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Abstract 

Agricultural land use dominates one third of the Earth’s land surface and is the single biggest 

driver of biodiversity loss. Moreover, with a growing human population and a rising demand 

for resources, the impact of agricultural land use on biodiversity is projected to escalate. The 

main goal of this thesis was to gain a deeper understanding of the relationship between 

agricultural land use and biodiversity on a global scale. In approaching this goal, this thesis 

aims to bridge three main research gaps. First, while much research has addressed the effect 

of agricultural expansion on biodiversity, relatively little work has investigated the 

relationship between the many facets of agricultural intensification and biodiversity. Second, 

most studies on land use and biodiversity have assessed local to regional scale impacts, 

whereas few have assessed this relationship on a global scale. This gap is particularly critical 

in terms of predicting species richness – where environmental factors rather than human 

driven factors have traditionally been thought to be important in driving and predicting 

broad-scale patterns of biodiversity. Third, in light of growing future demand for resources, 

a better understanding is needed regarding the impact of future agricultural land use on 

biodiversity. This thesis made progress in bridging these research gaps by (i) mapping 

patterns of multiple metrics of land-use intensity and biodiversity, (ii) improving species- 

area relationships with the inclusion of land cover and land-use intensity metrics, and (iii) 

identifying highly biodiverse areas at risk under trajectories of potential future agricultural 

expansion and intensification. Patterns of land-use intensity metrics were heterogeneously 

distributed in areas of high biodiversity, suggesting that conservation research should include 

multiple intensity metrics in order to avoid underestimating biodiversity threat. Furthermore, 

results show land-use intensity was found to rival biomes in predicting global species richness, 

thus upgrading one of the most fundamental laws in ecology, and providing an improved 

understanding of broad-scale species richness patterns. Finally, areas most at-risk under 

potential future agricultural change were found to be widespread across Latin America and 

Sub-Saharan America. These results deliver crucial insights in proactively mitigating future 

potential conflicts in the nexus of biodiversity and land use. Overall, considering the great 

threat agriculture poses to biodiversity, this thesis highlighted the complexity and importance 

of land-use intensity in its relationship with biodiversity and uncovered highly biodiverse 

areas threatened by agricultural land use, both currently and in the future. 
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Zusammenfassung 

Die landwirtschaftliche Landnutzung dominiert ein Drittel der Erdoberfläche und ist der 

größte Einflussfaktor des Biodiversitätsverlustes. Zudem wird prognostiziert, dass sich mit 

wachsender Erdbevölkerung und zunehmendem Bedarf an Ressourcen der Einfluss der 

landwirtschaftlichen Landnutzung auf die Biodiversität massiv ausweiten wird. Das 

Hauptziel dieser Dissertation war es, ein tieferes Verständnis über die Beziehung zwischen 

landwirtschaftlicher Landnutzung und Biodiversität auf globaler Skala zu entwickeln. Um 

dieses Ziel zu erreichen möchte diese Dissertation eine Brücke über drei Forschungslücken 

schlagen. Erstens, während sich bereits viele Studien mit der Auswirkung der 

landwirtschaftlichen Expansion auf die Biodiversität beschäftigt haben, untersuchten relativ 

wenige Arbeiten die Beziehung zwischen den vielen Facetten der landwirtschaftlichen 

Intensivierung und der Biodiversität. Zweitens, die meisten Studien hinsichtlich 

Landnutzung und Biodiversität haben die Auswirkungen auf lokaler bis regionaler Skala 

analysiert, wohingegen nur wenige diese Beziehung auf globaler Skala untersucht haben. 

Diese Lücke ist besonders kritisch in Bezug auf die Vorhersage des Artenreichtums – wobei 

traditionellerweise eher Umweltfaktoren als durch den Menschen bedingte Faktoren als 

wichtig für das Bedingen und Vorhersagen von großflächigen Mustern der Biodiversität 

angesehen werden. Drittens, angesichts des zunehmenden zukünftigen Bedarfes an 

Ressourcen ist ein besseres Verständnis bezüglich der Auswirkung der zukünftigen 

landwirtschaftlichen Landnutzung auf die Biodiversität nötig. Diese Dissertation erzielte 

Fortschritte darin Brücken über diese Forschungslücken zu schlagen durch (i) das Kartieren 

von Mustern vielfacher Metriken der Landnutzungsintensität und Biodiversität, (ii) das 

Verbessern der Arten-Areal-Beziehung durch die Einbindung von Landbedeckung und 

Landnutzungsintensitätsmetriken sowie (iii) das Identifizieren von Gebieten mit großer 

biologischer Vielfalt, die gefährdet sind hinsichtlich der Trajektorien potentieller zukünftiger 

Landnutzungsexpansion und –intensivierung. Die Muster der Landnutzungs- 

intensitätsmetriken waren heterogen verteilt in Gebieten mit hoher Biodiversität, was darauf 

hinweist, dass die Umweltschutzforschung vielfache Intensitätsmetriken einbeziehen sollte 

um zu verhindern, dass die Bedrohung für die Biodiversität unterschätzt wird. Weitere 

Ergebnisse zeigen, dass in der Vorhersage des globalen Artenreichtums die 

Landnutzungsintensität den Biomen in nichts nachsteht, wodurch eines der fundamentalsten 

Gesetze in der Ökologie erweitert wird und ein verbessertes Verständnis der großflächigen 

Muster im Artenreichtum erzielt wird. Die am stärksten gefährdeten Gebiete bezüglich des 

potentiellen zukünftigen landwirtschaftlichen Wandels wurden schließlich weitverbreitet in 
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Lateinamerika und im subsaharischen Afrika gefunden. Dieses Ergebnis bot wichtige 

Erkenntnisse zur proaktiven Entschärfung von zukünftigen potentiellen Konflikten in der 

Beziehung zwischen Biodiversität und Landnutzung. In Anbetracht der großen Bedrohung, 

die die Landwirtschaft für die Biodiversität darstellt, hob diese Dissertation insgesamt die 

Komplexität und Bedeutung der Landnutzungsintensität in ihrer Beziehung zur Biodiversität 

hervor und identifizierte Gebiete mit hoher Biodiversität, welche bedroht sind von 

landwirtschaftlicher Landnutzung, sowohl in der Gegenwart als auch zukünftig. 
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Introduction 
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1 Scientific background 

 
1.1 Life on earth and how we shape it 

Our planet’s most exceptional attribute is the presence of life and the most outstanding 

feature of this life is its diversity. From sharks that live in underwater volcanos (Phillips, 

2016), to tardigrades that can survive in space (Jönsson et al., 2008), there are estimated to 

be approximately 8.7 million eukaryotic species on Earth. Of these, only around 14% of 

terrestrial species have been scientifically described (Mora et al., 2011). Alongside this 

diversity live over 7 billion humans. Our impact on the planet and its life forms is alarming 

(Sanderson et al., 2002). If we scale the history of Earth to the timeframe of one single year: 

Homo sapiens arrived less than twelve minutes ago, agriculture took off just over a minute 

ago, and the dawn of the industrial revolution began a mere two seconds ago (Bostrom, 

2009). In these past few seconds, we have: reached CO2 levels higher than they have been 

since recordings began (Mauna Loa, 400ppm, (Showstack, 2013), acidified our oceans at 

unprecedented rates (Orr et al., 2005), and lost up to half of the world’s trees (Crowther et 

al., 2015). Currently, we appropriate 25% of global annual net primary productivity 

(Krausmann et al., 2013) and use 54% of freshwater run-off (Postel et al., 1996). In the short 

time-span of the past 50 years, our impact has escalated and transformed the natural world 

more rapidly and profoundly than ever before in history (Steffen et al., 2015), likely 

heralding a new geological epoch: that of the Anthropocene (Crutzen, 2002). 

This era of rapid global change is very likely the beginning of the sixth mass extinction on 

Earth (Barnosky et al., 2011; Ceballos et al., 2015). Humanity’s collective actions are 

obliterating entire species at rates at least 100 times greater than the background norm 

(Ceballos et al., 2015). Additionally, the size of wildlife populations is in rapid decline 

(WWF, 2014). Since 1970, in less than two human generations, while our species population 

size has doubled, vertebrate populations have dropped by half, with the most dramatic 

declines in the highly diverse neotropics (83% decline, WWF, 2014). At its root, this 

widespread environmental destruction and associated biodiversity loss is a result of a 

combination of human population growth and increased per capita consumption (WWF, 

2014). Both of these drivers are central obstacles to the long-term survival of other species, 

but are difficult to curb. 

Regarding human population growth, despite effective yet relatively small-scale 

interventions related to education, free access to family planning, and women’s rights 
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(Bongaarts & Sinding, 2011; Lutz & KC, 2011), due to the momentum of the current human 

population size, there will likely be more than 9 billion people by the end of the century 

(Bradshaw & Brook, 2014; Gerland et al., 2014). In conjunction with this, increased 

consumption of resources, including food, fibre, and bioenergy is also rising, and set to 

escalate as nations move out of poverty and gain an appetite for what the developed world 

has enjoyed for decades (Tilman et al., 2011). Due mainly to an inefficient conversion ratio 

of grain to meat, a diet heavy in animal produce is particularly heavy in resource use 

(Machovina et al., 2015). For example, in the US, it takes up to 25kg of grain to produce 1kg 

of beef, pig meat requires a grain to meat ratio of 9:1, and chickens 3:1 (Smil, 2013). Demand 

for meat and dairy is difficult to curb, with studies showing that while consumers do care 

about the environmental effect of products, when compared with the importance placed on 

other factors, such as price, taste, and quality, sustainability ranks last in decision making 

(DEFRA, 2014). 

The combination of the overall number of people plus the overconsumption of resources 

brings us from the root to the direct drivers of biodiversity loss. The single biggest direct 

threat to biodiversity is agricultural activity in the form of cropping (Figure I-1), threatening 

over half of all known near-threatened or threatened species (Maxwell et al., 2016). 

Agriculture is also the number one cause of tropical deforestation (Geist & Lambin, 2002) 

and accounts for 92 per cent of the global water footprint (WWF, 2014). Agricultural 

activities contribute to many other factors that threaten biodiversity including pollution, 

logging, land degradation, climate change, introduction of invasive species, and also the 

direct loss of carnivores and herbivores (Steinfeld et al., 2006; Machovina et al., 2015; 

Maxwell et al., 2016). 

Many species are threatened by more than one factor, and many factors themselves overlap. 

For example, one-third of crops are used as livestock feed (Foley et al., 2011; Alexandratos 

& Bruinsma, 2012). Livestock, including pasture and associated cropland accounts for over 

half of human-appropriated biomass (Krausmann et al., 2008) and three-quarters of all 

agricultural land, making it the single largest land use (Steinfeld et al., 2006). Indeed, meat 

and dairy has such a huge effect on the amount of land under use, that an entirely vegan 

human population in 2050, would require less cropland than what was used in the year 2000, 

with the potential to “reforest” an area approximately the size of the entire Amazon rainforest 

(Erb et al., 2016a). 

https://books.google.de/books?id=7LT3CAAAQBAJ&amp;amp%3Bpg=PA175&amp;amp%3Blpg=PA175&amp;amp%3Bdq=Typical%2Benergy%2Band%2Bprotein%2Bconversion%2Befficiencies%2Bof%2Bfeed%2Binputs%2Bto%2Bedible%2Bmeat%2Bin%2Bthe%2BUS.&amp;amp%3Bsource=bl&amp;amp%3Bots=3ZRIbp8KfM&amp;amp%3Bsig=dqEWzpOA6QphSNMCWNU_PpjvPhY&amp;amp%3Bhl=en&amp;amp%3Bsa=X&amp;amp%3Bved=0ahUKEwjnqIf5uJjMAhUEOBQKHW1IDhQQ6AEIIDAB%23v%3Donepage&amp;amp%3Bq=Typical%20energy%20and%20protein%20conversion%20efficiencies%20of%20feed%20inputs%20to%20edible%20meat%20in%20the%20US.&amp;amp%3Bf=false
https://books.google.de/books?id=7LT3CAAAQBAJ&amp;amp%3Bpg=PA175&amp;amp%3Blpg=PA175&amp;amp%3Bdq=Typical%2Benergy%2Band%2Bprotein%2Bconversion%2Befficiencies%2Bof%2Bfeed%2Binputs%2Bto%2Bedible%2Bmeat%2Bin%2Bthe%2BUS.&amp;amp%3Bsource=bl&amp;amp%3Bots=3ZRIbp8KfM&amp;amp%3Bsig=dqEWzpOA6QphSNMCWNU_PpjvPhY&amp;amp%3Bhl=en&amp;amp%3Bsa=X&amp;amp%3Bved=0ahUKEwjnqIf5uJjMAhUEOBQKHW1IDhQQ6AEIIDAB%23v%3Donepage&amp;amp%3Bq=Typical%20energy%20and%20protein%20conversion%20efficiencies%20of%20feed%20inputs%20to%20edible%20meat%20in%20the%20US.&amp;amp%3Bf=false
https://books.google.de/books?id=7LT3CAAAQBAJ&amp;amp%3Bpg=PA175&amp;amp%3Blpg=PA175&amp;amp%3Bdq=Typical%2Benergy%2Band%2Bprotein%2Bconversion%2Befficiencies%2Bof%2Bfeed%2Binputs%2Bto%2Bedible%2Bmeat%2Bin%2Bthe%2BUS.&amp;amp%3Bsource=bl&amp;amp%3Bots=3ZRIbp8KfM&amp;amp%3Bsig=dqEWzpOA6QphSNMCWNU_PpjvPhY&amp;amp%3Bhl=en&amp;amp%3Bsa=X&amp;amp%3Bved=0ahUKEwjnqIf5uJjMAhUEOBQKHW1IDhQQ6AEIIDAB%23v%3Donepage&amp;amp%3Bq=Typical%20energy%20and%20protein%20conversion%20efficiencies%20of%20feed%20inputs%20to%20edible%20meat%20in%20the%20US.&amp;amp%3Bf=false
https://www.allianz.com/en/about_us/open-knowledge/topics/environment/articles/091216-ten-of-the-worlds-most-important-forests.html/
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Figure I-1: The biggest threats to the world’s wildlife: 62% of IUCN Red List species (5,407 species) are 

threatened by agriculture – over three times the number of those threatened by climate change (19%). Source: 

Maxwell et al. (2016).

Biodiversity loss is concerning for two fundamentally different but complimentary reasons. 

First, there is the intrinsic and essentially immeasurable value of biodiversity. Thisincludes 

millions of years of evolution, the resulting diversity of life, the ethical implications of 

species extinction, not to mention the cultural, aesthetic, and spiritual value of the natural 

world and the species within (Vilkka, 1997). Second, there is the instrumental value of 

biodiversity. Our short-term well-being and long-term ability to survive is utterly reliant on 

the proper functioning of natural systems, and this functioning depends on biodiversity 

(Hooper et al., 2005). For example, biodiversity loss affects both ecosystem services and 

their ability to function, especially with regard to the capacity of socio-ecological systems to 

cope with extreme events (MA, 2005a; TEEB, 2009). In addition, the loss of a single species 

can trigger cascade effects and complex interactions throughout an ecosystem (Ripple et al.,

2014; Pérez-Méndez et al., 2016). Our well-being is also reliant on medical
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advances and infectious disease control, where biodiversity has been shown to play a central 

role in both reducing the prevalence of infectious disease (Keesing et al., 2010) and 

providing a vast genetic storehouse for biotechnology including medicine, with over half of 

the top 150 prescription drugs in the United States derived from biological diversity (Grifo 

& Rosenthal, 1997). 

Despite this, ecosystems and their functionality have been irreversibly altered (Steffen et al., 

2007). What is more, many thresholds that are proposed “safe” planetary boundaries have 

been crossed: notably biodiversity loss, the nitrogen cycle and climate change (Figure I-2; 

Rockstrom et al., 2009). Crossing any of these boundaries could generate sudden and 

irreversible environmental change. Due to the biodiversity loss associated with land use, an 

estimated 65% of the terrestrial surface has now crossed the biodiversity loss boundary - 

directly threatening our well-being (Newbold et al., 2016). Many uncertainties remain 

inherent in complex ecological systems including complex time lag effects, therefore, we are 

only beginning to fully comprehend the full spectrum of consequences related to biodiversity 

decline (Doak et al., 2008; Kuussaari et al., 2009). 

Undeniably, biodiversity loss is one of the most critical environmental concerns of our time. 

In an attempt to abate this loss, the relatively young field of conservation biology was born. 

At its inception in the 70s and 80s, conservation was focused on establishing protected areas 

and keeping ‘humans out’ in order to let nature thrive (Mace, 2014). The field has since 

developed to include a wide variety of approaches in understanding and reducing the impact 

of human activities on biodiversity, including both on farm and off (Adams, 2004; Mace, 

2014). 

The first step in abating biodiversity loss is accurately measuring it. A commonly used 

approach compares current extinction rates with background rates. Research in this domain 

has shown species extinctions are currently between 100 and 1000 times higher than the 

background rate (Pimm et al., 1995; Barnosky et al., 2011; Ceballos et al., 2015). However, 

this technique is broad by nature, and does not explicitly assess the causes of biodiversity 

loss. 
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Figure I-2: Planetary boundaries - The inner green circle indicates the proposed safe operating space for nine 
planetary systems. The red wedges give an estimate of the current position for each planetary system. The rate 
of biodiversity loss, climate change and human interference with the nitrogen cycle boundaries have already 
been exceeded. Source: Rockstrom et al. (2009) 

 
 

Species-area relationships (SARs) provide a step forward by relating the size of an area to 

the number of species found within. SARs are among the most studied relationships in 

ecology and are crucial to our understanding of species distributions and biodiversity 

dynamics (Rosenzweig, 1995; Turner & Tjørve, 2005; Drakare et al., 2006; Dengler, 2009). 

Originally, non-natural land was thought to be inhospitable to species (Pimm et al., 1995; 

Brooks et al., 2002; Thomas et al., 2004). In recent years, the ability for species to survive 

on and around agricultural land is being taken into account. For example, Koh and Ghazoul 

(2010) have developed a matrix-calibrated species-area model for predicting biodiversity 

loss due to land use change, and Gerstner et al. (2014) have improved the predictive ability 

of SARs in terms of plant species richness by including biomes and land-cover. However, 

our knowledge remains limited. Numerous factors related to species and area may affect this 

relationship and, if left unexamined, may miscalculate both patterns of species richness and 

even  extinction  risk (Turner  &  Tjørve,  2005;  He  &  Hubbell,  2011). For  example, 
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improvements may be possible by incorporating a wider spectrum of metrics in order to 

better represent the complexity of agricultural land use, rather than land-cover, which 

represents agricultural land in a binary present / not present form. Furthermore, the 

importance of human influence on species richness is often embraced at local grains 

(Dornelas et al., 2014; Newbold et al., 2015) rather than at global scales. This could be an 

important research gap as recent studies indicate that broader patterns of species richness, at 

least in terms of range size and extinction risk, might be related to human activities more 

than we suspect (Murray & Dickman, 2000; Di Marco & Santini, 2015). In the face of rapid 

biodiversity loss, there is an urgent need to develop improved approaches that may allow for 

better predictions of global scale SARs by including a more nuanced view of the many 

dimensions and pathways of agricultural activity. 

 
1.2 Agricultural Pathways: expansion and intensification 

From the early development of civilizations, to present day, agricultural land use has played 

a crucial role not just in biodiversity loss, but also in the growth and progress of human 

society (MA, 2005a). Generally, there are two main pathways of increasing agricultural 

production in order to satisfy an increasing demand for resources: expansion of land-based 

production systems into natural areas and intensification of pre-existing production systems 

(Tilman et al., 2011). 

Humans began modifying the Earth’s surface, to a degree that is detectable by 

archaeological, paleo-ecological, and environmental historical techniques, since at least the 

late Pleistocene (Kirch, 2005; Ellis et al., 2013). This modification not only took the form 

of hunting and foraging, but also, around this time, large-scale land clearing and widespread 

agriculture is likely to have taken hold (Ellis et al., 2013). Between 3,000 B.C. and 1,500 

A.D. (depending on the model employed), many regions of Europe and Asia were likely 

under significant use (Ellis et al., 2013). Historically, the most substantial changes in land 

use were related to agricultural expansion (Ramankutty & Foley, 1999). Land use has rapidly 

spread across the globe in the past three centuries, with a 466% increase in agricultural land 

from 1700 to 1980 (Meyer & Turner, 1992). This loss of natural habitat has previously been 

mostly at the expense of temperate and Mediterranean forests and woodland (Figure I-3). In 

the past half century, conversions have moved into tropical forest and savannas, as non- 

converted land in the temperate zones was already mostly exploited (Figure I-3; MA, 2005b). 
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Figure I-3: Global percent conversion of ecosystems. Source: MA (2005b) 
 
 

Currently, more than 38% of the world's terrestrial surface is comprised of human-dominated 

croplands and pastures (Ramankutty et al., 2008). When excluding ice-covered land, the 

global proportion of land altered by human land use rises to more than 75%, with less than 

a quarter remaining as wildlands (Ellis & Ramankutty, 2008). In the next 40 years, it is 

estimated that agricultural expansion could envelope an additional 200-300 million ha of 

wilderness (Chaplin-Kramer et al., 2015), mostly in the biodiversity rich regions of the 

tropics and savannas. 

However, further expansion into remaining natural land is bearing increasingly high 

environmental and socio-economic costs (Garnett et al., 2013), especially as available land 

for agricultural expansion is becoming scarce (Lambin & Meyfroidt, 2011). As a result, in 

order to meet growing demand, production increases via land-use intensification are essential 

(Tilman et al., 2011; Mueller et al., 2012). 

Land-use intensity was first brought to the forefront by Malthus (1798) who predicted that 

the human population would be limited by inelastic and linear increases in agricultural 

production. Boserup (1965), on the other hand, argued that agricultural intensification and 
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technological innovation were a direct response to the increasing pressure of demand. So far, 

the Malthusian view has been proven wrong (Stokstad, 2005), with yield increases outpacing 

even human population growth (Matson et al., 1997). Such production increases generally 

occur as a result of a combination of technological advances and additional inputs in terms 

of labour, energy, fertiliser, pesticide, and water (Matson et al., 1997). 

Over the past century, many large advances have been made in this respect, with the 

development of high-yielding seed varieties, chemical fertilisers and agro-chemicals, along 

with new methods of cultivation and increased irrigation infrastructure and mechanisation. 

All of these advances in a relatively short time earned this period the title of the ‘green 

revolution’ (Borlaug, 2007). 

While most historical production increases came thanks to agricultural expansion, since the 

mid-20th century, global cropland production has more than doubled whilst overall 

maintaining approximately the same cropland area (Borlaug, 2007; Rounsevell et al., 2012). 

In terms of feeding a growing world, land-use intensification is now one of the most 

dominant forces to be reckoned with (Foley et al., 2011; Tilman et al., 2011). 

However, despite its importance, land-use intensity has not garnered the same level of 

research attention as agricultural expansion (Erb, 2012). This may be partly because land- 

use intensity is a complex and multidimensional term that is not readily measured in one 

metric, with no universally agreed upon definition (Erb et al., 2013; Kuemmerle et al., 2013). 

The classification scheme of Kuemmerle et al. (2013) and Erb et al. (2013) provides a step 

forward by splitting land-use intensity into three categories related to inputs, outputs, and 

system metrics. Input metrics refer to the intensity of land use along different input 

dimensions, such as labour, mechanisation, fertilizer and irrigation. Output metrics relate to 

the ratio of outputs from agricultural production and inputs, for example yields 

(harvests/land). System-level metrics describe the relationship between the inputs or outputs 

of land-based production to the overall system, for example yield gaps (actual vs. attainable 

yield) or the percentage of net primary production that humans appropriate (HANPP, Haberl 

et al., 2007). This classification scheme helps to detangle the complexities inherent in land 

use-intensity (Kuemmerle et al., 2013), and provides a required framework both for clearer 

measurements of land-use intensity, and for assessing its concordance with and potential 

impact on biodiversity. 
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1.3 The impact of agricultural expansion and intensification on biodiversity 

The main processes of agricultural production are also the main modes by which biodiversity 

is impacted. Expansion threatens biodiversity primarily through the destruction and 

fragmentation of natural habitats (Foley et al., 2005; Chapin et al., 2008). A range of studies 

have empirically demonstrated that habitat loss and fragmentation is a major cause of 

biodiversity loss for virtually all terrestrial taxonomic groups (Fischer & Lindenmayer, 

2007). Many insect groups have been found to be highly susceptible to forest loss and 

fragmentation in terms of species richness and abundance (Didham et al., 1996; Koh & 

Wilcove, 2008). Habitat loss is considered as one of the main drivers of reptile and 

amphibian decline, particularly in the neotropics (Alford & Richards, 1999; Stuart et al., 

2004). Similarly, an increase in threatened bird species has been associated with habitat 

destruction in many regions (Kerr & Cihlar, 2004; Koh & Wilcove, 2008). Mammals have 

also been found to be severely threatened by habitat loss, from near complete extinctions in 

small mammals in forest fragments (Gibson et al., 2013) to severe range contractions and 

large declines in large carnivores across the globe (Ripple et al., 2014). Across taxonomic 

groups, threats have been found to be disproportionately high for higher trophic levels 

(Didham et al., 1996; Krauss et al., 2010), where the proportion of remaining suitable habitat 

can be crucial in conserving species (Andren, 1994). The spatial configuration of habitat loss 

at the landscape scale has also been identified as an important component (Seppelt et al., 

2016), where more complex configurations are likely to support higher abundances of 

species than homogenous landscapes (Stein et al., 2014). 

