effects of inhibitors of 70S ribosomes on eukaryotic cells	135
6	ANTIFUNGAL, ANTIPROTOZOAL AND ANTIVIRAL AGENTS	137
	Compounds used to treat protozoal diseases	137
	Compounds used to treat fungal diseases	142
	Compounds used to treat virus diseases	155
7	PENETRATING THE DEFENCES: HOW ANTIMICROBIAL AGENTS REACH THEIR TARGETS	161
	Cellular permeability barriers to drug penetration	161
	Some examples of modes of penetration of antimicrobial agents	167
	The exploitation of transport systems in the design of new antimicrobial agents	171
8	RESISTANCE TO ANTIMICROBIAL DRUGS	173
	The genetics of drug resistance	173
	Spread of drug resistance by gene transfer	176
	Biochemical mechanisms of drug resistance	183
	Bacterial tolerance	198
	Practical approaches to the control of drug resistance	198
	Index	201

Preface

The rapid advances made in the study of the synthesis, structure and function of biological macromolecules in the last fifteen years have enabled scientists concerned with antimicrobial agents to achieve a considerable measure of understanding of how these substances inhibit cell growth and division. The use of antimicrobial agents as highly specific inhibitors has in turn substantially assisted the investigation of complex biochemical processes. The literature in this field is so extensive however, that we considered an attempt should be made to draw together in an introductory book the more significant studies of recent years. This book, which is in fact based on lecture courses given by us to undergraduates at Liverpool and Manchester Universities, is therefore intended as an introduction to the biochemistry of antimicrobial action for advanced students in many disciplines. We hope that it may also be useful to established scientists who are new to this area of research.

The book is concerned with a discussion of medically important antimicrobial compounds and also a number of agents that, although having no medical uses, have proved invaluable as research tools in biochemistry. Our aim has been to present the available information in a simple and readable way, emphasizing the established facts rather than more controversial material. Whenever possible, however, we have indicated the gaps in the present knowledge of the subject where further information is required. We have avoided the use of literature references in the text; instead we have included short lists of key articles and books for further reading at the end of each chapter.

We have drawn on the work of many scientists and we are especially pleased to express our thanks to those who have given us permission to reproduce their original diagrams and photographs. We are also grateful to the Pharmaceuticals Division of Imperial Chemicals Industries Ltd, for providing the necessary facilities for the preparation of this book.

Abbreviations used without definition for common biochemical substances are those recommended by the Biochemical Journal (1970).

T. J. FRANKLIN G. A. SNOW

June 1970

Preface to the fourth edition

The decision to prepare a fourth edition was prompted by developments in a number of areas. Interest in the β -lactam drugs has been sustained by further ingenious exploitation of the potential of this group of drugs to provide evermore powerful treatments of bacterial infections. The bacteria themselves, however, have proved resourceful in deploying new modes of resistance to recently devised β -lactams. There has been a resurgence of interest in quinolone antibacterials in recent years and closer attention is being paid to the chemotherapy of fungal and viral infections, prompted largely by the AIDS epidemic. Knowledge of the permeability barriers of the Gramnegative outer membrane and of the biology of drug-resistance plasmids has expanded dramatically. We have dealt with these and many other new developments within the limited space available to us. In the interests of logical presentation we have rearranged the distribution of some material in Chapters 2 and 6. Over the years we have received many helpful comments and criticisms which have influenced subsequent editions. We hope that our readers will continue to let us know their views.

December 1987

T. J. FRANKLIN G. A. SNOW K. J. BARRETT-BEE R. D. NOLAN