Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

Permalink https://escholarship.org/uc/item/0g5238bh

Author Duncan, Kathleen E.

Publication Date 2009-09-16

Peer reviewed

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

- Title Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities
- Author(s) Kathleen E. Duncan, Lisa M. Gieg, Victoria A. Parisi, Ralph S. Tanner, Joseph M. Suflita, Susannah Green Tringe, Jim Bristow
- Division Genomics
- Journal Name Environmental Science & Technology

One-sentence summary: Anaerobic degradation of low molecular weight hydrocarbons support thriving thermophilic archaeal and bacterial communities that produce a wide variety of metabolites that can stimulate biocorrosion in Alaskan North Slope oil production facilities.

Title: Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

Authors: Kathleen E. Duncan¹, Lisa M. Gieg^{1,3}, Victoria A. Parisi¹, Ralph S. Tanner¹, Joseph M. Suflita¹, Susannah Green Tringe², and Jim Bristow².

1. Dept. of Botany and Microbiology and the Institute for Energy and the Environment, University of Oklahoma, Norman, OK, USA. 2. DOE Joint Genome Institute, Walnut Creek, CA, USA. 3. current affiliation: Dept. Biological Sciences, University of Calgary, Calgary, Alberta, Canada.

1 Abstract

2	Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly
3	understood phenomenon, with standard treatment methods targeting mesophilic sulfate-
4	reducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field,
5	we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptide-
6	and amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria
7	and sulfate-reducing archaea. These microbes can stimulate metal corrosion through
8	production of organic acids, CO ₂ , sulfur species, and via hydrogen oxidation and iron
9	reduction, implicating many more types of organisms than are currently targeted.
10	Micromolar quantities of putative anaerobic metabolites of C ₁ -C ₄ <i>n</i> -alkanes in pipeline
11	fluids were detected, implying that these low molecular weight hydrocarbons, routinely
12	injected into reservoirs for oil recovery purposes, are biodegraded and provide
13	biocorrosive microbial communities with an important source of nutrients.
14	
15	Introduction
16	The U.S. possesses a network of over 2.3 million miles of pipelines that transmit
17	about 75% of the nation's crude oil and 60% of refined products
18	(http://www.corrosioncost.com/infrastructure/gasliquid/index.htm). Despite this
19	importance, pipelines are not regularly considered in assessments of societal
20	infrastructure needs (<u>http://www.asce.org/files/pdf/reportcard/2005_Report_Card-</u>
21	Full_Report.pdf), but there is little doubt that these facilities are vulnerable and can
22	deteriorate over time. Through-wall breaches due to corrosion are expensive problems in
23	the oil industry that can result in explosions, product interruptions, hazardous chemical

24 releases and environmental damage. Such was the case in the August 2006 Prudhoe Bay 25 release on Alaska's North Slope (ANS) (http://www.usatoday.com/news/nation/2006-08-26 06-alaskan-oil-field x.htm). The metabolic activities of microorganisms were implicated 27 in this and other incidents of pipeline failure. In fact, it has long been known that 28 microbes contribute to corrosion by multiple mechanisms (1-3), yet biocorrosion is not a 29 well-understood process. There is no consensus on the identity of specific 30 microorganisms responsible for corrosion or how they function to catalyze such 31 incidents, resulting in poorly targeted efforts to monitor and combat biocorrosion. 32 Following the pipeline breach at Prudhoe Bay, we obtained samples from an ANS 33 field to assess the potential for biocorrosion via metabolic indicators and microbial 34 community analysis. The geology and geochemistry of ANS fields have previously been 35 described (4) and subsurface conditions are well within the range for microbial 36 communities to thrive (5). The facility produces oil, gas and water from multiple 37 anaerobic and hot (average temperature 68°C) reservoirs and is typical of ANS oilfields 38 that collectively have produced up to 16% of the U.S. domestic oil requirements for over 39 30 years (http://tonto.eia.doe.gov/oog/special/eia sr alaska.html). Fluids and gases from 40 multiple production wells are collected in a central facility, from which oil is channeled 41 to the Trans-Alaska Pipeline System. At the facility, low molecular weight hydrocarbons 42 (mostly methane, with lesser amounts of C_2 - C_4 *n*-alkanes) and water are reinjected into 43 the oil-bearing formations to maintain pressure and facilitate oil recovery. Most pipelines 44 are above ground and thermally insulated, so conditions inside the pipelines and 45 processing facilities are anaerobic and hot. As required, seawater is treated with biocide 46 and added to maintain formation pressures or during oil processing, thus introducing

47 seawater chemistry, a lower temperature, and potentially marine microorganisms into oil 48 reservoirs. To assess biocorrosion potential in the ANS field, we obtained fluid samples 49 at well heads from production wells (producing oil, gas and water), from a water 50 reinjection well following oil processing activities in a central facility (CF), 2 locations within the CF (a 1st stage separator and a coalescer), from a pipeline carrying fluids and 51 52 gas to the CF, treated seawater, and fluids and solids scraped from the inner surface of the 53 pipeline carrying treated seawater. Samples were prepared accordingly for metabolite 54 evaluation or for molecular community analysis (6).

55

56 Bacterial Community Profiling

57 Despite oil production from several major reservoirs with different geological 58 histories, the facility-wide bacterial community profiles at the ANS field showed striking 59 similarities for three of the high temperature sites. Bacterial communities from production well 2L, the 1st stage separator (PS) and the coalescer (CO) exhibited a high 60 61 degree of class-level similarity (Fig. 1; table S1A), and greater levels of genetic diversity 62 and species richness (table S2) than did the archaeal or the other two bacterial libraries. 63 Ten "core" taxa (defined as OTUs with 97% nucleotide sequence similarity) were found 64 at all three sites and represented over 87% of the bacterial 16S rRNA gene sequences 65 (Fig. 2; table S3). Fig. 2 also illustrates the taxa and number of sequences shared 66 between any two of the sites as well as those unique to each site. The most abundant of 67 the core sequences (2L: 83%, PS: 57%, and CO: 31%) has 97-99% identity to that of 68 Thermovirga lienii (7). T. lienii is a thermophilic anaerobe isolated from a North Sea oil 69 well and described as a member of the Firmicute family Syntrophomonadaceae.

70	However, it has also been designated a member of the candidate division Synergistes (8)
71	and sequences similar to those of <i>T. lienii</i> will be designated as "Synergistes" here. The
72	type strain of <i>T. lienii</i> has an optimum growth temperature of 58°C and ferments certain
73	amino acids, proteinaceous substrates and organic acids, producing ethanol, acetate,
74	propionate, isovalerate/2-methylbutyrate, H_2 , and CO_2 (7). It can also reduce cystine and
75	elemental sulfur to H ₂ S. Synergistes-associated sequences were abundant in an
76	extensively biodegraded mesophilic ANS oil reservoir (9). The majority were more
77	similar to uncultured <i>Thermovirga</i> clones than to the type strain as expected from the
78	temperature range favored by T. lienii.
79	The most abundant delta proteobacterial 16S rRNA gene sequences (2L: 4%, PS: 7%,
80	CO: 18%) were similar to that of <i>Desulfomicrobium thermophilum (10)</i> , a sulfate-
81	reducing bacterium isolated from a hot spring. Sulfate-reducing bacteria (SRB) have
82	been routinely monitored by the oil industry because of their ability to produce H_2S from
83	sulfate. However, many other core sequences were similar to those of organisms that
84	produce sulfide through the reduction of elemental sulfur, thiosulfate, sulfate, or other
85	sulfur oxyanions (e.g. Thermosipho africanus/ T. geolei, Pelobacter carbinolicus,
86	Desulfacinum subterraneum, and Thermodesulfobacterium commune). Clone libraries
87	based on <i>dsrAB</i> genes that code for an essential enzyme for sulfate reduction
88	(dissimilatory (bi)sulfite reductase) were heavily dominated by sequences similar to
89	those of the archaeal sulfate-reducer Archaeoglobus fulgidus (2P: 60%, PS and CO:
90	>99%). These findings suggest that bacterial sulfate reduction makes only a minor
91	contribution to sulfide production at the facility.
92	Core sequences similar to Thermoanaerobacter pseudethanolicus (and other

93 Thermoanaerobacter species), Thermacetogenium phaeum, or P. carbinolicus indicate 94 the possible importance of iron-reduction and/or syntrophic metabolic interactions (11). 95 Anaerobic iron-reducing thermophiles in deep subsurface petroleum reservoirs have 96 been previously demonstrated (12). However, thermophilic strains of *Pelobacter* are not 97 yet known, so its detection as a core taxon awaits further explanation. 98 In comparison to the 2L and CF samples, the production well 2P bacterial community 99 had much lower diversity and species richness (Fig 1; table S2). The dominant (90%) 100 bacterial 16S rRNA gene sequence is similar (97-99%) to that of moderately 101 thermophilic, organic acid-utilizing, nitrate-reducing *Petrobacter* species (13). The 102 second-ranked (4.7%) sequence type is similar to T. lienii and sequences similar to the 103 core taxa T. pseudethanolicus and Thermotogales were present in low abundance (table 104 S1A). Which specific factors are responsible for the differences are unknown; well head temperatures were similar for 2P and 2L (avg. 48°C and 49°C respectively) with little 105 106 variation for 9 months prior to sampling, however the wells draw from different 107 formations. Collectively, all well and CF samples strongly resemble anaerobic 108 thermophilic oil reservoir and well communities. 109 **Archaeal Community Profiling**

110 Sequences similar to those of hyperthermophilic Archaea, notably sulfate-

111 reducing Archaeoglobus species, methane-producing Methanothermobacter

112 *thermautotrophicus*, and H₂S-producing *Thermococcus* were abundant in the PS, CO,

and 2P samples. More than 90% of the archaeal 16S rRNA gene sequences fell into the

114 corresponding three families of Euryarchaeota (Fig. 3, tables S1B and S4).