Since expansion can often signify the destruction of remaining natural habitat that support 

high levels of biodiversity, there is growing support for the intensification of currently used 

land (Foley et al., 2011; Tilman et al., 2011; Mueller et al., 2012). Conventional intensive 

management is characterised by highly mechanised, large-scale monoculture plots where 

high levels of agrichemicals are applied (Hudson et al., 2014). The majority of these 

techniques are detrimental to the long-term health of the environment (Newbold et al., 2015). 

Different intensification processes can vary substantially across the globe, as do their effects 

on biodiversity (Foley et al., 2005; Chapin et al., 2008). High inputs such as fertilisers, 

pesticides and irrigation can increase the risk of soil erosion, degradation (Foucher et al., 

2014) and salinization (Foresight, 2011). These processes  can  in  turn  reduce  soil  organic 

matter, disturb soil biota communities (Foucher et al., 2014), become toxic to plants with 

cascading effects on ecosystems (Yamaguchi  &  Blumwald,  2005) and overall pose a 

substantial threat to birds, mammals and amphibians (Kerr & 
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Cihlar, 2004; Gibbs et al., 2009; Kleijn et al., 2009; Hof et al., 2011). Intensive livestock 

grazing results in the removal of biomass, trampling and destruction of root systems, 

defecation, and replacement of wild grazers (Reid et al., 2009) and can have detrimental 

effects on biodiversity in terms of mean species abundance and species richness (Alkemade 

et al., 2012; Newbold et al., 2015), especially when pastures lack remaining native 

vegetation (Felton et al., 2010). Intensification processes that negatively impact biodiversity 

can also endure a backlash effect, where the role of biodiversity in ecosystem functioning, 

crop production, pest control, and resilience against invasive species is diminished (Donald, 

2004; Tscharntke et al., 2005). On the other hand, not all intensely managed land is 

necessarily detrimental to biodiversity. In contrast to the generally negative effect of 

industrialised farming practises, small-scale agro-ecological production techniques, which 

often use less agro-chemical inputs, have been found to be less destructive to biodiversity 

and have competitive yields (when including multi-cropping) on a per area basis (Perfecto et 

al., 2007; Perfecto & Vandermeer, 2010; Clough et al., 2011). 

Despite the importance and complexity of land-use intensity’s effect on biodiversity, 

agricultural expansion has generally garnered more research attention than intensification in 

estimating biodiversity loss (Pereira et al., 2010) and choosing priority regions for 

conservation (Mittermeier et al., 2004). In particular, the specifics of the relationship 

between global patterns of land-use intensity and biodiversity remains largely unknown. This 

is unfortunate considering the potential of land-use intensification in closing yield gaps and 

thus increasing production to meet growing demands. Yet, identifying the intricacies of this 

relationship is not an easy task. Even though recent advances have been made in measuring 

and mapping land-use intensity (Erb et al., 2013; Kuemmerle et al., 2013), the majority of 

studies investigating the impacts of land-use intensity on biodiversity have focused on a 

single intensity metric such as fertiliser application (Kleijn et al., 2009), yields (Herzon et 

al., 2008) or a combined index such as human pressure (Geldmann et al., 2014). Moreover, 

as with SAR studies, most research directly assessing the impact of land use on biodiversity 

are local to regional in scale (Kleijn & Sutherland, 2003; Green et al., 2005), with relatively 

few attempts to assess global relationships. These are potentially strong limitations given the 

multidimensionality of land-use intensity (Kuemmerle et al., 2013), where each measure of 

land-use intensity is likely to have a different global spatial pattern and potential effect on 

biodiversity. Thus, when investigating the relationship between agricultural land use and 

biodiversity, a wider spectrum of land-use intensity metrics, at a broader scale, is lacking. 
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1.4 Balancing agricultural production and biodiversity 

Considering the current impact of agricultural production on the world’s wildlife, along with 

high future demand for resources, the need to balance food and fauna has never been greater 

(Godfray & Garnett, 2014). Arguably, the main levers in balancing agricultural production 

and biodiversity lie in tackling the underlying drivers of demand. These include finding ways 

to transform unsustainable consumption habits, providing widespread easily accessible 

education and family planning in order combat the rising number of consumers, and reducing 

food waste on every level from farm to fridge (Bongaarts & Sinding, 2011; Lutz & KC, 

2011; Garnett et al., 2013; Tilman & Clark, 2014). It is also worth noting here that improving 

small-holder land rights, food availability, access, and utility in the developing world is 

crucial in terms of food security – a topic that is more complex and political than simply 

increasing agricultural production (Barrett, 2010). Despite all of this, even under ambitious 

future scenarios of reducing food waste, consumption of meat and dairy, and inequality, 

agricultural production increases will likely still be necessary (Visconti et al., 2015). 

In terms of increasing production and conserving biodiversity, this balancing act has been 

framed by many conservation biologists as a choice between land sharing, in the form of 

lower yielding, wildlife friendly farming, and land sparing, by maximising production in one 

area in order to ‘spare’ or conserve another (Green et al., 2005). Much research effort and 

heated debate has arisen from this framework (Green et al., 2005; Phalan et al., 2011; Phalan 

et al., 2014). However, the land-sparing/land-sharing approach is based on a false dichotomy 

where one strategy must be favoured over another, whereas in reality, these approaches are 

by no means mutually exclusive, where a framework comprised of context specific solutions 

including both protected areas and wildlife-friendly farming is possible (Kremen, 2015). 

Furthermore, the assumptions of the land-sparing/land-sharing framework often break down 

when scrutinised: maximising yields in a land sparing context is no guarantee of an increase 

in the amount of land ‘spared’ for nature (Perfecto & Vandermeer, 2010; Tscharntke et al., 

2012), especially when strict land-use planning is lacking and the demand for resources is 

not fixed – which is the case for meat and luxury products (Lambin & Meyfroidt, 2011). The 

higher efficiencies associated with agricultural intensification that can potentially spare land 

for nature, can also lead to lower food prices and thus higher rates of consumption (Lambin 

& Meyfroidt, 2011). This, in turn, can incentivise expansion. This process, known as Jevons 

paradox (Jevons, 1866), has been shown in many regions including Brazil, Indonesia and is 

likely to occur in many others, such as Sub-Saharan Africa (Angelsen & Kaimowitz, 2001; 

Nepstad & Stickler, 2008; Hertel et al., 2014). In addition to this, land sharing or wildlife 
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friendly approaches, rather than having lower yields as assumed in the land-sparing/land- 

sharing framework (Green et al., 2005; Phalan et al., 2011; Phalan et al., 2014), have been 

shown to be competitive in terms of production, especially when small-scale agro-ecological 

approaches are effectively employed (Cornia, 1985; Perfecto & Vandermeer, 2010). 

In light of this, some side-step the beleaguered land-sparing/land-sharing debate and argue 

instead for ‘sustainable intensification’. However, just as ‘intensification’ is not a 

straightforward concept in terms of definition or measurement, sustainable intensification is 

more difficult still. Since ‘sustainable development’ was brought to the forefront by the 

Brundtland Commission (1987), hundreds of definitions of ‘sustainability’ and ‘sustainable 

intensification’ have been put forward with, as yet, no common understanding of the term, 

let alone an agreed upon definition (Petersen & Snapp, 2015). 

Early discussions of ‘sustainable intensification’ were galvanised by Pretty (1997) who 

prioritised increasing yields while simultaneously improving both environmental and socio- 

economic conditions where “local knowledge and adaptive methods are stressed rather than 

comprehensive packages of externally-supplied technologies”. This approach favours 

agroecological methods that have been shown to improve yields, support local knowledge 

and increase food-security, whilst maintaining biodiversity (Perfecto & Vandermeer, 2010; 

Chappell & LaValle, 2011; Murgueitio et al., 2011; Tscharntke et al., 2012). However, more 

recent rhetoric on ‘sustainable intensification’ has turned towards focusing on closing yield 

gaps by capital and input intensive means, including precision agriculture, improved 

nitrogen efficiency, and better access to irrigation (Foley et al., 2011; Mueller et al., 2012). 

In terms of conservation, this reframing of sustainable intensification may do more harm 

than good, as outlined in the previous section; such additional inputs can have many negative 

consequences for biodiversity. 

Aside from the hazy definitions and various approaches towards ‘sustainable 

intensification’, many species are sensitive to habitat alteration and simply cannot survive in 

agricultural matrices – protected areas, to some extent, will always be needed (Kleijn et al., 

2011). In saying this, only 15% of the Earth’s land surface area is protected (Geldmann et 

al., 2015), compared to more than 38% under agricultural management (Ramankutty et al., 

2008). Thus, many wide-ranging species, for example, endangered large carnivores, cannot 

persist in small pockets of protected areas, but need a larger connected matrix of semi-natural 

and natural areas (Ray et al., 2013b). 
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The land-sparing/land-sharing framework was useful in bringing the issue of food and fauna 

to the table. Alongside this, the concept of sustainable intensification, particularly in the form 

of agro-ecological approaches, holds great promise but are currently practiced on a relatively 

small- scale (Altieri, 2004). In light of rising demand for resources, and considering the main 

modes of agricultural development that are likely to be employed to meet such demand, there 

is also an urgent and less publicised need to look towards how and where the main modes of 

agriculture may threaten biodiversity, both currently and in the future. Despite the fact that 

agriculture threatens over three times more species than climate change (Maxwell et al., 

2016), most studies assessing future biodiversity loss focus on the impact of climate change 

(Titeux et al., 2016). Of the relatively few studies that have explored what future land-use 

change may mean for biodiversity (Titeux et al., 2016), most do so within the framework of 

integrated assessment models (IAMs; Sala et al., 2000; Visconti et al., 2011; de Baan et al., 

2013; Bellard et al., 2014; Rondinini & Visconti, 2015; Visconti et al., 2015). However, such 

complex models cannot take into account the unpredictable and extreme nature of shock 

events (Müller et al., 2014; Jepsen et al., 2015; Ramankutty & Coomes, 2016). Thus, an 

overview of areas most at risk under the main modes of future agricultural change, in terms 

of the biophysical option space of potential agricultural intensification and expansion is 

urgently needed. 

 
 
2 Conceptual framework 

 
2.1 Research questions and objectives 

The overarching goal of this thesis is to advance scientific understanding of the relationship 

between agricultural land use and biodiversity. To achieve this goal, this thesis is subdivided 

into three main sections related to three core research questions. 

 Research Question I: How do patterns of land-use intensity relate to patterns of biodiversity? 
 

Land-use intensification is often touted as a solution to curtail expansion into natural areas 

and grow more on the same patch (Green et al., 2005; Phalan et al., 2011; Tilman et al., 

2011). However, conservation research has generally focused on expansion rather than 

intensification (Mittermeier et al., 2004; Pereira et al., 2010). Where intensification has been 

included, most research focuses on single metrics of land-use intensity, primarily yield gaps 

(Green et al., 2005; Phalan et al., 2011). A more in-depth view of patterns of land-use 

intensity and biodiversity requires appropriate global scale datasets. Up until recently, such 

datasets, particularly with regard to land-use intensity, were not available. However, thanks 
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to recent advances in remote sensing image analysis and approaches that combine such 

images with ground-based inventories, along with updated expert-based biodiversity 

datasets, new opportunities in investigating the complex relationship between land use and 

biodiversity arise. In finding sustainable ways to produce food, it is essential that the full 

spectrum of management practises by which food is grown is taken into account. 

Chapter II tackles the absence of land-use intensity’s multiple facets in conservation research 

and addresses the first research question by compiling a geodatabase of 13 recently available 

land use and land-use intensity datasets in terms of input, output and system metrics, and 

comparing their spatial concordance with global endemism richness distributions for birds, 

mammals and amphibians. This approach allows for the identification of areas where 

biodiversity coincides with any one indicator from a spectrum of land-use intensity metrics. 

The main objectives to answer Research Question I were to: 

(1) compile a geodatabase of global land-use intensity metrics in terms of input, output 

and system metrics 

(2) map the spatial patterns and hotspots of land-use intensity and biodiversity 
 

 
The knowledge gap between land-use intensity and biodiversity is not just related to spatial 

patterns, but also to our ability to predict broad scale species richness, leading to the second 

research question. 

 Research Question II: To what extent does the inclusion of land cover and land-use intensity 

improve global SAR models? 

Species-area relationships (SARs) are a crucial component of our understanding of patterns 

of species richness. However, two key issues remain: first, agricultural land use is the leading 

driver of biodiversity loss, with future land use change expected to accelerate such loss (Sala 

et al., 2000; Newbold et al., 2015), but the ability of global land-use intensity metrics to 

predict species richness has not been previously tested. Second, at local grains the 

importance of human influence on species richness is often embraced (Dornelas et al., 2014; 

Newbold et al., 2015), however, global scale studies generally focus on natural biophysical 

factors and fail to consider the human drivers that may be at play (Hawkins et al., 2003b; 

Hawkins et al., 2003a; Field et al., 2009; Hortal et al., 2012). Figuring out whether human 

related indicators are relevant at a global scale could add to our understanding of one of the 

most fundamental concepts in ecological research and may allow for better predictions of 

large-scale patterns of species richness. 
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Chapter III employs the geodatabase brought together in Chapter II in order to test whether 

SARs vary across regions of different agricultural land cover and a range of land-use 

intensity indicators representing input metrics (e.g. fertilizer, irrigation), output metrics (e.g. 

yields) and system-level metrics of intensity (e.g. HANPP). The resulting SARs were 

systematically compared in terms of their predictive ability. To do this, simultaneous 

autoregressive models were employed. This approach allows for spatial autocorrelation in 

the model residuals by including a second error term which explicitly models spatial 

dependence (Dormann, 2007). Overall, this method provides a better understanding of 

whether human based factors are relevant in predicting species richness on a global scale. 

The main objective to answer Research Question II was to: 

(1) assess whether SARs are improved by better representing the geographic variation 

of its parameters in terms of land cover and land-use intensity 

 
While an improved understanding of current biodiversity patterns is crucial, a rising demand 

for resources calls for more in-depth insights in how future agricultural development may 

influence biodiversity. This leads to the third research question. 

 
 Research Question III: How may future pathways of agricultural expansion and 

intensification threaten biodiversity? 

Agricultural land use change is currently and will continue to be a leading cause of 

biodiversity loss (Sala et al., 2000; Foley et al., 2005). Only relatively few studies have 

investigated the relationship between potential future agricultural land use change and 

biodiversity loss (Titeux et al., 2016). Of these, the majority of studies utilize land use 

projections from a small number of highly constrained development scenarios (IAMs). In a 

future beset with a rapidly increasing demand for natural resources, more straightforward 

and transparent approaches that test the biophysical option space of future agricultural 

pathways can serve to indicate where timely land-use planning could avert potential future 

biodiversity loss. 

Chapter IV addresses the third research question by exploring how future conventional 

agricultural change may affect biodiversity. Three agricultural development pathways 

representing the main modes of agricultural change were created: (i) expansion into suitable 

land, (ii) intensification of existing cropland, and (iii) both expansion into suitable land and 

intensification on recently converted and long-standing cropland. This was achieved by 
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combining four recently available land cover and land-use intensity datasets with those used 

in Chapter II and III, in order to create a 1km2 land-systems map with associated agricultural 

development pathways. How these pathways may affect local species richness and 

abundance was then assessed using model results from a database of over 1 million data 

points on the local effects on biodiversity of various types of land use and land-use intensity 

(Hudson et al., 2014; Newbold et al., 2015). High biodiversity regions at-risk of agricultural 

change were identified on a scale ranging from 1km2  to national level. 

The main objectives to answer Research Question III were: 

(1) develop pathways of agricultural development that represent the most common 

modes of land-use change 

(2) identify the most at risk regions where high biodiversity and future land-use change 

may coincide 

In sum, a better understanding of how global patterns of agricultural land use relate to 

biodiversity patterns is needed. Moreover, upgrading one of the most fundamental laws in 

ecology, the species-area relationship, would allow for a better representation of land-use 

intensity and thus an improved understanding of broad-scale species richness patterns. 

Finally, comparing the biodiversity impact of transparent land use pathways to highlight 

areas most at risk under potential future change is crucial in light of rising agricultural 

demand. 

 
2.2 Structure of this thesis 

This thesis consists of five chapters: the introduction (Chapter I) is followed by three core 

research chapters (Chapter II-IV) that relate to the objectives and research questions 

described above, and a synthesis (Chapter V) that summarises results from the three 

preceding chapters, and provides potential applications and directions for future research. 

The three research chapters were written as stand-alone manuscripts, which were either 

published in or submitted to international peer-reviewed journals. Since each research 

chapter serves as an independent article, there is a limited amount of recurring material, 

especially in the introduction and limitation sections. 
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Chapter II 
 

 

 

 

 

 

Abstract 
 

Aim: Land-use change is the single biggest cause of biodiversity loss. With a rising demand 

for resources, understanding how and where agriculture threatens biodiversity is of 

increasing importance. Agricultural expansion has received much attention, but where high 

agricultural land-use intensity (LUI) threatens biodiversity remains unclear. We address this 

knowledge gap with two main research questions: (1) Where do global patterns of LUI 

coincide with the spatial distribution of biodiversity? (2) Where are regions of potential 

conflict between different aspects of high LUI and high biodiversity? 

Location: Global 
 
Methods: We overlaid thirteen LUI metrics with endemism richness, a range size-weighted 

species richness indicator, for mammals, birds and amphibians. We then used local indicators 

of spatial association to delineate statistically significant (p < 0.05) areas of high and low 

LUI associated with biodiversity. 

Results: Patterns of LUI are heterogeneously distributed in areas of high endemism richness, 

thus discouraging the use of a single metric to represent LUI. Many regions where high LUI 

and high endemism richness coincide, for example in South-America, China and Eastern 

Africa, are not within currently recognized biodiversity hotspots. Regions of currently low 

LUI and high endemism richness, found in many parts of Mesoamerica, Eastern Africa, and 

Southeast Asia, may be at risk as intensification accelerates. 

Main Conclusions: We provide a global view of the geographic patterns of LUI and its 

concordance with endemism richness, shedding light on regions where highly intensive 

agriculture and unique biodiversity coincide. Past assessments of land-use impacts on 

biodiversity have either disregarded LUI or included a single metric to measure it. This study 

demonstrates that such omission can substantially underestimate biodiversity threat. A wider 

spectrum of relevant LUI metrics needs to be considered when balancing agricultural 

production and biodiversity. 
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Global patterns of agricultural land-use intensity and vertebrate diversity 
 

 

 
 

1 Introduction 
 

For more than 10,000 years, land use has played a crucial role in the development of human 

societies. Humans rely on agriculture and forestry for food, fibre, and bioenergy (MA, 

2005a) and have already modified 75% of the Earth’s ice-free terrestrial surface of which 

12% is dedicated to cropland and 22% to pasture (Ramankutty et al., 2008), with less than a 

quarter remaining as wildlands (Ellis & Ramankutty, 2008). This is expected to escalate 

further, as demand for biomass will increase drastically in the coming decades due to 

growing human population, surging consumption, changing diets, and demand for bioenergy 

(Ellis & Ramankutty, 2008; Pereira et al., 2010; Smith & Zeder, 2013). Even under ambitious 

future scenarios of reducing food waste, consumption of meat and dairy, and inequality, 

production increases and related land-use change will still be necessary (Visconti et al., 

2015). This is problematic because land-use change is the main driver of the on-going 

biodiversity crisis, primarily via habitat loss and fragmentation (Sala et al., 2000; Foley et 

al., 2005) but also via the introduction of exotic species (Clavero & García-Berthou, 2005; 

Ellis et al., 2012) and increased hunting due to access from new road construction (Laurance 

et al., 2009). In general, biodiversity loss can have repercussions on ecosystem functioning 

(Tilman et al., 2012), resilience of socio-ecological systems (MA, 2005a), and the welfare 

of human societies (MA, 2005a; TEEB, 2009). Therefore, understanding land-use effects on 

biodiversity is of prime importance. 

Agricultural land-use change occurs in two main modes: expansion of agricultural land into 

uncultivated areas, or intensification of existing agricultural land. Expansion threatens 

biodiversity mainly through the loss and fragmentation of natural habitats (Foley et al., 2005; 

Chapin et al., 2008). Studying habitat conversion and biodiversity has therefore received 

much attention both in terms of quantifying biodiversity loss (Pereira et al., 2010) and in 

choosing priority regions for conservation (Mittermeier et al., 2004). On the other hand, the 

spatial patterns of intensification of agricultural land in concordance with biodiversity 

remains poorly understood. 

For the purpose of our paper, we define agricultural land-use intensity as the degree of 

adoption of land management practices enabling yield increases from a given area of 

agricultural land (Matson et al., 1997; Ellis et al., 2013). Yields are a commonly used 

measure of land-use intensity (hereafter: LUI). Yet, different practices can result in yield 

increases. For example, increasing fertiliser, mechanization or irrigation may have different 

environmental outcomes. Moreover, regions with similar yields should not be considered 

equally  intensive  if  these  regions  differ  in  bioclimatic  conditions  which  can constrain 
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agriculture (e.g., potential yields, Neumann et al., 2010). As such, LUI is a multi- 

dimensional issue that relates to a range of individual processes linking people and the land 

and therefore cannot be fully represented by only one metric (Erb et al., 2013; Kuemmerle 

et al., 2013). 

Different intensification processes can vary substantially across the globe, as do their effects 

on biodiversity (Foley et al., 2005; Chapin et al., 2008). Intensive agriculture can have 

particularly detrimental effects on biodiversity (Benton et al., 2003; Alkemade et al., 2010), 

including negative effects on species richness (Herzon et al., 2008; Flynn et al., 2009), 

population size (Donald et al., 2001) and the loss of functional diversity (Herzon et al., 2008; 

Flynn et al., 2009). Fertilisers have been shown to negatively affect biodiversity and, along 

with pesticides, pose a substantial threat to biodiversity for birds, mammals and amphibians 

(Kerr & Cihlar, 2004; Gibbs et al., 2009; Kleijn et al., 2009; Hof et al., 2011). Irrigation 

causes salinization of soils which can prove toxic to plants with cascading effects on 

ecosystems (Yamaguchi & Blumwald, 2005), while intensive livestock grazing can have 

detrimental effects on biodiversity (Alkemade et al., 2012) especially when pastures lack 

remaining native vegetation (Felton et al., 2010). In contrast, small-scale agro-ecological 

production practices, which often use less agro-chemical inputs, have been found to be less 

destructive to biodiversity than industrial practices on a per area basis (Perfecto & 

Vandermeer, 2010). 

However, the relationship between global patterns of LUI and biodiversity is largely 

unknown since most of the research on LUI and biodiversity is local to regional in scale 

(Kleijn & Sutherland, 2003; Green et al., 2005) and most studies to date focus on a single 

LUI metric such as fertiliser application (Kleijn et al., 2009), yields (Herzon et al., 2008) or 

a combined index such as human pressure (Geldmann et al., 2014). These are potentially 

strong limitations given the multidimensionality of LUI. 

Such knowledge gaps are alarming since a large proportion of global land-use change has 

historically occurred along intensification gradients (Rudel et al., 2009). Particularly since 

the 1950s, intensification has accelerated rapidly, with irrigated lands increasing twofold 

(FAOSTAT, 2010) and fertiliser application up to fivefold (Tilman et al., 2001). As fertile 

land becomes scarce and environmental costs of converting natural habitat into agricultural 

land less acceptable, further intensification of existing agricultural land is likely. Indeed, 

‘sustainable intensification’ pathways are gaining considerable support (Foley et al., 2011; 

Mueller et al., 2012). Since production is higher on intensified agricultural land, this could, 

http://dict.leo.org/%23/search%3Dworrisome%26searchLoc%3D0%26resultOrder%3Dbasic%26multiwordShowSingle%3Don
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in theory, result in less overall pressure on natural ecosystems, i.e., a land sparing effect, 

leading to more land potentially set aside for conservation (Green et al., 2005). However, a 

land sparing effect is not guaranteed and is only possible in combination with strong 

governance (Byerlee et al., 2014). 

Recent developments in framing LUI (Erb et al., 2013; Kuemmerle et al., 2013), high- 

resolution LUI datasets (see Panel SI II-1) and global biodiversity metrics (Kier et al., 2009) 

all provide new opportunities for analysing how spatial patterns in LUI relate to biodiversity 

patterns. Here, we acknowledge the multifaceted nature of LUI and compare global patterns 

of biodiversity with a suite of thirteen agricultural LUI metrics (Panel SI II-1 & Table SI II-

1), each of which represent different dimensions of LUI. As our biodiversity metric, we 

chose endemism richness (Kier & Barthlott, 2001) for birds, mammals and amphibians, 

which is an indicator of the importance of a grid cell for conservation and combines aspects 

of species richness and geographic range size. 

