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Abstract: In recent years, gene therapy has made remarkable achievements in tumor treatment. In
a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting
the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic
iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene
delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness,
and extensive functional surface modification. In this review, the latest progress in targeting cancer
gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery
of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials
and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential
risks during the gene delivery process, several strategies to improve the efficiency or reduce the
potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies
and applications summarized in this review provide a general understanding for the potential
applications of IONPs in cancer gene therapy.
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1. Introduction

Cancer is one of the most significant global threats to human life and health. Surgery,
chemotherapy, and radiation therapy are the mainstays of clinical tumor treatment. How-
ever, the complexity of tumors and their microenvironment imposes limitations on the
therapeutic efficiency using conventional treatment strategies. In addition, chemother-
apy and radiation therapy may kill both tumor cells and normal cells due to their lack
of specificity, resulting in several adverse side effects [1,2]. As a novel cancer treatment
method, gene therapy can effectively inhibit tumor proliferation and growth by directly
regulating key genes or proteins (e.g., KRAS, cMYC, MDR1, and PTEN), demonstrating
attractive therapeutic effects in treating a variety of cancers, including lung, liver, breast,
brain, and gastrointestinal tumors [2–4]. Notably, tumor suppression can be achieved in
some gene therapy cases by modulating the tumor cell microenvironment by targeting
tumor−associated angiogenesis, fibroblasts, and immune responses [5].

DNAs, small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger
RNAs (mRNAs) are the most frequently used nucleic acid drugs for gene therapy [6–10].
In the cytoplasm, siRNA−induced silencing complexes are capable of particular comple-
mentary binding to target mRNA selectively and subsequent silencing of cancer−related
genes. miRNAs can bind to particular mRNAs to inhibit their translation or promote degra-
dation [11]. Unlike other pathways, DNA mainly enters the nucleus, where it regulates the
expressions of target proteins through further transcription and translation [12]. Moreover,
gene−editing technology provides more opportunities for cancer gene therapy. Using
CRISPR/Cas9, an efficient gene−editing system consisting of single−guide RNA and Cas9
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protein, target genes in tumors can be deleted, inserted, or modified to produce significant
antitumor therapeutic effects [13,14].

Safe, effective, and programmable vectors are crucial to the success of gene
therapy [15,16]. Direct delivery of naked gene drugs is susceptible to attack by vari-
ous nucleases, resulting in less accumulation of gene drugs at the tumor sites [17]. Because
of their considerable molecular weight, negative charges, and hydrophilicity, naked genes
also have difficulty in entering cancer cells [18,19]. In vivo, naked genes are easily recog-
nized and destroyed by extracellular and intracellular endonucleases, exonucleases, and
the innate immune system [20–22]. Meanwhile, due to the inability of tumor-targeting,
naked gene drugs may affect normal cells and tissues, thereby posing safety risks [23,24].
Consequently, selecting an appropriate gene delivery vehicle is necessary for successful
cancer gene therapy.

2. IONPs for Gene Delivery Target to Cancer Cells

Currently, viral vectors, such as adenovirus, retrovirus, vaccinia virus, and herpes
virus, are the most applied vectors for gene delivery, and more than 60% of clinical treatment
trials employ viral vectors [18,25]. Viral vectors have been used to deliver therapeutic
genes to cancer cells, and four viral−vector−based gene therapies have been clinically
approved, including Talimogene laherparepvec, Mx−dnG1, H101, and Ad−p53 [26]. An
important challenge in the current clinical trials of viral−vector−based gene therapy is
the safety hazard from the innate or adaptive immune response caused by viral vectors.
In addition, high production costs may be encountered when using viral vectors for
large−scale production, limiting the clinical translation for gene delivery [27–30].

Using non−viral agents, such as polymers, liposomes, and micelles, to facilitate gene
entry into tumor cells has garnered considerable attention [31,32]. Liposomes and nanopar-
ticles are the most extensively researched non−viral carriers, showing major advantages
to improve gene delivery efficiency, but are facing challenges of their short half−life, low
biological activity, and potential hepatotoxicity [33,34]. In addition to liposomes, polyplex
micelles encapsulating genetic drugs have been actively studied in cancer therapy, using
anti−angiogenic [35–37] and suicide gene delivery [38–40]. However, limited blood circu-
lation half−life due to liver sinusoidal capture remains the major critical hurdle [41,42].
Inorganic nanomaterials, such as gold, silver, and silicon dioxide, are recently developed for
efficient gene delivery, showing advantages of controllable size and good uniformity [43].
However, it should be noted that these inorganic nanocarriers tend to accumulate in the
liver [44] and kidney, resulting in potential toxicity, which limits their use as gene delivery
vehicles [45–47].