115 Crenarchaeota were only detected in the PS sample, which also exhibited the highest

116 diversity and species richness of the three archaeal libraries (table S2). All three

117 Euryarchaeota groups have frequently been detected in hot oil reservoirs and production

118 fluids (5). Archaeoglobus and Thermococcus enriched from a North Sea oil field grew at

119 high temperatures on crude oil as the sole source of carbon and nutrients (14). The same

120 study also found *Archaeoglobus*-like cells in hyperthermophilic cultures enriched from

121 ANS reservoirs.

Sequences of methanogens (approximately ¹/₄ of the archaeal 16S rRNA gene

sequences) were less abundant than those of fermentative and sulfate-reducing archaea.

124 Most methanogenic sequences were related to those of hydrogen-utilizing

125 Methanothermobacter species. Hydrogen-utilizing methanogens have been commonly

126 found in hot oil reservoirs (15). Approximately 12% of methanogenic sequences were

127 99.8% similar to that of "*Methermicoccus shengliensis*" (DQ787474, Methanosaetaceae).

128 "M. shengliensis" strain ZC-1 (16) was isolated from oil-production water and has

129 optimal growth at 65° C. Strain ZC-1 is not an acetoclastic methanogen, unlike other

130 members of the Methanosaetaceae. In contrast to our results, acetoclastic methanogens

131 were by far the most abundant archaea in a heavily biodegraded mesophilic North Slope

132 oil reservoir (9).

133

134 Targeted Cultivation and Seawater Pig Envelope Community Profiling

In agreement with the molecular analysis, *M. thermautotrophicus* was isolated as the
 numerically dominant (2.3/mL) hydrogen-using prokaryote from the 1st stage separator.

137 A thermophilic *Anaerobaculum* sp. was the numerically dominant heterotroph cultured

138 from the same sample (17). Members of the genus *Anaerobaculum* ferment organic acids

and peptides but also reduce thiosulfate, sulfur, and cysteine to H₂S (*18*) and are thus
directly implicated in biocorrosion. However, all populations of culturable bacteria
screened (SRB, anaerobic/facultative heterotrophs, hydrogen-users) were found in low
numbers (2-4 cells/mL), implying that these organisms would be missed in most routine
screening procedures.

144 The seawater pig envelope sample (SW) community profile was quite different from 145 that of the archaea-rich production wells and the CF, primarily consisting of sequences 146 similar to those of mesophilic and psychrophilic marine bacteria. We were unsuccessful 147 in obtaining a small subunit ribosomal archaeal RNA gene library with archaeal primers 148 although a bacterial 16S rRNA gene sequence library was successfully obtained from the same DNA sample. Populations of culturable bacteria were 10^3 to 10^6 /mL, with the 149 150 numerically dominant organism and most abundant DNA sequence from the seawater 151 16S rRNA gene library most similar to γ-proteobacteria, Pseudomonas stutzeri and/or 152 related species (Fig. 1, table S1). The numerically dominant culturable hydrogen-user 153 was Acetobacterium. An Acetobacterium species has previously been isolated from marine environments (19). Sulfate-reducing bacteria were estimated at 2.4 x 10^6 /mL. In 154 155 accord with the 16S rRNA library results, no dsrAB sequences similar to those of 156 Archaeoglobus were obtained from the SW sample. 16S rRNA gene sequences similar to 157 those of the deep-sea genera Sulfurimonas and Arcobacter (epsilon proteobacteria, table 158 S1) were abundant in the SW sample but were not found in the production wells or CF 159 samples. Only two sequences from the other four bacterial libraries, one from the PS and 160 one from well 2L (both Pseudomonas) were as much as 97% similar to any of the 161 sequences from the SW sample. Thus, mesophilic and psychrophilic marine

162	microorganisms originating from seawater seem unlikely to be responsible for
163	biocorrosion problems at high temperature sites. However, seawater can contribute
164	increased levels of sulfate, manganese, or organic matter that could spur increased
165	corrosive microbial activity. For example, it was noted that H ₂ S was not detected in one
166	ANS oilfield until after seawater flooding was initiated (20).
167	
168	Metabolic Profiling
169	
170	It is well established that biocorrosive organisms form complex surface
171	assemblages where cells are imbedded in a matrix of biologically-produced extracellular
172	polymeric substance (EPS) that forms a protective microenvironment (1). However, the
173	carbon source(s) supporting the formation of such surface-associated communities
174	remain enigmatic. Clearly, the largest potentially available source of carbon to support
175	microbial activity is the oil itself. Since hydrocarbons are known to be suitable
176	substrates for anaerobes (21) , we suspected that the more water-soluble oil components,
177	like benzene, toluene ethylbenzene and xylene isomers (BTEX) might be preferentially
178	metabolized to support the diverse microbial communities detected at the facility. This
179	prospect was explored by assaying for the signature metabolites associated with
180	anaerobic oil biodegradation (22-23). The identification of these intermediates
181	implicates the parent hydrocarbons being metabolized.
182	Contrary to expectations, there was no evidence for the biodegradation of the
183	most water-soluble BTEX components. However, putative low molecular weight
184	alkylsuccinate metabolites associated with anaerobic <i>n</i> -alkane biodegradation were

185 found facility-wide. Six of the eight central facility and production well samples 186 collected contained 0.8-2.2 μ M concentrations of low molecular weight (C₁-C₄) 187 alkylsuccinates (Table 1). No signature hydrocarbon metabolites were found in the 188 seawater samples. The identification of methyl-, ethyl-, propyl- and butylsuccinate 189 suggested that the hydrocarbons routinely reinjected during normal oil recovery 190 operations were being biologically oxidized by a fumarate addition reaction in a manner 191 analogous to higher molecular weight *n*-alkanes (Table 1) (22). The recycling of these 192 gases to help maintain formation pressures occurred throughout the decades-long 193 production history of the formation and we suspect that the requisite organisms were 194 enriched over this long time period.

195 If the analogy to higher molecular weight *n*-alkane anaerobic metabolism is 196 accurate, we predict the formation of a series of downstream branched and straight-chain 197 fatty acid metabolites formed as a result of the presumed carbon skeleton rearrangement 198 and subsequent decarboxylation of the alkylsuccinate intermediates (*24*). Indeed, the 199 expected downstream metabolites were also found in the same samples from the central 200 facility, but none were found in the seawater samples (Table 1).

The detection of methylsuccinate in conjunction with the other low molecular weight alkylsuccinates is particularly evocative. This finding suggests that fumarate addition may represent an alternative to previously described mechanisms such as reverse methanogenesis for the anaerobic oxidation of methane (25). Consistent with an alternate hypothesis, the methanogen and ∂ proteobacterial sequences were dissimilar to the genera described in other environments undergoing anaerobic methane oxidation (26).

207

208 Implications for Biocorrosion

209 Our results suggest that temperature and hydrocarbon utilization are primary 210 factors governing microflora species composition at the ANS facility. Contrary to the 211 emphasis placed on mesophilic bacterial SRB by standard biocorrosion monitoring 212 procedures, many of the organisms detected using molecular techniques and targeted 213 isolation are thermophilic bacteria capable of reducing various sulfur oxyanions or 214 hyperthermophilic sulfate-reducing archaea that produce H₂S. Methanogenic, 215 fermentative, H_2 -producing and H_2 -utilizing physiologies were also common, unlikely to 216 be detected using standard techniques, and could likewise stimulate corrosion. The 217 similarity of core taxa in these samples and those from other thermophilic oil reservoirs 218 and wells suggests that hydrocarbon-degrading, potentially corrosive microbes found in 219 oil reservoirs will readily inoculate and proliferate in oil production facilities maintained 220 at compatible temperatures. Such similarities also imply that pipeline integrity 221 management programs might be able to differentially target a relatively few core taxa. 222 The detection of putative low molecular weight alkane metabolites throughout the 223 hot oilfield facilities suggests that anaerobic hydrocarbon biodegradation is inherent and 224 likely involved in supporting biocorrosive biofilms. Indeed the formation of relatively 225 high concentrations of alkylsuccinates (Table 1; µM vs nM concentrations more typically 226 found in fuel-contaminated aquifers, 22) allows us to postulate that such acidic 227 intermediates can directly contribute to biocorrosion processes. The subsequent 228 metabolism of the compounds would eventually form acetate and CO₂, microbial 229 products known to exacerbate corrosion of pipeline surfaces (3, 27). Thus, these findings

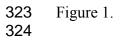
- support the hypothesis that anaerobic hydrocarbon biodegradation processes in the
- 231 oilfield environment can be an important factor in microbial influenced corrosion.
- 232

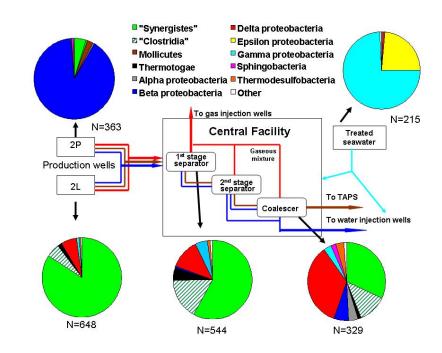
233 References

- 234 1. I. B. Beech, J. Sunner, *Curr. Opin. Biotechnol.* 15, 181-186 (2004).
- 235 2. W. A. Hamilton, *Biofouling*. 19, 65-76 (2003).
- 236 3. J. M. Sulfita, T. J. Phelps, B. Little, *Corrosion* 64, 854-859 (2008).
- 4. W. D. Masterson, L. I. P. Dzou, A. G. Holba, A. L. Fincannon, L. Ellis, Organic
- 238 *Geochem.* 32, 411-441 (2001).
- 239 5. M. Magot, in Petroleum Microbiology, B. Ollivier, M. Magot, Eds. (ASM Press,
- 240 Washington, D.C., 2005), pp. 21-34.
- 6. Materials and methods are available as supporting material on Science Online
- 242 7. H. Dahle, N. K. Birkeland, Int J Syst Evol Microbiol. 56,1539-1545 (2006).
- 243 8. S. R. Vartoukian, R. M. Palmer, W. G. Wade, Anaerobe 13, 99-106 (2007).
- 244 9. V. D. Pham et al., Environ Microbiol. 11,176-187 (2009).
- 245 10. F. Thevenieau, M. L. Fardeau, B. Ollivier, C. Joulian, S. Baena, *Extremophiles* 11,
 246 295-303 (2007).
- 247 11. S. Hattori, Y. Kamagata, S. Hanada, H. Shoun, Int J Syst Evol Microbiol. 50,1601-
- 248 1609 (2000).
- 249 12. A. I. Slobodkin et al., Curr. Microbiol. 39, 99-102 (1999).
- 250 13. M. B. Salinas et al., Int J Syst Evol Microbiol. 54, 645-649 (2004).
- 251 14. K. O. Stetter *et al.*, *Nature* **365**, 743-745 (1993).