We specifically addressed two main questions: (1) Where do global patterns of LUI coincide 

with the spatial distribution of biodiversity? (2) Where are regions of potential conflict 

between different aspects of high LUI and high biodiversity? 

 
 

2 Methods 

 
2.1 Data 

 
Global land-use intensity datasets 

We compared thirteen land use datasets measuring different aspects of agricultural intensity. 

Our datasets are from circa the year 2000 - the time period where such datasets are richest at 

the global scale (Table SI II-1, Kuemmerle et al. 2013). To group our intensity metrics, we 

utilised the classification scheme of Kuemmerle et al. (2013) where LUI metrics are split 

into three categories related to inputs, outputs and system metrics. Input metrics refer to the 

intensity of land use along different input dimensions, such as fertiliser and irrigation. Output 

metrics relate to the ratio of outputs from agricultural production and inputs, e.g., yields 

(harvests/land). System-level metrics describe the relationship between the inputs or outputs 

of land-based production to the overall system, e.g., yield gaps (actual vs. attainable yield). 

For input metrics, we chose a cropland extent map (Panel SI II-1, Ramankutty et al., 2008), 

which combines national and sub-national agricultural inventory data with satellite–derived 

land cover data and forms the basis for yields and harvested areas of 175 of the world’s 
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major crops (see Monfreda et al., 2008). For irrigated cropland, we used a dataset which 

accounts for areas equipped for irrigation (Panel SI II-1, Siebert et al., 2005). We also used 

the most fine-scale nitrogen fertiliser input dataset available (kg N/ha applied to croplands, 

Panel SI II-1, Potter et al., 2010). 

For output metrics, we selected crop yields for maize, wheat and rice (Panel SI II-1, 

Monfreda et al., 2008), since together, they represent approximately 85% of global cereal 

production (Hafner, 2003). Palm oil and soybean harvested areas (Panel SI II-1, Monfreda 

et al., 2008) were also included due to their expansion in the tropics and considerable 

conservation concern (Gasparri et al., 2013; Wilcove et al., 2013). We included livestock 

heads per km2 using the ‘Gridded Livestock of the World’ database (Panel SI II-1, Wint & 

Robinson, 2007). 

For system-level metrics, we included yield gaps for maize, wheat, and rice (Panel SI II-1, 

Neumann et al., 2010) and Human Appropriation of Net Primary Productivity (HANPP, 

Panel SI II-1, Haberl et al., 2007). System metrics differ from output metrics in that they 

relate inputs or outputs to system properties. While system metrics thus capture the intensity 

of the land system as a whole, they do so at the cost of obscuring individual properties of 

intensification. Yield gaps here refer to the difference between the actual yield (Panel SI II- 

1, Monfreda et al., 2008) and estimated potential yield (t/ha) calculated by integrating 

biophysical and land management-related factors (Panel SI II-1, Neumann et al., 2010). To 

interpret yield gaps in the same way as our other intensity metrics, we took the inverse of 

yield gaps so that higher numbers (i.e., lower yield gaps) relate to higher LUI. We 

additionally chose HANPP, as it provides a measure of the percentage of NPP that humans 

extract from the land, thus providing an indicator of the impact of agricultural management 

on ecosystems in terms of the inputs and outputs of land-based production (Panel SI II-1, 

Haberl et al., 2007). 

 
Global biodiversity datasets 

Endemism richness for bird, mammal and amphibian diversity were created from expert- 

based range maps (Panel SI II-1, Birdlife, 2012; IUCN, 2012). We scaled the data to an equal 

area grid of 110 x 110 km (approximately 1 degree at the equator) as finer resolutions are not 

recommended at the global scale due to an over-estimation of species occurrences (Hurlbert 

& Jetz, 2007). We chose endemism richness (Kier & Barthlott, 2001; Kier et al., 2009) as it 

combines aspects of both species richness and species’ range-sizes within an assemblage. 

Endemism richness was calculated as the sum of the inverse global range sizes 
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of all species present in a grid cell. In order to compare our results with conservation priority 

areas, we chose the Conservation International (CI) hotspots (Myers et al., 2000; Mittermeier 

et al., 2004) as they are the only global scheme that prioritizes regions based on high 

vulnerability and irreplaceability (Brooks et al., 2006). Furthermore, a substantial proportion 

of conservation funding is directed towards CI hotspots (Brooks et al., 2006). 

 
2.2 Analysing the spatial patterns of land-use intensity and biodiversity 

All LUI datasets were rescaled to the 110 x 110 km resolution of the endemism richness 

datasets by taking the mean value for each grid cell. We overlaid the different LUI maps with 

endemism richness. This allowed us to explore differences in emerging patterns, depending 

on LUI metrics and taxonomic classes for mammals, birds and amphibians. We then 

delineated high pressure regions of high LUI and high endemism richness by abridging 

datasets to the top 2.5% of the distribution, following the hotspot definition of Ceballos and 

Ehrlich (2006). We used the LUI datasets to generate maps of high pressure regions by 

intersecting all LUI metrics with endemism richness. To differentiate the importance of 

individual LUI metrics in high pressure regions, we created flower charts by calculating the 

relative values (in percentiles) per LUI metric (Figure SI II-1 & Figure SI II-2 show the top 

2.5%, 5%, & 10% hotspot maps for each metric, top 2.5% hotspot information is shown in 

Table SI II-2). 

In order to complement the qualitative approach with statistical quantifications, we 

calculated the spatial associations between LUI and endemism richness using the bivariate 

Moran’s I metric, also known as a local indicator of spatial association (LISA; Anselin, 

1995). This metric indicates the spatially-explicit strength of associations between two 

variables and results in (1) high-high values, here, where high endemism richness is 

surrounded by neighbouring cells of high LUI, (2) high-low values, high endemism richness 

surrounded by low LUI, (3) low-high, and (4) low-low (results for all metrics are provided 

in Figure SI II-3). The strength of the relationship was measured at the 0.05 level of statistical 

significance calculated by a Monte Carlo randomization procedure based on 999 

permutations (Using GeoDa 1.4 software). Associating endemism richness values with 

intensity metrics in the neighbouring cells is important because simple cell overlap (used to 

create the concordance maps) can be affected by differences in spatial resolution or noise in 

the data. We used the resulting statistically significant areas to generate summary maps of 

high and low pressure regions for all metrics (Figure II-2 and Figure SI II-4). 
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3 Results 
 

Regarding our first research question, we found that the location and extent of regions of 

low LUI were similar across metrics, often representing deserts or ice-covered land. 

However, within agricultural lands, the spatial concordance of high LUI and high endemism 

richness varied substantially in space depending on the metric chosen (Figure II-1). 

 
 
 

Figure II-1: Concordance maps of mammal endemism richness and land-use intensity (LUI). Note: We took 
the inverse of yield gaps so that higher numbers relate to higher land-use intensity. HA refers to Harvested 
Area. Mammal endemism richness is represented in aquamarine and LUI in red. Darker areas show where both 
metrics have high overlapping values, lighter areas indicate lower values (Eckert IV projection, see online 
article for colour version). 
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In relation to our second research question, regions of potential conflict between different 

aspects of high LUI associated with high endemism richness were found primarily in the 

tropics, with different combinations of high LUI metrics associated with high endemism 

richness. For example, for input metrics associated with high endemism richness, high 

fertiliser use was found in China, Southeast Asia and Europe, and irrigation was concentrated 

in large areas of the U.S., India, the Middle East and China (Figure II-1). 

Regarding output metrics, high livestock densities were found in large regions of Latin 

America and India (Figure II-1). Palm oil plantations showed high concordance with 

endemism richness patterns, exerting substantial pressure in most areas where palm oil is 

grown, especially in Nigeria, the Republic of Guinea, Malaysia and Indonesia (Figure II-1). 

Pressure on endemism richness from high-intensity soybean cultivation was particularly 

high in Brazil, Argentina and Indonesia (Figure II-1). Rice yields had the highest area of 

overlap with endemism richness (Figure II-1). Over 50% of total land cover in the 

Indomalayan region and 20% of the Neotropics was found to have both high rice yields and 

high endemism richness (Figure SI II-5, from statistically significant local indicators of 

spatial association). 

Finally, for system metrics, HANPP was associated with endemism richness in large areas 

of the tropics including Mesoamerica, southern India and Sri Lanka, and many parts of 

Eastern Africa and Southeast Asia. HANPP also highlighted some areas (e.g., South Africa) 

which were not captured by any other indicators used here (Figure II-1). 

High endemism richness associated with low LUI were found in many tropical regions 

(Figure II-1 & Figure SI II-3). Specifically, high yield gaps due to currently low levels of 

irrigation and fertiliser input (Mueller et al., 2012) were found in Southeast Asia, 

Mesoamerica and Sub-Saharan Africa. Concordance of low HANPP and high endemism 

richness occurred in large regions of the tropical Andes, the Amazon, Central Africa and 

Southeast Asia (Figure II-1 & Figure SI II-3). Conversely, our analyses showed that 

developed countries with an industrialized agricultural sector such as Europe and North 

America had particularly high LUI coupled with comparatively low endemism richness 

(Figure II-1 & Figure SI II-3). 

When comparing between mammals, birds and amphibians, broad patterns of endemism 

richness were remarkably similar and highly correlated. All biodiversity metrics were found 

to have positive and significant spearman rank correlation coefficients (p < 0.05) of over 

0.84, including between endemism and species richness (Table SI II-3). Mammals and birds 
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showed exceptionally high correlations, both for endemism richness (0.95) and species 

richness (0.96). In terms of spatial patterns of high endemism richness congruent with LUI, 

relatively small differences were found between taxonomic classes. Most differences were 

found for amphibians, where small species ranges resulted in smaller areas associated with 

high LUI compared to birds and mammals (Figure SI II-6). Amphibians were the only taxon 

found that coincided with high yields and high HANPP in the South-eastern U.S. In the 

Caucasus, mammals were the only taxon present in concordance with high LUI (for all 

metrics, see Figure SI II-3). Birds stood out as not having any areas of high endemism 

richness associated with high LUI in Europe, where mammals and amphibians coincided 

with high LUI in areas of the Alps, the Pyrenees and parts of Italy. Birds also exhibited higher 

concordance with livestock in Latin America and cropland extent in South-eastern Australia 

than other taxonomic classes. Overall, birds and mammals showed strikingly similar spatial 

patterns, where ~80% of high mammal endemism richness associated with high LUI 

overlapped with high bird endemism richness. 

When comparing between LUI metrics, the highest correlation was found between cropland 

extent and fertiliser use (0.92, Table SI II-3). With the exception of wheat yield gaps and 

palm oil harvested area, all LUI metrics had positive correlation coefficients. However, over 

half of the correlations between LUI metrics were below 0.5. Correlations between 

taxonomic classes were higher than those found between most LUI metrics. Correlations 

between biodiversity indicators and LUI metrics were highest for livestock density, HANPP, 

and maize yields. 

In order to identify regions where any one LUI metric was associated with one or more 

taxonomic classes, we combined individual results of local indicators of spatial association 

(LISA) by LUI metric and taxonomic class (see Figure II-2 for combined taxa and Figure SI 

II-7 for mammals, birds and amphibians separately). When these results were compared with 

CI hotspots, we found that over half (~55%) of CI hotspots (Mittermeier et al., 2004) fell 

within our regions of high LUI and high endemism richness. However, substantial areas of 

high endemism richness, for all three taxonomic classes, and high LUI were highlighted 

which are not currently contained within CI hotspots and include, Papua New Guinea (due 

to high maize and rice yields), Venezuela (high maize and rice yields and livestock density), 

parts of China (fertiliser, irrigation, livestock density and wheat, maize and rice yields), 

Eastern Africa (wheat yields and livestock density) and Eastern Australia (maize yields, 

HANPP and livestock density). 
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Figure II-2: Regions of high land-use intensity (LUI) and high endemism richness for mammals, birds and 
amphibians from statistically significant (p < 0.05) local indicators of spatial association. Dark blue regions 
show high endemism richness for all three taxonomic classes associated with at least one LUI metric. 
Biodiversity hotspots from Conservation International (CI) which do not overlap with our high LUI & high 
endemism richness areas are shown in pink. Red areas signify regions of overlap between high LUI & high 
endemism richness (for at least one taxonomic class) and CI hotspots (Eckert IV projection, see online article 
for colour version). 

 
 

We then investigated areas of potential conflict between high LUI and high endemism 

richness by overlaying the top 2.5 per cent of our metrics’ geographic pattern (Figure II-3). 

With the exception of the Sulawesi lowlands (70th percentile rank for amphibians), all other 

areas exhibited relatively high bird, mammal and amphibian endemism richness, 

highlighting relatively small differences in spatial patterns between taxonomic classes in 

areas of high LUI (Table SI II-2). 
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Figure II-3: Top 2.5% of land-use intensity (LUI) and endemism richness. where any one top 2.5% intensity 
metric overlaps with any one top 2.5% of endemism richness (ER) for mammals, birds and amphibians, thus 
highlighting regions of particularly high pressure between human activity and wildlife (shown in red). Multiple 
overlapping LUI metrics of top 2.5% are shown in purple and multiple top 2.5% of endemism richness for 
taxonomic classes shown in turquoise. Numbers on the petal diagram represent percentile ranks for each LUI 
metric. Larger petals indicate higher percentile ranks, and thus higher intensity of land use. Petals for input 
metrics are coloured in green, output metrics in orange and system metrics in blue. Percentile ranks for inverse 
yield gaps are given in Table SI II-2 (Eckert IV projection, see online article for colour version). 

 
 

In contrast, peaks in the LUI metrics (top 2.5% percentile) in concordance with high 

endemism richness varied considerably, emphasizing large spatial differences between LUI 

metrics. All top 2.5% high pressure regions overlapped with CI hotspots (Australian hotspot 

identified by Myers et al., 2000; Mittermeier et al., 2004 contained all other hotspots). 

 
 
4 Discussion 

 

While our results largely support previous research - that biodiversity threat is found 

primarily in the tropics - two main insights emerge from our work. We find that different 

LUI metrics resulted in diverse and incongruent spatial patterns associated with endemism 

richness. This emphasizes the need to move from one-dimensional approaches of 

representing LUI towards including multiple facets of how we manage agricultural land. We 

then identified regions of potential conflict between agriculture and biodiversity 

conservation. These regions highlight the spatial differences between LUI metrics in highly 

biodiverse areas with particularly intensive land use. 

Diverse global intensity patterns concordant with endemism richness are important since 

intensification processes are likely to have an array of effects on biodiversity (Donald et al., 

2001; Benton et al., 2003; Kerr & Cihlar, 2004; Yamaguchi & Blumwald, 2005; Herzon et 

al., 2008; Flynn et al., 2009; Gibbs et al., 2009; Kleijn et al., 2009; Alkemade et al., 2010; 

Felton et al., 2010; Alkemade et al., 2012). Intensification processes are also likely to 

influence birds, mammals and amphibians in various ways. While broad patterns were 

overall remarkably similar, the results highlighted some differences in the detail. Unique 

taxon-specific areas associated with high LUI were highlighted for amphibians in the South- 

eastern U.S., mammals in the Caucasus, amphibians and mammals in Europe and birds in 

Latin America and Australia. Such differences among taxonomic classes are of interest as 

they suggest a limited usefulness of surrogate taxa on a global scale. 

Of our thirteen LUI metrics, eight were related to the yield and yield gaps of different crops, 

therefore it is not surprising that different patterns concordant with high endemism richness 
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emerge. However, the differences that we find in high intensity land-use, not just between 

yields but also in the inputs involved in increasing yields are diverse. We thus highlight not 

only where different crops are grown intensively alongside biodiversity, but also the 

concordance of biodiversity and the high intensity management processes behind such 

yields. 

The land sharing-sparing debate sparked a wider appreciation of LUI with regard to yields 

(Green et al., 2005; Phalan et al., 2014). The use of yields alone is logical when focusing on 

increased agricultural production; however, this approach does not give us clear insights into 

which management practises have resulted in yield increases. While our study does not 

provide insights into the relative impact of intensification vs. expanding agricultural area, 

our results do show that a focus on yields or yield gaps alone will likely be insufficient to 

assess the biodiversity impact of agriculture. This is particularly relevant, given that some 

forms of management may threaten biodiversity more than others (e.g., conventional vs. 

organic agriculture), and some farming practices (e.g., agro-ecological farming, Perfecto & 

Vandermeer, 2010) may even lead to co-benefits in terms of biodiversity. Similarly, studies 

which focus exclusively on habitat loss or other single LUI metrics, such as fertilisers (Kleijn 

et al., 2009) or human population density as a proxy for LUI (Pekin & Pijanowski, 2012) 

could lead to incomplete or biased conclusions when identifying priority areas for 

biodiversity conservation. 

The incongruence of CI hotspots and regions of high LUI and high endemism richness 

further highlights this. Although the total area of high LUI and high endemism richness was 

slightly greater than the total area of CI hotspots, many large regions had no overlap. 

Considering the various negative effects intensification can have on biodiversity, such areas 

which were not covered by CI hotspots may merit more attention with a combination of 

relevant LUI metrics investigated accordingly. All regions where the top 2.5% of LUI and 

endemism richness overlapped were within CI hotspots. Thus, despite the incongruence of 

CI hotspots and regions of high LUI and endemism richness from the LISA analysis, when 

LUI is particularly intense (top 2.5%) the two distributions converge. This may, in part, be 

because in regions with particularly high LUI, some of the conditions used to define CI 

hotspots are met (e.g., 70% of native habitat lost). It should also be noted that the majority 

of the globe’s land area (79%) was highlighted by one or more other global conservation 

priority schemes, and that our regions of high LUI associated with high endemism richness 

are covered by several of these schemes (e.g., Papua New Guinea is included in High 
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Biodiversity Wilderness Areas, Venezuela and China by Megadiversity Countries, and 

Eastern Africa by the Global 200 Ecoregions, see Brooks et al., 2006). 

In debates addressing broad topics such as sustainable intensification and biodiversity 

conservation, we recommend a more multidimensional approach to agricultural 

intensification, where relevant LUI metrics are included in accordance with research goals. 

Areas with high yield gaps and high endemism richness may represent potential future 

conflicts between high LUI and biodiversity. In less developed regions with high 

biodiversity, intensification can be limited by a lack of capital investment and access to 

resources (Mueller et al., 2012). However, foreign investment spurred by increasing land 

scarcity is increasing (Rulli et al., 2013). For example, high cropland cover and HANPP now 

dominate in Southeast Asia, where the area of palm oil cultivation has increased by 87% in 

the last decade (FAOSTAT, 2010) and is one of the biggest threats to biodiversity in the 

region (Wilcove et al., 2013). Considering the detrimental effects of using increased inputs 

such as fertiliser and pesticide on biodiversity (Kerr & Cihlar, 2004; Gibbs et al., 2009), the 

various forms of intensification that are possible in these regions may result in considerable 

biodiversity threat and conservation conflicts. It should also be noted that areas shown here 

where future intensification may occur are based only on current low-intensity regions which 

may not necessarily become high intensity in the future due to many reasons such as poor 

soil quality, rugged topography, or climate constraints. 

With a growing consensus that both expansion and intensification are likely to continue in 

the future, investigating which areas should be prioritised for sustainable intensification or 

nature protection becomes central to conservation research (Green et al., 2005; Phalan et al., 

2014). One potential avenue may be to concentrate intensification strategies in coldspots of 

low intensity and low biodiversity, therefore increasing yields while minimizing costs to 

biodiversity. Another, complementary pathway to lessen negative biodiversity impacts of 

intensification is by reducing overuse of fertilisers and irrigation in over-saturated areas (e.g., 

China and parts of Europe), while allowing for more fertiliser use in less productive areas 

(Mueller et al., 2012). However, we strongly caution that detailed, context-specific 

assessments of the possible outcomes of different intensification strategies on the various 

aspects of biodiversity at the local-to-regional scale are needed for such analyses, 

accompanied with an assessment of other socio-ecological outcomes, as coldspot regions 

may include both valuable and endemic biodiversity and cultural heritage that intensification 

may  threaten. While our results  are coarse in  scale  and  cannot reveal  specific areas   for 
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sustainable intensification, we do offer a starting point for identifying areas of current and 

potentially suitable future intensification. 

We compiled a set of LUI metrics with the highest spatial resolution currently available. 

Nevertheless, despite considerable recent progress, numerous gaps exist regarding the 

availability of alternative indicators and the difficulties in their measurement related to issues 

with data availability, accuracy, and error propagation (Kuemmerle et al., 2013). With many 

inconsistent definitions in the literature, conceptually framing LUI is challenging 

(Kuemmerle et al., 2013). Uncertainties in the accuracy of current LUI maps are often high 

due to inconsistent input data and limitations with processing algorithms and positional 

accuracy which is exacerbated by a lack of formal validation (Verburg et al., 2011). 

Systematically collected ground-based data only covers a few regions of the globe, statistical 

data are often only available at the national scale, and remote sensing cannot easily capture 

the subtle spectral effects of LUI changes (Kuemmerle et al., 2013). Many LUI maps used 

here are based on one cropland hybrid map (Panel SI II-1, Ramankutty et al., 2008) and 

inaccuracies in the base map can propagate onto derivative maps (Verburg et al., 2011; Table 

SII-1). This partly explains, for example, the large correlation found between fertiliser and 

cropland extent (0.92, Table SI II-3). However, higher correlations were found between 

taxonomic classes, highlighting the variety in spatial patterns of LUI metrics. 

Information on mining, pesticide use, shifting cultivation, frequency of fire grazing, labour 

intensity, mechanisation, intensity of wood felling, and field sizes was still too limited to be 

included in this research. Furthermore, time series for LUI datasets are currently not 

available but would be desirable as they could allow for causal analysis. Global data relevant 

to broader socioeconomic processes are also lacking (Otto et al., 2015). 

In terms of biodiversity, we included just one global-scale measure. We chose endemism 

richness as it combines species richness and endemism (Figure SI II-8) and thus indicates 

the relative importance of a grid cell for species conservation on a global scale (Kier et al., 

2009). This is an advantage over species richness which is often representative of common, 

widespread species that can overshadow rare or small-ranged species, often in need of 

conservation (Grenyer et al., 2006). Considering a more diverse range of biodiversity metrics 

may provide a richer view of patterns of LUI and biodiversity. However, since the main aim 

of this study was to compare the patterns of numerous LUI metrics concordant with 

biodiversity, and because a relatively large body of work has already been carried out on the 

differences between and the complexity of biodiversity metrics (Grenyer et al., 2006; Kier 
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et al., 2009), we used only one measure of biodiversity. Future studies could consider a wider 

set of metrics, including information on abundance, functional, phylogenetic, or beta- 

diversity. The inclusion of measures of ecosystem services, resilience, extinction debt (Essl 

et al., 2015) and societal outcomes could also prove beneficial. 

The paucity of readily available species occurrence data is a major impediment in mapping 

global patterns, with notably less data available for less charismatic species and less 

developed countries, which is where most biodiversity is thought to occur. High potentials 

for yield improvements are often found in lesser studied regions in the tropics (Mueller et 

al., 2012) thus making the possible land-use threat to biodiversity even hazier. While species 

distribution data scaled to a finer resolution than 110 x 110 km is available, a substantial 

mismatch of global-scale range-map distributions with species’ actual distributions occurs 

at finer scales, resulting in an overestimation of species occurrences (Hurlbert & Jetz, 2007). 

Therefore, at the current resolution, the exact configuration of land uses within each grid cell 

cannot be accounted for. This resolution is also likely to oversimplify fine-scale patterns of 

concordance of LUI and biodiversity, and differences between taxonomic classes. This has 

implications for what is in reality a LUI-biodiversity hotspot but has been missed as a hotspot 

due to taking the average LUI values per grid cell i.e. a grid cell may contain both very high 

and very low LUI but is represented here as medium LUI due to averaging. Furthermore, the 

same data can produce different results when aggregated in different ways – this is applicable 

to any zoning of spatial units and is known as the modifiable areal unit problem (Openshaw 

& Taylor, 1979; Jelinski & Wu, 1996). Together, these issues represent limitations for 

studying the effect of LUI on biodiversity. 

 
 
5 Conclusions 

 

Considering the increasing demand for food and bioenergy production, understanding the 

pressure land-use change exerts on biodiversity is crucial. In the past, such assessments have 

predominately focused on the extent of land use. However, intensification has been a major 

mode of land-use change historically (Rudel et al., 2009) and is likely to continue due to 

economic pressure and government policies to intensify agriculture in less developed, yet 

highly biodiverse areas (van Vliet et al., 2012). Different LUI metrics highlight different 

high-pressure regions, suggesting conservation research should embrace the multiple aspects 

of LUI and include relevant intensity metrics when considering biodiversity threat. This is 

particularly important since most global assessments of the land-use impact on biodiversity, 
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as well as the current land sparing vs. land sharing debate, have at best relied on single 

measures of LUI (Ellis & Ramankutty, 2008; Kleijn et al., 2009; Pekin & Pijanowski, 2012). 

