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Abstract

Biocompatible silk fibroin (SF):poly(vinyl alcohol) (PVA) blends were prepared as the dielectric layers of organic

field-effect transistors (OFETs). Compared with those with pure SF dielectric layer, an optimal threshold voltage of ~0 V,

high on/off ratio of ~104, and enhanced field-effect mobility of 0.22 cm2/Vs of OFETs were obtained by carefully

controlling the weight ratio of SF:PVA blends to 7:5. Through the morphology characterization of dielectrics and

organic semiconductors by utilizing atom force microscopy and electrical characterization of the devices, the

performance improvement of OFETs with SF:PVA hybrid gate dielectric layers were attributed to the smooth and

homogeneous morphology of blend dielectrics. Furthermore, due to lower charge carrier trap density, the OFETs

based on SF:PVA-blended dielectric exhibited a higher bias stability than those based on pure SF dielectric.
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Background
Organic field-effect transistors (OFETs) have shown
enormous development in the past few decades due to
their potential use in large area sensor arrays, flat panel
displays, and radio frequency identification [1–3]. While
OFETs with high field-effect mobility (μ), low operating
voltage, and good stability are essential for practical use,
many researches were conducted to improve these pa-
rameters [4, 5]. Especially, as charge carrier conducting
channel lies at dielectric/organic semiconductor inter-
face, the dielectric plays an important role in reduce the
working voltage of OFETs. An ideal interface should
hold minimum charge carrier trap density, and the di-
electric would facilitate growth of the upper organic
layer in a bottom gate device structure [6]. Many at-
tempts have been applied to modify the interface of gate

dielectric and organic semiconductor, such as inserting
buffer layer, molecular self-assembly, and UV/ozone (UVO)
treatment [7–9]. Currently, several solution-processed
dielectric materials, including polymers, inorganic oxides,
hybrids composed of inorganic-organic materials, and
self-assembled mono- and multilayers, have been exploited
for constructing OFETs [10–14]. Meanwhile, another
effective way to modify the interface, blending two or
more dielectric materials, has been developed to achieve low
operating voltage and optimal threshold voltage [15–17].
On the other hand, biological materials, such as silk fi-

broin (SF), chicken albumen, and gelatin, are emerging
as potential solution-processed dielectric materials since
they are biodegradable, biocompatible, environmentally
friendly, natural abundant, and do not require compli-
cated chemical synthesis [18–20]. Among the various
biological materials, SF has been widely used in field of
sensors [21], memory devices [22], and component of
dynamic devices [23], owing to its unique characteristics
of optical transparency, electrical insulation, and flexibility.
Moreover, SF is usually a thin film in an aqueous solution
process; thus, it offers a biologically derived and bio-
compatible analog to the synthetic polymer dielectrics
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traditionally used. Wang et al. reported that silk fibroin
as the gate dielectric layer enhanced the crystal qualities
of the upper semiconductors and increased the potential
of pentacene OFETs as high-speed devices with the ability
to compete with a-IGZO TFTs in display technologies
[24]. And Tsai et al. reported that silk fibroin can signifi-
cantly enhance the mobility of n-type C60/pentacene
OFET to 1 cm2/Vs in vacuum [25]. Meanwhile, with a
high dielectric constant, dielectric based on SF can reduce
the operating voltages [26]. However, SF OFETs are gener-
ally limited by bad stability in ambient atmosphere [20].
Poly(vinyl alcohol) (PVA), as a typical polymer dielectric
material, has excellent solubility in aqueous solution and
high capacitance [27, 28]. Moreover, as the presence of hy-
droxyl groups (−OH) in PVA, which favored interacting to
the carbonyl (−C=O) in SF, the trap density of dielectric
layer can be reduced [29]. Hence, the performance and
stability of SF-based OFET devices can be dramatically
improved by modulating the blends of SF and PVA.
In this work, SF:PVA blends were used to fabricate

OFETs as dielectric layers. Through analyzing the elec-
trical characteristics of the devices and the surface

morphologies of dielectric and pentacene layers, the sur-
face of SF:PVA blends were more smooth and homoge-
neous, which leads to an enhanced mobility and optimal
threshold voltage. Furthermore, the OFETs based on
SF:PVA-blended dielectrics showed a higher bias stability
than that based on pure SF under ambient atmosphere
due to better dielectric/semiconductor interface property.

