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Abstract
Lignin bio-valorization is an emerging field of applied biotechnology and has not yet been studied at low temperatures.
Paraburkholderia aromaticivorans AR20-38 was examined for its potential to degrade six selected lignin monomers (syringic
acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, vanillic acid, benzoic acid) from different upper funneling aromatic
pathways. The strain degraded four of these compounds at 10°C, 20°C, and 30°C; syringic acid and vanillic acid were not utilized
as sole carbon source. The degradation of 5 mM and 10 mM ferulic acid was accompanied by the stable accumulation of high
amounts of the value-added product vanillic acid (85–89% molar yield; 760 and 1540 mg l−1, respectively) over the whole
temperature range tested. The presence of essential genes required for reactions in the upper funneling pathways was confirmed
in the genome. This is the first report on biodegradation of lignin monomers and the stable vanillic acid production at low and
moderate temperatures by P. aromaticivorans.

Key points
• Paraburkholderia aromaticivorans AR20-38 successfully degrades four lignin monomers.
• Successful degradation study at low (10°C) and moderate temperatures (20–30°C).
• Biotechnological value: high yield of vanillic acid produced from ferulic acid.
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Introduction

Natural lignin is the second most abundant organic substance
in the world (next to cellulose) (Ľudmila et al. 2015;
Ganewatta et al. 2019). The global amount of available lignin
in the biosphere is approximately 300 billion tons, with an
annual increase of approximately 20 billion tons (Becker
and Wittmann 2019). It is found in the secondary cell wall
of lignocellulosic plants and provides structural strength,

impermeability, water transport in the cell wall, and protection
from pathogens (Brink et al. 2019). Natural lignin is a com-
plex aromatic heteropolymer and consists of a matrix of aro-
matic (phenolic) and aliphatic substances. Its complex three-
dimensional structure is a result of the polymerization of three
phenylpropane units that originate from the three aromatic
alcohols p-coumaryl, conifery, and sinapyl (Liu et al. 2018;
Ganewatta et al. 2019).

Due to its complex and heterogeneous composition and
structure, natural lignin is one of the most recalcitrant biopoly-
mers (Bugg et al. 2011; Ganewatta et al. 2019). However, it
does not accumulate in nature. After plant death, natural lignin
undergoes natural biodegradation by soil microorganisms,
which results in the formation of soil organic matter.
Remarkable ligninolytic activity has been reported from a
number of microorganisms. Studies on lignin biodegradation
have focused primarily on basidiomycetous fungi (white rot
and brown rot) since the mid-1980s. However, no commercial
biocatalytic process for lignin depolymerization could be
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developed so far by using fungal isolates, which can be attrib-
uted to the difficulties associated with fungal genetic manip-
ulation and fungal protein expression (Bugg et al. 2011).
Ligninolytic bacteria have numerous advantages over fungi
for biotechnological applications, such as rapid growth, easy
genetic manipulation due to the small genome size, high sta-
bility and resilience in varying environmental conditions, and
a great flexibility in the metabolism of lignin-related aromatic
compounds (Bugg et al. 2011; Wang et al. 2018; Brink et al.
2019). Culturable lignin-degrading bacteria belong mostly to
the phyla Actinobacteria, Firmicutes, and Proteobacteria.
The classes Alpha and Gammaproteobacteria dominate
among Proteobacteria (Bugg et al. 2011; Tian et al. 2014;
Brink et al. 2019), while reports on the utilization of lignin
by Betaproteobacteria are limited (Morya et al. 2019).

Currently, technical lignin is produced worldwide in high
amounts in the pulp and paper industry and mainly used as an
energy source to generate process steam and electricity.
Technical lignin is also used in new biorefinery concepts,
including 2nd-generation ethanol, and represents a major re-
newable source of aromatic and phenolic bio-products, which
would be valuable raw materials for the synthesis of fine
chemicals and materials and for the food and flavor industry
(Bugg et al. 2011; Palazzolo and Kurina-Sanz 2016). In this
context, there has been growing interest in the use of ferulic
acid (FA) as feedstock for biocatalytic conversion into other
value-added products, such as vanillin and vanillic acid (VA)
(Rosazza et al. 1995). The study of ligninolytic microorgan-
isms and the assessment of their potential is essential for lignin
valorization (Ravi et al. 2018). More studies are needed to
expand our knowledge on lignin monomer degradation
(Wang et al. 2018).