We identify areas of particularly high endemism richness and high LUI and thus shed light 

on regions of potential conflict where highly intensive agriculture and unique biodiversity 

coincide. 

Our research provides a starting point to investigate the relationship between the many facets 

of intensification and biodiversity, and to explore regions that could pose a threat to 

biodiversity if intensification were to occur. In general, expansion and intensification 

processes aim to address the growing demand for resources, but both can have negative 

effects on biodiversity and neither can provide an all-encompassing solution if the root 

drivers of biodiversity loss are not tackled. Successful conservation strategies should 

consider population growth, overconsumption of meat and dairy, food wastage and 

distribution, and defective socio-economic, institutional and political systems not as 

uncontrollable factors, but as opportunities for change and improvement. Tackling these root 

causes of land-use change and subsequent biodiversity loss can reduce the pressure currently 

seen on biodiversity and aid in meeting the great challenge of increasing food availability to 

feed a growing world population, and at the same time, preserve remaining wildlife. 
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Table SI II-1: Details on datasets of LUI metrics 
 

 Dataset 

(citation, original 

scale, year) 

Description 

(data value, reference 

year) 

Data Source 

IN
P

U
T

 

M
E

T
R

IC
S
 

(a.) Cropland extent 

(Ramankutty et al., 
2008, 5min, 2000, 
Panel SI II-2 ref. 7) 

(b.) Land equipped 

for irrigation 

(Siebert et al., 2005, 
5min, 2000, Panel SI 
II-3 ref 9) 

(c.) Industrial & 

manure fertilizer 

application rates (N, 
P) (Potter et al., 2010, 
10km, 2000, Panel SI 
II-4 ref 6) 

(% per grid cell, 1997– 
2003) 

 
 

 
(% per grid cell, ~2000) 

 
 

 
Nitrogen fertilizer 
nutrients applied to 
croplands (kg/ha, 1994- 
2001). 

FAO, national inventories and 
MODIS global land cover and 
GLC2000. 

 
 

FAO, World Bank, USGC-GLCC- 
2.0 and JRC-GLC2000 land cover 
datasets used when no other spatial 
info available. 

FAO “Fertilizer Use by Crop 2002” 
combined with harvested area for 
175 crops (Monfreda et al. 2008). 

 Combining census statistics with 
global cropland area (Ramankutty 
et al. 2008) 

 
 
 
 

FAO and spatially predicted on 
suitable land 

O
U

T
P

U
T

 

M
E

T
R

IC
S
  

S
Y

S
T

E
M

 

M
E

T
R

IC
S
 

(a.) HANPP (Haberl 
et al., 2007, 5 min, 
2000,  Panel SI II-7 
ref 2) 

 
 

(b.) Yield Gaps - 
Wheat, maize and rice 
yield gap (Neumann 
et al., 2010, 5min, 
~2000,  Panel SI II-8 
ref 5) 

Human Appropriated 
Net Primary 
Productivity (per cent of 
NPP0, 2000) 

 
 

Yield gaps here refer to 
the difference between 
the actual yield and 
estimated frontier yield 
** (t/ha, ~2000) 

FAO and Lund–Potsdam–Jena 
(LPJ) DGVM (18, 19) global 
vegetation models 

 
 

 
Global data on actual grain yields 
were obtained from Monfreda et al. 
(2008) potential yield calculated by 
integrating biophysical and land 
management-related factors. 

 

* Harvested area was chosen for soybeans and palm oil as its spatial pattern more closely resembled previously 
published data on yields and harvested area (Fitzherbert et al., 2008; GAEZ, 2010; Ray et al., 2012; Ray et al., 
2013a; USDA, 2013) than the yields dataset by Monfreda et al. (2008). Furthermore, in areas of intensive soy 
and palm oil production, biodiversity is generally low when compared to other land covers (Mattsson et al., 
2000; Fearnside, 2001; Fitzherbert et al., 2008; Koh & Wilcove, 2008). 

http://edcsns17.cr.usgs.gov/glcc/
http://edcsns17.cr.usgs.gov/glcc/
http://www-gvm.jrc.it/glc2000/defaultGLC2000.htm
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** Yield gaps can also be measured as the proportion of actual and potential yield. However, when measured 
in this way, areas with similar proportional yield gaps are indistinguishable from each other - e.g., two areas 
may have a relative yield gap of 50%, but the first has a yield of 1 t/ha and an attainable yield of 2 t/ha, the 
other a yield of 15 t/ha and an attainable yield of 30 t/ha. Here, the second area holds a much greater potential 
for producing more food by closing this gap. These are the areas of particular interest in the sustainable 
intensification debate and so we have chosen this measure for the purpose of this paper. Note that this measure 
has its own shortfall in that it does not give us information on the original attained yield as the proportional 
yield gap does, however, one single measure could not cover all aspects of yield gaps. 

 
 

 
Table SI II-2: Average percentile ranks for LUI and Endemism Richness in top 2.5% hotspots. Higher percentile 
ranks indicate higher values. For example, a percentile rank of 70 indicates that the metric is higher than 70 
per cent of the overall distribution of that indicator. Inverse yield gaps are given in brackets. 
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Mexico 90 90 90 90 0 0 80 20(0) 20(0) 20(0) 30 90 40 

Cuba 80 90 90 80 0 90 80 50(60) 40(0) 0(0) 80 0 0 

Haiti 80 90 90 90 60 50 90 50(10) 30(10) 0(0) 90 0 0 

Northern Andes 90 90 90 50 70 60 70 70(80) 60(70) 30(0) 90 20 60 

Central Andes 90 90 80 50 60 60 60 90(0) 70(70) 60(0) 80 0 0 

Southern Andes 90 90 90 70 60 90 60 0(0) 60(60) 30(80) 50 0 0 

Atlantic Forest 90 90 90 60 60 40 80 80(70) 60(30) 0(0) 90 0 0 

Afromontane 90 90 90 70 50 40 80 50(90) 60(40) 60(90) 90 20 10 

Western Ghats 90 90 90 90 70 80 90 80(70) 40(60) 10(0) 90 0 0 

Indochinese Region 90 90 90 80 90 60 90 80(50) 60(70) 50(80) 80 60 10 

Borneo 90 90 80 90 90 0 70 20(20) 10(0) 0(0) 50 0 90 

Java 90 90 90 90 90 80 90 80(80) 60(30) 0(0) 80 80 70 

Sulawesi 90 90 70 90 40 0 70 40(50) 30(30) 0(0) 60 70 0 

Philippines 90 90 90 90 80 90 90 60(30) 50(10) 0(0) 60 0 70 

Australia 90 90 90 50 50 50 60 0(0) 60(0) 50(0) 90 60 0 
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Table SI II-3: Spearman’s rank correlation coefficients of all LUI, Endemism and Species Richness datasets. 
With the exception of Wheat Yield and Palm Oil HA (shown in grey), all correlations were statistically 
significant at the p < 0.05 level. 
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Figure SI II-1: Top 2.5, 5, and 10% of LUI metrics. (a.) cropland extent, (b.) fertilizer, (c.) irrigation, (d.) palm 
oil, (e.) soy, (f.) livestock, (g.) rice, (h.) wheat, (i.) maize, (j.) yield gap rice, (k.) gap wheat, (l.) gap maize, (m.) 
HANPP. Note, inverse yield gaps (j-k) shown in red, top 2.5%, orange, top 5%, yellow top 10% indicate 
potential for intensification, high intensity (i.e. low yield gaps) is indicated in purple. 

 

 

 
 
 

Figure SI II-2: Top 2.5, 5, and 10% of Endemism Richnessfor (a.) mammals, (b.) birds and (c.) amphibians 
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Figure SI II-3: Individual LISA results for each LUI metric and Endemism Richnesss This analysis indicates 

the spatially-explicit strength of associations between two variables and results in (1) high-high values, here, 

where high biodiversity is surrounded by high land-use intensity (in red), (2) high-low values, high biodiversity 

surrounded by low LUI (in pink), (3) low-high, low biodiversity surrounded by high LUI (in light blue), and 

(4) low-low, low biodiversity surrounded by low LUI (in dark blue). Note, yield gaps are inverse so higher 

values indicate higher LUI (low yield gaps). 
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Figure SI II-4: (a) Areas of low Endemism Richness and high LUI and (b) high Endemism Richness surrounded 
by low LUI areas according to statistically significant (p < 0.05) LISA results. We show areas where 
biodiversity is high for all three taxonomic classes (in blue), any two taxonomic classes (in green) and 1 taxon 
(in yellow) concordant with (a) a minimum of one high land-use intensity indicator and (b) a minimum of one 
indicator of low intensity land-use. A low intensity land-use indicator gives us an idea of areas of potential 
future threat if intensification were to occur. Note: in such areas, low intensity can relate to as few as one 
intensity metric at a low value concordant with biodiversity, other intensity indicators may already be high in 

the same region (see Figure II-1). 
(a.) (b.) 

 

 
 
 
 
 

Figure SI II-5: Percentage of ecozone containing regions of high Endemism Richness and high LUI from LISA 
analysis (p < 0.05). Note: areas are over entire grid cells, specific configurations within grid-cells are not 
known. 
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Figure SI II-6: Areas where high LUI (combined for input, output and system metrics) is associated with high 
Endemism Richness (for each taxonomic class) from LISA analysis. Note: Yield gaps are inversed so high 
numbers relate to high LUI. Purple areas indicate more than one intensity metric. 

 
 
 
 
 

Figure SI II-7: Regions of high land-use intensity (LUI) and high endemism richness for mammals, birds and 
amphibians (in blue) compared to CI hotspots 

 
 
 
 
 

Figure SI II-8: Endemism Richness for mammals, birds and amphibians 
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Abstract 
 

Species-area relationships (SARs) provide an avenue to model patterns of species richness 

and have recently been shown to vary substantially across regions of different climate, 

vegetation, and land cover. Given that a large proportion of the globe has been converted to 

agriculture, and considering the large variety in agricultural management practices, a key 

question is whether global SARs vary across gradients of agricultural intensity. 

We developed SARs for mammals that account for geographic variation in biomes, land 

cover and a range of land-use intensity indicators representing inputs (e.g. fertilizer, 

irrigation), outputs (e.g. yields) and system-level measures of intensity (e.g. human 

appropriation of net primary productivity - HANPP). We systematically compared the 

resulting SARs in terms of their predictive ability. 

Our global SAR with a universal slope was significantly improved by the inclusion of any 

one of the three variable types: biomes, land cover, and land-use intensity. The latter, in the 

form of human appropriation of net primary productivity (HANPP), performed as well as 

biomes and land-cover in predicting species richness. Other land-use intensity indicators had 

a lower predictive ability. 

Our main finding that land-use intensity performs as well as biomes and land cover in 

predicting species richness emphasizes that human factors are on a par with environmental 

factors in predicting global patterns of biodiversity. While our broad-scale study cannot 

establish causality, human activity is known to drive species richness at a local scale, and 

our findings suggest that this may hold true at a global scale. The ability of land-use intensity 

to explain variation in SARs at a global scale had not previously been assessed. Our study 

suggests that the inclusion of land-use intensity in SAR models allows us to better predict 

and understand species richness patterns. 
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1 Introduction 
 

The species-area relationship (SAR) is one of the most robust patterns found in ecology 

(Rosenzweig, 1995) and is crucial to our understanding of biodiversity patterns 

(Rosenzweig, 1995; Turner & Tjørve, 2005; Drakare et al., 2006; Dengler, 2009). By relating 

the number of species to the area of habitat, the application of SARs is central in predicting 

species loss in areas of habitat loss and land-use change (Ladle & Whittaker, 2011; Keil et 

al., 2015). A key step in SAR analyses is to accurately estimate the slope of the relationship, 

i.e. the rate of species loss related to area loss. However, applying a universal (canonical) 

slope and treating human-dominated land as inhospitable (Pimm et al., 1995; Brooks et al., 

2002; Thomas et al., 2004) may be overly simplistic since SAR slopes are known to vary 

geographically (Drakare et al., 2006; Gerstner et al., 2014) and since numerous factors may 

allow for species survival in the matrix surrounding remaining habitat patches. 

A complex interplay of ecological, evolutionary, and environmental factors influences 

species richness in a given area. For example, the importance of energy availability and 

ecosystem productivity in predicting species richness has led to the development of the 

species-energy theory (Wright, 1983), whereby, at broad scales, a positive relationship is 

generally found for terrestrial vertebrates, where higher energy availability results in higher 

species richness (Currie, 1991; Gaston, 2000; Cusens et al., 2012). Other factors that can 

influence species richness in a given area include dispersal ability (Storch et al., 2005), 

evolutionary history (Belmaker & Jetz, 2015), disturbance frequency, climate (Hawkins et 

al., 2003b; Kreft & Jetz, 2007) and environmental heterogeneity (Stein et al., 2014). 

Many of the natural bioclimatic factors at play in driving species distributions and species 

richness may be summed up by biome classifications. This is because biomes represent 

major types of potential natural vegetation originating from distinct climatic conditions 

(Olson & Dinerstein, 1998; Ladle & Whittaker, 2011). Land cover has many similarities with 

biome classifications, as land cover represents the biophysical attributes of the land surface 

(Lambin et al., 2001) and is determined by the climate, topography, and soil. Land cover 

additionally includes areas predominantly influenced by human activity such as croplands. 

Agricultural expansion leading to land-cover conversions is one of the main drivers of 

species loss on a global scale (Sala et al., 2000; Pereira et al., 2012), but species also respond 

differently to habitat loss and degradation (Pereira & Daily, 2006). Recent studies reflect 

this, for instance, through the development of matrix-calibrated SARs which incorporate 

land-cover  change  (Koh  &  Ghazoul,  2010),  and  SARs  which  include  species specific 
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habitat-affinity in human-modified landscapes (Pereira & Daily, 2006). Countryside 

biogeography also provides better insights into species survival in complex agricultural 

landscapes and forest fragments (Mendenhall et al., 2014). 

While currently available land-cover datasets (Channan et al., 2014) and SAR models 

incorporating land use (Pereira & Daily, 2006; Koh & Ghazoul, 2010) distinguish between 

natural or agricultural land-cover types, land-management practices can differ greatly in 

what we broadly describe as agricultural land. In parallel to agricultural expansion leading 

to land-cover conversions, agriculture has also rapidly intensified since the 1950s. For 

example, global irrigated areas have doubled in size (FAOSTAT, 2010) and fertilizer 

application has increased fivefold (Matson et al., 1997; Tilman et al., 2001). 

This is problematic because high agricultural land-use intensity (LUI) is generally 

detrimental to local species richness and abundance (Newbold et al., 2015). However, despite 

the global increase in LUI, most studies investigating land use and biodiversity are local in 

scale and either disregarded LUI completely or used only a single metric to measure it 

(Herzon et al., 2008; Kleijn et al., 2009; Geldmann et al., 2014). The latter approach has 

been shown to be simplistic as LUI is a multidimensional concept that embodies a wide 

variety of management practices that can have diverse effects on biodiversity. For instance, 

fertilizers and pesticides pose a substantial threat to terrestrial vertebrates (Kerr & Cihlar, 

2004; Gibbs et al., 2009; Kleijn et al., 2009). Long-term irrigation can salinize soils which 

can eventually become toxic to plants with potentially detrimental effects to entire 

ecosystems (Yamaguchi & Blumwald, 2005). Intensive livestock grazing can have negative 

effects on biodiversity (Alkemade et al., 2012) and ecosystems, especially in the absence of 

remnant vegetation (Felton et al., 2010). All of these effects are of particular concern since 

different combinations of high LUI concordant with high biodiversity are spread 

heterogeneously across the globe (Kehoe et al., 2015) and may have region-specific effects 

on biodiversity. Therefore, while it is generally not accounted for, the intensity of agricultural 

land use may improve predictions of SARs in human-modified landscapes. 

While the inclusion of biomes and land cover has recently been shown to improve SAR 

predictions for plants on a global scale (Gerstner et al., 2014), it remains unclear whether 

this extends to other taxa, and whether the inclusion of measures of land-use intensity 

improves global SAR models. Furthermore, the importance of human influence on species 

richness is often embraced at local grains (Dornelas et al., 2014; Newbold et al., 2015), 

however, recent research is emerging that indicates broader patterns of species richness 
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might also be related to human activities more than we suspect (Murray & Dickman, 2000; 

Di Marco & Santini, 2015). 

Here, we first evaluated the extent to which the inclusion of agricultural activity and 

management in the form of land cover and land-use intensity improves global SAR models. 

To account for the multidimensionality of land-use intensity, we assessed three broad 

categories of agricultural management metrics, representing input (the intensity of land use 

along different input dimensions, e.g. fertilizer and irrigation), output (the ratio of outputs 

from agricultural production, e.g. yields, t/ha/yr) and system metrics (the relationship 

between the inputs or outputs of land-based production to the overall system, e.g. human 

appropriation of NPP). Following this step, we compared whether this improvement is 

comparable to the inclusion of climate conditions and potential natural vegetation embodied 

by biome classifications. Therefore, we test a proxy for human factors in the form of land- 

cover and LUI, against a proxy for environmental factors, in the form of biomes, in their 

ability to predict SARs on a global scale. 

 
 

2 Material and methods 

 
2.1 Data 

 
Species Data 

We focused on terrestrial mammals due to their high endangerment status, 22% of mammals 

are currently threatened according to the IUCN (2013), and the availability of a recently 

updated global range maps (Schipper et al., 2008; IUCN, 2013). We used extent-of- 

occurrence range maps provided by the IUCN (2013), which we overlaid with a grid to infer 

broad-scale species richness patterns. These range maps are currently considered the most 

comprehensive and detailed global dataset of mammal distributions (Di Marco & Santini, 

2015). Range maps are expert-based maps of mammal distributions that depict the extent of 

occurrence, i.e. areas containing all known species occurrences. However, like all global 

spatially explicit datasets, errors and gaps occur. For example, species’ areas of occupancy 

can be overestimated at fine spatial resolutions by including uninhabited areas (Jetz et al., 

2008). We therefore scaled the data to an equal area grid of approximately 110 km × 110 km 

or 1 degree at the equator as finer resolutions lead to high levels of false presences (Hurlbert 

& Jetz, 2007). We excluded all cells with <50% land area to minimize confounding effects 

of coastal areas, predominantly marine species, and small oceanic islands. 
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Biome & Land-Use Data 

We used 14 biomes as defined by Olson and Dinerstein (1998, Figure III-1a). For land cover, 

we used 16 classes from the MODIS land cover map (Channan et al., 2014, Figure III-1b). 

To assess LUI, we explored three categories of metrics related to the intensity of (a) inputs 

to agriculture, (b) outputs from agriculture, and (c) changes in system-level variables due to 

agriculture (Kuemmerle et al., 2013). Input metrics relate to the intensity of land 

management along input dimensions, such as fertilizer use and irrigation. Output metrics 

describe the ratio of inputs and outputs, for example, yields (harvests/area). System-level 

metrics refer to the relationship between land management and properties of the socio- 

ecological system as a whole, such as the percentage of human appropriation of NPP 

(HANPP; Haberl et al., 2007), and can provide a general idea of the overall management 

intensity. 

As input metrics, we chose areas equipped for irrigation measured in percentage of each grid 

cell (Siebert et al., 2005) and N-fertilizer application measured in percentage of each grid 

cell under fertilization (Potter et al., 2010). Output metrics included cereal yields measured 

in t/ha/yr (Monfreda et al., 2008). As system metric, we chose an integrated measure of land- 

use pressure on the environment, namely, human appropriation of NPP, which entered the 

analyses as percentage of each grid cell where any level of NPP is appropriated (Haberl et 

al., 2007). The base cropland and land-cover maps used for the generation of the above 

datasets are given in the supplementary material Table SI III-1. 

 
2.2 Statistical Analyses 

To construct SARs, we took 500 samples with replacement across our global grid. Samples 

were chosen randomly in terms of the total land area they covered, and ranged from a square 

window size of 1x1 to 15x15 grid cells. Samples were randomly placed and non-nested, i.e. 

one sample was not necessarily contained within the previous sample but entirely random in 

location, therefore some overlap could occur (resulting in a type IIB SAR curve, Scheiner, 

2003). 

Our models were based on the power law SAR, where S = c·Az relates species richness (S) 

to the area (A) of habitat, ‘z’ is the rate of change in species numbers, and ‘c’ is the taxon- 

and region-specific constant of per unit area species richness (Arrhenius, 1921). We 

systematically fitted different interactions to SARs that take into account the potential effects 

of land cover, biomes and each LUI metric, and compared their ability to predict large-scale 

species richness patterns. We tested two different model types. The first model fitted the 



57 

Agriculture rivals biomes in predicting global species richness 
 

 

 
 

species-area relationship with area as the only predictor. The equation for this universal 

global model takes the form of: 

(1) 𝑙𝑙𝑙𝑙𝑙𝑙10(S) = 𝑙𝑙𝑙𝑙𝑙𝑙10(c) + z ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10(A) 

The second model included additional terms related to the percentage cover of either: biome, 

land cover or LUI, in each sampling unit. These were added as interaction effects to the area 

term in the model, as shown in equation 2: 𝑛𝑛 

(2) 𝑙𝑙𝑙𝑙𝑙𝑙10(S) =  log10 𝑐𝑐 + ∑ z𝑖𝑖 log10 A ∗ 𝑅𝑅𝑖𝑖 𝑖𝑖=1 
 

‘Ri’ refers to the proportional area for each class n (i.e. biome class, land cover class, land- 

use intensity class, etc.). The biome model included 14 biomes and the land cover model 

included 16 land cover classes (excluding water). In order to generate SARs for the LUI 

models, we generated four classes – no LUI (where there was no agricultural activity), 

followed by high, medium, and low LUI (split by terciles, Figure III-1c). A separate model 

was run for each LUI metric resulting in a total of seven models - one universal global model, 

one biome model, one land cover model, and four LUI models. 

To estimate the predictive power of each of the seven models, we applied a 10-fold cross- 

validation and calculated the squared correlation coefficient between predicted and observed 

values (following abbreviated with r2) (Harrell, 2001). During initial model development we 

found spatial autocorrelation in the residuals (from Moran’s I), we therefore followed the 

approach taken by Gerstner et al. (2014) and employed simultaneous autoregressive models 

(Kissling & Carl, 2008) using the R 3.1.2 statistical analysis software (R Core Development 

Team, 2012), function spautolm in the package spdep (Bivand et al., 2012). This method 

assumes spatial autocorrelation in a second error term which explicitly models spatial 

dependence in the residuals (Dormann, 2007) and is an established method for accounting 

for spatial autocorrelation in SAR samples (Kissling & Carl, 2008). We chose a 

neighbourhood structure based on the minimization of the residual spatial autocorrelation 

(Kissling & Carl, 2008; Gerstner et al., 2014). We found an optimal neighbourhood distance 

of five grid cells (550 x 550 km). Due to the spatial structure of the data, parameter estimates 

were strongly influenced by the random spatial configuration of the 500 samples, i.e. sample 

location had a large effect on the r2. We therefore re-ran our sampling approach 1,000 times 

(each run contained 500 different random sampling locations). 
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Figure III-1 Maps of potential factors causing variation of species–area relationships (SARs): (a) Biomes 
(Olson & Dinerstein, 1998), (b) Land Cover (Channan et al., 2014) and (c) Land-Use Intensity (LUI) split into 
high (shown in purple), medium (blue), low (green) and no use (white) levels for the following datasets: human 
appropriation of net primary productivity (HANPP; Haberl et al., 2007), fertiliser inputs (Potter et al., 2010), 
cereal yield (Monfreda et al., 2008) and areas equipped for irrigation (Siebert et al., 2005). Due to many 100% 
values, areas of high intensity are larger than other areas. The maps are projected using Eckert IV projection. 



59 

Agriculture rivals biomes in predicting global species richness 
 

 

 
 

Our final results reported here are thus based on the average parameter estimates of 1,000 

sampling runs and associated model runs after trimming the most extreme 5% of model 

results. We tested linear, logarithmic and power models. In line with previous studies 

(Connor & McCoy, 1979; Dengler, 2009; Gerstner et al., 2014; Matthews et al., 2015), we 

report here only the power SAR (where area and species richness are log10-transformed 

prior to analysis), results for the linear and logarithmic models are reported only in the 

supplementary material (Table SI III-2). 

 
 

3 Results 
 

The inclusion of biomes, land cover or LUI all significantly improved the predictive ability 

of SARs compared to the universal global model (Table III-1). The biome model and the 

HANPP model had the best predictive power, both with a cross-validated r² of 0.49 

(compared to an r² of 0.15 for the global model). The land cover model had the third highest 

r² of 0.46 (Table III-1). Thus, modelling according to one global relationship would lead to 

large over- or underestimations of species richness, depending on the biophysical 

characteristics of the area of interest. We found a wide margin in the performance of LUI 

metrics – ranging from average r² values of 0.49 to 0.26 (Table III-1), along with many 

different relationships with species richness in terms of high, medium and low LUI. HANPP, 

the only system metric investigated, out-performed all other LUI metrics (Table III-1). 