Methods

The architecture of the OFETs and chemical structures
of SF and PVA are shown in Fig. 1a. An SF aqueous so-
lution with a concentration of ca. 7 wt.% was extracted
from cocoons of Chinese silkworm by following the ex-
traction procedure with slight modifications [30]. A 10-g
silk was processed 60 min in 0.5 wt.% Na2CO3 solution
at 100 °C to remove sericin and then rinsed with

Fig. 1 a Schematic structure of OFET based on SF:PVA blends and molecular structures of SF and PVA. b–d Typical transfer curve (VDS = −40 V) of

devices a, b, and c. e–g Typical output curves (VGS = 0 to −40 V with −10 V step) of devices a, b, and c

Table 1 Capacitance data of SF, SF:PVA = 7:1, SF:PVA = 21:5,

SF:PVA = 7:5, SF:PVA = 7:10, and PVA

Dielectric (SF:PVA) 1:0 7:1 21:5 7:5 7:10 0:1

Capacitance data (nF/cm2) 5.34 5.32 5.23 5.09 5.01 4.51
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deionized water and dried at room temperature. The
purified fibroin was dissolved in 150 ml of the ternary
solvent, CaCl2-ethanol-water (mole ratio = 1:2:8), by stir-
ring at 75 ± 2 °C for 1 h. The solution was centrifuged
by centrifugal machine and dialyzed against deionized
water for 5 days. At last, the solution was concentrated
to ca. 7 wt.% by slow evaporation of deionized water at
60 °C. PVA (Sigma-Aldrich, St. Louis, MO, USA) was dis-
solved in deionized water with a concentration of 5 wt.%.
Then the obtained solutions were mixed at different
weight ratios. Indium tin oxide (ITO) glass substrate was
cleaned in acetone, deionized water, and isopropyl alcohol
for 15 min each by an ultrasonic bath sequentially. The ca.
500 nm SF, PVA, or SF:PVA-blended dielectric was
formed by spin-coating at 1600 rpm for 1 min on the sub-
strate at room temperature. Then, the dielectric layer was
baked at 70 °C for 1 h to completely remove residual sol-
vents. Consequently, 30 nm pentacene (TCI, Tokyo,
Japan) was evaporated under 3 × 10−4 Pa at a rate of
0.2~0.3 Å/s. At last, 50 nm gold source and drain

electrodes were thermally evaporated using a metal
shadow mask without breaking the vacuum. The length
and width of the channel were 100 μm and 1 cm,
respectively.
Morphology of SF, SF:PVA-blended dielectrics, and

pentacene films were characterized by atom force micros-
copy (AFM) (MFP-3D-BIO, Asylum Research, Santa
Barbara, CA, USA) in tapping mode. Capacitance of the
gate dielectrics were obtained by measuring capacitance-
frequency properties of ITO/SF/Au, ITO/PVA/Au and
ITO/SF:PVA-blended/Au with Agilent 4294A (Santa
Clara, CA, USA). Electrical characteristics of the OFETs
were measured using a Keithley 4200 (Keithley, Cleveland,
OH, USA) in low humidity atmosphere (RH = ~20 %).

Results and Discussion
The capacitance-frequency properties of different dielec-
tric structures (including ITO/SF:PVA-blended/Au, ITO/
SF/Au, and ITO/PVA/Au) were tested as shown in Table 1,
and leakage currents of these structures were also tested
and kept at a relatively low level of 10−11~10−9 A in all the
dielectrics, as shown in support information Additional
file 1: Figure S1.
Devices with different dielectrics were named as device

A with SF:PVA = 7:5 blends, device B with pure SF, and
device C with only PVA. The transfer and output charac-
teristics of samples A, B, and C are presented in Fig. 1. In
the transfer curves, saturation current (VGS=VDS = −40 V)
of samples B and C are 37.8 and 15.4 μA, respectively,

Table 2 Field-effect mobility (μ), current on/off ratio (Ion/Ioff),

threshold voltage (VT), and sub-threshold (SS) slope of devices

A, B, and C

Device μ (cm2/Vs) Ion/Ioff VT (V) SS (V/dec)

A 0.22 9.4 × 103 −1 3.5

B 0.14 2.4 × 103 −11 5.5

C 0.10 0.8 × 103 20 11.0

Fig. 2 a–d Typical transfer curve (VDS = −40 V) of devices d, e, f, and g. e–h Typical output curves (VGS = 0 to −40 V with −10 V step) of devices

d, e, f, and g
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while the saturation current of sample A achieves 83.1 μA,
which is two times higher than that of the sample B. Mean-
while, device A has a threshold voltage (VT) of −1 V, which
is almost optimal. On the other hand,VTs of devices B and
C are −11 and ~20 V, which are far from the optimal value
of 0 V. It is well known that threshold voltage of OFET is
strongly determined by the trap density (N) at the interface
of dielectric and organic semiconductor of the device [31].
Low charge trap density at the dielectric/organic semi-
conductor interface usually benefits to low VT value.
Meanwhile, the trap density (N) at the interface of di-
electric and organic semiconductor is proportional to
sub-threshold slope (SS) and can be extracted by the
Eq. (1):