Magnetic IONPs have more potential for tumor−targeted gene delivery than other
inorganic nanomaterials due to their exceptional properties. These properties include supe-
rior magnetic responsiveness, simple preparation, ease of chemical functionalization, low
toxicity, and high biocompatibility [48–51]. Luo et al. applied amino−ester lipid−modified
superparamagnetic iron oxide nanoparticles (SPIONs) to deliver mRNA, showing advan-
tages in a high mRNA−mediated protein expression and an increased r2 relaxivity for
magnetic resonance imaging (MRI). Hence, they thought IONPs had promising potential
as delivery vehicles of mRNA for theranostic applications [9]. Research from Wang et al.
demonstrated that IONPs coated with chitosan−polyethylene (PEG) had the ability to
deliver siRNA to hepatocellular carcinoma in vitro and suppressed Luc expression. In
a xenograft mouse model, the nanovector could specifically bind to tumors and induce
remarkable inhibition of Luc expression [52].

Through electrostatic adsorption, surface−modificated IONPs are loaded with large
quantities of negative−charged genetic drugs. The therapeutic genes carried by IONPs
can then be delivered to tumor cells under the navigation of an external magnetic field
(Figure 1). IONPs have demonstrated their promising ability for targeting gene delivery
to different types of tumors, such as breast cancer, glioma, cervical cancer, prostate cancer,
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and gastric cancer (Table 1). Thus far, lots of studies have indicated the potent promise of
IONPs in the treatment of solid tumors.
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Table 1. Examples of using IONPs for efficient gene delivery targeting to tumors.

Coating Materials Size Payload Tumor Models Efficiency References

Chitosan,
PEI (MW 3.9 kDA)

54.23 nm
(core: 31.33 nm) pDsRed−MAX−N1 4T1 breast cancer

cells in vitro
High transfection

efficiency [53]

Chitosan, PEI, PEG 184 ± 6 nm
(core: around 150 nm) pEGFP−CS2 Xenografted tumor of

C6 glioma 45.2 ± 3.4% transfected [54]

Folic acid,
lipo−polymersomes

220–260 nm
(core: 170–220 nm) pDNA Xenografted tumor of

Hela cervical cancer

High cellular uptake rate;
high transfection

efficiency
[55]

Fluorinated PEG−PEI 93.29 ± 7.31 nm siRNA 4T1 breast cancer
cells in vitro

More than 90%
transfected [56]

PEI around 26.12 nm
(core: around 7.95 nm) siRNA Ca9−22 oral cancer

cells in vitro
BCL−2 mRNA level

reduced to 18% [57]

Calcium phosphate, PEG 67 ± 17 nm
(core: 16± 3 nm) siRNA MDA−MB 231 breast

cancer cells in vitro
VEGF mRNA level

reduced to around 60% [58]

PEG, PEI 79.2 ± 0.68 nm siRNA PC3 prostate cancer
cells in vitro

Prostate cancer cell
viability significantly

decreased
[59]

Folic−acid−functionalized
PEI around 120 nm siRNA SGC−7901 gastric

cancer cells in vitro
PD−L1 mRNA level

reduced by 90.93 ± 0.79% [60]

Tumor−targeting peptide,
dextran

20–30 nm
(core: around 20 nm) miRNA−10b

MDA−MB−231
breast cancer cells

in vitro
10b miRNA level reduced

by 74% [61]

For example, Zhang et al. recently showed that IONPs could deliver siRNA to in-
tracranial xenografted glioma and effectively reduced glutathione peroxidase 4 expression,
resulting in a significantly improved inhibition of tumor growth [62]. Yang et al. found that
using galactose− and polyetherimide−modified IONPs could largely enhance siRNA accu-
mulation in orthotopic solid tumors for as long as 24 h after intravenous injection, resulting
in a significant reduction in the volume of hepatocellular carcinoma, as well as liver/body
weight ratio [63]. Moreover, Dan et al. recently demonstrated the promising potential of
galactose (Gal)−and−polyethyleneimine (PEI)−coated SPIONs (Gal−PEI−SPIONs) for
gene delivery and MRI in an in situ hepatic tumor model. The Gal−PEI−SPIONs showed
the ability to selectively deliver siRNA−encoding telomerase reverse transcriptase genes
to tumor sites in the liver after systemic injection, thereby showing a significant inhibition
of tumor growth [64]. In addition, IONPs have also demonstrated the ability to inhibit
tumor metastasis in animal models [65–67]. For example, after intravenous injection in
the early stage of metastasis development, IONPs modified with the tumor−penetrating
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peptide iRGD could target and reduce tumor growth in the brain [66]. Zhang et al. ap-
plied IONPs modified with 3−aminopropyltriethoxysilane for tumor−targeted delivery of
cytosine−phosphate−guanine (CpG), a novel toll−like receptor 9 (TLR9) agonist, showing
a good therapeutic effect to inhibit metastasis in 4T1 breast cancer [67].