Studies on lignin-degrading microorganisms have been
performed under mesophilic conditions; however, ligninolytic
activity under low-temperature conditions has not yet been
studied. Cold-adapted microorganisms play a key ecological
role in their natural habitats for nutrient cycling, litter degra-
dation, and many other processes (Margesin and Collins
2019). Low-temperature biodegradation of a broad range of
organic compounds, including alkanes and aromatic and
polyaromatic hydrocarbons, has been reported in a number
of studies (e.g., Bej et al. 2010; Margesin et al. 2013).
Although low temperature results in a lower conversion rate,
microbial activity under cold conditions offers a number of
advantages for biotechnological processes and is of particular
interest for low-energy treatments (Collins and Margesin
2019), e.g., for bioremediation in cold conditions.
Furthermore, understanding lignin degradation in low-
temperature areas is of high ecological importance.

In an earlier study (Berger et al. 2021), we demonstrated
the ability of a high number of bacterial strains isolated from
soil from an Alpine coniferous forest site to utilize both water-
soluble (leaf-soluble sugar (LSS)) and water-insoluble (lignin

alkali) forms of lignin as sole carbon source. Among these
strains, Paraburkholderia aromaticivorans AR20-38 was
characterized by its ability to utilize high amounts of LSS
and phenol as sole carbon source over its whole growth tem-
perature range on these compounds (0–30°C) and was there-
fore selected for further studies on lignin monomer degrada-
tion. It was the aim of this study to assess the ability of
P . a r oma t i c i v o r a n s AR20 - 3 8 ( a m emb e r o f
Betaproteobacteria) to degrade six representative lignin
monomers ( sy r ing i c ac id , p -coumar i c ac id , 4 -
hydroxybenzoic acid, ferulic acid, vanillic acid, benzoic acid)
that represent different branches of the upper funneling cata-
bolic pathways for the bacterial metabolism of lignin compo-
nents (sinapyl, p-coumaryl, coniferyl, benzoyl; Brink et al.
2019). Biodegradation studies were performed over a broad
temperature range (10–30°C). Special attention was paid to
the bioconversion of FA to VA, and the sequenced draft ge-
nome (Poyntner et al. 2020) was analyzed for the presence of
known genes being essential for the upper funneling aromatic
pathways. Here, we report for the first time the degradation
potential for lignin model compounds and the stable produc-
tion of VA from FA under low-temperature conditions.

Materials and methods

Strain

The bacterial strain used in this study was isolated from soil
from an Alpine coniferous forest site located 7 km north of
Bozen/Bolzano, Italy, below the Rittner Horn at an altitude of
1724–1737m above sea level as described (França et al. 2016)
and identified as member of the species P. aromaticivorans
(GenBank accession no. MT281269; Berger et al. 2021). The
whole genome was sequenced, and the resulting draft genome
sequence of the strain has been recently described (Poyntner
et al. 2020) (GenBank BioProject number PRJNA624061).
The s t ra in was deposi ted in the China Genera l
Microbiological Culture Collection center under the number
CGMCC 1.18749 and is publicly available. The strain was
stored at −80°C using ROTI©Store cryovials.

Chemicals

Syringic acid (SA; Alfa Aesar 5003), p-coumaric acid (CA;
Sigma C9008), 4-hydroxybenzoic acid (HBA; Serva 25271),
trans-ferulic acid (FA; Sigma-Aldrich 128708), vanillic acid
(VA; Merck 841025), and benzoic acid (BA; Sigma-Aldrich
242381) were of chromatographic pure grade. Stock solutions
(0.5 M) were prepared in DMSO and stored at 4°C.
Preliminary studies showed that the amount of DMSO added
to the cultivation flasks by the addition of these compounds
did not affect bacterial growth.
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Biodegradation of lignin monomers (model
compounds)