SS ¼ kT=qð Þ ln10 1þ qN=Cð Þ ð1Þ

where q is the electronic charge, k is Boltzmann’s constant,
T is absolute temperature, and C is the areal capacitance
of the dielectric structure. Through calculation, device A
holds a small N of about 1.88 × 1012 cm−2 eV−1, while de-
vices B and C show relative large trap densities of 3.12 ×
1012 and 5.31 × 1012 cm−2 eV−1, respectively. This result
reveals that very few ionic impurities reside on the surface
of the SF:PVA-blended thin film and thus contributes low
charge trap density. As a consequence, a low threshold
voltage (−1 V) can be obtained when utilizing SF:PVA
blended films.
The saturate field-effect mobility (μ) is obtained from

the transfer characteristics in Fig. 1 using Eq. (2):

ID ¼ W=2Lð ÞμC V GS−VTÞ
2�

ð2Þ

where ID, C, VGS, VT, W, and L are drain current in the
saturation regime, gate capacitance, gate voltage, thresh-
old gate voltage, channel width, and channel length, re-
spectively. The μ of OFETs based on SF:PVA-blended
dielectric is about 0.22 cm2/Vs, higher than that of de-
vice with pure SF (0.14 cm2/Vs) and device with pure
PVA (0.10 cm2/Vs). It is obvious that low trap density in

Table 3 Field-effect mobility (μ), current on/off ratio (Ion/Ioff),

threshold voltage (VT), and sub-threshold slope (SS) of devices

D, E, F and G

Device μ (cm2/Vs) Ion/Ioff VT (V) SS (V/dec)

D 0.22 9.4 × 103 −1 3.5

E 0.19 4.5 × 103 −8 4.5

F 0.17 2.1 × 103 −13 5.0

G 0.10 2.9 × 103 10 6.5

Fig. 3 AFM topography images along with the cross sections of pure SF (a), SF:PVA = 21:5 (b), and SF:PVA = 7:5 (c), respectively (5 μm× 5 μm).

AFM images of the pentacene films grown on pure SF (d), SF:PVA = 21:5 (e), and pure PVA (f) dielectric layer (3 μm× 3 μm)
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the SF:PVA-blended layer leads to enhancements of both
the charge carrier mobility and current on/off ratio. The
field-effect mobility (μ), current on/off ratio (Ion/Ioff ),VT,
and SS of different devices are summarized in Table 2.
As surface roughness is one of the most important prop-
erties of dielectric layer, for smooth surface facilitates
the formation of good channel layer with less trap states.
Thus, surfaces of SF dielectric with/without PVA blends
were analyzed through AFM, as shown in Fig. 3. Smooth
surfaces were obtained in all the devices, with a root
mean square roughness of 0.19 nm on SF:PVA = 7:5 blend
layer, and 0.31 nm on pure SF layer. It is well known that
the presence of hydroxyl groups (−OH) in PVA will favor
interacting to the carbonyl (−C=O) in SF, leading to a
smooth and homogeneous morphology [29, 32], thus lead-
ing to a high μ value in device based on SF:PVA hybrid
gate dielectric. Moreover, according to the higher satur-
ation current in SF:PVA-blended OFETs, and through cal-
culation, OFETs based on SF:PVA-blended dielectric hold
a smaller trap density; thus, hydroxyl groups interact with
the carbonyl (−C=O) in SF should also introduce low
charge trap density at the interface of dielectric and or-
ganic semiconductor.

To further optimize the performance of OFETs with
SF:PVA blends, a series of OFETs were fabricated by
tuning the SF:PVA blends weight ratio to 7:5 (device D),
21:5 (device E), 7:1 (device F), and 7:10 (device G), re-
spectively. Figure 2 depicts the representative transfer
plots and output plots of the OFETs with SF:PVA-blended
dielectric layers prepared from different weight ratios. It is
obvious that a device based on SF:PVA = 7:5 exhibits the
best performance with VT of −1 V, μ of 0.22 cm2/Vs, and
Ion/Ioff of ~10