The enhanced permeability and retention (EPR) effect is the ability of nanoparticles
between 10 and 100 nm to passively penetrate the tumor site’s complex and dense mi-
crovascular structure and persist in the tumor tissue for an extended period without being
cleared by the lymphatic system [68]. The size of the nanoparticles plays an important role
in the EPR effect of the nanocarriers [69]. Advantages of the controllable size of IONPs
enable a better utilization of the EPR effect can be realized to deliver genetic drugs carrying
nanoparticles targeting tumor sites. Different from the nonspecific mechanisms based on
the EPR effect, the active targeting mechanisms approaching peptides, antibodies, and
small molecules also play an important role in tumor targeting. Due to the exceptional
surface functionalization capacity of IONPs, modified IONPs can bind to specific receptors
on tumor cells, thereby facilitating the active targeting of IONP gene complexes to tumor
sites [55,70,71]. In addition, the magnetic targeting of IONPs using gradient magnetic field
gradient is crucial to drive IONPs actively target to the tumor tissue [72,73]. The properties
of the magnetic field closely relate to the efficiency of magnetic targeting [74]. An external
and static magnetic field between 0.2 and 0.6 T was reported to guide IONPs toward
the tumor region [75]. The strength and location of the external magnetic field influence
the magnetic response of IONPs, further affecting the efficiency of tumor−targeted gene
delivery [50,65]. Solid tumors with a certain shape and position may facilitate the setting of
an external magnetic field, thereby improving the magnetic targeting of nanoparticles to
tumor sites and the accumulation of genetic drugs.

3. IONPs for Tumor Diagnosis and Combination Therapy

It has been reported that IONPs have functional advantages in cancer treatment,
including magnetic resonance imaging, photothermal, photodynamic, magnetocaloric, and
immune activation [76–78]. Combinations of gene therapy with imaging, chemotherapy
drug delivery, enhanced immune response, radiotherapy, and phototherapy based on
IONPs can be used to diagnose and treat tumors in a synergistic treatment (Figure 2).

3.1. IONPs for Tumor Cell Selected Imaging

By influencing transverse relaxation (T2), magnetic IONPs with a size of less than
30 nm, are capable of being controlled by electromagnetic fields (EMFs) and used as contrast
agents in MRI systems [79–81]. For example, due to the coupled spins of 3 d electrons
unpaired with the cubic lattice of Fe3+ and Fe4+ cations, SPIONs can flip the orientation
of their core protons when exposed to electromagnetic fields. This results in local field
inhomogeneities and negative contrast in T2−weighted imaging, which enables tissue
imaging with high contrast and spatial resolution in MRI systems [82].

The imaging capabilities of IONPs confer significant advantages over other gene
delivery vehicles, such as providing accurate diagnostic information for tumor lesion
localization, which is crucial for precise and targeted therapy. MRI technology allows
the observation of the biological distribution and pharmacokinetic properties of IONPs
carrying gene drugs in various organ systems, indicating the gene delivery efficiency to the
tumor site [83–85]. Mahajan et al. designed a siPLK1−conjugated streptavidin−conjugated
dextran−coated SPION (siPLK1−StAv−SPION) delivery platform through directly knock-
ing down cell−cycle−specific serine−threonine−kinase. This platform inhibited tumor
cell apoptosis and proliferation by tumor−specific silencing of PLK1 and allowed for
the non−invasive assessment of in vivo delivery efficiency by imaging tumor response
(Figure 3) [86].
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3.2. IONPs for Co−Delivery of Therapeutic Genes and Chemotherapeutic Drugs

Chemotherapy drugs widely used in clinics today, such as cisplatin, paclitaxel, and dox-
orubicin (DOX), have a good killing effect on cancer cells but can also damage normal cells and
tissues and cause noticeable side effects [87]. In recent years, the strategy of utilizing IONPs
for the combined delivery of gene drugs and chemotherapeutic drugs has been demonstrated
to be both feasible and highly effective [88–91]. Li et al. used PEG−PEI−coated IONPs to
deliver microRNA−21 antisense oligonucleotide (ASO−miR−21) and gemcitabine (Gem) to
pancreatic cancer cells. They observed that this co−delivery strategy effectively inhibited the
growth and metastasis of tumor cells via the upregulation of tumor suppressor genes PDCD4
and PTEN and the inhibition of epithelial–mesenchymal transition [92]. Co−loading gene
and chemical drugs on surface−modified IONPs not only enhances the killing effect on tumor
cells via various mechanisms and pathways but also prevents damage from drugs to normal
cells or tissues.



Nanomaterials 2022, 12, 3323 6 of 22

Nanomaterials 2022, 12, 3323 6 of 24 
 

 

 
Figure 3. IONPs for gene delivery and in vivo tumor imaging. (a) Schematic representation of 
siPLK1−StAv−SPIONs. (b) In vivo MRI of mice bearing syngeneic orthotopic tumors was performed 
before and 6 h after intravenous injection of siPLK1−StAv−SPIONs. The dashed line marks the pe-
riphery of the tumor. (c) Color contrast images show decreased T2 relaxivity compared to pre−in-
jection. Reprinted with permission from Ref. [86]. Copyright 2016, BMJ Publishing Group Ltd. and 
British Society of Gastroenterology. 