 

Table III-1 Predictive ability of each simultaneous autoregressive model via 10-fold cross validation (results 
are averaged over 1000 model runs). The global model only included area as a predictor of species richness. 
Other models included either: Biomes (Olson & Dinerstein, 1998), Land Cover (Channan et al., 2014) or Land-
Use Intensity (LUI) split into high, medium, low and no-use levels for the following datasets: human 
appropriation of net primary productivity (HANPP; Haberl et al., 2007), fertiliser inputs (Potter et al., 2010), 
cereal yield (Monfreda et al., 2008) and areas equipped for irrigation (Siebert et al., 2005). 

 

 Mean r² SD 

LUI - HANPP 0.49 0.11 

Biome 0.49 0.14 

Land Cover 0.46 0.15 

LUI - Fertiliser 0.44 0.13 

LUI - Cereal Yield 0.31 0.13 

LUI - Irrigation 0.26 0.12 

Global 0.15 0.11 
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3.1 SARs by Biome 

The addition of biomes to the global model increased its predictive power from r² = 0.15 to 

r² = 0.49. Furthermore, SARs for individual biomes differed both in their intercept and z- 

values (Figure III-2). The boreal forest/taiga biome had the lowest z-value estimate (0.14), 

which indicates low levels of species increase in larger areas. The highest z-value and thus 

highest rate at which species richness increases with area was found in the tropical and 

subtropical coniferous forests biome (z = 0.49). 

Figure III-2 Species-area relationships (SARs) in log-log space (area relates to km2) for biomes. 
 
 

 
3.2 SARs by Land Cover 

Land-cover specific SARs also increased the model r2 (0.46). As for biomes, we found a 

large range in SAR parameter estimates (Figure III-3, Table III-2). The highest z-value and 

thus the highest rate of species gain with increasing area was found for grasslands (0.31), 

snow and ice was found to have lowest z-values of 0.05. Results for land cover classes of 

less than 5% of the total area are not reported here as they tended towards extreme results 

due to their small area, and thus lack of samples, these comprise of closed shrublands, 

permanent wetlands and urban and built-up areas (Table SI III-3 for standard deviations, and 

5% and 95% percentile values of estimates). 
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Figure III-3 Species-area relationships (SARs) in log-log space (area relates to km2) for land cover. 
 
 

 
3.3 SARs by LUI 

While all LUI metrics improved the predictive ability of the models from the global baseline, 

there was a wide margin in r2, from the HANPP model with an r2 as high as that of biomes 

(0.49) to the irrigated areas model with an r2 of 0.26. Furthermore, the relationship between 

different levels of LUI and species richness was not constant across LUI metrics (Figure III-

4, Table III-2). Compared to the biome and land-cover parameter estimates, a relatively low 

range in z-values and species richness predictions for LUI models was found. The highest 

species increase with area was found for medium levels of fertilizer application (z = 0.27), 

the lowest species increase with area was found where there was no HANPP activity (z = 

0.20). In terms of the overall relationship of species richness and LUI, for the HANPP model, 

low intensity was associated with highest species richness, followed by high intensity and then 

medium levels associated with the lowest levels of species richness (Figure III-4, Table III-

2). 
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Figure III-4 Species-area relationships (SARs) in log-log space (area relates to km2) for land-use intensity 
(LUI), split into high, medium, low and no-use levels for the following datasets: human appropriation of net 
primary productivity (HANPP; Haberl et al., 2007), fertiliser inputs (Potter et al., 2010), cereal yield (Monfreda 
et al., 2008) and areas equipped for irrigation (Siebert et al., 2005). 

 
 
 
Fertilizer application exhibited the same overall relationship as HANPP, but with one distinct 

difference – due to a higher z-value in the SAR for medium-intensity fertilizer application, 

in larger areas, medium- and high-intensity fertilizer application were associated with similar 

levels of species richness (Figure III-4, Table III-2). For cereal yields, medium- and high- 

intensity were associated with similarly high species richness regardless of area. Unlike 

HANPP and fertilizer application, higher species richness was associated with higher LUI 

for cereal yields and irrigated areas (Figure III-4). For all LUI metrics tested, species richness 

numbers were lowest in areas without any land use, which generally represent ice-covered 

and desert lands. 



63 

Agriculture rivals biomes in predicting global species richness 
 

 

 
 

Table III-2 Parameter estimates for the species–area relationship (SAR): the slope z and intercept, log10(c), of 
SARs in log–log space. Biome and land cover (LC) classes with less than 5% of the total land area are indicated 
with an * 

 

  z Intercept 

Global  0.22 0.75 

Biome Tundra 0.21 0.70 

 Boreal Forests / Taiga 0.14 1.07 

 Temperate Conifer Forests 0.20 0.88 

 Temperate Grasslands, Savannas and Shrublands 0.20 0.91 

 Temperate Broadleaf and Mixed Forests 0.20 0.83 

 Montane Grasslands and Shrublands 0.27 0.42 

 Deserts and Xeric Shrublands 0.21 0.71 

 Flooded Grasslands and Savannas 0.23 0.76 

 Mediterranean Forests, Woodlands and Scrub 0.26 0.65 

 Trop. Subtrp. Coniferous Forests 0.49 0.00 

 Trop. Subtrp. Grasslands, Savannas & Shrub. 0.21 0.90 

 Trop. Subtrp. Moist Broadleaf Forests 0.17 1.12 

 Trop. Subtrp. Dry Broadleaf Forests 0.26 0.60 

 Mangroves* 0.23 0.65 

LC Evergreen Needleleaf forest 0.20 1.01 

 Evergreen Broadleaf forest 0.22 1.04 

 Deciduous Needleleaf forest 0.20 1.11 

 Deciduous Broadleaf forest 0.29 0.72 

 Mixed forest 0.20 1.04 

 Closed shrublands* 0.27 1.29 

 Open shrublands 0.23 0.75 

 Woody savannas 0.24 0.85 

 Savannas 0.21 1.01 

 Grasslands 0.31 0.40 

 Permanent wetlands* 0.20 1.15 

 Croplands 0.23 0.83 

 Urban and built-up* 0.18 0.37 

 Cropland/Natural vegetation mosaic 0.24 0.84 

 Snow and ice 0.05 0.97 

 Barren or sparsely vegetated 0.23 0.44 

HANPP No LUI (0) 0.20 0.59 

(% use Low (0.6-91.3) 0.22 0.86 

/grid) Med (91.3-99.9) 0.22 0.72 

 High (100) 0.23 0.72 

Fert No LUI (0) 0.21 0.73 

(% use Low (2.9-40) 0.24 0.81 
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/grid) Med (40-80) 0.27 0.41 

 High (80-100) 0.23 0.73 

Irr No LUI (0) 0.21 0.78 

(%/grid) Low (0.01-0.2) 0.23 0.70 

 Med (0.2-1.7) 0.21 0.88 

 High (1.7-82) 0.26 0.63 

Cereal No LUI (0) 0.21 0.77 

(t/ha/yr) Low (0.2-1.6) 0.22 0.77 

 Med (1.6-3.1) 0.23 0.80 

 High (3.1-10.7) 0.23 0.81 

 
 
 

3.4 Spatial arrangement of samples 

Across all models, results varied substantially depending on the spatial location of the 

samples. When examining results from one single model run (with one sample set) we found 

that the model r2 ranged from a minimum of zero to a maximum of 0.87 (see Table SI III-4). 

Therefore, the random location and size of the samples alone, in extreme cases, could 

account for an r2 that explained nothing or close to all variation in species richness. 

 
 
4 Discussion 

 

The objective of this study was to assess whether SARs are improved by better representing 

the geographic variation of its parameters. We found that the addition of biomes, land-cover 

and land-use intensity (LUI) all improve global predictions of species richness. Furthermore, 

some land-cover and LUI metrics perform as well as biomes in predicting species richness. 

In terms of LUI metrics, we found diverse interactions with SARs both in predictive ability 

and relationship between high, medium and low LUI and species richness. This adds 

evidence to research suggesting that metrics of LUI have distinct global patterns (Kehoe et 

al., 2015) and relationships with biodiversity (Yamaguchi & Blumwald, 2005; Felton et al., 

2010; Alkemade et al., 2012). 

Finally, we found that HANPP, our only overall metric of LUI, was the best predictor of 

species richness when compared to other LUI metrics. This shows that broader LUI metrics 

can better predict SARs, likely due to their comprehensive nature. The predictive ability of 

HANPP may also provide support for the species-energy hypothesis, since net primary 

productivity  can  be  seen  as  a  form  of  available  energy  (Wright,  1990).  The  human 
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appropriation of high levels of energy in the form of net primary productivity may result in 

a loss of species richness at a landscape scale (Haberl et al., 2014). We find that low HANPP 

levels are associated with higher species richness, however, high and medium HANPP levels 

are less intuitive – with species richness higher in areas of high HANPP. Our analysis was 

not causal but predictive, thus we cannot provide strong evidence with regard to the shape 

of the species-energy or species-HANPP relationship. Overall, we show that at a broad 

spatial grain, factors related to human activity are on a par with biophysical factors in 

predicting species richness. 

 
4.1 Geographic Variability in SARs 

We found that including spatially explicit variables in species richness models improves 

predictions of global SARs. Furthermore, we found a signal between land use and species 

richness that is equally strong as that between species richness and biomes. Thus, despite 

most research focusing on a local grain size when addressing the relationship between land 

use and species richness (see Newbold et al., 2015 for review), and global studies with larger 

grains generally focusing on natural biophysical drivers (Hawkins et al., 2003b; Hawkins et 

al., 2003a; Field et al., 2009; Hortal et al., 2012), we show that human factors may play a 

more dominant role in predicting global biodiversity patterns than previously thought. 

Our analyses do not provide a causal link of land use and biodiversity patterns. This link has 

been shown at local scales, where land use in the form of conversion from natural habitat 

and intensification of existing agricultural land results, on average, in decreased species 

richness (Newbold et al., 2015). Our results are the first to show how impacts may aggregate 

to affect species richness patterns at the global scale, which is important considering the 

acceleration of land-use change in recent times, and its importance in driving both current 

and future biodiversity loss (Sala et al., 2000; Pereira et al., 2012). However, land use itself 

depends on climate, soils, and productivity. Many of these same factors are the basis on 

which biomes are delineated, where species richness patterns are also closely related to 

climate and productivity variables (Hawkins et al., 2003a). Thus, attribution as to which 

factors are driving species richness patterns (land use vs. environmental factors) is 

challenging based on broad-scale analyses. 

When compared with results from previous research, our biome model parameters performed 

similarly to those found by Gerstner et al. (2014) for plant species richness. In both our 

results and those of Gerstner et al. (2014), the boreal forest/taiga biome had the lowest z 

estimate (0.14  and 0.08 respectively). Furthermore, the biome  with the  largest  z 
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estimate was the tropical and subtropical coniferous forests biome (0.49 and 0.45). This 

indicates that there is a high concordance of biome explicit SARs for plants and mammals 

on a global scale. 

Regarding the predictive ability of the models, the main difference in results is that Gerstner 

et al. (2014) found that land cover had a relatively lower r2 when compared to our land cover 

result. This may be due to five reasons. First, the biodiversity datasets for plants used by 

Gerstner et al. (2014) were only available for a set number of locations, thus producing 

limitations in global predictions. Second, the plant dataset used by Gerstner et al. (2014) was 

not as up to date as the mammal data (IUCN, 2013) used here. Third, plants and mammals 

have different responses to land-use and LUI (Gibson et al., 2011). Fourth, our study uses a 

different land cover map from 2014, not available at the time of Gerstner’s study. Finally, 

both studies are global in extent and at this scale species extinctions are relatively rare, where 

local extinctions and range contractions are more common, such processes are often not 

reflected at our coarse spatial grain. 

 
4.2 Diversity of LUI metrics 

Understanding the relationship between LUI and biodiversity is important since LUI is set 

to further accelerate in the future as ‘sustainable intensification’ gains support (Foley et al., 

2011). Previous studies focusing on small grain sizes have found that a higher proportion of 

agricultural land and higher LUI can have negative effects on biodiversity (Martins et al., 

2014; Newbold et al., 2015). However, due to the diverse patterns of LUI metrics globally 

and their likely diverse effects on biodiversity, we expected that LUI metrics would have a 

variety of relationships with species richness. Our results suggest that this is the case and 

that LUI metrics have varied relationships with species richness - at least for a 1 degree grain 

size. 

In terms of model performance, LUI metrics exhibited diverse predictive abilities in relation 

to SARs, ranging from 49% (HANPP) to 26% (areas equipped for irrigation). This again 

illustrates the non-uniformity in LUI metrics, not just in their spatial patterns but also in their 

ability to predict global patterns of species richness. Of LUI metrics, HANPP had the best 

predictive ability. This is likely because this metric covers a wider variety of potential 

agricultural land uses, namely, wherever any form of activity related to appropriating NPP is 

present. It is thus logical that the LUI metrics that cover a broader spectrum of human land use 

will naturally have the best predictive ability. 
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We show that there is a large diversity in the relationship between high, medium and low 

LUI, and species richness, however, our research is of coarse spatial grain, with relatively 

large distributions in parameter estimates (Table III-2). We thus cannot provide the answers 

as to which forms of LUI and at what level may be most detrimental to biodiversity. For this, 

experimental and observational small-scale research and synthesis are needed. However, we 

do show that there is a large diversity in the relationship between LUI and species richness 

and that the global story is not as one dimensional as fine-scale studies often suggest, i.e. 

higher LUI results in lower species richness. 

 
4.3 Importance of the spatial location of samples 

We found that our modelling results were highly dependent on the spatial location and size 

of samples (see Table SI III-4), while we controlled for this by running 1,000 models and 

taking the average of the parameter estimates, many studies do not have this option and must 

work with the limited samples that are available. Our results have implications for studies 

which use incomplete datasets and often draw broad conclusions. Where studies are not as 

fortunate to have a complete global dataset, caution should be taken in model results and 

their probable high reliance on sample size and spatial location. 

 
4.4 Limitations 

The goal of this study was to assess whether or not the consideration of human influence in 

the form of land cover and LUI can improve predictions of SARs and if so, if it is comparable 

to that of environmental measures. Thus, we did not control for other factors at play in 

driving patterns of species richness, and models that include one LUI metric do not account 

for the many other potential land-use activities and environmental factors at play on the same 

landscape. Nor did we account for the collinearity inherent in our datasets where species 

richness, biomes, and agricultural suitability are closely tied to climate and topography. 

Furthermore, we do not know many species’ tolerances to land-use change and even in the 

cases where tolerances to land-use are known, extent-of-occurrence range maps usually do 

not reflect such changes. In the knowledge that the SAR is affected by grain size, where 

different patterns emerge at different spatial grains, (Turner & Tjørve, 2005), we chose 110 

x110 km grid cells as it is the minimum acceptable grain (Hurlbert & Jetz, 2007). It is 

therefore expected that the relationships we found are scale-dependent and should not be 

extrapolated. Together, these issues present a challenge inherent in implying any form of 

causality between our predictor variables and our biodiversity distributions. 
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We compiled a set of land cover and LUI metrics with the highest quality currently available. 

Nevertheless, despite considerable recent progress, numerous gaps exist regarding the 

availability of alternative indicators and the difficulties in their measurement related to issues 

with data availability, accuracy and error propagation (Kuemmerle et al., 2013). 

Uncertainties in the accuracy of current LUI maps are often high due to inconsistent input 

data and limitations with processing algorithms and positional accuracy. Furthermore, there 

is a lack of formal validation for many of these datasets (Verburg et al., 2011). Systematically 

collected ground-based data only cover a few regions of the globe, statistical data are often 

only available at the national scale, and remote sensing cannot easily capture the subtle 

spectral effects of LUI changes (Kuemmerle et al., 2013). Furthermore, the fertilizer (Potter 

et al., 2010) and cereal yield (Monfreda et al., 2008) LUI maps used here all rely on one 

cropland map (Ramankutty et al., 2008), and inaccuracies in the base map can therefore 

propagate (see Table SI III-1). 

 
 
5 Conclusions 

 

Human land use has been shown to drive biodiversity loss at the local scale, however, its 

ability to predict variation in global SARs had not previously been assessed. This study adds 

evidence suggesting that human land use may be an important predictor of species richness. 

Great attention has previously been paid to the past and present biophysical attributes at play 

in predicting patterns of species richness. Our findings suggest that human activity can better 

predict large-scale patterns of species richness than previously thought. This is useful 

information given that land use is the most important driver of local biodiversity patterns, 

and that land-use change is expected to accelerate in the future, as human population and 

per-capita consumption soar. In order to better predict and understand biodiversity patterns 

using SARs, we need to adopt a more nuanced view, with both land-cover and the intensity 

of land-use taken as potentially important factors in explaining variation in global species 

richness. 
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Supplementary Information 

 

Table SI III-1 Input land cover and land-use intensity datasets 
 

Dataset 

(citation, original scale, 

year) 

Description 

(data value, reference 

year) 

Data Source 

 

MODIS Land Cover 

(Channan et al., 2014, 

0.5° , 2014) 

 
 
 
 
 

Land equipped for 

irrigation (Siebert et al., 
2005, 5min, 2000) 

 
 
 

 
Industrial and manure 

fertilizer application 

rates (N, P) (Potter et al., 

2010, 10km, 2000). 

 

(% per grid cell, 2001- 

2012) 

 
 
 
 
 
 
 

(% per grid cell, ~2000) 
 
 
 
 
 
 

Nitrogen fertilizer 

nutrients applied to 

croplands   (kg/ha, 1994- 

2001). 

 

Global Mosaics of the standard MODIS 

land cover type data product (MCD12Q1) 

in the IGBP Land Cover Type 

Classification. 

http://landcover.org/data/lc/index.shtml 

 
 
 

FAO, World Bank and other international 

organizations, USGC-GLCC-2.0 and JRC- 

GLC2000 land cover datasets used when no 

other spatial info available. 

 
 
 

FAO “Fertilizer Use by Crop 2002” 

combined with harvested area for 175 crops 

(Monfreda et al. 2008). 

 
 

Cereal Yield (Monfreda 

et al., 2008, 5min, 2000) 

 
 

HANPP (Haberl et al., 

2007, 5 min, 2000) 

 
 

Yields of 175 crops in 

(t/ha, 2000). 

 
 

Human Appropriated Net 

Primary Productivity (per 
cent of NPP0, 2000) 

 
 

Census statistics & global cropland area 

(Ramankutty et al. 2008) 

 
 

FAO and Lund–Potsdam–Jena (LPJ) 
DGVM (18, 19) global vegetation models 

 
 
 
 
 

http://landcover.org/data/lc/index.shtml
http://edcsns17.cr.usgs.gov/glcc/
http://www-gvm.jrc.it/glc2000/defaultGLC2000.htm
http://www-gvm.jrc.it/glc2000/defaultGLC2000.htm


71 

Agriculture rivals biomes in predicting global species richness 
 

 

 
 

Table SI III-2 10 fold cross validation for the power, log and linear global models. 
 

Global Power log(S) = log(c) + z ∗ log(A) 0.15 

 
Global Log 

 𝑆𝑆  = 𝑐𝑐 + 𝑧𝑧 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) 
 

0.13 

 
Global Linear 

 𝑆𝑆  = 𝑐𝑐 + 𝑧𝑧 ∗ 𝐴𝐴 
 

0.15 

 
 
 

Table SI III-3 Mean z and intercept (I) standard error, standard deviation, 5th and 95th percentiles of parameter 
estimates. Biome and land cover classes with less than 0.05% of the total land area are indicated with an *. 

 

 
 Z  Z(S 

D) 

Z(Q5) Z(Q95) Intrcp 

t 

I(SD 

) 

I(Q5) I(Q95) 

Biom 

e 
 

Tundra 
 
0.21 

 
0.06 

 
0.10 

 
1.20 

 
0.70 

 
0.28 

 
-0.27 

 
4.14 

 Boreal Forests / Taiga 0.14 0.04 0.08 2.08 1.07 0.19 -0.08 5.66 

 Temperate Conifer 

Forests 
 
0.20 

 
0.06 

 
0.08 

 
83.93 

 
0.88 

 
0.28 

 
-0.20 

 
7.47 

 Temperate Grasslands, 

Savannas and 

Shrublands 

 

 
0.20 

 

 
0.08 

 

 
0.10 

 

 
3.08 

 

 
0.91 

 

 
0.36 

 

 
-1.16 

 

 
4.87 

 Temperate Broadleaf 

and Mixed Forests 
 
0.20 

 
0.05 

 
0.08 

 
64.50 

 
0.83 

 
0.22 

 
0.20 

 
33.37 

 Montane Grasslands 

and Shrublands 
 
0.27 

 
0.10 

 
-0.17 

 
2094.16 

 
0.42 

 
0.54 

 
-0.92 

 
89.03 

 Deserts and Xeric 

Shrublands 
 
0.21 

 
0.05 

 
-0.01 

 
46.20 

 
0.71 

 
0.26 

 
0.23 

 
7.07 

 Flooded Grasslands and 

Savannas 
 
0.23 

 
0.14 

 
-0.32 

 
2217.68 

 
0.76 

 
0.73 

 
-1.74 

 
442.52 

 Mediterranean Forests, 

Woodlands and Scrub 
 
0.26 

 
0.09 

 
0.06 

 
2.70 

 
0.65 

 
0.41 

 
-0.54 

 
8.64 

 Trop. Subtrop. 

Coniferous Forests 
 
0.49 

 
0.59 

 
-0.33 

 
2217.68 

 
-0.34 

 
3.06 

- 

15.85 
 

442.20 

 Trop. Subtrop. 

Grasslands, Savannas & 

Shrub. 

 

 
0.21 

 

 
0.05 

 

 
-0.02 

 

 
60.94 

 

 
0.90 

 

 
0.23 

 

 
0.47 

 

 
281.85 

 Trop. Subtrop. Moist 

Broadleaf Forests 
 
0.17 

 
0.05 

 
0.11 

 
1.87 

 
1.12 

 
0.21 

 
-0.06 

 
3.53 

 Trop. Subtrop. Dry 

Broadleaf Forests 
 
0.26 

 
0.11 

 
0.11 

 
188.89 

 
0.60 

 
0.59 

 
-2.63 

 
99.10 

 Mangroves * 0.23 0.13 -0.34 2217.68 0.65 0.60 -1.07 442.20 
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LC 

Evergreen Needleleaf 

forest 
 

0.20 
 

0.11 
 

0.07 
 

1.12 
 

1.01 
 

0.42 
 

-0.48 
 

10.08 

 Evergreen Broadleaf 

forest 
 

0.22 
 

0.14 
 

0.10 
 

8.11 
 

1.04 
 

0.46 
 

-1.59 
 

3.91 

 Deciduous Needleleaf 

forest 
 

0.20 
 

0.11 
 

0.06 
 

1.12 
 

1.11 
 

0.51 
 

-0.51 
 

2.82 

 Deciduous Broadleaf 

forest 
 

0.29 
 

0.19 
 

0.03 
 

1.99 
 

0.72 
 

0.99 
 

-2.86 
 

10.72 

 Mixed forest 0.20 0.11 0.10 2.00 1.04 0.36 -0.53 3.36 

  
Closed shrublands * 

 
0.27 

 
0.55 

 
-0.27 

 
37.72 

 
1.29 

 
2.90 

- 

28.48 
 

12.46 

 Open shrublands 0.23 0.09 0.13 0.77 0.75 0.29 -0.47 2.81 

 Woody savannas 0.24 0.09 0.13 1.49 0.85 0.30 -0.36 34.24 

 Savannas 0.21 0.11 0.11 24.65 1.01 0.37 -0.60 15.81 

 Grasslands 0.31 0.20 0.15 4.04 0.40 0.63 -4.32 1.73 

 Permanent wetlands* 0.20 0.16 -0.22 1.38 1.15 0.70 -0.72 4.34 

 Croplands 0.23 0.10 0.13 3.31 0.83 0.33 -0.49 8.09 

 Urban and built-up* 0.18 0.19 -0.27 1.43 0.37 1.61 -6.37 288.82 

 Cropland/Natural 

vegetation mosaic 
 

0.24 
 

0.12 
 

0.12 
 

100.46 
 

0.84 
 

0.43 
 

-0.69 
 

5.12 

 Snow and ice 0.05 0.42 -1.80 1.57 0.97 1.38 -1.03 164.42 

 Barren or sparsely 

vegetated 
 

0.23 
 

0.15 
 

-0.66 
 

37.46 
 

0.44 
 

0.43 
 

-0.32 
 

23.71 

HAN 

PP 
 

No LUI (0) 
 

0.20 
 

0.20 
 

-0.27 
 

2.90 
 

0.59 
 

0.95 
 

-0.36 
 

9.23 

 Low (0.01-0.6) 0.22 0.11 0.12 1.77 0.86 0.40 -0.21 4.47 

 Med (0.6-91.3) 0.22 0.11 0.12 1.75 0.72 0.61 -0.83 2.41 

 High (100) 0.23 0.10 0.13 1.75 0.72 0.40 -0.06 3.28 

Fert. No LUI (0) 0.21 0.12 0.10 13.46 0.73 0.44 -0.05 4.00 

 Low (0.01-40) 0.24 0.12 0.13 68.53 0.81 0.36 -0.10 2.01 

 Med (40-80) 0.27 0.29 0.04 184.38 0.41 1.23 -0.89 123.96 

 High (80-100) 0.23 0.35 0.00 24.53 0.73 1.89 -1.01 7.66 

Irrigat 

. 
 