The biodegradation assays were carried out in 100-ml
Erlenmeyer flasks with screw caps containing 20 ml of min-
eral salts medium (MM) supplemented with 5 mM (final con-
centration) of one of the target compounds (SA, CA, HBA,
FA, VA, BA) as sole carbon source. To ensure sufficient aer-
ation, the culture flasks were opened regularly for sampling
under sterile conditions. The biodegradation of FA was also
evaluated with a final concentration of 10 mM FA, using a
1 M stock solution. The pH-neutral MM contained (composi-
tions indicated per liter) Na2HPO4 x 2H2O (3.5 g), KH2PO4 (2
g), (NH4)2SO4 (1 g), MgSO4 x 7 H2O (0.2 g), Ca(NO3)2 x 4
H2O (0.05 g), ammonium iron(III) citrate (10 mg), a trace
element, and a vitamin solution (Schlegel 1992; Margesin
and Schinner 1997). The pH of the medium was adjusted to
7.0 after the addition of the compounds. For inoculation, a
preculture prepared in MM containing glucose (2 g l−1) as
carbon source was prepared. The bacterial cells were separat-
ed by centrifugation (10,000 x g for 10 min), washed twice
with sterile MM, and suspended in MM. The initial (t0) opti-
cal density at 600 nm (OD600) in the inoculated flasks was
adjusted to 0.05. Two negative controls contained (1) sterile
medium supplemented with lignin monomers and (2) inocu-
lated medium without the target compounds. The flasks were
incubated in triplicate at 10°C, 20°C, and 30°C and 150 rpm.
Growth (OD600), pH of the cultures, and the concentration of
the lignin monomers were monitored in samples collected at
regular time intervals.

HPLC analysis

Lignin monomers were quantified by using HPLC analysis.
The samples for the analysis were centrifuged for 10 min at
20,000 x g to remove all larger particles. The supernatants
were frozen at −20°C before HPLC analysis. At least 0.7
mL of the supernatant was filtered through a 0.2-μmRC filter.
The analysis was performed on a Shimadzu Prominence sys-
tem via a RFQ Fast Acid column (50 x 7.8 mm, Phenomenex,
Germany) at 70°C. A time program starting with a flow rate of
0.25mlmin−1 for 20min, then ramping to 1.0 mlmin−1 within
10 min, and finally keeping this flow rate until method stop
was used with 5 mM sulfuric acid as the mobile phase. The
separated components were measured via a UV detector at
220 nm and crosschecked at 270 nm. As external standards,
SA, CA, HBA, FA, VA, and BA were injected in concentra-
tions of 1, 5, and 10 mM to obtain a calibration curve.

Genome analysis

The draft genome of P. aromaticivorans AR20-38 (Poyntner
et al. 2020) was analyzed for the presence of genes involved in

upper lignin funneling pathways according to the eLignin
Microbial Database (www.elignindatabase.com; Ravi et al.
2018; Brink et al. 2019) and genomes of comparable strains
(Lee et al. 2019; Morya et al. 2019). Genes coding for essential
enzymes in the bacterial lignin metabolism were identified in
the annotated genome through the databases SwissProt
(Bairoch and Apweiler 2000), COG (Galperin et al. 2015),
TCDB (Saier et al. 2014), GO (Ashburner et al. 2000; The
Gene Ontology Consortium 2019), PHI (Winnenburg et al.
2008; Urban et al. 2020), VFDB (Chen et al. 2012), CARD
(Alcock et al. 2020), Effective T3 (Arnold et al. 2009), CAZy
(Cantarel et al. 2009) RefSeqNon-Redundant Protein Database
(O'Leary et al. 2016), and Pfam (El-Gebali et al. 2019).

Results

Biodegradation of lignin monomers

No abiotic losses of lignin monomers were detected at any of
the incubation temperatures over the whole incubation periods
(data not shown). The difference between the initial and the
residual concentration of lignin monomers could thus be at-
tributed to biodegradation. The initial pH of 7.0 in the culture
media was not affected during growth and biodegradation.