3.2. IONPs for Co−Delivery of Therapeutic Genes and Chemotherapeutic Drugs 
Chemotherapy drugs widely used in clinics today, such as cisplatin, paclitaxel, and 

doxorubicin (DOX), have a good killing effect on cancer cells but can also damage normal 
cells and tissues and cause noticeable side effects [87]. In recent years, the strategy of uti-
lizing IONPs for the combined delivery of gene drugs and chemotherapeutic drugs has 
been demonstrated to be both feasible and highly effective [88–91]. Li et al. used 
PEG−PEI−coated IONPs to deliver microRNA−21 antisense oligonucleotide 
(ASO−miR−21) and gemcitabine (Gem) to pancreatic cancer cells. They observed that this 
co−delivery strategy effectively inhibited the growth and metastasis of tumor cells via the 
upregulation of tumor suppressor genes PDCD4 and PTEN and the inhibition of epithe-
lial–mesenchymal transition [92]. Co−loading gene and chemical drugs on surface−modi-
fied IONPs not only enhances the killing effect on tumor cells via various mechanisms 
and pathways but also prevents damage from drugs to normal cells or tissues. 

3.3. IONPs for Inducing Antitumor Immune Response 
The immune response can be often triggered after exogenous gene−drug−carrying 

IONPs are introduced into the body. Recent studies have shown that this immune 

Figure 3. IONPs for gene delivery and in vivo tumor imaging. (a) Schematic representation of
siPLK1−StAv−SPIONs. (b) In vivo MRI of mice bearing syngeneic orthotopic tumors was per-
formed before and 6 h after intravenous injection of siPLK1−StAv−SPIONs. The dashed line marks
the periphery of the tumor. (c) Color contrast images show decreased T2 relaxivity compared to
pre−injection. Reprinted with permission from Ref. [86]. Copyright 2016, BMJ Publishing Group Ltd.
and British Society of Gastroenterology.

3.3. IONPs for Inducing Antitumor Immune Response

The immune response can be often triggered after exogenous gene−drug−carrying
IONPs are introduced into the body. Recent studies have shown that this immune acti-
vation induces the synergistic immune response to recognize and kill tumors, although
this immune response is reduced in most drug delivery vehicle designs [93,94]. When
exogenous genes are endocytosed, toll−like receptors in the immune system are activated,
recognizing the genetic drugs and activating the type I interferon signaling pathway, which
can activate various immune responses. Immune cells such as macrophages, T lymphocytes,
B lymphocytes, and dendritic cells can be combined with chemotherapy drugs to kill tumor
cells [95,96].

In a recent study, Meng et al. co−delivered peptide antigens and adjuvants (cytosine
5′ to a guanine dinucleotide repeat; CpG DNA) to dendritic cells (DCs) in the cytosol and
lysosomes via membrane fusion and endocytosis with lipid−coated iron oxide nanopar-
ticles (IONP−C/O@LPs), synergistically activating immature DCs. In addition, IONPs
appeared to promote DC maturation by generating intracellular reactive oxygen species
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during this process. Through subcutaneous injection, IONP−C/O@LPs accumulated in
draining lymph nodes activated immature DCs efficiently and increased antigen−specific
T cells in tumors and the spleen, inducing local and systemic antitumor immune responses
and inhibiting tumor growth (Figure 4) [97].
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3.4. IONPs for Combined Phototherapy

Phototherapy, including photothermal therapy treatment (PTT) and photodynamic
therapy treatment (PDT), is emerging as a promising strategy for the repeatable and ac-
curate ablation of tumor cells. As potential photothermal materials, IONPs can convert
radiated energy into heat to raise the temperature above 42 ◦C, resulting in the effective
killing of tumor cells [98,99]. IONPs also have demonstrated their capabilities to improve
the efficiency and safety of this therapeutic strategy by targeting the delivery of photosensi-
tizing agents to tumor sites in animal experiments. For examples, Li et al. demonstrated
that IONPs modified with the potent photosensitizer Chlorin e6 could significantly increase
the distribution and retention of photosensitizers in mouse subcutaneous melanoma grafts
and enhance photodynamic therapy effect [100]. Further, resent research from Yu et al.
reported Chlorin e6 loaded through functionalized IONPs linked with glucose showed both
target photodynamic efficacy and enhancement in immunogenicity in lung cancer [101]. In
addition, IONPs were reported to enhance treatment efficacy in head and neck xenograft
tumors and, more importantly, to reduce photosensitizer dose to avoid PDT potential
toxicity to normal tissues [102]. However, the advantages of IONPs in targeted photother-
apy against tumors have so far only been observed in experimental models, and further
verifications of the effectiveness of IONPs in clinical settings are necessary.

IONPs have the potential to combine gene therapy and phototherapy to achieve a synergis-
tic tumor−killing effect. Huang et al. applied IONPs as a bridge to combine PTT and gene ther-
apy. They loaded porous iron oxide nanoparticles (PIONs) with pcDNA3.1−vector−encoding
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long noncoding RNA crystallin beta−gamma domain−containing 3 (LNC CRYBG3) to over-
express LNC CRYBG3 in tumor cells for degrading the actin cytoskeleton, and inducing cell
apoptosis, resulting in the effective destruction of non−small−cell lung cancer cells in vitro and
in vivo (Figure 5) [103]. In addition, the success of some IONP−based chemotherapeutics and
phototherapy synergistic therapies in animal tumor models also provide the promising of the
combination of gene therapy and phototherapy on the basis of IONPs [104,105]. However, it is
essential to note that, due to the limited permeability of light to tissues, infrared−light−based
PDT and PTT are ineffective in treating deep−seated tumors.
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3.5. IONPs for Combined Radiation Therapy

Tumor−targeting radiation therapy is one of the most frequently employed cancer
therapies in clinical practice [106]. Definitive radiation therapy consists of high−energy
rays that only deliver a lethal dose of radiation to the tumor tissue without damaging the
normal tissue surrounding the tumor [107].