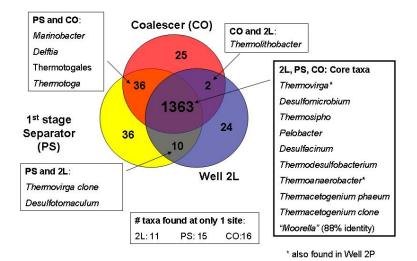
- 252 15. C. Jeanthon, O. Nercessian, E. Corre, A. Grabowski-Lux, in *Petroleum Microbiology*,
- 253 B. Ollivier, M. Magot, Eds. (ASM Press, Washington, D.C., 2005) pp. 55-70.
- 254 16. L. Cheng et al., Int J Syst Evol Microbiol. 57, 2964-2969 (2007).
- 255 17. M. W. Maune, R. S. Tanner, Abst. Ann. Meet. Am. Soc. Microbiol., I-029, p. 321
- 256 (2008).
- 257 18. R. J. Menes L. Muxí, Int J Syst Evol Microbiol. 52, 157-164 (2002).
- 258 19. H. L. Drake, in *Acetogenesis*, H. L. Drake, Ed. (Chapman & Hall, New York, 1994),
 259 pp. 3-60.
- 260 20. R. F. Mueller, P. H. Nielsen, Appl. Environ. Microbiol. 62, 3083-3087 (1996).
- 261 21. I. A. Davidova, J. M. Suflita, in Methods in Enzymology, J. Leadbetter, Ed. (Elsevier,
- 262 San Diego, CA, 2005), vol. 397, pp. 17-34.
- 263 22. L. M. Gieg, J. M. Suflita, in *Petroleum Microbiology*, B. Ollivier, M. Magot, Eds.
- 264 (ASM Press, Washington, D.C., 2005), pp. 337-356.
- 265 23. O. Kniemeyer *et al.*, *Nature* **449**, 898-901 (2007).
- 266 24. H. Wilkes et al., Arch Microbiol 177, 235-243 (2002).
- 267 25. S. L. Caldwell *et al.*, *Environ. Sci Technol.* 42, 6791-6799 (2008).
- 268 26. K. G. Lloyd, L. Lapham, A. Teske, Appl. Environ. Microbiol. 72, 7218–7230 (2006).
- 269 27. B. Hedges, L. McVeigh, "The role of acetate in CO₂ corrosion: the double whammy"
- 270 (Paper #21, NACE Corrosion 99,1999).
- 271 28. Support from the National Science Foundation (Award # 0647712) and
- 272 ConocoPhillips is gratefully acknowledged. We particularly appreciate the assistance of
- 273 Dr. Gary Jenneman and the Alaska Business Unit personnel of ConocoPhillips for
- organizing, collecting and shipping samples as well as for the use of ANS laboratory

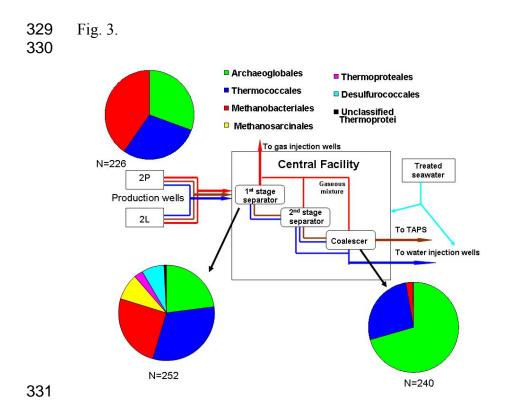
- 275 facilities. The conclusions expressed in this paper are those of the authors and not
- 276 necessarily shared by ConocoPhillips.
- 277
- 278 Supporting Online Material
- 279 Materials and Methods
- 280 Tables S1 to S3
- 281 References


282 Table 1. Metabolites associated with the anaerobic biodegradation of C_1 - C_4 in Alaskan 283 North Slope (ANS) oil field samples. Alkylsuccinates were detected in processing facility 284 and production well samples (total=6), but not in seawater or in a pipeline transporting 285 seawater, suggesting the anaerobic oxidation of the parent compounds methane, ethane, 286 propane or butane. Concentrations of metabolites were in the µM range. Downstream 287 metabolites resulting from the predicted carbon skeleton rearrangement and subsequent 288 decarboxylation of the alkylsuccinate were also found in ANS samples. For *n*-alkanes C₃ 289 or greater, a terminal and subterminal addition of fumarate (denoted with *) are possible, 290 resulting in two possible downstream metabolites (branched or straight chain).


Parent compound	Fumarate addition metabolite	Fumarate addition metabolite concentration detected (µM)	Downstream metabolite (rearrangement)
Methane (CH4)	-0 -0 -0 -0 -0 -0 -0 -0	2.08 ± 1.10	H ₃ C ^{COO-} Butanoic acid
Ethane (C ₂ H ₆)	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & &$	1.77 ± 1.54	H ₃ C COO
Propane (C ₃ H ₈)	subterminal addition: $O \rightarrow O^{-}$ $H_{3}C \rightarrow O^{-}$ $H_{3}C \rightarrow O^{-}$ terminal addition: $O \rightarrow O \rightarrow O^{-}$ $H_{2}C \rightarrow O^{-}$ $H_{3}C$	2.18 ± 0.20	$H^{3}C$
Butane (C4H10)	Propylsuccinate* $0 \rightarrow 0^{-}$ $H_{3}C \rightarrow 0^{-}$ $H_{3}C \rightarrow 0^{-}$ $H_{3}C \rightarrow 0^{-}$ Butylsuccinate*	0.76 ± 0.11	Harden action H_3C H_3C CH_3 COO^- CH_3 H^3C COO^- CH_3 H^3C COO^- CH_3 COO^- COO^- CH_3 COO^- COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- CH_3 COO^- COO^- COO^- CH_3 COO^- COO^- CH_3 COO^-

293 Figure legends


- Figure 1. Relative abundances of sequences from five bacterial 16S rRNA gene libraries.
- 296 The RDP Project Classifier tool (<u>http://rdp.cme.msu.edu/classifier/classifier.jsp</u>) was used
- to assign representative sequences (97% similarity) to the higher-level taxonomic groups
- shown, except for sequences affiliated with *Thermovirga lienii* (referred to as
- 299 "Synergistes" in this figure), which currently are classified under "Clostridia", Incertae
- 300 sedis XV. N represents the total number of sequences in a library, after exclusion of
- 301 chimeric sequences. Origin of samples: production wells 2P and 2L (sampled at
- 302 wellhead), outflow from the 1st stage separator (PS) and coalescer (CO) units in a central
- 303 facility, and the "pig envelope" (e.g. the scraped inner surface of the pipeline) of a
- 304 pipeline transporting treated seawater (SW) from the Arctic Ocean to the central facility.
- 305 Table S1A contains the accession number of the closest match, affiliation, and the
- 306 relative abundance (as a percentage of the total library) of each representative sequence.
- 307 Temperatures at the 2P wellhead for 9 months prior to sampling ranged from 36-52°C,
- 308 avg. $48^{\circ}C \pm 1.7$ (1 SD); from the 2L wellhead 33-52 $^{\circ}C$, avg. $49^{\circ}C \pm 2.1$ (1 SD).
- 309 Temperature ranges inside the central facility were maintained at $50-55^{\circ}C$ (1st stage
- 310 separator), $67-82^{\circ}C$ (2^{nd} stage separator) and $59-78^{\circ}C$ (coalescer).
- 311 Figure 2. Distribution of bacterial sequences from 2L, PS, and CO illustrating the
- number of sequences from taxa found in all three libraries ("2L, PS, CO: Core taxa"), 2
- 313 libraries ("PS and 2L", "CO and 2L", "PS and CO") or unique to one sample.
- 314 Figure 3. Relative abundances of sequences from three archaeal 16S rRNA gene libraries.
- 315 The RDP Project Classifier tool (<u>http://rdp.cme.msu.edu/classifier/classifier.jsp</u>) was used
- 316 to assign representative sequences (97% similarity) to the higher-level taxonomic groups


- 317 shown. N represents the total number of sequences in a library, after exclusion of
- 318 chimeric sequences. Origin of samples: production well 2P (sampled at wellhead),
- 319 outflow from the 1st stage separator (PS) and coalescer (CO) units in a central facility.
- 320 Table S1B contains the accession number of the closest match, affiliation, and the
- 321 relative abundance (as a percentage of the total library) of each representative sequence.