Strain P. aromaticivoransAR20-38 was able to utilize four
out of the six tested lignin monomers (CA, HBA, FA, BA) as
sole carbon and energy source at all three test temperatures
(10, 20, and 30°C). SA and VA could not be utilized at any of
the temperatures tested.

An increase in temperature resulted in accelerated growth
and degradation (Fig. 1). At a cultivation temperature of 10°C,
5 mMHBA and BA were fully degraded after 3 days, while 6
and 9 days were needed for the full degradation of 5 mM CA
and FA, respectively. At 20°C, the four compounds were un-
detectable after 1 (HBA, BA), 2 (CA), and 6 (FA) days, re-
spectively. At 30°C, CA, HBA, and BA were consumed after
1 day, while 6 days were needed for FA. The degradation of
FA was accompanied with the stable accumulation of VA due
to bioconversion. Independent of the FA concentration or the
incubation temperature, the maximum of VA was released
when FA was fully degraded (see also below, Fig. 2).

The substrate preference among the lignin model com-
pounds tested in this study was clearly visible at 10°C (HBA
≥ BA > CA > FA); at higher temperatures, no distinction
between the degradation performance of HBA and BA
(20°C) or HBA, BA, and CA (30°C) was detectable.

The degradation of the lignin monomers paralleled growth
(OD600); growth declined as soon as the carbon source was
depleted (as also observed by Ravi et al. 2017). OD600
values, however, were not indicative of the degradation ca-
pacity. Biomass production was significantly higher during
the degradation of CA (OD600 = 1.3–1.4), BA (OD600 =
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1–1.4), and HBA (OD600 = 0.8–0.9) (Fig. 1) than during FA
degradation (OD600 = 0.2) (Fig. 2). This occurred indepen-
dent of the incubation temperature.

In all cases, growth at 10°C was delayed compared to
growth at 20°C and 30°C; however, it resulted in significantly
higher biomass production in case of BA and glucose as sole

carbon source. A tendency of increased biomass production at
10°C, although not significant, was also visible for the other
compounds consumed by the strain. Growth with glucose as
the sole carbon source resulted in higher biomass production
(OD600 = 1.8–2.6) compared to growth with lignin mono-
mers (Fig. 1).
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Fig. 1 Effect of temperature on
growth (left panels) and
biodegradation (right panels) of
lignin model compounds (CA, p-
coumaric acid; HBA, 4-
hydroxybenzoic acid; FA, trans-
ferulic acid; BA, benzoic acid) as
sole carbon source by
Paraburkholderia
aromaticivorans AR20-38 (mean
values of three replicates; SDs
were ≤10%). VA production dur-
ing FA consumption is not shown
(see Fig. 2). The effect of tem-
perature on growth with glucose
as sole carbon source is shown in
the left panel on the bottom

2970 Appl Microbiol Biotechnol (2021) 105:2967–2977



Bioconversion of trans-ferulic acid to vanillic acid

The degradation of FA was accompanied by the production of
VA. This bioconversion occurred independently of the initial
concentration of FA (5 mM, 10 mM) or the incubation tem-
perature (10, 20, 30°C) (Fig. 2). When FA was provided as
sole carbon source, almost 75% of the initial concentration of
5 mM FA were degraded after 3 days at 20 and 30°C (not
detectable after 6 days), while still 40% were found after 6
days at 10°C (no detection after 9 days). An increase in the
initial FA concentration (10 mM) resulted in faster degrada-
tion at 20°C than at 30°C (not detectable after 6 and 9 days,
respectively) or 10°C (not detectable after 14 days). Thus, a
delay of the period needed for full degradation was only de-
tected at 10°C and 30°C, however, not at 20°C. This points to
a temperature of 20°C as the optimum temperature in terms of
the degradation of high amounts of FA.

Using 5 mM (1.022 g l−1) FA as the sole source or carbon
and energy, a maximum amount of 0.76 mg VA l−1 (molar
yield 88–89%) was obtained in the medium at all three incu-
bation temperatures. When the target concentration of 10 mM
FA (10.6–10.8 mM) was provided, the molar yield (85–86%;
1.5 g l−1) was only slightly lower (Table 1).

