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Macromolecular antimicrobial agents such as cationic polymers and peptides have recently been under an increased level of
scrutiny because they can combat multi-drug-resistant microbes. Most of these polymers are non-biodegradable and are
designed to mimic the facially amphiphilic structure of peptides so that they may form a secondary structure on interaction
with negatively charged microbial membranes. The resulting secondary structure can insert into and disintegrate the cell
membrane after recruiting additional polymer molecules. Here, we report the first biodegradable and in vivo applicable
antimicrobial polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional
cyclic carbonate. We demonstrate that the nanoparticles disrupt microbial walls/membranes selectively and efficiently, thus
inhibiting the growth of Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and fungi, without
inducing significant haemolysis over a wide range of concentrations. These biodegradable nanoparticles, which can be
synthesized in large quantities and at low cost, are promising as antimicrobial drugs, and can be used to treat various
infectious diseases such as MRSA-associated infections, which are often linked with high mortality.

B
acteria are increasingly resistant to conventional antibiotics
and, as a result, macromolecular peptide-based antimicrobial
agents are now receiving a significant level of attention1,2.

Most conventional antibiotics (such as ciprofloxacin, doxycycline
and ceftazidime) do not physically damage the cell wall, but pene-
trate into the target microorganism and act on specific targets (for
example, causing the breakage of double-stranded DNA due to inhi-
bition of DNA gyrase, blockage of cell division and triggering of
intrinsic autolysins). Bacterial morphology is preserved and, as a
consequence, the bacteria can easily develop resistance. In contrast,
many cationic peptides (for example, magainins, alamethicin, pro-
tegrins and defensins) do not have a specific target in the microbes,
and instead interact with the microbial membranes through an elec-
trostatic interaction, causing damage to the membranes by forming
pores in them3. It is the physical nature of this action that prevents
the microbes from developing resistance to the peptides. Indeed, it
has been proven that cationic antimicrobial peptides can overcome
bacterial resistance4–6.

Most antimicrobial peptides have cationic and amphiphilic fea-
tures, and their antimicrobial activities largely depend on the for-
mation of facially amphiphilic a-helical7–9 or b-sheet-like tubular10

structures when interacting with negatively charged cell walls, fol-
lowed by diffusion through the cell walls and insertion into the lipo-
philic domain of the cell membrane after recruiting additional
peptide monomers. The disintegration of the cell membrane even-
tually leads to cell death. Over the last two decades, efforts have
been made to design peptides with a variety of structures, but there
has been limited success in clinical settings, and only a few cationic
synthetic peptides have entered phase III clinical trials1,11. This is
largely due to the cytotoxicity (for example, haemolysis) resulting
from their cationic nature, their short half-lives in vivo (they are
labile to proteases) and their high manufacturing costs1.

A number of cationic polymers that mimic the facially amphiphilic
structure and antimicrobial functionalities of peptides have been
proposed as a better approach, because they can be prepared more
easily and their synthesis can be more readily scaled up compared
with peptides. For example, antimicrobial polynorbornene12–14 and
polyacrylate15–17 derivatives, poly(arylamide)18, poly(b-lactam)19

and pyridinium copolymers20 have been synthesized either from
amphiphilic monomers (homopolymers) or from a cationic (hydro-
philic) monomer and hydrophobic comonomer (random copoly-
mers). It was found that polymers prepared from amphiphilic
monomers demonstrated a higher selectivity towards bacteria than
towards red blood cells (mammalian cells)20. In addition, the
overall hydrophobic/hydrophilic balance affected the antimicrobial
activity and selectivity of the polymers12,14,16. However, most antimi-
crobial polymers reported in the literature are non-biodegradable,
which limits their in vivo applications.