IONPs have been extensively studied as radiosensitizers to decrease the radiation
dose to normal tissues while increasing the dose to tumor tissues [50,78]. Radiation therapy
increases the mitochondrial production of superoxide anions, which convert superoxide
dismutase to hydrogen peroxide. Since IONPs can catalyze the conversion of hydrogen
peroxide to highly reactive hydroxyl radicals, more reactive oxygen species (ROS) can
be generated in tumor cells, thereby enhancing the efficacy of radiotherapy. In addition,
surface−functionalized IONPs can enhance the radiosensitization effect and transport
drugs to improve the antitumor effect [108]. Forrest et al. developed an IONP−based
nanocarrier that could protect the efficient delivery of anti−Ape1 siRNA into brain cancer
cells, enabling brain cancer to be sensitive to radiotherapy by knocking down the multifunc-
tional DNA repair enzyme apurinuclease 1 (Ape1) and, thereby, increasing the antitumor
effect and extending the survival of animals, synergizing with radiotherapy [109]. In a
separate study, the researchers coated SPIONs with biocompatible, biodegradable coatings
of chitosan, PEG, and PEI to achieve the targeted delivery of anti−Ape1 siRNA to pediatric
brain tumor cells, reducing Ape1 expression by more than 75% and Ape1 activity by 80%
in medulloblastoma and ependymoma cells [110].
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3.6. IONPs for Combined Magnetic Hyperthermia Therapy (MHT)

IONP−mediated MHT is a recently proposed cancer treatment [111]. In this strategy,
IONPs are applied to generate overheat via Brownian and Neelian relaxations with the
assistance of an alternating magnetic field (100–300 kHz), thereby inducing tumor cell
apoptosis by heating them to an over−high temperature of 42–46 ◦C [50,98]. Several studies
have applied IONP−mediated MHT with IONP−mediated gene therapy for synergistic
effects. For examples, Jiang et al. developed a magnetic nucleic acid delivery system
comprised of IONPs and cationic lipid−like materials. It could efficiently deliver DNA
and siRNA into cells and provide magnetic−guided targeting potential, allowing the
combination of gene therapy and MHT [112]. In addition, local heating under MHT
exposure increases microvascular tumor permeability, perfusion, and tumor cell membrane
permeability, which is crucial for enhancing drug diffusion, cellular absorption, and drug
action [98,113].

4. Impacts and Optimization of IONPs for Efficient Cancer Gene Therapy

During the whole process of delivering genes to tumor cells through IONPs, several
barriers reduce the delivery efficiency: (i) the stability of nanoparticles; (ii) the accumulation
to tumor sites; (iii) the efficiency of intracellular transport; (iv) the gene endosomal escape
and further expression; and (v) short blood circulation and quick clearance by the immune
system, which is closely related to the therapeutic efficiency of gene therapy [114–117].
Hence, further improvements for IONPs to overcome these barriers are highly required.
Several vital aspects that determine the efficiency and safety of using IONPs for cancer
gene therapy are discussed in the following section.

4.1. The Stability

Bare IONPs are easily able to aggregate into micrometer−sized clusters in the physi-
ological environment, due to functional group interaction, as well as magnetic, and van
der Waals forces [118]. The high surface charge also leads to the agglomeration after the
nanoparticles are refined to the nanoscale [82]. Therefore, further modifications of IONPs
to ensure colloidal stability are necessary, which is vital for both the delivery efficiency
and the safety issues. Surface modification of IONPs with the same electronic charge
is one of the major strategies to stabilize IONPs. This strategy can lead to repulsion be-
tween nanoparticles due to the electrostatic force, thus benefiting the improvement of
nanoparticles’ dispersibility in aqueous solution [115]. For example, several polymers,
such as chitosan [119,120], PEI [121,122], and PEG [123], have been applied for improv-
ing the colloidal stability of IONPs through the enhancement of electrostatic repulsion
between nanoparticles.

In addition, generating repulsive steric forces between nanoparticles through surface
modification using some long−chain molecules is another strategy to augment the colloidal
stability of IONPs. The long−chain polymers attached to the surface of IONPs can increase
the absolute value of the electric double layer on the surface of the nanoparticles and
enhance the repulsive force between the particles to produce steric protection [124]. For
instance, surface modification of IONPs with a methoxy−terminated PEG chain (5000 Da)
showed no sign of aggregation for four months in deionized water at room tempera-
ture [125]. Long−chain molecules coating IONPs provided nanoparticles with stability
through the optimization of the steric properties, further enhancing the repulsion between
nanoparticles [126].