326 Fig. 2.

332 Supporting online material333

334 Materials and Methods

335 **Molecular analysis:** Samples from two production wells (2P, 2L), two locations in a 336 central facility (CF, 1st stage separator [PS] and coalescer [CO]), and from a seawater 337 line prior to exposure to oil (SW) were collected in 2006 from an oil field complex on the 338 North Slope of Alaska. The seawater line sample consisted of fluids and solids from a 339 pigging operation, whereas the other samples were fluids. Two samples (PS and SW), 340 150 mL each) were filtered (0.45 μ m) and preserved in the field by the addition of 341 DNAzol® Direct (Molecular Research Center, Inc., Cincinnati, OH) to the filter then 342 extracted at OU using a bead-beating protocol (UltraClean[™] Mega Soil DNA Isolation, 343 MO BIO Laboratories, Inc., Carlsbad, CA). The remaining samples (20 mL) were first 344 concentrated by ethanol precipitation and the pellet resuspended in PCR-grade water 345 before extraction using a bead-beating protocol (PowerSoilTM DNA Isolation Kit, MO 346 BIO). 16S rRNA primers for eubacteria (16S/18S rRNA PCR Library Creation, 347 http://my.jgi.doe.gov/general/index.html, and 27F and 1492R for the seawater line (1), 348 ARC333F and 958R for archaea (1), dsrAB (dsr1F, dsr4R, 2), and mcrA primers (ME1 349 and ME2, 3) were used to obtain PCR products to create clone libraries (5 eubacterial 350 16S, 3 archaeal 16S, 4 dsrAB, 1 mcrA) using the TOPO® TA Cloning Kit (Invitrogen 351 Corp., Carlsbad, CA). A sixth, duplicate bacterial 16S library using primers 27F and 352 1492R (1) was created from one production well sample (2P) to compare the effect of 353 possible primer bias. Sequencing of the libraries was performed by the DOE Joint 354 Genome Institute (Lawrence Livermore Laboratory, Walnut Creek, CA). Results for the 355 *dsrAB* and *mcrA* libraries are briefly referred to in this work and will be reported in detail

356 later (manuscript in preparation). The duplicate bacterial 16S library created with primers 357 27F and 1492R from sample 2P gave the same dominant Petrobacter sequence (87.7% of 358 total sequences) and low sequence diversity as did the library created with 27F and 1391 359 (90.1% of total sequences were *Petrobacter*, see tables S1A and S2) and will not be 360 discussed further. 361 Primer binding sites were identified using the "Motifs" function in Sequencher 362 (version 4.7, Gene Codes, Ann Arbor, MI) as a guide to trim the sequences to 363 homologous regions, approximately 1250 bp for bacterial 16S rRNA gene sequences and 364 600 bp for archaea. The sequences in the clone libraries were aligned using the 365 greengenes NAST-aligner (4) and examined for chimeric sequences using the 366 Bellerophon program (5) available through the greengenes website (version 3, 367 http://greengenes.lbl.gov/cgi-bin/nph-bel3 interface.cgi). Potential chimeric sequences 368 identified by Bellerophon were further examined by Pintail (6) and comparing separate 369 regions of the sequences by BLASTN (7). Distance matrices (8, greengenes, "Create 370 distance matrix", http://greengenes.lbl.gov/cgi-bin/nph-distance matrix.cgi) were created 371 from each library after it had been purged of chimeras. The Lane mask filter (9) was 372 applied to limit distance matrix calculations to conserved portions of the aligned 373 sequences. DOTUR (10) was used to create the distance matrix to produce OTUs at the 374 97% level of similarity and calculate the Chao and ACE estimates of species richness and 375 Shannon-Weaver and Simpson measures of diversity reported in table S2. % library 376 coverage at the 97% level of similarity was estimated by the method of Good (11). One 377 representative sequence was chosen from each OTU, its taxonomic affiliation determined 378 by the RDP Classifier (12) and closest match to sequences in the GenBank database by

379 BLASTN (7; tables S1A and S1B). Distance matrices were constructed from the pooled

380 representative sequences originating from all libraries of the same type (e.g. 5 bacterial

381 libraries pooled into one, 3 archaeal libraries pooled into one) and DOTUR applied to

382 produce pooled-sample OTUs at the 97% level of similarity. Correct assignment of

383 pooled-sample OTU membership for each individual representative sequence within a

384 pooled-sample OTU was confirmed by inspection of the taxonomic affiliation and

385 BLASTN matches previously determined for the representative sequence.

386 Representative bacterial sequences were deposited in GenBank under accession numbers

387 FJ269280-FJ269403; representative archaeal sequences were assigned accession numbers

388 FJ446497-FJ446523.

389 Enrichments and isolation

390 General heterotrophs were enumerated in anaerobic half-strength tryptic soy broth

391 (Becton, Dickinson and Co.) plus 1% NaCl under a N2:CO2 atmosphere in a MPN assay

392 (13). Hydrogen oxidizers were enumerated in an anaerobic, reduced basal medium under

a H2:CO2 atmosphere (13). SRB were enumerated in a medium designed for rapidquantitation (13).

395 Metabolic profiling: Fluids (1 L) from the North Slope oil field were collected from

central facility (PS), production wells (2L, 2P, 2T), a pipeline carrying fluids and gas to

397 the central facility (2U), a water reinjection well (2K) and seawater lines (biocide-treated

seawater "TS", and fluids and solids scraped from the inner surface of the pipeline

399 carrying treated seawater "SW") and immediately preserved in the field with 50% HCl

400 (pH < 2) for metabolite analysis. Samples TS and SW were used to provide background

401 values as they do not contain hydrocarbons. Acidified samples were kept at room

402	temperature until they were extracted with ethyl acetate, dried over anhydrous Na ₂ SO ₄ ,
403	and concentrated by rotary evaporation and under a stream of N2. Concentrated extracts
404	were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) (Pierce
405	Chemical Co., Rockford, IL) to add trimethylsilyl groups for analysis by gas
406	chromatography-mass spectrometry (GC-MS). Derivatized components were separated
407	on a HP-5ms capillary column (30 m x 0.25 mm i.d., J&W Scientific, Folsom, CA) with
408	a starting oven temperature of 45°C (held 5 min) increasing at 4°C/min to 270°C (held 10
409	min) before mass spectral analysis. Metabolite identifications were made by comparison
410	with the GC-MS features of authentic standards or with previously reported MS profiles

411 (14-16).

413 Table S1A. Sequence similarity and taxonomic relationships of bacterial representative

414 small subunit partial rRNA gene sequences (OTUs at 97% similarity)

OTU	% of	Accession number	Most similar sequences* (accession no.)	%	Class**	Source
	total	totol # com	= 262 primara $27E$ 120	10 07	0/ OTUs from DOT	I ID
2P327SHNG718	90.1	FJ469286	ences =363, primers 27F, 139 <i>Petrobacter</i> sp. NFC7-F8 (EU250943)	99 99	β proteo	50°C compost
			Petrobacter sp. DM-3 (DQ539621)	99		Dagang oil field
2P17SHNG539	4.7	FJ469280	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	99	Synergistes	North Sea oil well
2P9SHNG554	2.5	FJ469288	Uncultured clone CK06- 06_Mud_MAS1B-28 (AB369171)	99	Mollicutes	Offshore drilling mud fluid
2P3SHNG611	0.8	FJ469287	Uncultured clone B5_B4 (EF025213)	99	Sphingobacteria	Turkey intestine
2P2SHNG411	0.6	FJ469285	Thermoanaerobacter pseudethanolicus ATCC 33223 (CP000924)	99	"Clostridia"	Octopus Springs
2P2SHNG385	0.6	FJ469284	Bradyrhizobium sp. JR016 (EF221629)	99	a proteo	Root nodule
2P1SHNG397	0.3	FJ469281	Uncultured Thermotogales clone bh459.f1.4.b07 (AM184116)	99	Thermotogae	Low-temp enrichment degrading polychlorinated biphenyls
2P1SHNG452	0.3	FJ469282	Stenotrophomonas sp. ROi7 (EF219038)	99	γ proteo	Reverse osmosis membrane
2P1SHNG731	0.3	FJ469283	Ralstonia pickettii 12J (CP001069)	99	β proteo	
	Well 2L	: total # sequ	ences = 648, primers 27F, 13	91R. 97	% OTU from DOTU	JR.
2L474SGX01136	73.1	FJ469308	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	99	Synergistetes	North Sea oil well
2L65SGXO482	10.0	FJ469310	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	99	Synergistes	North Sea oil well
2L27SGXO638	4.2	FJ469303	Desulfomicrobium thermophilum P6.2 (AY464939)	98	δ proteo	Hot spring in Colombia
2L14SGXO613	2.2	FJ469289	Thermoanaerobacter pseudethanolicus ATCC 33223 (CP000924)	99	"Clostridia"	Octopus Springs
2L9SGX0552	1.4	FJ469316	Thermosipho africanus (DQ647057)	99	Thermotogae	Shallow hydrothermal system
			<i>Thermosipho</i> sp. TBA5 AF231727	99		North Sea oil field
2L7SGXO640	1.1	FJ469315	Desulfacinum subterraneum (AF385080)	97	δ proteo	High temp Vietnam oil field
2L6SGXO418	0.9	FJ469313	Uncultured <i>Thermovirga</i> sp. clone TCB169x (DQ647105)	95	Synergistetes	North Sea oil well
2L6SGX01151	0.9	FJ469311	Uncultured organism clone ctg_NISA224 (DQ396164)	95	γ proteo	Deep-sea octacoral
			Shewanella sp. IS5	95		Diseased larval rock