In this Article, we report the first biodegradable antimicrobial
polymers. Unlike the existing antimicrobial polymers, which do
not form a secondary structure before interacting with the microbial
membrane, our polymers can readily form cationic micellar nano-
particles by direct dissolution in aqueous solution. The formation
of nanostructures before coming into contact with the cell surface
is expected to enable more efficient interaction with the cell mem-
brane than is the case for individual polymer molecules. This is a
result of the increased local mass and cationic charges of the nano-
structures, which are important factors in the disintegration of the
cell membrane through electroporation and/or the sinking raft
model21. In addition, the large size of the micelles allows them to
readily disintegrate the cell wall. Our previous studies have proved
that an increased local concentration of cationic charge and
peptide mass after the formation of nanostructures led to stronger
antimicrobial activities22.
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Polycarbonates are attractive biomaterials because of their bio-
compatibility, biodegradability, low inherent toxicity and tunable
mechanical properties23–26. We have recently developed a versatile
living ring-opening polymerization (ROP) platform based on
metal-free organocatalysis, which opens up a new route for synthe-
sizing a variety of functional biodegradable polymers with predict-
able molecular weights and end-group fidelity27,28. In this study, we
describe the synthesis and polymerization of functional cyclic car-
bonate to offer cationic amphiphilic triblock polycarbonates that
exist in the form of cationic micellar nanoparticles in water. We
demonstrate that these self-assembled nanoparticles are excellent
antimicrobial drugs that selectively kill various microbes over mam-
malian red blood cells.

Results and discussion
Cationic triblock polycarbonates with three different compositions
were designed and synthesized (Fig. 1a) by the sequential ROP of
the MTC–(CH2)3Cl monomer (3-chloropropyl 5-methyl-2-oxo-
1,3-dioxane-5-carboxylate) followed by trimethylene carbonate
(TMC) initiated from a diol in the presence of a mixture of the
Lewis acid 1-(3,5-bis(trifluoromethyl)-phenyl)-3-cyclohexyl-2-
thiourea (TU) and the Lewis base 1,8-diazabicyclo[5.4.0]undec-7-
ene (DBU) as the catalyst. Quaternation of the central block with tri-
methylamine generated a cationic triblock copolymer containing
two blocks of poly-TMC (PTMC) and one block of cationic poly-
MTC (PMTC). The cationic PMTC block has a similar backbone

structure to PTMC. The PTMC block was designed to drive self-
assembly, and the cationic block was incorporated to interact with
the microbial wall/membrane. These polycarbonates have narrow
molecular weight distributions (listed in Supplementary Table S1),
a feature that is crucial in future clinical applications, as individual
molecular weight fractions of a polydisperse system are expected to
exhibit distinct pharmacological activities in vivo29. Polymer 2 has a
TMC (hydrophobic) block with a longer length than that in
polymer 1, whereas polymer 3 contains a longer length of cationic
(hydrophilic) block than in polymer 1.

No significant hydrolytic degradation was observed over 2 weeks
for either polymer 1 or polymer 3 in water (Supplementary Fig. S1).
It has been well established that aliphatic polycarbonates degrade via
an enzymatic process, and in vivo degradation behaviour is different
from that in vitro. For example, over 30 weeks, the weight of PTMC
film decreased by only 9% in vitro24. However, in rats, although the
degradation of PTMC film was still slow, it was more rapid than in
vitro, as the degradation process was accelerated by an enzymatic
process. The weight loss of PTMC in rats was 21.1% over
24 weeks. The degradation of polycarbonate produces an alcohol
and carbon dioxide. Because of its slow degradation, PTMC has
therefore been shown to have good biocompatibility in vivo26. In
the case of antimicrobial polycarbonates, slow degradation may
lead to prolonged antimicrobial functions. Furthermore, the slow
in vitro hydrolytic degradation of polycarbonates means they have
high stability and long shelf-lives.
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Figure 1 | Synthesis and micelle formation of cationic amphiphilic polycarbonates. a, Cationic amphiphilic polycarbonates were synthesized with a well-

defined structure and narrow molecular weight distribution. Based on light scattering, zeta potential, TEM and simulation analyses, these polymers easily

formed cationic micelles by direct dissolution in water. b,c, The formation of micelles was simulated through molecular modelling using Materials Studio