No LUI (0) 
 

0.21 
 

0.09 
 

0.11 
 

2.66 
 

0.78 
 

0.34 
 

0.13 
 

2.82 

 Low (0.01-0.2) 0.23 0.09 0.13 2.31 0.70 0.42 -0.28 2.22 

 Med (0.2-1.7) 0.21 0.11 0.10 4.46 0.88 0.35 0.30 6.23 

 High (1.7-82) 0.26 0.18 0.14 3.50 0.63 0.94 -1.67 5.24 

Cerea 

l 
 

No LUI (0) 
 

0.21 
 

0.09 
 

0.12 
 

1.60 
 

0.77 
 

0.36 
 

-0.03 
 

2.66 

 Low (0.01-1.6) 0.22 0.12 0.12 1.95 0.77 0.58 -0.41 3.25 
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Med (1.6-3.1) 0.23 0.12 0.13 2.72 0.80 0.50 0.13 6.60 

High (3.1-10.7) 0.23 0.11 0.13 1.68 0.81 0.41 0.05 4.55 
 

 

Table SI III-4 Differences in r² in order to test the effect of the spatial arrangement of samples from 1000 model 
runs each consisting of 500 sets of random samples. r²min-max’ refers to the most extreme model results from 
1000 model runs. ‘r² mean’ is the mean result from 1000 model runs 

 
 r² mean r² min-max 

   

LUI - HANPP 0.49 0.00-0.81 
Biome 0.49 0.00-0.87 

Land Cover 0.46 0.00-0.85 

LUI - Fertiliser 0.44 0.00-0.83 

LUI – Cereal 0.31 0.00-0.77 

LUI - Irrigation 0.26 0.00-0.70 

Global 0.15 0.00-0.61 
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Abstract 

Agricultural land-use change is currently a leading cause of biodiversity loss, but few studies 

have explored what future land-use change may mean for biodiversity. Of these, the majority 

have focussed on assessing land-use effects in a few, highly constrained, path dependent, 

socio-economic, development scenarios. Here, we instead explore the full biophysical option 

space of how future agricultural change may affect biodiversity, using a simple and 

transparent approach. Specifically, we identify areas most at risk under two contrasting 

agricultural development pathways: expansion into suitable land and intensification of 

existing cropland. We then assess how these pathways affect local vertebrate species richness 

and abundance. We find particularly high risk of biodiversity loss due to agricultural 

expansion across the Amazon and Sub-Saharan Africa. Intensification risk-areas were 

mainly in India, Eastern Europe, and the Afromontane and African Great lakes region. The 

most at risk area of vertebrate species loss was in the Peruvian Amazon, where a combination 

of expansion and intensification would result in approximately 317 species lost in a 110 km 

grid cell. Many of our at risk regions were not adequately covered by conservation 

prioritization schemes or protected areas. On a national-level, Sub-Saharan African and 

Latin American countries dominated the top ten ranks of potential biodiversity loss. 

Suriname had the highest potential species richness loss followed by French Guiana and 

Guyana (219, 206, and 182 species lost on average per 110 km grid cell respectively). The 

DRC and Rep. of Congo both had the highest average loss in wildlife abundance (25%) 

followed by Suriname and Liberia (24%). In light of rising agricultural demand, our results 

highlight areas where future land-use change has the potential to affect biodiversity 

drastically, predominantly in the Amazon and Sub-Saharan Africa, and thus where effective 

land-use planning could proactively mitigate future land-use conflicts. 
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1       Introduction 
 

Agricultural land-use change is a major driver of global biodiversity loss (Balmford et al., 

2012). Agriculture is in constant flux, characterized by expansion, intensification and 

abandonment, and these processes in turn shape biodiversity patterns predominantly through 

the loss of critical wildlife habitat, the introduction of non-native species, nutrient runoff, 

pesticide poisoning, increased greenhouse gas emissions, sedimentation of waterways, and 

changes in the biogeochemistry cycle resulting in water and soil degradation (Fahrig, 2003; 

Foley et al., 2005; CBD, 2010). With the exception of abandonment, these processes 

generally have a negative effect on biodiversity. Furthermore, the effects of agriculture are 

not isolated but can extend to broader scales beyond the boundaries of field and pasture, due 

to factors such as pesticide and fertilizer runoff (Foley et al., 2005; Lambin & Meyfroidt, 

2011). With more than 38% of the world's terrestrial surface transformed to croplands and 

pastures, the detrimental effects of agriculture on biodiversity have undoubtedly reached 

global scales (Ramankutty et al., 2008). 

Despite the well-documented local impacts of agricultural land use on biodiversity (Dornelas 

et al., 2014; Newbold et al., 2015), factors, such as temperature, productivity, precipitation, 

energy, are generally considered dominant in driving species richness patterns at broad 

geographic scales (Hawkins et al., 2003b; Belmaker & Jetz, 2015). However, recent work 

suggests that agriculture is an equally strong predictor of species richness as environmental 

factors at broad scales (Kehoe et al., 2016) and that human pressures can predict range size 

better than biological traits (Di Marco & Santini, 2015). Unfortunately, the current 

generation of global-scale species range maps and land-use datasets have insufficient spatial 

and temporal resolution to establish more than correlative relationships between agriculture 

and biodiversity impacts. Yet a better understanding of how agriculture may affect 

biodiversity patterns is becoming increasingly important, as agriculture will both expand and 

intensify further in the coming decades in response to rapidly growing human demands for 

food, fuel, and fiber, which are expected to nearly double by 2050 (Tilman et al., 2011). In 

response to this, agricultural land-use change is expected to remain the primary driver of 

terrestrial biodiversity loss in 2100 (Sala et al., 2000). 

Despite this, relatively few studies have assessed potential impacts of future agricultural 

land-use change on biodiversity, with the bulk of the global change literature on future 

biodiversity threats focussing on direct impacts of climate change (Titeux et al., 2016). 

Furthermore, of the few studies that have assessed agricultural impacts, the majority have 
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focussed on future impacts of a few agricultural scenarios using integrated assessment 

models (IAMs), particularly the GLOBIO and IMAGE projections (Sala et al., 2000; 

Visconti et al., 2011; de Baan et al., 2013; Bellard et al., 2014; Rondinini & Visconti, 2015; 

Visconti et al., 2015). Such models can consider a wide range of societal (e.g., population 

growth, diet changes), economic (e.g., sector-specific changes, trade patterns), and 

institutional (e.g., policies) factors (Alkemade et al., 2010), and are valuable in deriving 

multi-targeted development pathways and assessing the possible impact of specific policies 

(Müller & Lotze-Campen, 2012). However, while a central strength of IAMs are their 

complexity, this also comes at the cost of often large uncertainties related to the many 

parameters, sub-models, and input datasets that IAMs require, and thus also high uncertainty 

associated with the outcomes of these models, including the spatial configurations of future 

land systems (Rosen, 2015). The details of how IAM results are derived are often not 

described transparently, making reliability, reproducibility, and validation challenging 

(Rosen, 2015). Moreover, while IAM are potentially powerful in predicting the impacts of 

gradually changing drivers (e.g., population growth, diet changes, climate change), they are 

weak in capturing the effects of sudden and unforeseeable changes in drivers of land-use 

change, such as revolutions, technological breakthroughs, or economic crisis, despite such 

shock events frequently occurring and having a strong impact (Müller et al., 2014; Jepsen et 

al., 2015; Ramankutty & Coomes, 2016). Approaches that are simple, more direct, and 

transparent, and that enable the exploration of the full option space of possible future 

development pathways are thus needed and complimentary to IAM approaches (Erb et al., 

2016a). 

Very few studies have used such an alternative approach on a global scale. One of the most 

prominent is a study by Phalan et al. (2014) that spatially prioritised by favouring either low 

intensity expansion (land sharing) or closing yield gaps (land sparing) according to what is 

least harmful to biodiversity. This approach identified regions where increasing crop yields 

could pose the greatest risks to the conservation status of birds. However, limited spatial data 

on the land-use effects of biodiversity was available at the time of this study. Another major 

study focused on mapping the potential for expansion, intensification, or both, in terms of 

changes in yield gaps (Shackelford et al., 2015). Regions of potential conservation conflict 

calculated as the concordance of non-cropland in a 2km radius of cropland and yield gaps, 

alongside threatened species were highlighted. However, areas not suitable for cropland 

were not excluded from the analysis, and data to explicitly assess biodiversity loss was not 
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available (Shackelford et al., 2015). Moreover, both studies’ focus on yield gaps alone, 

which may miss crucial land-use intensity impacts on biodiversity (Kehoe et al., 2015). 

All in all, gaining a broader perspective by considering alternative methodologies in 

estimating the effects of future agricultural development on biodiversity is crucial. Assessing 

the spatially explicit biodiversity impact of pathways of expansion and intensification is a 

fundamental first step in this regard. This requires translating agriculture’s known local 

biodiversity impacts into a more causal understanding of agriculture’s ecological impacts 

that can be applied to assess the local biodiversity effects across broad geographic extents. 

Recently available datasets and methods have made better estimates of agricultural impacts 

on biodiversity possible. Using over 1 million data points available from the PREDICTs 

database (Hudson et al., 2014), Newbold et al. (2015) modeled the local effects of various 

types of land use at various levels of intensity on biodiversity. These relationships were used 

to obtain spatially explicit, global estimates of historical and projected future changes in 

species richness, rarefied richness, and abundance due to land use (Newbold et al., 2015). 

Given that these models factor in multiple forms of land-use intensity, they provide a ready 

means for isolating and assessing the potential future impacts of different agricultural 

development pathways on extant biodiversity. Here we capitalize on these models to assess 

the potential net change in biodiversity due to two main agricultural development pathways 

of agricultural intensification and expansion. Our pathways here do not attempt to serve as 

predictive scenarios connected to certain trends regarding human population, consumption, 

or technology, and are not direct comparisons in terms of agricultural output. Instead, we 

consider the dominant processes of agricultural land-use change, and thus allow for 

exploring the potential full effect of different modes of biophysically possible agricultural 

change from fine spatial grain (1 km2) to national level. Our goal was to answer the 

following three research questions: (1) How may alternative future agricultural development 

pathways of agricultural expansion and intensification shape global species richness and 

abundance? (2) Do protected areas and conservation prioritization schemes align with our 

high risk areas? (3) What countries are most at risk in terms of biodiversity loss, conservation 

spending, and agricultural growth? 
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2 Methods 

 
2.1 Land-use data 

We used a land-systems-based approach, and developed possible agricultural development 

pathways in terms of shifts between land systems (e.g. from low-intensity to high-intensity 

cropland). Land systems represent the interface between the majority of human activities and 

the natural environment and consist of hierarchical categorical classifications that combine 

metrics of land cover, land-use intensity and livestock density (van Asselen & Verburg, 

2012). 

We first developed an updated global land systems map to utilize the most recent land-cover 

and land-use datasets available and in order to work at a finer spatial resolution than 

previously possible (from an original resolution of ~9.25 km2 to ~1km2, Figure SI IV-1). We 

achieved this by following the decision tree classification (Figure SI IV-2 taken from(van 

Asselen & Verburg, 2012) to map land systems globally while using updated datasets. We 

compiled six datasets related to cropland extent (Fritz et al., 2015), tree cover (Hansen et al., 

2013), urban and bare areas (ESA-CCI, 2016), livestock density (Wint & Robinson, 2007), 

and yield gaps (IIASA/FAO, 2012; see Table S1 for full details on datasets). 

To investigate biodiversity loss due to potential agricultural expansion, we included a 

biophysical land suitability condition to the natural classes. This classification delineated 

natural areas that are ‘very high’ to ‘marginally’ suitable for cropland (Fischer et al., 2012). 

We included areas suitable for high-input level cropland (in terms of optimum applications 

of nutrients and chemical pest, disease and weed control) rather than only low-input areas 

(characterized by labor intensive techniques, no application of nutrients, no use of chemicals 

for pest and disease control) in order to avoid being overly conservative in terms of where 

cropland is possible. In saying this, the difference in spatial extent between high and low 

input level areas suitable for cropland was minor (Fischer et al., 2012). Land inside protected 

areas was not excluded from the analysis for two main reasons. First, protected areas are 

human controlled land-cover classes, are thus susceptible to change, and may not be 

protected in the future (Mascia & Pailler, 2011). Second, to explore whether current 

protected areas are located in areas with a high risk of biodiversity loss due to our potential 

agricultural development pathways. 
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2.2 Agricultural development pathways 

We developed three possible pathways of future agricultural land-use change: (1) expansion, 

(2) intensification, and (3) a combination of both intensification and expansion. Our 

pathways do not compare across production targets, and therefore do not speak to whether 

one pathway is preferable over another in terms biodiversity loss. We instead identify areas 

at risk in terms of the biophysical option-space related to expansion, intensification, or a 

combination of both. This is worthwhile since both expansion and intensification are likely 

to continue in the future, and it is therefore crucial to know where biodiversity could be most 

affected by which specific agricultural development pathway. 

Our expansion pathway does not intensify current cropland, but extends low-intensity 

cropland systems into natural areas deemed suitable for cropland (Fischer et al., 2012). This 

pathway represents continued loss of natural ecosystems due to the lack of yield gains on 

existing land systems stemming from inadequate resources or capital, or available 

inexpensive land for expansion, as is currently apparent in many tropical deforestation 

frontiers of South America, Sub-Saharan Africa, and South-East Asia (Gibbs et al., 2010; 

Mueller et al., 2012). 

On the other hand, our intensification pathway consisted of all land-systems currently under 

any form of agricultural activity transforming to the highest level of cropland intensity for 

that class without any expansion into natural areas. For example, an area classified as 

extensive (low intensity) cropland would become intensive cropland (Table IV-1). This 

pathway represents a global push to close yield gaps in less developed regions, as is currently 

happening across much of Europe, the United States, or parts of South America (Mueller et 

al., 2012). Many crop yields are heavily dependent on fertilizer use and irrigation, with 

substantial production increases (45% to 70% for most crops) possible if yield gaps were 

closed (Mueller et al., 2012). North and West European countries are already close to their 

maximum attainable yield, with North America, South-East Asia, and Oceania achieving 

more than 60% of their potential production. However, Africa and Eastern Europe are 

currently producing only 40% of their potential (Pradhan et al., 2015). In our intensification 

pathway, closing such yield gaps would be achieved by moving from low-intensity farms 

with little to no fertiliser, pesticide, irrigation or mechanisation to highly-intensified, 

conventional monocultures that are characterised by high inputs and large fields (in line with 

the classification system of Hudson et al., 2014). 
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Finally, the third pathway is a combination of both expansion and intensification, where 

cropland expands into natural areas wherever possible and intensification takes place in all 

agricultural areas (both long-standing and newly converted). This represents the pathway of 

most drastic change, where both processes of intensification and expansion increase 

unabated in response to rising demand, current trends in parts of Argentina, Paraguay, or 

Brazil reflect this (Angelsen & Kaimowitz, 2001; Nepstad & Stickler, 2008). This pathway 

also accounts for Jevon’s paradox, where yield improvements spur further expansion due to 

better opportunities for farming, and is a likely pathway for some regions of Sub-Saharan 

Africa (Hertel et al., 2014). 

Table IV-1: Three pathways of land-use change: (i) expansion of low-intensity (extensive) cropland into 
uncultivated areas, (ii) intensification of existing cropland, and (iii) a combination of both, where existing 
cropland and newly converted regions are intensified. 

 

Original Land 

System 

Expansion Intensification Both 

Forest and Grassland Converted to Extensive 
Cropland 

No Change Converted to Intensive 
Cropland 

Extensive to 
Medium Intensity 
Cropland 

No Change Intensified Intensified 

Intensive Cropland No Change No Change No Change 
 
 
 
Our pathways did not include changes in livestock density on pastures. For example, if a 

system was extensive cropland with few livestock, in the intensification pathway, it would 

become intensive cropland with few livestock (Table SI IV-2). This decision was based on 

the assumption that intensified livestock management will join the ‘livestock revolution’ – a 

shift away from pasture-based management towards industrialised feedlots that depend on 

crop-based feeds rather than local land resources. This process is already underway in many 

rapidly growing economies of Asia and South America (Delgado et al., 2001; Naylor et al., 

2005). 

 
2.3 Biodiversity data 

We calculated total species richness by overlaying extent of occurrence maps for birds 

(BirdLife & NatureServe, 2015), mammals, reptiles and amphibians (IUCN, 2016) with an 

equal-area grid (approximately 1-degree or 110 x 110 km at the equator). Global-scale 

biodiversity data based on extent of occurrence should not be downscaled to less than 1 

degree as finer resolutions lead to an over-estimation of species occurrences (Hurlbert & 

Jetz, 2007). Therefore, while our land system maps allow to assess relative percent  change 
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at a 1 km2 resolution, when estimating the loss in terms of actual species numbers, we use a 

110 km grid as it is the finest resolution that is currently acceptable. 

 
2.4 Estimating the impact of agricultural development pathways on biodiversity 

We assessed species responses to various forms of land use and land-use intensity change. 

This data originates from the PREDICTS project, an initiative that collates local-scale 

studies from around the globe with the goal of quantifying species- and community-level 

responses to a range of human activities including: agriculture, hunting, deforestation, 

introduction of invasive species and human population expansion (Hudson et al., 2014). 

Using 320,924 records of species richness and 1,130,251 records of abundance at 11,525 

sites, estimates of species richness, rarefied species richness, and abundance percent change 

for various land-use categories (from a natural baseline) were calculated by Newbold et al. 

(2015). 

To investigate the spatial patterns of biodiversity loss for each agricultural development 

pathway, we first matched our land systems classes to levels of high, medium, and low 

intensity for each major land use type (for detailed conversion table see Newbold et al., 

2015). This allowed us to calculate average biodiversity loss per land system (from an un- 

impacted baseline) by taking the mean model estimates of biodiversity loss per land-use 

intensity class from Newbold et al. (2015). The result gives average relative biodiversity 

gain or loss per land system (Table SI IV-3). We then calculated the biodiversity percent 

change per land system conversion in each of our three pathways described above (Table SI 

IV-4). We estimated biodiversity percent net change by taking the difference between land 

systems, divided by the original land system, this gave the relative biodiversity change on a 

1-km grid as a result of shifting from one land system to another. 

To calculate biodiversity loss in terms of the potential number of species lost per 110 km grid 

cell, we first calculated the area-weighted mean value of biodiversity percent change across 

all converted land systems per 110 km grid cell. We then multiplied this by the number of 

species present in each grid cell as derived from the extent of occurrence maps. Spatially 

explicit biodiversity data on abundance is not available on a global scale, so these values 

were not converted from relative (% per land system) to absolute values (number of 

individuals or biomass lost). We also calculated the top 5% and 10% of the distribution of 

species richness loss in order to highlight the highest risk regions for each pathway. Rarefied 

species richness allows for the comparison of areas in which densities differ, and was 

estimated by relative, percent change per land system. Results for rarefied species richness 
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showed weaker but mostly similar patterns as species richness and we therefore only show 

these results in the supplementary material (Table SI IV-4). 

 
2.5 Analysing spatial patterns of biodiversity loss due to agricultural land-use 

change 

We spatially compared the overlap between our biodiversity loss estimates, in terms of top 

5% and 10% of the distribution of species richness loss per pathway, with IUCN category 

protected areas (UNEP-WCMC, 2016) and three global conservation priority schemes: (1) 

the Conservation International (CI) biodiversity hotspots, as a reactive approach that targets 

areas which have already lost 70% of native habitat (Mittermeier et al., 2004), (2) the global 

200 ecoregions, as a mixture of both proactive and reactive approaches that identifies 

ecoregions of exceptional biodiversity in terms of irreplaceability and distinctiveness (Olson 

& Dinerstein, 2002), and (3) the last of the wild, a reactive approach which shows the ten 

largest contiguous wilderness areas by terrestrial biome and realm (Sanderson et al., 2002). 

Together, this allowed us to ascertain whether our high-risk areas are recognised under global 

proactive and reactive conservation priority schemes or, in the case of protected areas, secure 

against potentially rising land-use pressure. 

Finally, we summarized our results at the national level, since most conservation funding 

originates from domestic spending ($14.5bn out of $16bn), with approximately $1bn from 

international NGOs (Waldron et al., 2013). Thus, conveying results in relation to national 

contexts allows us to better understand policy relevant conservation opportunities. We 

calculated the average species richness lost per 110 km grid cell on each agricultural 

development pathway per country. In order to emphasize countries that are at higher risk, 

not only to potential species loss, but also in terms of national support for conservation and 

agricultural trends, we compared our results against (1) conservation spending, averaged per 

km² and corrected by the each countries’ proportional dollar costs of a fixed basket of goods 

and services (from Waldron et al., 2013), and (2) the average percent agricultural economic 

growth from 2009 to 2013 (World Bank Group, 2013). The later gives an indication of 

countries with high agricultural growth rates, where conservation planning may therefore be 

more urgent. To objectively evaluate the ranking of countries in relation to species loss, 

conservation spending, and agricultural growth trends, we calculated z-scores of each 

variable, re-scaled them to be between 0 and 1 and then summed them. The use of z-scores 

is an established method for producing composite measures (Andersen et al., 2006). 
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3 Results 
 

In general, the tropics, particularly the Amazon basin and Sub-Saharan Africa, had the 

highest risk of biodiversity loss, were only partially covered by protected areas and 

conservation prioritisation schemes, and were characterised by relatively low conservation 

funding and high agricultural growth. 

 
3.1 Expansion effects on biodiversity 

For pathways of expansion, mosaic grasslands and dense forests exhibited the highest overall 

relative biodiversity losses (up to 25% loss of species richness, Figure IV-1, Table SI IV-4). 

Areas of highest potential species richness loss due to expansion, in terms of the top 5% of 

species lost, resulting in between 167 - 264 species lost per 110 km grid cell, were 

overwhelmingly found in the Amazon Basin and the North-eastern Congolian forests and 

savannas (Figure IV-2). In terms of abundance loss, many regions in the tropics and the 

boreal forests were found to be at particularly high risk (21% loss of abundance in terms of 

the maximum percent loss per land system conversion) 

 
3.2 Intensification effects on biodiversity 

Overall, intensification effects on biodiversity were less than the effects of expansion. In 

terms of relative percent loss per land system conversion, land-use intensification resulted 

in up to 7% loss in species richness, spanning across much of Eastern Europe, India, Nepal 

and Sub-Saharan Africa (Figure IV-1, Table SI IV-4). In terms of the maximum number of 

species lost per 110 km grid cell, up to 19 species would be lost due to intensification across 

a large region of Eastern Europe and up to 34 species in India and Nepal. More concentrated 

regions of species richness loss were found in Mesoamerica, the Gran Chaco, and the 

Chiquitano dry forests of Bolivia, where 39 species would be lost. The top 5% of potential 

losses in species richness due to intensification would see between 33 and 60 species lost 

per grid cell in many regions of Sub-Saharan Africa, including the Eastern Guinean Forest- 

Savanna Mosaic and West Sudanian Savannah (42 species) and the Afromontane and the 

African Great Lakes Region (60 species; Figure IV-2). In terms of abundance losses, we 

found large areas spanning many parts of Eastern Europe, Russia, India and Sub-Saharan 

Africa that could lose up to 13% abundance under the intensification pathway (Figure IV-1). 

 
3.3 Combined effects of intensification and expansion on biodiversity 

As can be expected, the effect of the combination of expansion and intensification had the 

greatest negative effect on biodiversity (Figure IV-1). For most of the globe, since the risk 
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of biodiversity loss due to intensification is much less than the risk due to expansion (Figure 

IV-1), our combined pathway highlights many of the same areas as our pathway of 

expansion, especially when looking at the top 5 and 10% of the distribution of species loss. 

In terms of the top 5% of species lost, 184 - 317 species were found to be lost per 110 km 

grid cell (a loss of up to 30% of relative species richness), and include the majority of the 

Amazon Basin, a large area in the north east of the Democratic Republic of the Congo 

(DRC), smaller areas in Zambia and southern Tanzania, along with border regions of the 

Central African Republic, the Republic of the Congo, Cameroon and Gabon (Figure IV-2). 

Many parts of these areas also would withstand relative abundance losses of 31% under this 

pathway (Figure IV-1). Our 110 km grid cell under most risk globally was found in the 

Southwest Amazon moist forests in Peru, where a combination of expansion and 

intensification would result in the loss of 317 species of terrestrial vertebrates (Figure IV-2b). 