The adsorption of biomacromolecules on the surface of IONPs is another challenge
impacting the tumor−targeted gene delivery efficiency. For example, IONPs are usually
modified to a positive charge in the surface for the efficient loading of nucleic acid drugs.
However, these positively charged nanocomplexes are easily adsorbed with the negatively
charged plasma proteins in blood circulation after administration, which is known as
the formation of protein corona on nanoparticles [127–130]. The formation of protein
corona is believed to negatively affect the circulation time and the delivery efficiency
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of payloads [131–133]. For example, the interaction between nanoparticles and plasma
proteins may alter the uptake and clearance of nanoparticles, thereby affecting the delivery
efficiency. It was observed that the protein corona of SPIONs increased the endothelial
permeability and uptake of endothelial cells [134]. The increase in hydrodynamic size
provoked by the formulation of the protein corona also was reported to drive uptake mech-
anisms, such as macropinocytosis, further influencing the uptake of nanoparticles [135].
Moreover, the adsorption of plasma proteins on nanoparticles may also induce preferential
cellular uptake by immune cells through the recognition of specific complement proteins in
the corona, thus decreasing the biodistribution of nanoparticles in tumor cells and resulting
in a rapid clearance of nanoparticles [136]. In addition, the adsorption of plasma protein
or other kinds of biomacromolecules on IONPs may decrease stability and induce the
aggregation of IONPs into micron−sized clusters [137]. For example, Safi et al. observed
that the formation of protein corona had significant impacts on the dispersibility of IONPs
in biological fluids [138].

Therefore, adopting surface modification to reduce the formation of protein corona
on the surface of IONPs is of great significance to reduce clearance by the immune system,
increase the blood circulation time, and improve the colloidal stability in biological fluids.
For instance, Groult et al. showed that surface modification using phosphatidylcholine
could prolong the circulation time and enhance the stability of IONPs due to the resistance
of the protein’s adsorption [139]. In addition, PEG with high molecular weight was reported
to reduce protein adsorption and non−specific uptake by macrophage cells, assisting IONPs
escaping from the reticular−endothelial system for a long blood circulation half−life [140].

4.2. The Toxicity Induced by Functional Modification

The toxicity of IONP carriers remains a significant concern, and the modification
materials play an important role in the toxicity of IONP−based vectors [70,141]. For
uncoated IONPs, the LD−50 ranges from 300 to 600 mg kg−1. However, when their
surface was coated with carboxydextran, the LD−50 value changed to 35 mmol kg−1, while
it increased to 2000–6000 mg kg−1 when coated with stable and biocompatible dextran
molecules [142,143]. In recent years, combining iron oxide cores with different coating
molecules has greatly improved gene drug delivery to tumor sites. However, due to their
varying toxicities, degradation rates, and pharmacokinetic properties, the study of vector
toxicity has become more complex and crucial.

It is common practice to improve gene transfection efficiency by grafting PEI, the
“golden standard”, onto IONPs. However, due to its high positive charge density, PEI mod-
ification alone would damage the cell membrane and induce cytotoxicity [144]. Therefore,
Kievit et al. constructed a PEI−PEG copolymer by grafting PEG to low−molecular−weight
PEI. This copolymer provided a physical barrier between the cells and the PEI, thereby
reducing the potential toxicity of IONPs. Furthermore, it is essential to note that the design
of this PEI−PEG−grafted chitosan had little impact on the magnetism and relaxivity of the
iron oxide core, thereby endowing the platform with the dual benefits of gene delivery and
in vivo imaging [54].

4.3. The Targeting Ability

Rapidly growing tumors develop intricate vascular structures that provide sufficient
nutrients and oxygen to support tumor growth, resulting in a unique, perforated endothelial
structure surrounding the tumor. This structure is highly permeable to IONPs, and it can
facilitate the passive targeting of IONPs to solid tumors through the EPR effect [145]. In
addition, the nanocore size and shape of IONPs play a crucial role in transporting genes
into tumor cells.

It is believed that the optimal diameter of nanoparticles for cancer treatment should
be between 10 and 100 nm [146–148]. When the diameter of IONPs is less than 10 nm,
it is simple for them to pass through the tight endothelial junction and be eliminated by
the kidneys’ first−pass elimination [149]. While penetrating deeply into the perivascular
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region of the tumor, the retention time of these small-sized IONPs may be brief because
they are easily pushed out of the tumor by hydraulic forces. IONPs with a diameter
over 100 nm are readily isolated by the spleen and liver and quickly absorbed by the
mononuclear phagocytosis system [149]. Notably, nanoparticles larger than 100 nm are
predominantly trapped in the extracellular space, which is not conducive to gene targeting
in cancer cells [150,151]. The effect of tumor cell uptake correlates closely with the efficacy
of gene therapy. Compared to larger nanoparticles, nanoparticles with a diameter of less
than 50 nm and smaller nanointerfaces that form strong interactions by binding to cluster
receptors on the cell membrane tend to have a higher uptake efficiency [134,152].