Software (b) (in the polymer molecule: red, O; white, H; grey, C; blue, N), and was observed in a TEM image of polymer 3 (c) (scale bar, 0.2mm).
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Such polycarbonates easily form cationic micelles by simply dis-
solving in water, and polymers 1, 2 and 3 have critical micelle con-
centrations (CMCs) of 35.5, 15.8 and 70.8 mg ml21 in deionized
water, respectively (see Supplementary Figs S2–S4). In the buffer
used for growing the bacteria in this study, the polymers have sig-
nificantly lower CMC values (17.8, 11.2 and 28.2 mg ml21, respect-
ively) due to the presence of salts in the buffer (Supplementary Figs
S2–S4). Compared to polymer 1, polymer 2, with a relatively longer
length of hydrophobic block, has a lower CMC due to the stronger
hydrophobic interaction between polymer 2 molecules leading to
micelle formation at lower concentrations. Polymer 3, with its rela-
tively longer length of hydrophilic block, has a higher CMC than
polymer 1 because of the increased repulsive forces experienced
by the longer hydrophilic block, which require more polymer mol-
ecules to come together to form a stronger hydrophobic interaction
for micelle formation30. The average diameters of the micelles self-
assembled from polymers 1 and 3 are 43 and 198 nm, respectively
(Supplementary Table S1). Polymer 2, with the hydrophobic
block with the greatest length, forms large aggregates that have an
average diameter of 402 nm. The micelles self-assembled from poly-
mers 1, 2 and 3 have positively charged surfaces with zeta potentials
of 47, 65 and 60 mV, respectively.

The micelle formation of polycarbonate in aqueous solution was
further demonstrated by means of coarse-grained simulation. This
simulation offers a microscopic understanding of the thermodyn-
amic properties and a detailedmolecularmodel of the self-assembled
micelles31–33. As illustrated by the simulation results (Fig. 1b), the
hydrophobic block (green) assembles into the core of the spherical
micelle, whereas the cationic block forms the shell (red).
Transmission electron microscopy (TEM) images of polycarbonates
in deionized water further prove that the micelles are spherical
(Fig. 1c). These positively charged micelles can interact easily with
the negatively charged surfaces of microbes by means of an electro-
static interaction, and can be taken up readily by the microbes.

Next, we evaluated the minimal inhibitory concentrations
(MICs) of the polymers against Gram-positive bacteria such as
Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and
methicillin-resistant S. aureus (MRSA), and the fungus
Cryptococcus neoformans. MIC is an important parameter com-
monly used to evaluate the activity of new antimicrobial agents,
and is generally defined as the minimum concentration of an anti-
microbial agent at which no visible growth of microbes is
observed12–14,16,18–20. Polymer 2 does not show an efficient inhibition
effect on microbial growth, with an MIC of more than 64.0 mM
against B. subtilis (Supplementary Fig. S5). This is because this
polymer (with a hydrophobic block with the greatest length) pre-
cipitates when in contact with the growth medium.

In sharp contrast, polymers 1 and 3 have a strong effect against
growth of the Gram-positive and drug-resistant Gram-positive bac-
teria, as well as the fungus. Their MIC values were cell-type-depen-
dent. Polymer 1 has MIC values of 9.7, 6.5, 5.1, 16.0 and 16.0 mM
against B. subtilis, S. aureus, MRSA, E. faecalis and C. neoformans,
respectively (Supplementary Fig. S6). The equivalent MICs of
polymer 3 are 4.3, 6.5, 7.0, 10.8 and 10.8 mM, respectively (Fig. 2),
which are significantly lower than those of polymer 1, especially
for B. subtilis, E. faecalis and C. neoformans, probably because of
the longer cationic blocks in each polymer 3 molecule.
Interestingly, the MICs of polymers 1 and 3 against all types of
microbes tested are higher than their CMCs in the buffer (that is,
17.8 mg ml21