 
Figure IV-1: Biodiversity loss due to three agricultural development pathways in terms of: (a) the number of 
terrestrial vertebrate species (mammals, birds, amphibians and reptiles) lost per 110 km grid cell, (b) relative 
percent of species richness lost, (c) relative percent of abundance lost. 

 
3.4 Comparison to protected areas and conservation priorities 

Many regions of potentially high biodiversity risk due to our pathways of intensification and 

expansion are currently outside the protected area network (Figure IV-2a). In terms of 

expansion, we found the northeast of the DRC particularly at risk with over 200 estimated 

species lost per grid cell and up to a 31% loss of biodiversity abundance. Very few protected 

areas exist in this region, and of that, even fewer have a strict designation according to the 
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IUCN categorization (Figure IV-2a). The Amazon has an extensive network of protected 

areas, but is by no means fully protected. Our 110 km grid cell of highest risk for species 

loss occurred in the Southwest Amazon moist forests in Peru (317 species potentially lost), 

is partially but not entirely covered by the IUCN category II Bahuaja-Sonene and category 

VI Tambopata National Parks (Figure IV-2b). In sum, many of the areas we identify here 

were not fully protected, including our most at risk regions. 

 
 

 

 
Figure IV-2: High-risk regions of species loss in terms of pathways of expansion (dark red = top 5%, light red 
= top 10%) and intensification (dark turquoise = top 5%, light turquoise = top 10%) overlaid with: (a) protected 
areas (IUCN category I to IV, darker blue denotes higher protection), (b) the 110 km grid cell most at risk of 
species richness loss found in the moist forests of Peru and partially covered by the IUCN category II Bahuaja- 
Sonene and cat VI Tambopata National Reserve. Bottom Panel: conservation priority schemes (dashed lines), 
(c) Conservation International hotspots (Mittermeier et al., 2004), (d) Global 200 Ecoregions (Olson & 
Dinerstein, 2002) and, (e) Last of the Wild (Sanderson et al., 2002). 

 
 
 

In terms of conservation prioritization schemes and their overlap with our high risk regions 

(top 10% of species richness loss per pathway), we found that, on average, less than half of 

our high risk regions were included under some form of conservation prioritization. 

Pathways of (1) expansion and (2) combined intensification and expansion, highlighted very 

similar top 10% at risk regions and are thus referred to as ‘high-risk regions of expansion’. 

Conservation International (CI) hotspots overlapped with 36% of our high-risk regions of 

intensification, mostly in pockets of South East Asia and Mesoamerica, and with less than 
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7% of high-risk regions of expansion (Figure IV-2c). The Global 200 ecoregions coincided 

with many of our regions of high-risk regions of intensification (35%) and most notably 

across most of our high-risk regions of expansion (75%, Figure IV-2d). Finally, the Last of 

the Wild coincided with less than 1% of our high-risk regions of intensification and 60% of 

our high-risk regions of expansion, this overlap was found in many parts of Latin America 

but to a lesser degree in Sub-Saharan Africa (Figure IV-2e). 

 
3.5 National level summaries 

Sub-Saharan African and Latin American countries dominated the top ten ranks in terms of 

average species and abundance loss. Suriname had the overall highest potential species 

richness loss (average 212 to 219 species lost per 110 km grid cell under the expansion and 

combined pathway respectively, Table IV-2). Rwanda was worst affected by our 

intensification pathway with an average of 51 species lost per 110 km grid cell. The Republic 

of the Congo and the DRC ranked highly across pathways of expansion. Outside of the 

tropics, the only countries to reach the top ten were in Eastern Europe, where Moldova and 

the Ukraine were found to lose an average of 10% in abundance of species under the 

intensification pathway (Table IV-2). 

 

 
Table IV-2: Top ten at risk countries in terms of highest average biodiversity loss (SR – species richness, 
Abundance - % abundance change relative to baseline) for our three main pathways (both – combination of 
expansion and intensification). 

 

 Intensification  Expansion  Both  

Top Ten SR Abundance SR Abundance SR Abundance 

1 Rwanda Mayotte Suriname Rep. of Congo Suriname Rep. of Congo 

2 Burundi Haiti Fr. Guiana DRC Fr. Guiana DRC 

3 Uganda Rwanda Guyana Suriname Guyana Suriname 

4 El Salvador Moldova R. Congo Bahamas R. Congo Liberia 

5 Togo Ukraine DRC Gabon DRC C. African Rep. 

6 Nigeria Burundi Liberia Liberia Liberia Bahamas 

7 Sierra Leone El Salvador Gabon Fr. Guiana Gabon Gabon 

8 Ivory Coast St. Lucia Zambia C. African Rep. Zambia Fr. Guiana 

9 Malawi Barbados Cameroon Guyana Cameroon Zambia 

10 Nicaragua Uganda Belize Eq. Guinea Belize Guyana 
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Countries that spend most on conservation per km², like the Netherlands, Switzerland and 

Belgium had a comparatively low risk of species loss due to future agricultural land-use 

change for all of our three agricultural pathways. This is likely because most suitable 

agricultural land is already utilised and such countries have low species richness in 

comparison to the tropics. The highest risk for species loss due to agricultural land-use 

change occurred in less economically developed and highly biodiverse countries which also 

have much lower conservation investment. Among countries with low spending but high 

potential species loss due to intensification, Togo, Sierra Leone, Cote d’Ivoire and Moldova 

stood out (Figure IV-3b). 

 

 

Figure IV-3: Average national level species richness lost per 110 km grid cell (# sr loss) on each pathway 
(expansion, intensification, and both expansion and intensification) compared with the natural log of 
conservation spending per km2 at the national level – log spending (Waldron et al., 2013), and the average % 
economic growth of the agricultural sector of 2009-2013 – agricultural growth (World Bank Group, 2013). 
Colour code according to each country’s realm (Afrotropical = Red, Neotropical = Navy, Palaearctic = Blue). 
Country codes for countries referred to in the text: Angola = AGO, Belgium = BEL, Congo, Dem. Rep. = ZAR, 
Congo, Rep. = COG, Cote d'Ivoire = CIV, Equatorial Guinea = GNQ, Guinea, Rep. of = GIN, Guyana = GUY, 
Liberia = LBR, Moldova = MDA, Netherlands = NLD, Nigeria = NGA, Paraguay = PRY, Rwanda = RWA, 
Sierra Leone = SLE, Switzerland = CHE, Togo = TGO, Ukraine = UKR. All others in Table SI IV-5. 
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Whereas, Angola, Rep. of Congo, DRC and Guyana were among those with low spending 

and high species loss related to pathways of expansion (Figure IV-3a-c). The majority of 

countries that we found to be at-risk of high biodiversity loss along with below-average 

conservation funding per km2 were not represented on Waldron et al’s (2013) top 40 severely 

underfunded countries, particularly the DRC, Equatorial Guinea, Liberia and Suriname (see 

Table SI IV-5 & Table SI IV-6 for full list). 

Among countries where agricultural growth was high in 2009-2013, meaning that future 

agricultural development is likely, and which also would lose high levels of species due to 

intensification, Rwanda, Moldova, Nigeria stood out. Countries with high species loss due 

to pathways of expansion and high agricultural growth included: Suriname, Paraguay, Rep. 

of Congo and Rep. of Guinea (Figure IV-3d-f). 

 
 
4 Discussion 

 

With a growing consensus that both expansion and intensification are likely to continue in 

the future, and that these changes will be a key driver of biodiversity loss throughout the 21st 

century, investigating which areas are most at risk has become central to conservation 

research (Green et al., 2005; Phalan et al., 2014). We provide a robust and transparent 

mechanism for estimating biodiversity loss under possible pathways of future agricultural 

land-use change in order to show which areas are susceptible to what forms of potential land- 

use change. A major gap in sustainability research lies in linking the local scale effects of 

land use on biodiversity to the impact of broader scale pathways of potential future land-use 

change. We bridge this gap by estimating both fine-scale, percentage-based biodiversity loss, 

and then aggregating and translating these losses to the potential number of species lost on 

a 110 km grid to a national level. By using absolute values, we can estimate local, 110 km 

grid-scale extinction, for many small-ranged threatened species global extinctions are also 

likely – depending on the spatial extent of land-use change. 

While using absolute values has the advantage of highlighting particularly biodiverse regions 

at risk, relative values can work on a finer-scale 1km grid and highlight areas with 

considerable implications. For example, when comparing our relative loss results from a 

natural baseline, both pathways of intensification and expansion result in over 20% loss of 

species richness (Table SI IV-3 and Table SI IV-4), this likely passes the safe limits of 

planetary boundaries and considerably impairs the ability of biodiversity to contribute 

towards ecosystem function and services, and thus to human well-being (Hooper et al., 2012; 
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Newbold et al., 2016). Furthermore, relative values don’t overlook the importance of cultural 

landscapes – such areas include those that are not found to be hugely relevant on global 

scale, however, this does not imply that high percentage loss is not worth intervention. For 

example, many low-intensity culturally significant landscapes in Eastern Europe are high in 

agricultural biodiversity that would be lost if industrialised intensification were to occur 

(Donald et al., 2002; Hartel et al., 2010). 

The global protected area network is designed to achieve the long term conservation of 

nature with associated ecosystem services and cultural values (IUCN, 2008). Comparing our 

top 5 and 10% at risk areas to this network showed some overlap, yet none of our high-risk 

areas were fully protected. Our results are especially useful in highlighting areas where we 

find a fragmented arrangement of mostly unconnected protected areas alongside our high- 

risk areas (Figure IV-2). For instance, in the moist forests of Peru, where protected areas and 

buffer zones only cover half of the most-threatened 110 km grid cell (Figure IV-2b). 

Our areas at risk had little overlap with many conservation priority schemes, particularly the 

more reactive approaches, such as CI Hotspots (Mittermeier et al., 2004). CI Hotspots were 

defined based on a single taxonomic group (i.e., plants) and the amount of remaining habitat, 

but do not factor in potential future loss. A substantial proportion of conservation funding is 

directed towards CI hotspots (Brooks et al., 2006), but our results suggest that they may not 

be particularly effective in protecting vertebrates from agricultural land-use change. Many 

at risk areas were also not covered by the more proactive conservation prioritization 

schemes, such as the Last of the Wild, which showed little overlap with our high-risk areas 

in Sub-Saharan Africa (Figure IV-2e). This is understandable for areas that are threatened by 

agricultural intensification, since these areas would not be classified as ‘wild’, but a number 

of currently intact habitats such as Congolian forests and savannas, that we found to be 

highly susceptible to expansion impacts were also not covered under this scheme. Specific 

conservation prioritization is needed in terms of potential future land-use pressures in order 

to avoid overlooking such highly biodiverse at risk areas. 

Considering the significant proportion of conservation funding spent at national scale 

(Waldron et al., 2013), investigating which countries are most at risk in terms of both relative 

conservation funding and potential biodiversity loss is a worthwhile pursuit. Our results 

identify investment opportunities to avoid potentially high biodiversity loss that may be 

particularly urgent due to underfunding and high agricultural growth rates. In general, across 

all scales our forward looking approach is particularly relevant with regard to conservation 
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planning, where delayed mitigation efforts are likely to have a lower rate of success, take 

longer to implement, and cost more than prompt action (Cook et al., 2014; Oliver & Roy, 

2015). 

Our results are in line with other broad-scale studies that assess potential conservation 

conflict due to future agricultural land-use change. We found many regions of India and the 

African Great Lakes to be areas of high potential conservation conflict, similar to the work 

of others that highlighted these regions based on high levels of human appropriation of net 

primary productivity and cropland extent alongside high levels of vertebrate endemism 

richness (Kehoe et al., 2015), high numbers of threatened vertebrates and the proportion of 

non-cropland that could be degraded (Shackelford et al., 2015), and one of the highest 

priorities for both intensification and bird conservation – particularly for the African Great 

Lakes region (Phalan et al., 2014). This emphasizes the importance of ramping up 

conservation efforts in these regions to curb possible future biodiversity loss. Latin America 

and Sub-Saharan Africa contains relatively intact and highly diverse natural areas that are 

suitable for cropland. Thus, the potential for agricultural activity and subsequent biodiversity 

loss is high. These areas, particularly Sub-Saharan Africa, are in the cross hairs of economic, 

demographic and agricultural growth, making the minimization of the potential impacts of 

agricultural change an urgent task (Searchinger et al., 2015; Estes et al., 2016). Finally, our 

results also show that compared to other studies (Shackelford et al., 2015), South-East Asia 

has relatively low estimated biodiversity loss. This may be because this region is more 

heavily comprised of mosaic cropland, with the remaining natural areas either relatively 

small or unsuitable for cropland (Figure SI IV-1). This may also explain the discrepancy 

between our results and Shackelford et al (2015), where areas that are not suitable for 

cropland were not excluded from the analysis. 

A few sources of uncertainty need mentioning. First, our analyses ignores lagged responses 

and thus possible extinction debt as historical data are rare (Newbold et al., 2015), and are 

therefore a conservative estimate of biodiversity loss (Kuussaari et al., 2009). Second, 

although our method for estimating biodiversity impacts is based on the largest dataset of 

land use related biodiversity change, a number of countries and ecosystems were under- 

represented (Hudson et al., 2014). Third, our intensification pathways may overestimate 

biodiversity loss, because they assume that conventional intensification will take place. 

Intensification is complex and multi-dimensional (Kuemmerle et al., 2013; Kehoe et al., 

2015), and there is a number of ways in which yield increases can occur with lower or no 

net loss of species richness and abundance (Clough et al., 2011; Tscharntke et al., 2012). In 
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order to estimate biodiversity change associated with ‘sustainable’ intensification, it is 

necessary to both develop a better definition of this concept along with more empirical data, 

particularly when considering fragile ecosystems (Loos et al., 2014). Fourth, the underlying 

land systems map is built on land cover maps that can have significantly different spatial 

extents, and some lack formal validation (Fritz et al., 2011; Verburg et al., 2011), which can 

translate into errors in the assessment of potential biodiversity impacts. No global datasets 

are currently available indicating areas suitable for livestock; therefore, livestock expansion 

was not explicitly included in the analysis. Moreover, data protection and confidentiality 

legislation make it difficult to map industrialised livestock units (Wint & Robinson, 2007) 

and assess their impact on biodiversity. Fifth and finally, our prioritisation is based on 

maximising for species richness and abundance, this cannot and should not be the only way 

to prioritise for nature conservation, especially when considering the importance of intrinsic 

and cultural values along with ecosystem resilience and human well-being (Fischer et al., 

2014). Species richness is particularly problematic as it can be over-representative of 

common, widespread species and can overshadow rare or small-ranged species, which are 

often most in need of conservation (Grenyer et al., 2006). With better data, for example, on 

the effect of land-use change on threatened species, we could highlight areas that are 

particularly sensitive to change. 

In sum, our results can inform policy and future analysis by highlighting the most at risk 

areas from 1km2 to the national level where the threat to species richness and abundance 

related to potential future land-use change was previously unknown. This methodology 

compliments scenario-based methods by providing an overview of areas most at risk under 

the main modes of agricultural change. In a world of rapidly increasing demand on natural 

resources, our proactive approach serves to indicate where timely conservation action could 

avert future biodiversity loss. Although our results should not be directly used to guide 

conservation action, they support previous calls that potential future threats due to land-use 

change should be incorporated in conservation prioritization schemes (Lee & Jetz, 2008; 

Visconti et al., 2011; Tingley et al., 2013). 
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Our updated global land systems map and all percentage-based results are open access and 

available from HU datahub. This research contributes to the Global Land Project 

(www.globallandproject.org). 

http://www.globallandproject.org/
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Supplementary Information 
 

Figure SI IV-1: Global Land System classification used in this analyses (~1km resolution). Darker green areas 
indicate predominantly natural regions of forest and grassland that are not suitable for cropland. Lighter green 
systems annotated with (CS) indicate areas where cropland is suitable – but not currently present. Full dataset 
available for download from HU datahub. 
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Figure SI IV-2: Hierarchical classification procedure to delineate Land Systems. Classification thresholds are 
given in the rectangles, pp = pigs & poultry (nr/km2), bgs = bovines, goats & sheeps (nr/km2), eff = efficiency 
of agricultural production (int1 = extensive system, int2 = medium intensive system, int3 = intensive system), 
built-up, bare, crop and tree cover in percentages. 
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Table SI IV-1: Details on datasets for the Global Land System map V2 
 

 Dataset 

 
(citation, original 

scale) 

Description 

(data value, reference year) 

Data Source 
IN

P
U

T
 

M
E

T
R

IC
S
 

Cropland - (Fritz et 

al., 2015, 1km) 

 
 
 
 

Tree Cover (Hansen et 

al. 2013, 1 arc-second 

per pixel, or ~ 30 

meters per pixel at the 

equator) 

 

 
Urban and Bare 

Areas (Land Cover 

CCI, 2016, 300m) 

 

 
Livestock densities* - 

Gridded livestock of 

the world (Wint & 

Robinson, 2007, 0.05°) 

(% per grid cell, 2005) 
 
 
 
 
 

 
(% per grid cell, ~2000) 

 
 
 
 
 
 
 

 
(% per grid cell, 2008‐ 

2012). 

 

 
Livestock heads 

accounting for amount of 

land suitable for livestock 

production (livestock 

heads per km2, ~2000) 

IIASA-IFPRI Cropland Map 

see publication: 

http://onlinelibrary.wiley.com 

/doi/10.1111/gcb.12838/abstr 

act 

Time-series analysis of 

Landsat images 

http://earthenginepartners.app 

spot.com/science-2013- 

global-forest 

 

 
CCI-LC project ESA 

 
 
 
 

FAO and spatially predicted 

on suitable land 

S
Y

S
T

E
M

 

M
E

T
R

IC
S
 

Crop Suitability - 

(Fischer et al. 2012 - 

2012, 5 arc min) 

 

 
Yield Gaps - 

(FAO/IIASA,      2011- 

2012, 5 arc min) 

Crop suitability index 

(class) for high input level 

rain-fed     cereals    (1961- 

1990) 
 

Ratio of actual and 

potential yield for high 

input    level    main  crops 

(2000) 

FAO/IIASA, 2011-2012. 

Global Agro-ecological 

Zones (GAEZ v3.0) 

 

 
FAO/IIASA, 2011-2012. 

Global Agro-ecological 

Zones (GAEZ v3.0) 

 
 
 

* An updated recent publication for livestock densities is now available from Robinson et al. (2014) was not 
utilized due to what appeared to be a lower spatial resolution in many regions, especially in Sub-Saharan Africa. 

http://onlinelibrary.wiley.com/
http://earthenginepartners.app/
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Table SI IV-2: Land system conversions for each pathway *Classes 9 –13 (Mosaic cropland and grassland 
classes) no longer occur in our updated land systems classifications as we use the same decision tree from Van 
Assellen but with new datasets comprising of different, often higher, values.) 

 

 
 

Land Systems Name Key 

Original 

Land 

System 

 

Intensification 

Land System 

 

Expansion 

Land System 

Expansion & 

Intensification 

Land System 

0. Cropland ext, few ls VALUE  0 VALUE  6 - VALUE  6 

1. Cropland ext, bgs VALUE  1 VALUE  7 - VALUE  7 

2. Cropland ext, pp VALUE  2 VALUE  8 - VALUE  8 

3. Cropland m. int, few ls VALUE  3 VALUE  6 - VALUE  6 

4. Cropland m. int, bgs VALUE  4 VALUE  7 - VALUE  7 

5. Cropland m. int, pp VALUE  5 VALUE  8 - VALUE  8 

6. Cropland int, few ls VALUE  6 - - - 

7. Cropland int, bgs VALUE  7 - - - 

8. Cropland int, pp VALUE  8 - - - 

9. Mosaic cropland and grassland, bgs VALUE  9 VALUE  7 - VALUE  7 

10.  Mosaic cropland and grassland, pp VALUE  10 VALUE  8 - VALUE  8 

11. Mosaic cropland ext and grassland, 
few ls 

VALUE  11 VALUE  6 - VALUE  6 

12. Mosaic cropland m. int and 
grassland, few ls 

VALUE  12 VALUE  6 - VALUE  6 

13. Mosaic cropland int and grassland, 
few ls 

VALUE  13 VALUE  6 - VALUE  6 

14.  Mosaic cropland and forest,  pp VALUE  14 VALUE  8 - VALUE  8 

15. Mosaic cropland ext and open 
forest, few ls 

VALUE  15 VALUE  6 - VALUE  6 

16. Mosaic cropland m. int and open 
forest, few ls 

VALUE  16 VALUE  6 - VALUE  6 

17. Mosaic cropland int and open 
forest, few ls 

VALUE  17 VALUE  6 - VALUE  6 

18.  Dense forest VALUE  18 - VALUE  0 VALUE  6 

19.  Open forest, few ls VALUE  19 - VALUE  0 VALUE  6 

20.  Open forest, pp VALUE  20 - VALUE  1 VALUE  8 

21.  Mosaic grassland and open forest VALUE  21 - VALUE  0 VALUE  6 

22.  Mosaic grassland and bare VALUE  22 - VALUE  0 VALUE  6 

23.  Natural grassland VALUE  23 - VALUE  0 VALUE  6 

24.  Grassland, few ls VALUE  24 - VALUE  0 VALUE  6 

25.  Grassland, bgs VALUE  25 - VALUE  1 VALUE  7 
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26.  Bare VALUE  26 - - - 

27.  Bare,few ls VALUE  27 - VALUE  0 VALUE  6 

28.  Peri-urban & villages VALUE  28 - - - 

29.  Urban VALUE  29 - - - 
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Table SI IV-3: Modelled mean estimates (following Newbold et al. 2015) of relative percent biodiversity change 
for each Land System. Values represent the percentage of remaining biodiversity, expressed in terms of total 
species richness (SR) and rarefied species richness (Rarefied SR) and abundance. All values are relative to an 
un-impacted baseline (primary vegetation, minimal intensity of use, zero human population density, and 
maximum observed distance to roads and travel time to major city). First numbers give modelled mean 
estimates and numbers in brackets the 95% confidence limits (under tenfold cross-validation, excluding data 
from approximately 10% of studies at a time.) 

 
 

Land System SR (CI) Rarefied SR (CI) Abundance 

(CI) 

0. Cropland ext, few ls 71.85 

(62.65 – 82.35) 

79.85 

(69.7 – 91.45) 

80.80 

(62.60 - 104.20) 

1. Cropland ext, bgs 68 

(57.4 – 80.7) 

76.75 

(65.95 – 89.25) 

77.25 

(56.65 - 105.70) 

2. Cropland ext, pp 68 

(57.4 – 80.7) 

76.75 

(65.95 – 89.25) 

77.25 

(56.65 - 105.70) 

3. Cropland med. Int, few ls 66.25 

(56.85 - 77.2) 

80.65 

(70.75 - 91.85) 

63.55 

(48.05 - 84.05) 

4. Cropland med. int, bgs 62.4 

(51.6 - 75.55) 

77.55 

(67 - 89.65) 

60.00 

(42.10 - 85.55) 

5. Cropland med. int, pp 62.4 

(51.6 - 75.55) 

77.55 

(67 - 89.65) 

60.00 

(42.10 - 85.55) 

6. Cropland int, few ls 67.15 

(56.95 - 79.25) 

76.85 

(67.35 - 87.75) 

70.45 

(51.55 - 96.60) 

7. Cropland int, bgs 63.3 

(51.7 - 77.6) 

73.75 

(63.6 - 85.55) 

66.90 

(45.60 - 98.10) 

8. Cropland int, pp 63.3 

(51.7 - 77.6) 

73.75 

(63.6 - 85.55) 

66.90 

(45.60 - 98.10) 

15. Mosaic cropland and forest, pp 63.3 

(51.7 - 77.6) 

73.75 

(63.6 - 85.55) 

66.90 

(45.60 - 98.10) 

16. Mosaic cropland ext and open forest, few ls 71.85 

(62.65 - 82.35) 

79.85 

(69.7 - 91.45) 

80.80 

(62.60 - 104.20) 

17. Mosaic cropland m. int and open forest, few ls 66.25 

(56.85 - 77.2) 

80.65 

(70.75 - 91.85) 

63.55 

(48.05 - 84.05) 

18. Mosaic cropland int and open forest, few ls 67.15 

(56.95 - 79.25) 

76.85 

(67.35 - 87.75) 

70.45 

(51.55 - 96.60) 

19. Dense forest 96.13 

(90.54 - 100.39) 

97 

(92.59 - 99.09) 

98.03 

(88.28 - 108.28) 

20. Open forest, few ls 89.23 

(79.54 - 100.19) 

92.71 

(82.64 - 99.47) 

90.96 

(71.44 - 104.63) 

21. Open forest, pp 88 

(75.34 - 102.92) 

89.41 

(77.54 - 98.57) 

97.56 

(70.81 - 122.80) 

22. Mosaic grassland and open forest 96.13 97 98.03 
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 (90.54 - 100.39) (92.59 - 99.09) (88.28 - 108.28) 

23. Mosaic grassland and bare 96.13 

(90.54 - 100.39) 

97 

(92.59 - 99.09) 

98.03 

(88.28 - 108.28) 

24. Natural grassland 96.13 

(90.54 - 100.39) 

97 

(92.59 - 99.09) 

98.03 

(88.28 - 108.28) 

25. Grassland, few ls 70.6 

(61.3 - 81.2) 

82.2 

(73.3 - 92.1) 

72.20 

(56.00 - 93.00) 

26. Grassland, bgs 62.9 

(50.8 - 77.9) 

76 

(65.8 - 87.7) 

65.10 

(44.10 - 96.00) 

27. Bare,few ls 70.6 

(61.3 - 81.2) 

82.2 

(73.3 - 92.1) 

72.20 

(56.00 - 93.00) 

28. Peri-urban & villages 96 

(79.4 - 116) 

109.7 

(84.9 - 141.8) 

81.80 

(51.60 - 129.70) 

29. Urban 49.8 

(37.5 - 66) 

71.1 
(54.9 - 92.1) 

37.60 

(21.10 - 67.20) 
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Table SI IV-4: Modelled mean estimates of relative percent biodiversity loss (SR – species richness, Ab. – 
abundance) according to agricultural development pathways (Both - intensification and expansion). Note: 
Minus numbers signify a gain in species richness and abundance, however, these land systems are generally 
located in areas that are of relatively low species richness and abundance. 