4, which is the best performance among all
of the devices. The electrical parameters of devices with
different SF:PVA blend ratios are shown in Table 3.
Through calculation, a dielectric with SF:PVA = 7:5 blends
has hydroxyl groups (−OH) in PVA one to one interacts
to the carbonyl (−C=O) in SF, which contributes to the
best smoothness and homogeneous morphology. Further-
more, when the concentration of PVA increases in the di-
electric layer, the OFET exhibited inferior performance
with high sub-threshold slope, which indicates there are
more trap state at interface (N is 3.47 × 1012 cm−2 eV−1 for
SF:PVA = 7:10 blend OFET) [33] (Fig. 3).
In practical use for the display backplane, a continuous

bias is usually applied to OFET devices, so the bias

Fig. 4 Threshold voltage shifts (ΔVT) of OFETs based pure SF (a) and SF:PVA = 21:5 blends (b), respectively. The bias conditions during the stress

were fixed at VGS = −30 V, and the transfer curves were measured at the given time intervals. c Normalized changes in the currents in OFETs

under the bias stress of VGS = −30 V
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stability is one of the most important parameters of
OFETs [34]. Therefore, the bias stabilities of OFETs
based on SF:PVA-blended dielectrics were investigated
in the atmosphere. Figure 4a, b show negative bias sta-
bilities of OFETs with pure SF and SF:PVA = 21:5 blend
dielectrics with a bias stress of VGS = −30 V. All the de-
vices show shifts towards the negative gate voltage direc-
tion. After 45 min stress, the threshold voltage shift
(ΔVT) of SF:PVA = 21:5 OFETs is about 3 V, which is
smaller than that of the pure SF devices (ΔVT = 5 V). In
consistent with the threshold voltage shift, on-current
change over time (It) reveals similar trend as shown in
Fig. 4c, while the field-effect mobility keeps unchanged.
It is obvious that OFET with SF:PVA= 21:5 blend dielec-
tric layer shows smaller threshold voltage shift and on-
current shift than OFET with pure SF dielectric layer.
As the bias stability is related to the charge trapping

effects of the semiconductor/dielectric interface and
organic semiconductor film, charge trapping and trap
creation under bias stress occur not only within the
channel but also throughout the entire semiconductor
film [35, 36]. As shown in Fig. 4, by investigating the
morphologies of pentacene films grown on different di-
electrics through AFM, the crystal of pentacene grown
on pure SF is bigger than that on SF:PVA = 21:5 blend
dielectric layer, which means fewer grain boundaries
exist on pure SF dielectric. Whereas, grain boundary is
not the main reason for bias stress related charge trap-
ping [37]. Therefore, the semiconductor/dielectric inter-
face is responsible for the charge trapping events in this
work. The surface property of dielectric layer is important
to obtain OFETs with a high bias stability [38]. Morph-
ology of SF:PVA = 21:5 blend dielectric is shown in Fig. 3b.
Root mean square roughness of 0.25 nm on SF:PVA = 21:5
blend layer is lower than that of pure SF layer (root mean
square roughness of 0.31 nm). Therefore, lower charge
trap density is obtained in SF:PVA = 21:5 blend device
leading to better bias-stress stability of OFETs [39].
However, the OFET with SF:PVA = 7:5 blend dielectric
layer exhibits inferior bias stability than the one with
pure SF dielectric as shown in support information
(Additional file 1: Figure S2). It is probable that a larger
amount of hydroxyl groups (−OH) in SF:PVA = 7:5 blends
favors interacting to water in ambient atmosphere, which
will result in damage of the dielectric layer, leading to a
decrease of bias stability [40, 41]. Thus, with less amount
of PVA, a better bias-stress stability could be obtained in
device E.

Conclusions

In summary, the optimal threshold voltage and enhanced
mobility OFETs incorporating with simple biocompatible
SF:PVA hybrid dielectric are fabricated, and the property
of SF:PVA-blended dielectric was analyzed through AFM.

The VT, μ, and Ion/Ioff of ~0 V, 0.22 cm2/Vs, and ~104, re-
spectively, were obtained in the device with SF:PVA = 7:5
blend dielectrics. Furthermore, the OFET with SF:PVA =
21:5 blend dielectric layer showed a higher bias stability
than that with pure SF dielectric. The presence of hydroxyl
groups (−OH) in PVA favor interacting with the carbonyl
(−C=O) in SF, leading to a smooth and homogeneous
morphology, which contributes to lower interface charge
trap density. These results indicate that SF:PVA-blended
dielectric holds the potential to regulate the performance
of OFETs and thus paves a novel way to accelerate the
development of nanoscale organic electronic devices.

Additional Files

Additional file 1: Figure S1. (a) Capacitance-frequency characteristics of

different dielectric structures (including ITO/SF:PVA-blended/Au, ITO/SF/Au,

and ITO/PVA/Au). (b) Leakage current of different dielectric structures.

Figure S2. (a) Threshold voltage shifts (ΔVT) of OFETs based SF:PVA = 7:5

blend. The bias conditions during the stress were fixed at VGS = −30 V,

and the transfer curves were measured at the given time intervals. (b)

Normalized changes in the currents in OFETs under the bias stress of

VGS = −30 V. (DOCX 6196 kb)
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