¼ 2.9 mM and 28.2 mg ml21¼ 3.1 mM, respectively).
Individual polymer molecules are not potent enough to
inhibit microbial growth. However, the formation of micelles
increases the local concentration of cationic charge and
polymer mass, leading to strong interactions between the polymer
and cell wall/membrane, which may translate to effective
antimicrobial activities.
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Figure 2 | Dose-dependent growth inhibition of a range of bacteria and a

fungus in the presence of polymer 3. a, Bacillus subtilis. b, Staphylococcus

aureus. c, MRSA. d, Enterococcus faecalis. e, Cryptococcus neoformans. Polymer

3 efficiently inhibited growth of these microbes with MICs of 4.3, 6.5, 7.0,

10.8 and 10.8mM for a–e, respectively. The data are expressed as mean+

standard deviation of at least three replicates. Standard deviation is shown

by the error bars. OD, optical density.
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As a comparison, we tested the MICs of conventional antimicro-
bial agents that are used in clinical settings to treat infections caused
by these microbes, such as vancomycin for S. aureus, MRSA and
E. faecalis, and amphotericin B for C. neoformans (Supplementary
Fig. S7). When compared with these conventional antimicrobial
agents, the polymers demonstrated comparable antimicrobial activi-
ties against all the microbes except for E. faecalis. This is important,
because vancomycin-resistant E. faecalis34 and S. aureus35,36, as well
as amphotericin B-resistant C. neoformans37 have been reported,
and the resistant strains of these microbes are not susceptible to
conventional antimicrobial agents. This suggests that there is
an urgent need to develop safe and efficient macromolecular
antimicrobial agents.

To study if the polymers are microbicidal at the concentration
range corresponding to MICs and if the decreased MIC values
observed in Fig. 2b,c as well as in Supplementary Fig. S6B,C were
caused by the flocculation and precipitation of negatively charged
microbes out of solution, we also conducted colony assays in the
microbial samples treated with polymers 1 and 3 for 8 or 24 h, at
various concentrations. As was the case when the microbes were
treated with vancomycin and amphotericin B, both polymers
killed ≏100% of microbes at the concentration ranges correspond-
ing to their MICs as well as at high concentrations (Supplementary
Figs S8–S11). The reduced optical density values are not a result of
flocculation or precipitation of live bacteria, but could be caused by
aggregation of cationic micelles at high concentrations. Both poly-
mers are therefore microbicidal.

To explore the mechanism of the antimicrobial action of the
micelles, as an example we investigated the morphological
changes in MRSA, E. faecalis and C. neoformans before and after
incubation with the micelles formed from polymer 1 for 8 h at
lethal doses (10.8 mM for MRSA and 16.3 mM for E. faecalis and
C. neoformans, values slightly above the MICs). This was under-
taken using TEM observations. As shown in Fig. 3, the cell walls
and membranes of the microorganisms were damaged, and cell
lysis was observed after treatment with the micelles. In addition, a
large empty space was observed in the cytosol, as well as a burst
of the cytoplast, in the treated C. neoformans samples.

We hypothesize that the cationic micelles can interact easily with
the negatively charged cell wall by means of an electrostatic inter-
action, and the steric hindrance imposed by the mass of micelles
in the cell wall and the hydrogen-binding/electrostatic interaction
between the cationic micelle and the cell wall may inhibit cell wall
synthesis38 and/or damage the cell wall, resulting in cell lysis. In
addition, the micelles may easily permeate the cytoplasmic mem-
brane of the organisms due to the relatively large volume of the
micelles9, destabilizing the membrane as a result of electroporation
and/or the sinking raft model21, leading to cell death. To further
study the interactions between the microbes and the polycarbonate
micelles, we plan to incorporate a metal element into the polycarbo-
nate in the future, which would allow clear visualization of the
polymer nanoparticles within the microbes at different time
points by means of TEM.

Haemolysis is a major harmful side effect of many cationic anti-
microbial peptides and polymers. The haemolysis of mouse red
blood cells was evaluated after incubation with polymers 1 and 3
at various concentrations. Although the polymers disrupt microbial
walls/membranes efficiently (Fig. 3), they do not damage red blood
cell membranes. Therefore, little haemolysis was observed, even at a
concentration of 500 mg ml21 (81 and 54 mM for polymers 1 and 3,
respectively) (Supplementary Fig. S12), a concentration well above
their respective MICs. The surfaces of Gram-positive bacteria and
fungi are much more negatively charged than those of red blood
cells39. Therefore, the electrostatic interaction between the surfaces
of the bacteria/fungi and the cationic micelles is much stronger
than that between the surfaces of the red blood cells and the cationic

micelles, leading to excellent antimicrobial activity, but insignificant
haemolytic activity.