Genome analysis

The analysis of the three chromosomes and plasmid of
the draft genome of P. aromaticivorans AR20-38 (Poyntner
et al. 2020) revealed the presence of various genes involved in
the degradation of the studied lignin model compounds (see
Table 2 for details and loci). All genes related to lignin

degradation were found in the core genome on chromosome
1, 2, and 3.

Regarding CA degradation, genome analysis showed the
presence of the gene encoding for enoyl-CA hydratase/lyase,
which according to the suggested upper funneling aromatic
pathway leads to the production of 4-hydroxybenzaldehyde
(eLignin database). Genes related to enzymes involved in 4-
hydroxybenzaldehye consumption and thus HBA production
were not present. The degradation of HBA, however, was
confirmed by the presence of four genes encoding for 4-
hydroxybenzoate 3-monooxygenase, which results in the for-
mation of protocatechuate.

FA degradation resulted in the synthesis and stable ac-
cumulation of VA. The transient production of the interme-
diate vanillin during FA bioconversion was evidenced by
the presence of two genes encoding for the enzyme in-
volved in the vanillin production from FA (feruloyl-CoA
synthase). Genes for the enzyme involved in feruloyl-CA
degradation (trans-feruloyl-CoA hydratase) were not found.
The degradation of vanillin to VA was evidenced by the
presence of a gene encoding for vanillin dehydrogenase
(vanillin I funneling pathway; eLignin database). The sta-
bility of this product was confirmed by the inability of the
strain to utilize VA as sole carbon source and by the ab-
sence of the gene for vanillate monooxygenase, which
would produce protocatechuate from VA (vanillate
monooxygenase). The presence of vanillate-O-demethylate
oxidoreductase indicates the ability for the degradation of
VA to catecholic structures, protocatechuate, and gallate
(Kamimura et al. 2017), which is in contrast to the biodeg-
radation results.
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2971Appl Microbiol Biotechnol (2021) 105:2967–2977



Syringate O-demethylase, an enzyme responsible for SA
degradation to 3-O-methylgallate and 5-methyltetrahydrofo-
late, was not present in the annotated genome data. In contrast,
the enzymes benzoate 1,2-dioxygenase and 1,6-
dihydroxycyclohexa-2,4-diene-1-carboxylate-dehydrogenase,
essential for BA degradation and leading to 3,5-
cyclohexadiene-1,2-diol-1-carboxylate and further to cate-
chol, were present in the genome.

Catechol-1,2-dioxygenase can degrade catechol and is
encoded in the annotated genome. It leads to the production
of cis,cis-muconic acid. Further, genes for catechol 2,3-
dioxygenase were identified, an enzyme known to lead from
catechol to (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate. The
ability of P. aromaticivorans AR20-38 to utilize catechol is
evidenced by its ability to utilize catechol as carbon source
and to produce the relevant enzyme (Berger et al. 2021). Three
additional genes present in the genome are potentially in-
volved in the lignin degradation pathway: enoyl-CoA
hydratase/isomerase in the vanillin funneling pathway
(Gasson et al. 1998), benzaldehyde dehydrogenase in the
syringyl lignin catabolism (Kamimura et al. 2017), and
benzoyl-CoA oxygenase/reductase in assisting the breakdown
of lignin (Kumar et al. 2018).

In the annotated gene, 980 genes related to transporters
were identified (Table 3). In relation to lignin biodegra-
dation, ABC transporters (e.g., vanillin transport), MFS
transporters, and RND transporters (Morya et al. 2019)
were present. Interestingly, genes encoding the MFS
hydroxybenzoate transporters were found 19 times and
on all chromosomes.

In the genome, various genes encoding transcriptional
regulators (Table 3) are encoded. Similar to Burkholderia
sp. ISTR5 (Morya et al. 2019), genes belonging to the
LysR family were found, known for orthocleavage path-
way of catechol. Further genes belonging to GntR, IclR,
XRE, and MarR were found, which are known to be in-
volved in hydrocarbon degradation (Morya et al. 2019,
Tropel and van der Meer 2004).