2L6SGXO579	0.9	FJ469314	(AY967729) Uncultured clone Niigata- 10 (AB243821)	99	δ proteo	lobster cultures Niigata (Japan) oil well
			Pelobacter carbinolicus (CP000142)	97		wen
2L6SGXO407	0.9	FJ469312	Thermacetogenium phaeum strain PBT (AB020336)	98	"Clostridia"	Thermophilic anaerobic methanogenic reactor
2L5SGX0560	0.8	FJ469309	<i>Clostridium</i> sp. C9 (EU862317)	99	"Clostridia"	Off-shore oil well, India
2L3SGX0643	0.5	FJ469306	Thermodesulfobacterium commune DSM 2178 (AF418169)	99	Thermodesulfoba cteria	Yellowstone thermal spring
2L3SGXO888	0.5	FJ469307	Uncultured clone Niigata- 15 (AB243826)	99	"Clostridia"	Niigata (Japan) oil well
2L2SGXO601	0.3	FJ469304	Dehalococcoides sp. CBDB1 (AF230641)	99	Chloroflexi Dehalococcoides	Methanogenic enrichment from Saale river sediment
2L2SGX0622	0.3	FJ469305	Gram-positive thermophile strain ODP159-02 (AY704384)	94	"Clostridia"	Ocean ridge flank crustal fluid
2L1SGX0770	0.2	FJ469299	Sulfurospirillum sp. NO3A (AY135396)	99	ε proteo	Coleville (Canada) oil field
2L1SGX0762	0.2	FJ469298	Thermolithobacter thermoautotrophicus KA2b (AF282254)	98	Thermolithobacte ria	Yellowstone Calcite Springs
2L1SGX0814	0.2	FJ469301	Uncultured Natronoanaerobium sp. clone SHBZ503	88	"Clostridia"	Thermophilic microbial fuel cell
			(EU639010) Moorella thermoacetica ATCC 39073 (CP000232)	88		Horse manure
2L1SGXO566	0.2	FJ469295	Flexistipes sp. vp180 (AF220344)	98	Deferribacteres	High temperature oil reservoir
2L1SGXO817	0.2	FJ469302	Desulfotomaculum thermocisternum strain ST90 (U33455)	99	"Clostridia"	Hot North Sea oil reservoir
2L1SGXO1041	0.2	FJ469292	Pseudomonas stutzeri strain 24a97 (AJ312172)	99	γ proteo	Soil beneath filling station
2L1 SGXO442	0.2	FJ469293	Uncultured bacterium clone PL-25B8 (AY570610)	99	"Clostridia"	Low-temperature biodegraded Canadian oil reservoir
			Acetobacterium carbinolicum (AY744449)	99		
2L1SGX0751	0.2	FJ469297	Uncultured bacterium clone PL-38B5 (AY570590)	99	"Clostridia" (Anaerovorax, 100%)	Low-temperature biodegraded Canadian oil reservoir
2L1SGXO459	0.2	FJ469294	<i>Thermosipho africanus</i> strain Ob7 (DQ647057)	99	Thermotogae	
			Thermosipho sp. TBA5 (AF231727)	99		North Sea oil field
2L1SGXO697	0.2	FJ469296	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	97	Synergistetes	North Sea oil well
2L1SGX0811	0.2	FJ469300	Uncultured <i>Thermacetogenium</i> sp. clone B11_otu13 (DQ097678)	97	"Clostridia"	High temperature Dagang oil field (China)
2L1SGX01021	0.2	FJ469290	(DQ057078) Thermosipho geolei (AJ272022)	99	Thermotogae	Siberian oil reservoir
2L1SGX01038	0.2	FJ469291	Uncultured Spirochaetaceae clone	99		North Sea oil field

			TCB129x (DQ647164) <i>Spirochaeta</i> sp. MET-E (AY800103)	99		Congo oil field
1 st s	stage sepa	arator: total=	544 sequences, primers 27F,	1391 R.	97% OTUs from D	OTUR.
PS313SGXI1055	57.7	FJ469337	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	99	Synergistetes	North Sea oil well
PS74SGXI1247	13.6	FJ469348	Thermoanaerobacter pseudethanolicus ATCC 33223 (CP000924)	99	"Clostridia"	Octopus Springs
			<i>Thermoanaerobacter</i> strain X514(CP000923)	99		Colorado deep subsurface, iron- reducing
PS39SGXI1143	7.2	FJ469338	Desulfomicrobium thermophilum P6.2 (AY464939)	99	δ proteo	Hot spring in Colombia
PS20SGXI1921	3.7	FJ469333	Uncultured bacterium clone Niigata-10 (AB243821)	99	δ proteo	Niigata (Japan) oil well
			Pelobacter carbinolicus DSM 2380 (CP000142)	97		
PS10SGXI1101	1.8	FJ469317	Thermosipho africanus (DQ647057)	99	Thermotogae	Hot North sea oil field
PS9SGXI1270	1.7	FJ469351	Thermacetogenium phaeum (AB020336)	99	"Clostridia"	Thermophilic anaerobic methanogenic reactor
PS8SGXI1894	1.5	FJ469350	Halomonas meridiana strain aa-9 (EU652041)	99	γ proteo	Ocean sediment
PS8SGXI1020	1.5	FJ469349	Halomonas sp. A-07 (AY347310)	99	γ proteo	Tanzania soda lakes
PS6SGXI1029	1.1	FJ469345	Thermodesulfobacterium commune DSM 2178 (AF418169)	99	Thermodesulfo- bacteria	Yellowstone thermal spring
PS6SGXI904	1.1	FJ469347	Thermotoga petrophila RKU-1 (CP000702)	99	Thermotogae	Kubiki oil reservoir, Niigata, Japan
PS6SGXI1183	1.1	FJ469346	Desulfacinum subterraneum (AF385080)	97	δ proteo	High temp Vietnam oil field
PS5SGX11002	0.9	FJ469344	Uncultured bacterium clone S25_271 (EF573927)	99	γ proteo	Costa Rica island
			Marinobacter bacchus strain FB3 (DQ282120)	99		Evaporation pond of wine wastewater
PS4SGXI1172	0.7	FJ469341	Uncultured Natronoanaerobium sp. clone SHBZ503 (EU639010)	87	"Clostridia"	Thermophilic microbial fuel cell
			Moorella thermoacetica AMP (AY884087)	87		Methanogenic sludge
PS4SGXI910	0.7	FJ469343	Delftia acidovorans SPH- 1 (CP000884)	99	β proteo	Sewage treatment plant
PS4SGXI1530	0.7	FJ469342	Thermotoga naphthophila RKU-10 (AB027017)	87	Thermotogae	Kubiki oil reservoir, Niigata, Japan
PS4SGXI1065	0.6	FJ469339	Marinobacter hydrocarbonoclasticus MARC4F (DQ768638)	99	γ proteo	Middle Atlantic Ridge Sediment
PS3SGXI1245	0.6	FJ469340	Uncultured clone MAT- CR-H3-B03 (EU245152)	85	unclassified	Hypersaline microbial mat, P.R.
PS2SGXI1098	0.4	FJ469335	Petrotoga siberica strain SL25T (AJ311702)	99	Thermotogae	Siberian oil reservoir
PS2SGXI1003	0.4	FJ469334	Desulfotomaculum thermocisternum (U33455)	99		Hot North Sea oil reservoir

PS2SGXI1381	0.4	FJ469336	Thermotogales TBF19.5.1 (EU980631)	99	Thermotogae	North Sea oil production fluid
PS1SGXI1064	0.2	FJ469318	<i>Thermosipho geolei.</i> DSM 13256 (AJ272022)	98	Thermotogae	Siberian oil reservoir
PS1SGXI1111	0.2	FJ469319	Uncultured bacterium clone Zplanct13 (EF602474)	93	unclassified	Zodletone Spring source sediments
PS1SGXI1133	0.2	FJ469320	Uncultured Sulfurospirillum sp. clone LA4-B52N (AF513952)	93	ε proteo	Hawaiian lake water
			Sulfurospirillum carboxydovorans (AY740528)	93		North Sea sediment
PS1SGXI1244	0.2	FJ469321	<i>Geotoga aestuarianus</i> strain T3B (AF509468)	99	Thermotogae	Karst sink hole thiosulfate-reducer
PS1SGXI1249	0.2	FJ469322	Burkholderia multivorans strain LMG 13010 ^T (Y18703)	99	β proteo	Cystic fibrosis patient
PS1SGXI1260	0.2	FJ469323	Uncultured bacterium clone: HDBW-WB60 (AB237723)	99	"Clostridia"	Deep subsurface groundwater
PS1SGXI1272	0.2	FJ469324	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	97	Synergistetes	North Sea oil well
PS1SGXI1281	0.2	FJ469325	Uncultured <i>Thermovirga</i> sp. clone TCB8y	97	Synergistetes	North Sea produced water
PS1SGXI1300	0.2	FJ469326	<i>Marinobacterium</i> sp. IC961 strain IC961	99	γ proteo	Carbazole-utilizing bacterium
PS1SGXI1313	0.2	FJ469327	Uncultured bacterium a2b00 (AF419657)	92	unclassifed	Hydrothermal sediments in the Guaymas Basin
PS1SGXI1413	0.2	FJ469328	Uncultured Thermacetogenium sp. clone B11_otu13 (DQ097678)	98	"Clostridia"	High temperature Dagang oil field (China)
PS1SGXI1848	0.2	FJ469329	Pseudomonas putida W619 (CP000949) Pseudomonas sp. OCR2 (AB240201)	100 99	γ proteo	Japan:Shizuoka, Sagara oil field
PS1SGXI1964	0.2	FJ469330	Uncultured <i>Thermovirga</i> sp. clone TCB169x (DQ647105)	96	Synergistetes	High temp North Sea oil field
PS1SGXI1984	0.2	FJ469331	Uncultured bacterium gene (AB195893)	96	Bacteroidetes	Anaerobic sludge
PS1SGXI995	0.2	FJ469332	<i>Desulfotignum balticum</i> DSM 7044 (AF418176)	99	δ proteo	Marine coastal sediment, Baltic Sea
(Coalescer	: total # sequ	ences = 329. primers 27F, 12	391 R.97	% OTUs from DO	ΓUR.
CO105SHNF404	31.9	FJ469352	<i>Thermovirga lienii</i> Cas60314 (DQ071273)	99	Synergistetes	High temp North Sea oil field
			Uncultured <i>Thermovirga</i> sp. clone TCB8y (DO647105)	99		High temp North Sea oil field
CO60SHNF483	18.2	FJ469383	Desulfocaldus sp. Hobo (EF442977)	99	δ proteo	Not specified
			Desulfomicrobium thermophilum P6.2 (AY464939)	99	δ proteo	Hot spring in Colombia
CO46SHNF563	14.0	FJ469378	Uncultured bacterium clone: Niigata-10 (AB243821)	99	δ proteo	Niigata (Japan) oil well
			Pelobacter carbinolicus DSM 2380 (CP000142)	97		