To demonstrate the potential of the antimicrobial polymers in in
vivo applications, we used polymer 1 as an example and evaluated its
in vivo toxicity level. The LD50 of polymer 1 (the lethal dose at
which half the mice were killed) was determined to be
31.5 mg kg21 via intravenous injection. We also investigated the
acute toxicity that the polymer might cause to major organs (the
liver and kidney) and the balance of electrolytes in the blood by
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Figure 3 | Comparative TEM images of microbes in the absence and

presence of polymer 3. a–c, MRSA (a), Enterococcus faecalis (b) and

Cryptococcus neoformans (c) before (left) and after incubation (right) with

polymer 3 for 8 h at lethal doses (10.8mM for MRSA and 16.3mM for
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treatment, cell walls and membranes were damaged, and cell death was

observed. In C. neoformans, large empty spaces were observed in the cytosol,

as well as a burst of the cytoplast. In each lettered part of the figure, the

bottom two images are magnified with respect to the top images. Scale

bars: 0.2mm (top) and 100 nm (bottom) (a,b); 2mm (top) and 0.5mm

(bottom) (c).

ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.1012

NATURE CHEMISTRY | VOL 3 | MAY 2011 | www.nature.com/naturechemistry412

© 2011 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nchem.1012
www.nature.com/naturechemistry


analysing levels of alanine transaminase (ALT), aspartate transam-
inase (AST), creatinine, urea nitrogen, and sodium and potassium
ions in blood samples obtained from treated mice 48 h post-injec-
tion. The levels of the functional parameters of the liver and
kidney and the concentrations of potassium and sodium ions
(Table 1) were unchanged 48 h after intravenous injection of
polymer 1 at a concentration well above the MIC of the polymer
(dose, 12 mg kg21; estimated concentration in the blood, 39 mM,
assuming that the blood volume of the mouse is ≏1 ml). This indi-
cates that the micelles do not cause significant acute damage to liver
and kidney functions, nor do they interfere with the electrolyte
balance in the blood. Importantly, these parameters remain
unchanged, even at 14 days post-injection. In addition, no mouse
treated with the polymer died, and no colour change was observed
in the serum samples and urine of the mice treated with the polymer
when compared with the control group. These findings demonstrate
that the polymer did not induce significant toxicity to the mice
during the period of testing. Nonetheless, preclinical studies
should be conducted in the future to further evaluate potential
long-term toxicity of the antimicrobial polymers before
clinical applications.

In conclusion, we have designed and synthesized novel bio-
degradable, cationic and amphiphilic polycarbonates that can
easily self-assemble into cationic micellar nanoparticles by direct
dissolution in water. The cationic nanoparticles formed from the
polymers, with optimal compositions, can efficiently kill Gram-
positive bacteria, MRSA and fungi, even at low concentrations.
Importantly, they have no significant haemolytic activity over a
wide range of concentrations, and cause no obvious acute
toxicity to the major organs and the electrolyte balance in the
blood of mice at a concentration well above the MICs. These
antimicrobial polycarbonate nanoparticles could be promising as
antimicrobial drugs for the decolonization of MRSA and for the
treatment of various infectious diseases, including MRSA-
associated infections.