The regulation of nanoparticle shape is also crucial for enhancing the targeting effi-
cacy of carriers, and an increasing number of studies suggests that adjusting nanoparticle
shape can improve tumor targeting efficiency [150,153–155]. In the past decades, spheri-
cal nanoparticle carriers were the predominant shape of anticancer drug carriers due to
their advantages, such as ease of fabrication. However, several reports have shown the
promise of non−spherical nanocarriers have shown increasing promise in anticancer drug
delivery [156,157]. Since different aspect ratios can affect the diffusivity of nanomaterials
through pores and porous media, Vikash et al. designed and developed nanospheres and
nanorods with tunable shapes but the same surface coating and discovered that nanorods
excelled at passing through porous media and targeting tumors in vivo (Figure 6) [158].
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distribution in mouse orthotopic E0771 mammary tumors. Nanorods penetrated 1.7 times the
volume of distribution of nanospheres. Reprinted with permission from Ref. [158]. Copyright 2011,
Wiley−VCH.

By extending the circulation time of gene−carrying IONPs, it is possible to increase
nanoparticle accumulation at tumor sites. The particle shape significantly affects the hy-
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drodynamic behavior, influencing the circulation time. High−aspect−ratio nanoparticles
can conform to blood flow and reduce collisions with vessel walls, resulting in a longer
half−life in circulation. In addition, such nanoparticles can increase the probability of par-
ticle attachment to vascular walls and improve the interaction between receptor−targeting
ligands, thereby facilitating tumor targeting (Figure 7) [159].
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Park Ji−Ho et al. designed a dextran−encapsulated iron oxide chain−like aggregate,
also known as a nanoworm. The magnetic nanoparticles can be aligned with the assistance
of high−molecular−weight dextran chains, taking advantages of high aspect ratio. They
discovered that the elongated structure increased the nanoparticles’ circulation time, their
ability to attach to tumors in vitro via multivalent interactions with cell surface receptors,
and their passive accumulation at the tumor site [157]. Other studies have demonstrated
that extending nanoparticles in a one−dimensional direction can help them avoid natural
elimination and achieve a longer circulation time, which is crucial for optimizing the shape
of IONPs to improve their efficacy [160,161].

Malignant cells exhibit altered gene and protein expressions, such as overexpression
of G−protein−coupled receptors, growth factor receptors, interleukins, transferrin, and
polysaccharides, frequently used as targets for the active targeted delivery of functionalized
carriers, resulting in enhanced drug delivery at the tumor site [162,163]. It is difficult for
bare IONPs to rely solely on the EPR effect to deliver nucleic acid drugs to tumor growth
sites such as brain tumors. However, such a situation can be improved to a certain extent
under an external magnetic field. Active targeting based on the precise recognition of target-
ing ligands and their cognate receptors provides additional opportunities for IONP−based
drug delivery [164]. Commonly employed targeting ligands in modifying IONPs include
peptides, antibodies, aptamers, and small molecules, such as biotin, folic acid, and carbo-
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hydrates. Table 2 summarizes current active targeting modification strategies based on
IONPs for the delivery of drugs to various drug sites. The active targeting modification
strategies can not only improve the efficiency of tumor targeting but it can also prevent
damage to normal cells and tissues caused by off−target effects during drug delivery,
thereby enhancing the safety of gene therapy.

Table 2. Modification strategies for enhancing active tumor targeting of IONPs.

Modification Strategies Tumor Models Advantages References

Transferrin Orthotopic 4T1 breast cancer Tumor retention levels 6 times higher
than non-targeted nanoparticles [165]

Wheat germ agglutinin MDA-MB-231 breast cancer cells
in vitro

Cancer cell death increased by about
2.5-fold [166]

Folic acid
cyclic Arg-Gly-Asp-D-Tyr-Lys Orthotopic C6 glioma Uptake enhancement through a

combination of dual targets. [167]

c(RGDyK),
d-glucosamine

Xenografted tumor of 4T1 breast
cancer

Tumor site accumulation and
penetration depth increased [168]

Monoclonal antibodies Xenografted tumor of H460 lung
cancer

In vivo ultrasound energy deposition
significantly improved [169]

PEGylated amphiphilic triblock
copolymer

Xenografted tumor of U87MG
glioma

Rapid clearance of the
reticuloendothelial system avoided [170]

Polyvinyl alcohol and
Zn/Al-layered double hydroxide HepG2 liver cancer cells in vitro Antitumor ability increased

No cytotoxic to 3T3 fibroblast cell [171]

4.4. Intelligent Drug Delivery Based on IONPs

In recent years, intelligent drug delivery systems tailored to the tumor microenvi-
ronment (TME), such as acidity, hypoxia, and enzyme imbalance, have provided a more
efficient drug delivery strategy towards tumors. This system can transform the carrier’s
invisible surface into tumor−targeting surfaces for intelligent drug delivery, achieving
responsive drug release based on tumor and microenvironment characteristics [172–174].