Discussion

In this study, we report the degradation of the four lignin
model compounds CA, HBA, FA, and BA and the bioconver-
sion of FA to VA (with stable VA accumulation) over a wide
temperature range, including cold conditions (10–30°C), by
the bacterial strain P. aromaticivoransAR20-38 isolated from
soil from an Alpine coniferous forest site. The ability of bac-
terial strains isolated from this site to utilize lignin as sole
carbon source has been reported previously (Berger
et al. 2021). Members of the genus Paraburkholderia (order
Burkholderiales, class Betaproteobacteria) have been isolated
from diverse ecological niches. The majority originates from
soils or in association with plant roots (Lee and Jeon 2018;
Wilhelm et al. 2020). They are frequently isolated from forest
soils (Xiao et al. 2019; Paulitsch et al. 2020; Wilhelm et al.
2020) where they are involved in the decomposition of plant-
derived aromatics and appear to play a role as principle con-
tributors to the soil priming effect (Wilhelm et al. 2020).
Genome analyses revealed the versatile metabolic capabilities
of Paraburkholderia representatives, including a member of
the species P. aromaticivorans, (Lee et al. 2019), for the deg-
radation of organic compounds (Wilhelm et al. 2020 and
references therein). Paraburkholderiamembers have been de-
scribed as degraders of crude oil and aliphatic (n-hexadecane),
monoaromatic (benzene; toluene; ethylbenzene; o-, m-, and p-
xylene; 4-hydroxybenzoic acid; halogenated phenols), and
polycyclic aromatic (naphthalene, phenanthrene) hydrocar-
bons (Coenye et al. 2004; Li et al. 2017; Yuan et al. 2018;
Lee et al. 2019; Wilhelm et al. 2020). However, to the best of
our knowledge, no study has previously described the
l ign ino ly t i c capac i ty of members of the genus
Paraburkholderia (1) for biodegradation under low-
temperature conditions and (2) for the synthesis of VA from
FA. Our study extends knowledge on the role of this genus in
lignin utilization and on ligninolytic members of the class
Betaproteobacteria, which have only rarely been described
before (Tian et al. 2014; Brink et al. 2019; Morya et al. 2019).

Table 1 Effect of temperature (10°C, 20°C, 30°C) on VA production from 5 mM and 10 mM FA obtained with Paraburkholderia aromaticivorans
AR20-38 (mean values of three replicates ± SD)

Temperature FA concentration (t0) VA production

mM mg l−1 mM mg l−1 g (l x OD600) −1 Molar yield (%) Mass yield (%)

10°C 5.1 ± 0.15 984 ± 29 4.5 ± 0.02 757 ± 3 4.6 ± 0.02 88.9 ± 2.42 77.0 ± 2.10

20°C 5.1 ± 0.15 984 ± 29 4.5 ± 0.02 752 ± 4 4.3 ± 0.02 88.3 ± 2.46 76.5 ± 2.13

30°C 5.1 ± 0.15 984 ± 29 4.5 ± 0.03 760 ± 4 3.5 ± 0.02 89.3 ± 2.44 77.3 ± 2.11

10°C 10.8 ± 0.04 2098 ± 8 9.2 ± 0.03 1541 ± 5 6.3 ± 0.02 84.8 ± 0.39 73.4 ± 0.33

20°C 10.7 ± 0.17 2076 ± 32 9.1 ± 0.04 1531 ± 7 5.5 ± 0.02 85.1 ± 0.95 73.7 ± 0.82

30°C 10.6 ± 0.23 2063 ± 44 9.1 ± 0.01 1537 ± 2 4.8 ± 0.01 86.1 ± 1.76 74.6 ± 1.53
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Our data show that P. aromaticivorans AR20-38 was un-
able to degrade lignin monomers of the sinapyl branch (SA);
however, it was able to utilize three of the four main branches
of the upper funneling catabolic pathways for the bacterial
metabolism of lignin compounds: the p-coumaryl branch
(CA and utilization of HA produced from CA), the coniferyl
branch (FA, with accumulation of VA), and the benzoyl
branch (BA). The preferential degradation of compounds of
the p-coumaryl and benzoyl branches (detectable at 10°C)
compared to the coniferyl branch (at 10–30°C) was clearly
visible and is likely associated to the absence of a methyl
group in these structures (BA, CA). Ravi et al. (2017) also
observed that 4-hydroxybenzoate was preferentially con-
sumed first, whereas ferulate was always the last consumed
substrate by members of the genus Pseudomonas.