Methods
Polymer synthesis. The cationic amphiphilic polycarbonates were synthesized in
three steps. First, MTC–COOH (8.82 g, 55 mmol) was converted to MTC–Cl using
standard procedures with oxalyl chloride24. In a dry 250 ml round-bottomed flask
equipped with a stir bar, the intermediate MTC–Cl was dissolved in 150 ml of dry
methylene chloride. Under nitrogen flow, an addition funnel was attached in which
chloro-propanol (4.94 g, 4.36 ml, 52.25 mmol), pyridine (3.95 g, 4.04 ml, 55 mmol)
and 50 ml of dry methylene chloride was charged. The flask was cooled to 0 8C using
an ice bath and the solution was added dropwise over 30 min. The ice bath was
removed after a further 30 min and the formed solution stirred for an additional 16 h
under nitrogen. The crude product was directly applied onto a silica gel column and
the product purified by eluting with 100%methylene chloride. The product fractions
were collected and the solvent evaporated, yielding the product as an off-white oil,
which crystallized on standing. The yield was 11 g (85%). 1H NMR (CDCl3) d: 4.63
(d, 2H, CH2), 4.32 (t, 2H, CH2), 4.16 (d, 2H, CH2), 3.55 (t, 2H, CH2), 2.09 (m, 2H,
CH2), 1.25 (s, 3H, CH3). HR-ESI-MS: m/z calcd for C9H13ClO5þNa 259.0350;
found 259.0353.

In the second step, MTC–(CH2)3Cl and TMC were copolymerized using a
mixture of the Lewis acid TU and the Lewis base DBU (1:1 in mole) as the catalyst. In
brief, in a glovebox, 93 mg (0.422 mmol) of benzyl protected bis-MPA diol initiator,
1.0 g (4.22 mmol) of MTC–(CH2)3Cl (for a degree of polymerization (DP) of 10)
and 1.29 g (12.66 mmol) of TMC (for a DP of 30) was charged in a 20 ml glass vial
equipped with a stir bar. Dichloromethane was added and the concentration was
adjusted to 2 M. To initiate the polymerization, 80 mg (0.211 mmol) of TU and
32 mg (0.211 mmol) of DBU were added to the clear solution. After 5 h, 51 mg
(0.422 mmol) of benzoic acid was added to quench the polymerization, after which
the crude product was taken out off the glovebox and precipitated in cold methanol.
The precipitate was allowed to sediment, and the supernatant was decanted. The
collected polymer was dried in a vacuum oven until a constant weight was reached.
Yield, ≏2.1 g (≏92%). Gel permeation chromatography: Mw≈ 6,811 g mol21,
Mn≈ 5,890 g/mol21, polydispersity index (PDI)≈ 1.15, 1H NMR (CDCl3)
d: 7.41–7.35 (m, 5H, initiator), 5.19 (s, 2H, initiator), 4.40–4.30 (m, 6H,
MTC-polymer), 4.30–4.18 (t, 4H, TMC-polymer), 3.76 (t, 4H, end-group), 3.61 (t, 2H,
MTC-polymer), 2.18–2.12 (m, 2H, MTC-polymer), 2.12–2.00 (m, 4H, TMC-polymer),
1.92 (m, 4H, end-group), 1.28 (s, 3H, MTC-polymer).

Finally, the chloride functional polymer (2.0 g, ≏0.4 mmol) was dissolved in
acetonitrile (50 ml) and the solution transferred (under nitrogen) into a 100 ml
pressure-safe Schlenk tube equipped with a stir bar. Under nitrogen, the solution was
cooled with dry ice, after which trimethylamine (≏0.5 g) was condensed into the
Schlenk tube, which was then sealed. The solution was heated to 50 8C and held for
48 h while stirring. Following the reaction, the solution was cooled to ambient
temperature, and nitrogen was bubbled through to remove excess trimethylamine.
The solvent was removed by rotational evaporation, and the obtained product was
dried in a vacuum oven until a constant weight was reached. 1HNMR (DMSO-d6) d:
7.41–7.35 (m, 5H, initiator), 5.19 (s, 2H, initiator), 4.40–4.20 (m, 6H, MTC-
polymer), 4.20–4.10 (t, 4H, TMC polymer), 3.50 (t, 4H, end-group), 3.50–3.40
(t, 2H, MTC-polymer), 3.10–3.0 (s, 9H, MTC-polymer), 2.10–2.0 (m, 2H, MTC-
polymer), 2.0–1.90 (m, 4H, TMC-polymer), 1.85 (m, 4H, end-group), 1.22 (s, 3H,
MTC-polymer). This reaction was quantitative.

Details on the protocols for CMC and MIC measurements, colony assays, TEM
observations, haemolysis assays, in vitro polymer degradation and in vivo toxicity
studies are described in the Supplementary Information.
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