It has been reported that tumor cells have a different energy metabolism pattern in
comparison with normal cells. They acquire energy mainly through anaerobic glycolysis
due to the Warburg effect and generate large amounts of lactate, ATP hydrolyzate hydrogen
ions, and carbon dioxide in tumor sites, consequently leading to the acidification of TME
with a lower pH value (6.5–6.8) than healthy tissues [175,176]. This acidic TME provides an
important target for tumor−specific diagnosis and treatment.

Based on the weak acidity of TME, certain pH−sensitive materials have been applied
as surface modifications on nanoparticles to develop intelligent drug carriers [175,177].
Cao et al. designed a novel pH−responsive surface−modified single−walled carbon
nanotube (SWCNT) and synthesized SWCNT−PB (SPB) to deliver DOX and survivin
siRNA synergistically. When the drug−loaded nanocarriers were internalized by cells
and encountered acidic endosomes or lysosomes, DOX and survivin siRNA adsorbed on
SWCNTs completed the drug release via a mechanism triggered by the protonation of SPB,
diffusing from lysosomes to the middle of the cytoplasm. When loaded on SPB, siRNA
and DOX could be released efficiently into the cytoplasm and nucleus of A549 cells and
exhibited potent antitumor effects in vitro and in vivo (Figure 8) [178].

Together with IONPs, stimulation−independent cationic polymers, such as PEI and
PEG, can efficiently achieve gene delivery in tumor cells. However, the rate of dissociation
between genes and carriers is limited, and premature dissociation from carriers may result
in acid hydrolysis or enzymatic degradation. In contrast, stimulus−dependent materials
with high responses to biological stimuli can transform the physicochemical properties of
the carrier from a tightly complexed state with genes to a decomposed state in response
to stimuli provided in the endosome and cytoplasm, allowing the production of many
structurally intact and highly active gene drugs. In addition, the gene and the carrier
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cannot be recombined, making initiating the gene therapy procedure challenging. For
instance, siRNA must combine with RISC in a free state in the cytoplasm to initiate RNA
interference. Therefore, the molecular affinity between the surface−modified responsive
materials of IONPs and genes should be irreversible [179,180]. The transformation of genes
and polymers from complexation to decomposition in response to tumor−site−specific
stimuli is the rate−limiting step in intelligent gene delivery.
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The toxicity of smart, responsive materials used for the surface modification of IONPs
is an essential factor that cannot be overlooked. The toxicity of the carrier can be affected
by the molecular weight, cation density, morphology, polymer−to−nucleic acid ratio, and
biodegradability of the surface−modifying material. In order to improve the efficiency of
gene delivery, for instance, specific surface modification strategies have a high molecular
weight, cation density, or N/P ratio, which increases vector toxicity and non−specific gene
silencing [181]. Therefore, optimizing the minimal in vivo and in vitro toxicity protocols
for gene therapy based on the molecular properties of various coating materials while
simultaneously improving gene−targeted tumor delivery is of utmost importance.

5. Conclusions and Outlook

The magnetic responsiveness, good biocompatibility, ease of functional modification,
and controllable synthesis of IONPs have enabled the possibility of using IONPs as vehicles
for the targeted delivery of a variety of nucleic acid drugs targeting tumor tissues. In
addition, the versatility of IONPs has further allowed the combination therapy of gene
therapy with some other treatments, showing synergistic effects.

Despite the promising potential of IONP−associated tumor therapy demonstrated in
animal studies, the reported clinic trials of this strategy, to the best of our knowledge, are
currently limited. IONPs have been widely studied as a contrast agent for magnetic reso-
nance imaging in clinical trials, such as in the diagnosis of pancreatic cancer (NCT00920023),
breast cancer (NCT03243435), and thyroid cancer (NCT01927887). IONPs have also been
proved by the US Food and Drug Administration (FDA) for the iron replacement therapy
of anemia [88]. These clinical applications of IONPs, in addition to the successful results
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demonstrated in animal models, may suggest the potential translation of IONP−associated
tumor therapy to the clinical bench.

However, there are still some challenges for the application of IONPs to deliver
genes to cancer cells. Bare IONPs are generally regarded as nanomaterials with good
biocompatibility and safety, but their surface modification may bring the risk of cytotoxicity.
In addition, surface modifications of IONPs have demonstrated the advantages of offering
various functions, but the magnetic response of IONPs may be affected, thus influencing
the magnet targeting efficacy [149,182]. Therefore, it is essential to have further research
on the surface−modified materials of IONPs. Moreover, many reports have demonstrated
the tumor targeting ability of IONPs, but few studies had focused on the retention time
of IONPs in tumors sites. Further improvements in the retention time of IONPs in tumor
sites is still worth noting. In addition, since the size and shape of IONPs have a significant
impact on drug delivery efficiency, large−amount production of IONPs with uniform and
controlled sizes and shapes is a challenge.

In recent years, stem cells have been applied for targeting delivery of gene-loaded
IONPs, showing attractive advantages in more specific tumor targeting and biocompatibil-
ity, which provide a novel strategy using IONPs for tumor−targeted gene therapy [183].
With the continues advances in materials science, nanotechnology, biological science, and
gene therapy, it is believed that the development of an IONP−based delivery platform can
be continuously improved and endowed with additional capabilities in cancer treatment.
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