CO26SHNF710	7.9	FJ469371	Thermoanaerobacter pseudethanolicus ATCC	100	"Clostridia"	Octopus Springs
CO12SHNF562	3.6	FJ469354	33223(CP000924) Uncultured bacterium clone cc187 (DQ057384)	100	β proteo	Chicken intestine
			Beta proteobacterium B7 AF035053	98		Drinking water system
CO11SHNF516	3.3	FJ469353	Thermodesulfobacterium commune DSM 2178 (AF418169)	99	Thermodesulfoba cteria	Yellowstone thermal spring
CO7SHNF526	2.1	FJ469386	Stenotrophomonas maltophilia strain DN1.1 (EU034540)	99	γ proteo	Not specified
			Uncultured bacterium clone Ana10UA-2 (EU499720)	99	γ proteo	Freshwater sediment
CO6SHNF422	1.8	FJ469384	Bradyrhizobium japonicum strain SEMIA 6164 (AY904765)	99	α proteo	Acacia root nodule
CO6SHNF588	1.8	FJ469385	Desulfacinum subterraneum (AF385080)	98	δ proteo	High temp Vietnam oil field
CO5SHNF732	1.5	FJ469382	Thermacetogenium phaeum strain PBT (AB020336)	99	"Clostridia"	Thermophilic anaerobic methanogenic reactor
CO5SHNF565	1.5	FJ469380	Ralstonia pickettii 12J	100	β proteo	Seafloor lavas from
			(CP001069) Uncultured bacterium clone P7X3b4E02 (EU491068)	100	β proteo	the Loi'hi Seamount South Rift X3
CO5SHNF607	1.5	FJ469381	Uncultured clone B5_B4 (EF025213)	100	Sphingobacteria	Turkey intestine
			Sediminibacterium salmoneum (EF407879)	96		Eutrophic reservoir
CO4SHNF461	1.2	FJ469379	Mesorhizobium plurifarium,strain LMG 10056 (Y14161)	99	a proteo	Tropical tree
CO3SHNF446	0.9	FJ469375	Uncultured Natronoanaerobium sp. clone SHBZ503	88	"Clostridia"	Microbial fuel cell
			(EU639010) Moorella thermoacetica ATCC 39073 (CP000232)	88		Horse manure
CO3SHNF573	0.9	FJ469376	Beta proteobacterium A1040 (AF236008)	99	β proteo	Not specified
			Beta proteobacterium MB7 (AB013409)	99		Soil isolate degrading aliphatic polyesters
CO3SHNF586	0.9	FJ469377	Hyphomicrobium sp. P2 (AF148858)	99	a proteo	Portuguese soil
CO2SHNF510	0.6	FJ469373	Thermosipho africanus (DQ647057)	99	Thermotogae	Shallow hydrothermal system
			Thermosipho sp. TBA5 AF231727	99		North sea oil field
CO2SHNF508	0.6	FJ469372	Solemya velum symbiont (M90415)	99	γ proteo	Sulfur-oxidizing mollusk symbiont
CO2SHNF712	0.6	FJ469374	Spirochaeta thermophila (X62809)	98	Spirochaetes	Kuril Island hot springs
CO1SHNF389	0.3	FJ469355	Uncultured Hydrogenothermus sp. clone OPPB154	99	Aquificales	Yellowstone Obsidian Pool
			(AY861874) Aquificales bacterium	99		Yellowstone Calcite

CO1SHNF407	0.3	FJ469356	YNP-SS1 (AF507961) Desulfomicrobium norvegicum strain DSM	99	δ proteo	Springs Oslo Harbour water
CO1SHNF410	0.3	FJ469357	1741T (AJ277897) <i>Marinobacter bacchus</i> strain FB3 (DQ282120)	99	γ proteo	Wine wastewater
CO1SHNF443	0.3	FJ469358	<i>Thermotoga elfii</i> strain SM-2 (EU276416)	99	Thermotogae	Not specified Oil-production water
CO1SHFN484	0.3	FJ469359	Uncultured bacterium clone rRNA082 (AY958855)	98	Sphingobacteria	Human vaginal epithelium
			(A1938855) Solibium sp. I-32 (AM990455)	97		Ultra pure water
CO1SHNF528	0.3	FJ469360	Uncultured clone B5_F26 (EF025264)	99	Sphingobacteria	Turkey intestine
			Flavobacteria bacterium KF030 (AB269814)	94		Freshwater lake
CO1SHNF536	0.3	FJ469361	Uncultured bacterium clone PS18 (DQ984666)	93	"Clostridia"	Sulfate-reducing LCFA enrichment
CO1SHFN544	0.3	FJ469362	Syntrophomonas palmitatica (AB274040) Uncultured	93 98	"Clostridia"	Methanogenic sludge High temperature
	0.5	1010/002	Thermacetogenium sp. clone B11_otu13 (DQ097678)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Crossinaia	Dagang oil field (China)
CO1SHNF610	0.3	FJ469363	Desulfovibrio aespoeensis clone Aspo3 (EU680957) Desulfovibrio aespoeensis isolate Aspo2 (X95230)	98	δ proteo	Aespoe hard rock
CO1SHNF612	0.3	FJ469364	<i>Thermotoga petrophila</i> RKU-1 (AJ872269)	100	Thermotogae	Kubiki oil reservoir
CO1SHNF615	0.3	FJ469365	Uncultured Termite group 1 bacterium clone HAVOmat14 (EF032762)	99	candidate division TG1	Cyanobacterial mat in Hawaiian lava cave
CO1SHNF622	0.3	FJ469366	Thermotogales bacterium 2SM-2 (EU276414)	100	Thermotogae	Oil-production water
CO1SHNF639	0.3	FJ469367	Thermolithobacter thermoautotrophicus	99	Thermolithobacte ria	Yellowstone Calcite Springs
CO1SHNF644	0.3	FJ469368	clone KA2b (AF282254) Thermoanaerobacteriacea e clone	95	"Clostridia"	Terrestrial subsurface fluid-filled fracture
			EV818FW062101BH4M D48 (DQ079638)	~ -		
	0.0	FLACORCO	Moorella thermoacetica strain AMP (AY884087)	95		Methanogenic sludge
CO1SHNF669	0.3	FJ469369	Uncultured Anaerovorax sp. clone C14B-1H (EU073780)	97	"Clostridia"	Coal enrichment culture
			Clostridiaceae bacterium FH042 (AB298771)	96		Anaerobic sludge of a methanogenic reactor
CO1SHNF695	0.3	FJ469370	Desulfovibrio sp. X (EF442979)	99	δ proteo	Not specified
			Desulfovibrio zosterae (Y18049)	95		Roots of seagrass (Zostera marina)
Seawate SW76FGIT720	er pig en 35.3	FJ469401	# sequences = 215. primers 2 Pseudomonas sp. HZ06 (AY690706)	27F, 149 99	92R. 97% OTUs from γ proteo	m DOTUR Rhizosphere soil of salt marshes
SW55FGIT591	25.6	FJ469399	Pseudomonas stutzeri strain aa-28 (EU652047)	99	γ proteo	Ocean sediment
SW35FGIT483	16.3	FJ469395	Uncultured proteobacterium clone	97	ε proteo Sulfurimonas	Guaymas Basin hydrothermal vent

SW12FGIT423	5.6	FJ469387	B01R008 (AY197379) Pseudomonas sp. EP27 (AM403529)	98	γ proteo	sediments Deep-sea sediments
SW9FGIT664	4.2	FJ469403	Uncultured Arcobacter sp. clone DS172 (DQ234254)	98	ε proteo Arcobacter	Mangrove
SW7FGIT497	3.3	FJ469402	Uncultured bacterium clone W26 (AY770966)	98	γ proteo Pseudomonas	Water injection well of Dagang oilfield
SW5FGIT667	2.3	FJ469400	Uncultured <i>Pseudomonas</i> sp. clone Lupin-1130m-2- MDA-pse3 (EF205269)	98	γ proteo	Lupin gold mine fracture water
SW3FGIT405	1.4	FJ469396	Pseudomonas marincola (AB301071)	96	γ proteo	Deep-sea brittle star
SW3FGIT554	1.4	FJ469397	Uncultured alpha proteobacterium clone 131582 (AY922182)	97	ε proteo Arcobacter	Grey whale bone, Pacific Ocean, depth 1674 meters
SW3FGIT592	1.4	FJ469398	Uncultured epsilon proteobacterium clone: NKB11 (AB013263)	96	ε proteo Sulfurimonas	Nankai Trough sediments
SW1FGIT389	0.5	FJ469388	"Gamma" proteobacterium IR (AF521582)	99	γ proteo /unclassified	Not specified "Diversity of marine humics-oxidizing bacteria"
SW1FGIT424	0.5	FJ469389	Uncultured bacterium clone B8S-8 (EU652615)	88	δ proteo	Yellow Sea sediment
SW1FGIT462	0.5	FJ469390	<i>Phaeobacter arcticus</i> strain 20188 (DQ514304)	99	α proteo	Arctic marine sediment
SW1FGIT467	0.5	FJ469391	Uncultured bacterium clone GZKB9 (AJ853504)	97	ε proteo Arcobacter	Landfill leachate
SW1FGIT501	0.5	FJ469392	Uncultured delta proteobacterium clone d13 (AY062878)	98	δ proteo Desulfuromonas	Electrode surface
SW1FGIT563	0.5	FJ469393	Uncultured bacterium clone P9X2b3A09 (EU491225)	86	δ proteo /unclassified	Seafloor lavas
SW1FGIT660	0.5	FJ469394	Uncultured bacterium ARCTIC23_B_12 (EU795085)	99	Flavobacteria Polaribacter	Arctic