The genomic analysis supported the findings from biodeg-
radation studies. For the degrading abilities of CA, HBA, FA,
and BA, known genes are present in the draft genome. Genes
of the upper funneling pathway are encoded in the core ge-
nome and are therefore essential for the strain. The genes for
catechol degradation are only encoded on the same locus,
chromosome 3 (Table 2), and might be regulated similarly,
while other genes for the funneling pathway are distributed on
two or all chromosomes. Genes encoding transcriptional reg-
ulators are found throughout the three chromosomes and are
comparable to published (Para-)Burkolderia genomes (Lee
et al. 2019; Morya et al. 2019). Known transcriptional factors
for hydrocarbon degradation and catechol metabolism (e.g.,
LysR family) were identified. The high number of genes in the
core genome encoding transporters (Table 3), e.g., ABC trans-
porters, which can be involved in lignin derivative transport
(Morya et al. 2019), supports the high biodegradation capabil-
ity of the studied strain.

In this study, we also demonstrated the stable accumulation of
the value-added product VA from FA by P. aromaticivorans
AR20-38. Interestingly, genes for vanillate-O-demethylate oxi-
doreductase are present in the genome, which is used to degrade

VA to catecholic structures (Kamimura et al. 2017). The strain
might down-regulate this gene under the studied conditions and
therefore was not able to degrade VA. After complete degrada-
tion of FA, nomore biomass is produced (Fig. 1). To understand
the lack of further VA degradation, detailed experiments are
planned. In the genome, several genes, e.g., benzaldehyde dehy-
drogenase (Table 2), are present, which are potentially involved
in lignin biodegradation. Therefore, it would be interesting to
study the transcriptome during degradation in future studies.

Moreover, the strain tolerated and converted high concen-
trations (10 mM) of FA without growth inhibition. A compa-
rable FA tolerance has only been described with an engineered
Pseudomonas putida strain (Upadhyay et al. 2019). In com-
parison, FA concentrations above 5 mM had a growth-
inhibiting effect on Halomonas elongata (Abdelkafi et al.
2006) and reduced the VA production yield of Streptomyces
sannanensis (Ghosh et al. 2007); Paenibacillus lactis showed
a very low conversion yield in the presence of 5 mM FA
compared to 2.5 mM FA (Mishra et al. 2016).

An important criterion for biotechnological application is
the bioconversion yield. In our study, the molar yield of VA
produced from 5 mM FA was 88–89% and was marginally
lower using 10 mMFA (85–86%) (Table 1). Remarkably, this
high yield from pure FA was obtained at 10°C, 20°C, and
30°C. A comparable bioconversion molar yield from 10 mM
FA has only been obtained with an engineered P. putida strain
at 30°C (95%; Upadhyay et al. 2019) and – from only 5 mM
FA – with H. elongata at 37°C (86%; Abdelkafi et al. 2006)
and Streptomyces halstedii at 28°C (80%; Brunati et al. 2004).
Other reported bioconversion molar yields are in the range of
60% (produced from 5 mM FA at 37°C by Bacillus
licheniformis; Ashengroph et al. 2012), 38% (2.5 mM FA,
37°C, Paenibacillus; Mishra et al. 2016), or 11% (5 mM
FA, 30°C, Streptomyces setonii; Muheim and Lerch 1999).