Table 1B. Sequence similarity and taxonomic relationships of archaeal representative

small subunit partial rRNA gene sequences (OTUs at 97% similarity)

OTU	% of	Accession number	Most similar sequences (accession no.)	%	Orders	Source				
total Well 2P: total # sequences =226, primers ARC333 and 958R, 97% OTUs from DOTUR										
2P66FGIP571	29.2	FJ446503	Archaeon enrichment culture clone PW5.2A (EU573152)	100 a	Thermococcales	Ekofisk oil field				
			Thermococcus alcaliphilus DSM 10322 (AB055121)	100						
2P66FGIP425	29.2	FJ446502	Uncultured archaeon SSE_L4_E01(EU635901)	99	Archaeoglobales	Hot spring sediment				
			Archaeoglobus fulgidus strain L3 (DQ374392)	97						
2P64FGIP517	28.3	FJ446501	Methanothermobacter thermautotrophicus strain JZTM (EF100758)	99	Methanobacterial es	Jiaozhou Bay sediment				
			<i>M. wolfeii</i> strain KZ24a (DQ657904)	99		Dagang oil field				
2P26FGIP436	11.5	FJ446499	Uncultured Methanobacteriaceae	99	Methanobacterial es	Dagang oil field				
			clone A1m_OTU 3 (DQ097668)							
			Methanothermobacter thermautotrophicus strain JZTM (EF100758)	96		Jiaozhou Bay sediment				
2P2FGIP540	0.9	FJ446500	Archaeon enrichment culture clone PW30.6A	99	Archaeoglobales	Ekofisk oil field				
			(EU573155) Archaeoglobus sp. NI85- A (AB175518)	99		Deep-sea hydrothermal vent chimney				
2P1FGIP407	0.4	FJ446497	Uncultured archaeon SSE L4 E01(EU635901)	98	Archaeoglobales	Hot spring sediment				
			Archaeoglobus fulgidus strain L3 (DQ374392)	97						
2P1FGIP710	0.4	FJ446498	Uncultured clone QHO- A15 (DQ785496)	96 06	Methanobacterial es	High temperature oil field in China				
1 st store	comorato	ver totol # com	Methanobacterium sp. F (AB302952) nences =252, primers ARC3.	96	59D 070/ OTUs from	Rice paddy soil				
PS70SGXN402	27.8	FJ446513	Thermococcus mexicalis strain GY 869 (AY099181)	99	Thermococcales	Hydrothermal deep- sea vents				
			Thermococcus sibiricus (AJ238992)	99		Siberian high- temperature oil reservoir				
PS56SGXN497	22.2	FJ446512	<i>Archaeoglobus fulgidus</i> DSM 4304 (AE000782)	99	Archaeoglobales					
			Archaeoglobus fulgidus strain L3 (DQ374392)	99						
PS35SGXN478	13.9	FJ446511	Uncultured archaeon clone NAK1-a1 (DQ867048)	99	Methanobacterial es	High-temperature natural gas field				
			Uncultured bacterium clone QHO-A27 (DQ785508)	99		High-temperature petroleum reservoir				

			Methanothermobacter thermautotrophicus strain	96		Jiaozhou Bay sediment
PS29SGXN477	11.5	FJ446509	JZTM (EF100758) Uncultured archaeon clone NAK1-a1 (DQ867048) Methanothermobacter	99	Methanobacterial es	High-temperature natural gas field
			<i>thermautotrophicus</i> strain JZTM (EF100758)	99		Jiaozhou Bay sediment
PS22SGXN482	8.7	FJ446508	Methanogenic archaeon ZC-1 (DQ787474) "Methermicoccus shengliensis"	99	Methanosarcinale s	Oil production water
PS11SGXN711	4.4	FJ446504	Uncultured Desulfurococcales YNP_SSp_A61 (DQ243776)	100	Desulfurococcale s (Crenarcheota)	Yellowstone hot springs
			Staphylothermus achaiicus (AJ012645)	94		Geothermal vents, Greece
PS8SGXN439	3.2	FJ446514	<i>Thermococcus</i> <i>acidaminovorans</i> strain DSM 11906 (AY099170) Archaeon enrichment	100	Thermococcales	Hydrothermal deep- sea vents, Italy
			culture clone EA3.5 (EU573147)	99		Ekofisk oil field
PS8SGXN687	3.2	FJ446515	Uncultured archaeon clone SSE_L4_H05 (EU635920)	99	Desulfurococcale s (Crenarchaeota)	Nevada hot spring sediment
			Thermosphaera aggregans (X99556)	99		Yellowstone hot spring
PS8SGXN753	3.2	FJ446516	Uncultured archaeon G04b_L4_A09 (EU635911)	99	Thermoproteales (Crenarchaeota)	Nevada hot spring sediment
			Vulcanisaeta distributa strain IC-065 (AB063639)	87		Japan hot spring
PS2SGXN537	0.8	FJ446510	Uncultured crenarchaeote WIP_20m_6B_A (EF420183)	99	Desulfurococcale s (Crenarcheota)	Canadian oil sands tailings pond
			"Desulfurococcus kamchatkensis" (EU167539)	86		Kamchatka hot spring
PS1SGXN453	0.4	FJ446505	Archaeon enrichment culture clone PW30.6A (EU573155)	99	Archaeoglobales	Ekofisk oil field
			Archaeoglobus profundus (AF297529)	98		
PS1SGXN470	0.4	FJ446506	Thermococcus mexicalis strain GY 869 (AY099181)	99	Thermococcales	Hydrothermal deep- sea vents
			Thermococcus sibiricus (AJ238992)	99		Siberian high- temperature oil reservoir
PS1SGXN592	0.4	FJ446507	Archaeon enrichment culture clone PW15.7A (EU573156)	99	Archaeoglobales	Ekofisk oil field
-			Archaeoglobus profundus (AF297529)	90		
Coa CO146FGIO3	lescer: to 60.8	otal # sequenc FJ446519	es = 240, primers ARC333 at Uncultured archaeon SSE_L4_E01(EU635901)	nd 9581 99	R, 97% OTUs from D Archaeoglobales	OTUR Hot spring sediment

			Archaeon enrichment culture clone EA8.8 (EU573151)	98		Ekofisk oil field
			Archaeoglobus fulgidus strain L3 (DQ374392)	98		
CO64FGIO506	26.7	FJ446522	Thermococcus alcaliphilus DSM 10322 (AB055121)	100	Thermococales	
			Archaeon enrichment culture clone PW5.2A (EU573152)	99		Ekofisk oil field
CO12FGIO387	5.0	FJ446518	Uncultured archaeon SSE_L4_E01(EU635901)	96 06	Archaeoglobales	Hot spring sediment
			Ferroglobus placidus (AF220166)	96		
CO10FGIO395	4.2	FJ446517	Archaeon enrichment culture clone PW30.6A (EU573155)	99	Archaeoglobales	Ekofisk oil field
			Archaeoglobus profundus (AF297529)	98		
CO6FGIO519	2.5	FJ446523	Uncultured Methanothermobacter sp. clone ARCA-3F (EU073827)	99	Methanobacteria les	Coal enrichment culture
			Methanothermobacter			Jiaozhou Bay
			thermautotrophicus strain JZTM (EF100758) Methanothermobacter	99		sediment
			<i>wolfeii</i> strain KZ24 (DQ657904)	99		Dagang oil field
CO1FGIO425	0.4	FJ446520	Archaeon enrichment culture clone PW30.6A (EU573155)	96	Archaeoglobales	Ekofisk oil field
			Ferroglobus placidus (AF220166)	96		
CO1FGIO557	0.4	FJ446521	Uncultured crenarchaeote Clone MDS-r-E06	98	Desulfurococcal es	Mesophilic digested sludge
			(AB353218) "Desulfurococcus kamchatkensis" strain 1221n (EU167539)	86	(Crenarchaeota)	Kamchatka hot spring

⁴¹⁹ 420

422 ** Class affiliation, as determined by Classifier (RDP).

424 One sequence from each operational taxonomic unit (OTU) at the 97% level of similarity

- 425 as defined by DOTUR (10) was chosen from among the sequences in that OTU and its
- 426 taxonomic affiliation and closest GenBank match was determined. Representative
- 427 sequences are named with the first two letters indicating the sample origin, the following

^{421 *} most similar sequence and/or isolate in Genbank, as determined by BLASTN.

- 428 numerals designate the total number of sequences within that particular OTU. The final
- 429 four letters and 3-4 numbers are the JGI code identifying the sample library and location
- 430 within the 384-well plate.