When considering the quite low amount of biomass pro-
duced during FA bioconversion by the strain used in this
study, the performance becomes even more remarkable.
Further studies to optimize the carbon balance should allow
the optimal balance between growth rate, low substrate me-
tabolism into biomass, and VA production without slowing
down the conversion rate. This could be obtained by studying
(i) the optimal media composition as previously reported
(Ghosh et al. 2006; Mishra et al. 2016), (ii) in vitro conversion
of FA to VA with cell extracts, and (iii) by increasing the
amount of the substrate FA.

The reported bioconversion ability of the strain
P. aromaticivorans AR20-38 to produce VA from FA is inter-
esting from the viewpoint of application. FA (3-(4-hydroxy-3-
methoxyphenyl)-2-propenoic acid) is very abundant in agricul-
tural plants (by-products) as well as in softwood lignin and thus
a natural renewable resource for the production of vanillin and
VA (Ashengroph et al. 2012). There is a growing interest in
exploiting microbial conversions of FA for the production of

Table 3 Number of transporter and transcriptional regulator genes
identified in the annotated genome

Transporter type Number of annotated genes

All 980

ABC transporter 424

MFS transporter 205

RND transporter 11

Transcriptional regulator Number of annotated genes

Lys R 232

GntR 110

IclR 121

XRE 48

MarR 122
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commercially valuable products, such as VA, vanillin, 4-vinyl
guaiacol, and styrenes (Rosazza et al. 1995). VA (4-hydroxy-3-
methoxy benzoic acid) production is especially interesting as
this compound is used as the starting material in the chemical
synthesis of vanillin (Rosazza et al. 1995) as well as polyesters;
it is a potential food preservative and has been associated with a
range of pharmacologic activities (Abdelkafi et al. 2006, Ghosh
et al. 2007; Gitzinger et al. 2012). Besides FA, related abundant
lignin monomers, such as p-coumaric acid, are attractive aro-
matic compounds of great value as precursors for other useful
chemical products (Rosazza et al. 1995).

Studies on the biodegradation of lignin monomers have
been conducted under mesophilic temperature conditions,
i.e., at temperatures ranging from 28 to 37°C (Abdelkafi
et al. 2006; Ghosh et al. 2007; Mishra et al. 2016; Ravi et al.
2017; Upadhyay et al. 2019). Our study is the first to report the
biodegradation of lignin monomers (CA, HBA, FA, BA) and
the bioconversion of FA to VA at lower temperatures. The
ability of the studied strain for low-temperature growth and
degradation can be attributed to its isolation source, an Alpine
soil in a subalpine-continental climate with a mean annual air
and soil temperature of 4.0°C and 4.3°C, respectively (França
et al. 2016). The observed maintenance of a consistent degra-
dation activity and a consistent conversion yield over a broad
temperature range (10–30°C) is of biotechnological interest
and is advantageous in environments that undergo thermal
fluctuations. Such strains are useful for low-energy treatment
of lignin and temperature-independent valuable product for-
mation. Microbial cold adaptation includes a complex range
of structural and functional adaptations at the level of all cel-
lular constituents and offers multiple biotechnological appli-
cations (De Maayer et al. 2014; Margesin 2017; Collins and
Margesin 2019).

In conclusion, the data obtained in this study demon-
strate that P. aromaticivorans AR20-38 is characterized
by a number of interesting capacities: (1) full degradation
of a range of lignin monomers (5 mM CA, 5 mM HBA,
5 mM BA, and 5–10 mM FA at 10–30°C), (2) high bio-
conversion capacity for the stable production of VA from
FA at 10–30°C: 88–89% (from 5 mM FA) to 85–86%
(from 10 mM) molar yield at 10–30°C, and (3) tolerance
to high amounts of FA without inhibition of growth and/or
bioconversion. These features, obtained without further
optimization, indicate the potential of the strain for bio-
technological application. Its ability to utilize a number
of other aromatic and polyaromatic hydrocarbons (phenol,
catechol, naphthalene, phenanthrene) as sole carbon source
(Berger et al. 2021) is an additional advantage. Moreover,
biodegradation and bioconversion over a broad tempera-
ture range, including cold conditions, are of industrial rel-
evance for low-energy treatments. Additional studies on
gene expression would be of great interest to understand
degradation mechanisms on a transcriptomic level.
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