431 Table S2. Measures of genetic diversity and species richness.

432				e	<i>y</i> 1				
	Sample code	# clon es	# 99.9% OTUs (%)	# 97% OTUs (%)	S _{Chao1} (97%) (95% CI)	ACE (97%) (95% CI)	Н (97%)	S (97%)	% library coverage (97%)
	SWBAC	215	91	17	38 (22.1-103.3)	27.2 (19.4-59.8)	1.86 (1.71-2.01)	0.2205	97.2
	2PBAC	334	35	9	10 (9.09-19.7)	13.9 (9.8-36.8)	0.47 (0.36-0.59)	0.8139	99.2
	2LBAC	648	280	28	54 (34.8-127.2)	45.8 (33.7-83.7)	1.21 (1.08-1.34)	0.5474	98.0
	PSBAC	544	267	35	61.3 (42.4-127.5)	53.2 (41.5-86.2)	1.76 (1.63-1.91)	0.3567	97.2
	COBAC	329	60	35	65 (43.7-138.2)	56.1 (42.4-95.0)	2.36 (2.21-2.51)	0.1633	95.1
	2PARC	226	82	7	7.5 (7.0-15.3)	10 (7.5-25.4)	1.41 (1.34-1.49)	0.2608	99.1
	PSARC	252	83	13	14.5 (13.2-28.1)	15.9 (13.4-33.5)	2.00 (1.89-2.10)	0.1684	98.8
	COARC	240	63	7	8 (7.07-20.8)	9.2 (7.3-26.5)	1.07 (0.95-1.20)	0.4418	99.2
100					. /		. /		

433

434 SWBAC: Bacterial 16S rRNA library from seawater pig envelope sample.

435 2PBAC: Bacterial 16S rRNA library from well 2P sample.

436 2LBAC: Bacterial 16S rRNA library from well 2L sample.

437 PSBAC: Bacterial 16S rRNA library from 1st stage separator sample.

438 COBAC: Bacterial 16S rRNA library from coalescer sample.

439 2PARC: Archaeal 16S rRNA library from well 2P sample.

440 PSARC: Archaeal 16S rRNA library from 1st stage separator sample.

441 COARC: Archaeal 16S rRNA library from coalescer sample.

442

443 # OTUs, SChao1 (97%), ACE (97%), H (Shannon-Weaver), S (Simpson's index) were

444 estimated using DOTUR (10).

445 % library coverage was estimated by the method of Good (11) for sequences at 97%

446 similarity.

447 95% CI: 95% confidence interval values.

Table S3. Core and dominant bacterial OTUs (97% similarity) and physiologies.

449 450

OTU closest match (% similarity)	%*	closest match	2L	2P	PS	СО	SW	Total #
Thermovirga lienii (DQ071273)	99	Bacteria: Core 2L, PS, Co 17*** Fermentative, H ₂ S from 5 cystine/S°	40**	17	313	105	0	975
Desulfomicrobium thermophilum (AY464939)	98	¹⁸ SRB	27	0	39	60	0	126
Thermosipho africanus/geolei (DQ647057/AJ272022)	99	¹⁹ H ₂ S from S ^O	10	0	11	2	0	23
Uncultured clone/Pelobacter carbinolicus (AB243821/CP000142)	97	Fermentative, Syntroph, ¹⁹ H ₂ S from cystine/S ^O , IR	6	0	20	46	0	72
Desulfacinum subterraneum (AF385080)	97	²⁰ SRB	7	0	6	6	0	19
Thermodesulfobacterium commune (AF418169)	98	²⁰ SRB	3	0	6	11	0	20
Thermoanaerobacter pseudethanolicus/X514 (CP000924/CP000923)	99	²¹ Fermentative, IR (some strains), thiosulfate reduction	14	2	74	26	0	116
Thermacetogenium phaeum (AB020336)	98	²² Acetogen, Syntroph, Sulfate/thiosulfate reduction	6	0	9	5	0	20
Uncultured <i>Thermacetogenium</i> clone B11_otu13 (DQ097678)	97	Uncultured	1	0	1	1	0	3
Moorella thermoacetica (AY884087)	86	Fermentative	1	0	4	3	0	8
Petrobacter sp. DM-3 (DQ539621)	99	Bacteria: dominant 2P ²³ Fermentative NR	0	327	0	0	0	327
Pseudomonas stutzeri/putida	98	Bacteria: dominant SW ²⁴ NR- and/or HC- degrading (some)	1	0	1	0	143	145

451

*: % similarity 452

- 453 **: number of sequences per sample
- 454 ***: reference
- 455 SRB: sulfate-reducing bacteria
- 456 IR: iron reduction
- 457 NR: nitrate reduction

Table S4. Dominant archaeal OTUs (97% similarity) and physiologies.

OTU closest match (% similarity)	%	Physiology of closest match (25)	2P	PS	CO	Total #
Archaea: Core 2P, PS, CO Archaeoglobus fulgidus DSM 4304/L3 (AE000782/DQ374392)	98	SRA	66**	56	158	280
<i>Thermococcus alcaliphilus/mexicalis/sibiricus</i> (AB055121/AY099181/AJ238992)	99	Fermentative, H_2S from S^O , IR (<i>T. sibiricus</i>)	66	78	64	208
Methanothermobacter thermautotrophicus (EF100758)	99	Methanogen H ₂ -utilizing	64	29	6	99
Uncultured Methanobacteriaceae clone A1m OTU 3 (DQ097668)	99	Uncultured, from Dang oil field	26	35	0	61
Archaeoglobus profundus (AF297529)	98	SRA	2	1	11	14
*· % similarity						

- *: % similarity
- **: number of sequences per sample
- SRA: sulfate-reducing archaea
- IR: iron reduction

467 References for Supporting Online Material

- 468 1. L. M. Gieg, K. E. Duncan, J. M. Suflita, Appl. Environ. Microbiol.74, 3022-3029
- 469 (2008).
- 470 2. M. Klein et al., J. Bacteriol. 183, 6028–6035 (2001).
- 471 3. B. A. Hales *et al.*, *Appl. Environ. Microbiol.* **62**, 668–675 (1996).
- 472 4. T. Z. P. DeSantis *et al.*, *Nucleic Acids Res.* **34**, W394-9 (2006a).
- 473 5. T. Huber, G. Faulkner, P. Hugenholtz. *Bioinform.* 20, 2317-2319 (2004).
- 474 6. K. E. Ashelford, N. A. Chuzhanova, J. C. Fry, A. J. Jones, A. J. Weightman, Appl.
- 475 *Environ. Microbiol.* **71**, 7724-7736 (2005).
- 476 7. S. F. Altschul *et al.*, *Nucleic Acids Res* 25, 3389-3402 (1997).
- 477 8. T. Z. P. DeSantis *et al.*, *Appl. Environ. Microbiol.* **72**, 5069-5072 (2006b).
- 478 9. D. J. Lane, in *Nucleic Acid Techniques in Bacterial Systematics*, E. Stackebrandt, M.
- 479 Goodfellow, Eds. (Wiley, Chichester, U.K., 1991), pp. 115–174.
- 480 10. P. D. Schloss, J. Handelsman, Appl. Environ. Microbiol. 71, 1501-1506 (2005).
- 481 11. I. J. Good, *Biometrika* 40, 237–264 (1953).
- 482 12. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, *Appl. Environ. Microbiol.* 73, 5261-
- **483** 5267 (2007).
- 484 13. R. S. Tanner, R. S. in *Manual of Environmental Microbiology*, C. J. Hurst et al. Eds.
- 485 (ASM Press, Washington, DC, ed. 3, 2007), pp. 69-78.
- 486 14. M. S. Elshahed, L. M. Gieg, M. J. McInerney, J. M. Suflita. *Environ. Sci. Tech.* 35,
 487 682-689 (2001).
- 488

- 489 15. L. M. Gieg, J. M. Suflita, in Petroleum Microbiology, B. Ollivier, M. Magot, Eds.
- 490 (ASM Press, Washington, D.C., 2005), pp. 337-356.
- 491 16. O. Kniemeyer *et al.*, *Nature* 449, 898-901 (2007).
- 492 17. H. Dahle, N. K. Birkeland, Int J Syst Evol Microbiol. 56,1539-1545 (2006).
- 493 18. F. Thevenieau, M. L. Fardeau, B. Ollivier, C. Joulian, S. Baena, *Extremophiles* 11,
- 494 295-303 (2007).
- 495 19. D. R. Lovley, E. J. Phillips, D. J. Lonergan, P. K. Widman, Appl. Environ.
- 496 *Microbiol.* **61**, 2132–2138 (1995).
- 497 20. N.-K. Birkeland, in Petroleum Microbiology, B. Ollivier, M. Magot, Eds. (ASM
- 498 Press, Washington, D.C., 2005) pp. 35-54.
- 499 21. B. Ollivier, J.-L. Cayol, in *Petroleum Microbiology*, B. Ollivier, M. Magot, Eds.
- 500 (ASM Press, Washington, D.C., 2005) pp. 71-88.
- 501 22. S. Hattori, Y. Kamagata, S. Hanada, H. Shoun, *Int J Syst Evol Microbiol.* 50,1601502 1609 (2000).
- 503 23. M. B. Salinas et al., Int J Syst Evol Microbiol. 54, 645-649 (2004).
- 504 24. N. J. Palleroni, in Bergey's Manual of Systematic Bacteriology, D. J. Brenner, N. R.
- 505 Krieg, J. T. Staley, G. M. Garrity, Eds. (Springer-Verlag. New York, NY, ed. 2, 2005)
- 506 Vol 2, 323–379.
- 507 25. C. Jeanthon, O. Nercessian, E. Corre, A. Grabowski-Lux, in Petroleum Microbiology,
- 508 B. Ollivier, M. Magot, Eds. (ASM Press, Washington, D.C., 2005) pp. 55-70.
- 509

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.