 
 

Land System Expansion  Intensification  Both   

 SR Abun- 
dance 

Rarefied 
SR 

SR Abun- 
dance 

Rarefied 
SR 

SR Abun- 
dance 

Rarefied 
SR 

0. Cropland 
ext, few ls 

- - - 6.54 12.81 3.76 6.54 12.81 3.76 

1. Cropland 
ext, bgs 

- - - 6.91 13.40 3.91 6.91 13.40 3.91 

2. Cropland 
ext, pp 

- - - 6.91 13.40 3.91 6.91 13.40 3.91 

3. Cropland m. 
int, few ls 

- - - -1.36 -10.86 4.71 -1.36 -10.86 4.71 

4. Cropland m. 
int, bgs 

- - - -1.44 -11.50 4.90 -1.44 -11.50 4.90 

5. Cropland m. 
int, pp 

- - - -1.44 -11.50 4.90 -1.44 -11.50 4.90 

6. Cropland 
int, few ls 

- - - - - - - - - 

7. Cropland 
int, bgs 

- - - - - - - - - 

8. Cropland 
int, pp 

- - - - - - - - - 

9. Mosaic 
cropland and 
grassland, bgs 

- - - - - - - - - 

10. Mosaic 
cropland and 
grassland, pp 

- - - - - - - - - 

11. Mosaic 
cropland ext 
and grassland, 
few ls 

- - - 6.54 12.81 3.76 6.54 12.81 3.76 

12. Mosaic 
cropland m. int 
and grassland, 
few ls 

- - - -1.36 -10.86 4.71 -1.36 -10.86 4.71 

13. Mosaic 
cropland int 
and grassland, 
few ls 

- - - - - - - - - 

14. Mosaic 
cropland and 
forest, pp 

- - - - - - - - - 

15. Mosaic 
cropland ext 
and open 
forest, few ls 

- - - 6.54 12.81 3.76 6.54 12.81 3.76 
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16. Mosaic 
cropland m. int 
and open 
forest, few ls 

- - - -1.36 -10.86 4.71 -1.36 -10.86 4.71 

17. Mosaic 
cropland int 
and open 
forest, few ls 

- - - - - - - - - 

18. Dense 
forest 

25.26 17.58 17.68 - - - 30.15 28.14 20.77 

19. Open 
forest, few ls 

19.48 11.17 13.87 - - - 24.75 22.54 17.11 

20. Open 
forest, pp 

22.73 20.81 14.16 - - - 28.07 31.42 17.52 

21. Mosaic 
grassland and 
open forest 

25.26 17.58 17.68 - - - 30.15 28.14 20.77 

22. Mosaic 
grassland and 
bare 

25.26 17.58 17.68 - - - 30.15 28.14 20.77 

23. Natural 
grassland 

25.26 17.58 17.68 - - - 30.15 28.14 20.77 

24. Grassland, 
few ls 

-1.77 -11.91 2.86 - - - 4.89 2.42 6.51 

25. Grassland, 
bgs 

-8.11 -18.66 -0.99 - - - -0.64 -2.76 2.96 

26. Bare - - - - - - - - - 

27. Bare,few ls -1.77 -11.91 2.86 - - - 4.89 2.42 6.51 

28. Peri-urban 
& villages 

- - - - - - - - - 

29. Urban - - - - - - - - - 
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Table SI IV-5: National level biodiversity loss in terms of average species richness (SR) and % abundance loss 
for each of the three agricultural pathways. Also shown are the average % average agricultural economic 
growth between 2009-2013 (World Bank Group, 2013), and conservation spending per km2, based on (Waldron 
et al., 2013) 
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L
N

 S
pe

nd
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 k
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Afghanistan AFG 3.74 2.40 -0.81 -3.25 7.35 3.25 9.77 5.57 1.72 

Albania ALB 7.50 4.25 1.50 -0.25 11.00 4.75 4.08 153.51 5.03 

Algeria DZA 1.10 0.72 
 

-3.82 3.29 1.52 10.60 1.82 0.60 

Angola AGO 1.59 0.48 69.28 5.98 95.13 16.86 0.00 0.05 -3.02 

Antigua and 

Barbuda 

 
 

ATG 

 
 

5.00 

 
 

6.00 

 
 

15.00 

 
 

6.00 

 
 

23.00 

 
 

16.00 

 
 

1.83 

3857.4 

1 

 
 

8.26 

Argentina ARG -0.53 -2.00 9.67 -0.87 15.92 1.20 1.65 13.91 2.63 

Armenia ARM 10.00 5.00 -1.00 -2.00 14.50 6.00 4.22 80.35 4.39 

Australia AUS -0.15 -0.74 6.79 -1.38 13.66 2.36 4.31 68.44 4.23 

 
 

Austria 

 
 

AUT 

 
 

0.20 

 
 

-0.60 

 
 

6.40 

 
 

0.80 

 
 

9.00 

 
 

2.00 

 
 

-1.48 

1244.7 

4 

 
 

7.13 

Azerbaijan AZE 8.54 4.93 6.00 -1.32 21.36 8.25 3.52 10.63 2.36 

Bahamas, The BHS 0.20 0.00 42.80 13.13 53.07 22.87 -3.99 97.94 4.58 

Bangladesh BGD 1.07 -4.29 12.43 1.14 18.00 -1.36 3.91 61.33 4.12 

Barbados BRB 8.00 9.00 1.00 0.00 10.00 9.00 0.00 484.44 6.18 

 
 

Belgium 

 
 

BEL 

 
 

0.00 

 
 

0.00 

 
 

10.50 

 
 

2.00 

 
 

14.00 

 
 

4.50 

 
 

-2.53 

4671.0 

3 

 
 

8.45 

Belize BLZ -0.50 -0.50 99.50 9.00 124.50 16.00 3.49 160.83 5.08 

Benin BEN 18.18 6.18 35.09 2.09 68.09 14.09 2.67 61.09 4.11 

Bhutan BTN 4.88 0.47 7.94 0.53 14.35 1.76 2.12 100.53 4.61 

Bolivia BOL 3.07 0.74 92.73 6.44 121.05 14.86 2.88 19.18 2.95 

Bosnia and 

Herzegovina 

 
 

BIH 

 
 

9.00 

 
 

4.77 

 
 

8.54 

 
 

1.00 

 
 

20.62 

 
 

8.00 

 
 

-0.32 

 
 

32.43 

 
 

3.48 
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Botswana BWA 0.24 0.07 1.59 -3.59 14.96 1.85 1.03 28.70 3.36 

Brazil BRA -0.47 -1.26 97.46 6.81 124.38 13.91 2.78 21.35 3.06 

Brunei BRN 0.00 -1.00 63.00 6.00 76.00 9.00 1.96 897.91 6.80 

Bulgaria BGR 11.80 6.20 4.80 0.90 18.00 7.90 -4.26 44.66 3.80 

Burkina Faso BFA 10.59 4.18 -2.32 -7.05 29.41 6.73 2.07 21.99 3.09 

Burma MMR 3.29 -0.30 21.58 1.66 31.06 3.31 0.00 1.16 0.15 

Burundi BDI 45.67 10.00 16.33 1.00 66.67 12.33 3.54 78.23 4.36 

Belarus BLR 8.20 5.80 26.50 4.80 42.80 16.80 2.31 2.12 0.75 

Cambodia KHM 13.58 4.26 42.05 3.84 68.26 12.63 3.67 26.82 3.29 

Cameroon CMR 6.45 1.40 105.45 10.19 134.74 18.88 3.66 30.08 3.40 

Canada CAN -0.17 -0.60 7.28 1.72 9.00 2.96 2.91 108.82 4.69 

Central African 

Republic 

 
 

CAF 

 
 

1.82 

 
 

0.65 

 
 

99.55 

 
 

12.08 

 
 

125.80 

 
 

23.18 

 
 

-5.73 

 
 

10.21 

 
 

2.32 

Chad, Claimed 

by Libya 

 
 

TCD 

 
 

1.90 

 
 

0.81 

 
 

1.45 

 
 

-6.29 

 
 

13.68 

 
 

3.13 

 
 

3.03 

 
 

2.90 

 
 

1.06 

Chile CHL 0.57 0.48 2.95 0.16 5.00 2.29 0.87 22.75 3.12 

China CHN -0.51 -1.53 1.14 -0.86 2.42 -0.83 4.14 15.55 2.74 

Colombia COL 0.45 -0.36 88.70 5.78 115.60 12.89 2.13 59.87 4.09 

Comoros COM 4.50 8.00 0.50 0.00 5.00 8.50 1.69 28.49 3.35 

Congo COG 1.29 0.36 127.36 14.54 155.96 25.14 5.00 2.21 0.79 

Congo Dem. 

Rep. 

 
 

ZAR 

 
 

1.81 

 
 

0.42 

 
 

123.92 

 
 

14.32 

 
 

152.53 

 
 

24.98 

 
 

3.00 

 
 

3.43 

 
 

1.23 

Costa Rica CRI -1.38 -2.13 60.38 4.38 74.63 6.38 1.86 609.38 6.41 

Croatia HRV 3.67 1.83 12.00 0.83 21.67 6.83 -5.68 282.48 5.64 

Cuba CUB 11.54 7.38 19.27 3.92 36.12 14.92 2.81 39.89 3.69 

Cyprus CYP -0.80 -2.20 -0.20 -0.40 0.00 -2.20 1.76 306.67 5.73 

Czech Republic CZE -0.38 -3.38 8.13 1.50 10.00 0.13 1.67 245.71 5.50 

Denmark DNK 0.13 0.13 3.50 0.38 5.13 1.88 1.92 178.04 5.18 

Djibouti DJI 0.00 0.00 -4.33 -7.67 12.67 1.67 0.00 0.09 -2.37 

 
 

Dominica 

 
 

DMA 

 
 

1.00 

 
 

1.00 

 
 

3.00 

 
 

1.00 

 
 

5.00 

 
 

3.00 

 
 

2.63 

3196.0 

5 

 
 

8.07 

Dominican 

Republic 

 
 

DOM 

 
 

8.88 

 
 

5.75 

 
 

14.25 

 
 

3.25 

 
 

27.25 

 
 

12.38 

 
 

6.07 

 
 

274.28 

 
 

5.61 

Ecuador ECU 3.03 -0.30 70.63 6.00 89.93 10.67 3.48 89.07 4.49 
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Egypt EGY -0.14 -0.45 -1.05 -4.36 2.95 0.45 3.06 9.10 2.21 

El Salvador SLV 24.67 9.33 9.33 1.00 37.00 11.33 0.16 331.99 5.81 

Equatorial 

Guinea 

 
 

GNQ 

 
 

3.50 

 
 

1.50 

 
 

95.75 

 
 

10.50 

 
 

118.00 

 
 

18.25 

 
 

0.00 

 
 

3.01 

 
 

1.10 

Eritrea ERI 2.09 0.64 -4.36 -6.64 12.36 2.00 0.72 1.73 0.55 

Estonia EST 2.14 1.14 35.43 7.14 47.71 16.57 6.35 373.66 5.92 

Ethiopia ETH 8.69 2.77 18.31 -1.08 41.66 7.47 6.51 5.89 1.77 

Fiji FJI -0.33 -2.22 10.22 5.56 11.89 6.78 2.03 468.00 6.15 

Finland FIN 0.03 0.03 11.06 2.68 14.21 5.59 3.62 111.44 4.71 

France FRA 0.15 0.10 5.95 1.10 7.93 2.56 -0.74 866.06 6.76 

French Guiana GUF 0.14 0.00 171.71 13.00 205.57 21.14 NA NA NA 

Gabon GAB 1.42 0.38 118.00 13.25 142.92 22.13 -0.14 20.27 3.01 

Georgia GEO 5.00 2.63 5.38 -0.25 14.63 4.88 1.08 75.33 4.32 

Germany DEU 0.17 0.07 6.90 1.28 9.28 3.10 -5.55 288.12 5.66 

Ghana GHA 10.91 1.55 33.82 1.50 59.14 8.18 4.27 48.05 3.87 

Greece GRC -0.90 -3.31 0.38 -0.10 0.00 -3.07 3.05 21.68 3.08 

Greenland GRL 0.00 0.00 0.00 0.00 0.00 0.00 0 NA NA 

 
 

Grenada 

 
 

GRD 

 
 

7.00 

 
 

8.00 

 
 

5.00 

 
 

2.00 

 
 

13.00 

 
 

12.00 

 
 

3.31 

2991.4 

3 

 
 

8.00 

Guatemala GTM 11.00 1.18 47.91 4.45 70.64 9.45 3.65 290.90 5.67 

Guinea GIN 7.95 2.55 76.95 7.27 106.18 17.91 4.57 16.61 2.81 

Guinea-Bissau GNB 11.50 4.25 48.75 5.75 74.75 17.00 2.44 68.55 4.23 

Guyana GUY -0.32 -0.41 149.32 11.09 182.36 19.05 2.45 3.59 1.28 

Haiti HTI 14.60 10.80 2.40 0.40 18.40 12.00 1.50 29.87 3.40 

Honduras HND 5.47 0.67 54.93 5.00 75.87 11.07 4.09 129.48 4.86 

Hungary HUN 0.14 -3.86 10.43 1.86 13.86 0.29 -4.75 459.57 6.13 

Iceland ISL 0.00 0.00 0.00 -0.11 0.02 0.02 1.26 272.04 5.61 

India IND 11.46 3.39 5.57 0.32 20.04 5.19 3.32 38.03 3.64 

Indonesia IDN -1.13 -3.18 26.92 3.61 31.80 3.07 3.94 16.16 2.78 

Iran IRN 3.31 1.66 -1.78 -6.11 9.38 2.95 4.56 8.26 2.11 

Iraq IRQ 3.40 2.63 -2.31 -8.34 9.31 4.11 7.73 0.00 -8.38 

Ireland IRL 0.50 0.50 -1.92 -5.75 4.50 1.75 0.37 16.63 2.81 

Israel ISR 1.00 -1.75 -1.25 -2.75 4.75 -1.00 0.00 859.63 6.76 



10

Nature at risk: Modelling global biodiversity loss due to pathways of agricultural expansion and intensification 
 

 

 
 
 

Italy ITA -0.78 -2.67 0.98 -0.11 1.00 -2.22 -0.11 18.13 2.90 

Ivory Coast CIV 20.66 6.03 60.45 5.45 97.66 17.10 0.88 15.72 2.75 

Jamaica JAM 0.00 0.00 15.20 3.60 18.40 6.20 5.19 239.17 5.48 

Japan JPN 0.07 -0.36 7.41 1.70 9.41 2.87 -1.16 0 0 

Jordan JOR -0.13 -0.25 -3.25 -10.00 8.75 1.63 2.16 31.05 3.44 

Kazakhstan KAZ 0.95 0.06 -1.01 -6.58 9.51 2.23 4.38 1.48 0.40 

Kenya KEN 10.57 2.27 15.18 -4.31 52.78 6.80 3.70 67.09 4.21 

Korea, Republic 

of 

 
 

KOR 

 
 

0.47 

 
 

0.33 

 
 

5.07 

 
 

1.27 

 
 

7.20 

 
 

2.93 

 
 

-0.16 

 
 

847.50 

 
 

6.74 

Kuwait KWT 0.00 0.00 -3.50 -9.00 10.50 1.50 2.10 0 0 

Kyrgyzstan KGZ 1.67 0.86 -1.33 -3.48 6.19 1.81 4.76 1.64 0.50 

Laos LAO 1.71 0.00 22.12 1.59 30.53 3.53 2.95 13.81 2.63 

Latvia LVA 6.50 4.38 26.13 5.25 39.50 15.13 3.14 49.72 3.91 

Lebanon LBN -2.00 -4.00 0.00 0.00 -1.00 -4.00 5.70 43.78 3.78 

Lesotho LSO 5.00 2.00 -2.33 -2.67 9.67 2.00 2.74 63.89 4.16 

Liberia LBR 6.18 1.73 120.09 12.73 152.27 23.82 3.45 7.15 1.97 

Libya LBY 0.38 0.36 -0.89 -6.82 3.01 1.71 0.00 0.02 -4.09 

Lithuania LTU 11.00 7.60 15.40 2.80 30.60 14.20 2.01 61.53 4.12 

Macedonia MKD 7.00 4.00 4.00 -0.50 14.50 5.50 -3.17 51.14 3.93 

Madagascar MDG 3.69 2.17 17.53 -0.84 32.87 10.66 0.00 37.89 3.63 

Malawi MWI 19.33 5.08 63.83 4.50 102.83 15.17 4.31 46.59 3.84 

Malaysia MYS -3.19 -4.13 31.55 2.81 34.91 0.62 2.43 28.21 3.34 

Mali MLI 2.07 0.86 -1.49 -5.96 9.39 2.22 12.03 2.69 0.99 

 
 

Malta 

 
 

MLT 

 
 

1.00 

 
 

1.00 

 
 

0.00 

 
 

0.00 

 
 

1.00 

 
 

1.00 

 
 

0.87 

2879.3 

1 

 
 

7.97 

Mauritania MRT 0.14 0.07 -0.97 -3.93 3.09 0.97 2.16 1.47 0.39 

 
 

Mauritius 

 
 

MUS 

 
 

0.00 

 
 

0.00 

 
 

0.00 

 
 

0.00 

 
 

0.00 

 
 

0.00 

 
 

2.54 

2582.3 

3 

 
 

7.86 

Mexico MEX 3.80 0.45 13.32 -0.71 27.58 4.01 0.87 48.06 3.87 

Moldova MDA 16.50 10.50 3.00 0.50 20.50 11.50 5.65 12.05 2.49 

Mongolia MNG 0.27 0.16 -1.15 -4.78 4.73 1.27 5.39 2.45 0.90 

Montenegro MNE 4.00 2.00 3.00 0.00 8.00 3.00 2.48 0.14 -1.93 

Morocco MAR 7.35 4.58 -0.98 -3.50 12.18 5.47 8.48 6.45 1.86 
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Mozambique MOZ 5.76 2.15 77.93 7.83 106.69 18.96 3.67 16.90 2.83 

Namibia NAM 0.61 0.24 -1.17 -2.59 6.25 0.89 2.36 38.03 3.64 

Nepal NPL 16.00 3.78 1.85 0.08 19.22 4.20 3.05 87.93 4.48 

 
 

Netherlands 

 
 

NLD 

 
 

0.43 

 
 

0.14 

 
 

-0.29 

 
 

-1.71 

 
 

3.43 

 
 

1.00 

 
 

0.43 

27368. 

63 

 
 

10.22 

New Zealand NZL 0.00 -0.03 5.61 -0.11 9.50 5.11 2.57 668.16 6.50 

Nicaragua NIC 19.16 3.86 53.56 3.95 87.79 12.03 1.32 42.52 3.75 

Niger NER 2.61 1.24 -1.02 -6.04 8.16 2.66 3.54 5.72 1.74 

Nigeria NGA 22.31 7.45 19.95 1.36 49.47 11.45 4.85 21.04 3.05 

Norway NOR 0.29 0.29 1.04 0.08 1.85 0.92 2.83 324.80 5.78 

Oman OMN 0.01 0.00 -1.56 -5.48 4.13 1.07 1.44 0.17 -1.80 

Pakistan PAK 4.44 -0.11 -0.74 -1.77 6.22 0.25 2.40 6.77 1.91 

Panama PAN 5.87 1.20 76.27 5.80 101.47 12.07 -2.66 237.10 5.47 

Papua New 

Guinea 

 
 

PNG 

 
 

0.41 

 
 

0.11 

 
 

39.93 

 
 

7.00 

 
 

48.80 

 
 

11.91 

 
 

0.00 

 
 

14.69 

 
 

2.69 

Paraguay PRY -1.16 -2.13 65.00 5.81 85.90 12.19 8.40 8.38 2.13 

Peru PER 1.47 0.40 94.92 6.40 115.65 11.42 3.11 17.22 2.85 

Philippines PHL 9.96 3.86 15.89 2.81 29.50 8.66 1.12 72.29 4.28 

Poland POL 9.97 6.83 11.31 2.52 24.14 11.52 4.44 129.52 4.86 

Portugal PRT 3.50 2.00 4.11 -0.06 10.56 4.06 0.06 777.83 6.66 

Puerto Rico PRI 2.00 1.20 13.00 3.20 17.60 6.80 NA NA NA 

Qatar QAT 0.00 0.00 -1.50 -6.00 4.00 1.50 3.69 31.71 3.46 

Romania ROM 8.86 5.33 8.57 1.33 20.05 8.52 4.54 7.68 2.04 

Russia RUS 1.83 1.24 9.02 1.90 13.58 5.49 1.50 4.52 1.51 

Rwanda RWA 51.00 10.50 24.50 1.50 82.50 13.50 5.42 456.88 6.12 

Saudi Arabia SAU 0.03 0.00 -1.79 -9.72 4.96 1.79 1.08 24.50 3.20 

Senegal SEN 6.80 1.05 14.75 -1.85 36.45 5.50 2.97 39.86 3.69 

Sierra Leone SLE 21.88 6.38 55.38 5.00 91.25 15.88 4.17 9.44 2.24 

Slovakia SVK 5.75 3.00 9.75 1.75 17.75 6.50 4.28 176.39 5.17 

Slovenia SVN 0.50 0.00 19.00 3.50 26.00 6.50 -2.68 157.88 5.06 

Solomon 

Islands 

 
 

SLB 

 
 

0.14 

 
 

0.05 

 
 

14.48 

 
 

5.05 

 
 

17.81 

 
 

8.48 

 
 

0.00 

 
 

2.41 

 
 

0.88 

Somalia SOM 1.13 0.58 -0.27 -2.49 4.87 1.25 NA NA NA 

South Africa ZAF 3.40 0.33 7.83 -0.88 18.77 2.42 0.25 91.00 4.51 
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Spain ESP -1.47 -4.82 1.55 -0.23 1.23 -4.02 1.69 16.00 2.77 

Sri Lanka LKA 0.08 -3.54 27.38 3.77 34.54 3.77 4.39 161.45 5.08 

St. Kitts and 

Nevis 

 
 

KNA 

 
 

4.00 

 
 

6.00 

 
 

14.00 

 
 

7.00 

 
 

21.00 

 
 

17.00 

 
 

0.04 

 
 

750.00 

 
 

6.62 

 
 

St. Lucia 

 
 

LCA 

 
 

7.00 

 
 

9.00 

 
 

9.00 

 
 

4.00 

 
 

17.00 

 
 

15.00 

 
 

-5.78 

2401.5 

6 

 
 

7.78 

St. Vincent and 

the Grenadines 

 
 

VCT 

 
 

5.00 

 
 

6.00 

 
 

1.00 

 
 

0.00 

 
 

7.00 

 
 

7.00 

 
 

0.76 

 
 

185.29 

 
 

5.22 

Sudan, 

Administered 

by Kenya 

 
 

 
SDN 

 
 

 
2.72 

 
 

 
1.24 

 
 

 
7.47 

 
 

 
-7.27 

 
 

 
25.11 

 
 

 
5.23 

 
 

 
2.63 

 
 

 
1.21 

 
 

 
0.19 

Suriname SUR 0.29 0.00 181.50 14.57 219.36 24.07 6.94 17.04 2.84 

Swaziland SWZ 10.00 2.00 68.00 4.00 103.00 14.00 2.22 55.35 4.01 

Sweden SWE 0.36 0.29 11.46 2.93 14.88 6.08 -1.66 305.79 5.72 

 
 

Switzerland 

 
 

CHE 

 
 

0.25 

 
 

0.00 

 
 

6.25 

 
 

0.50 

 
 

9.50 

 
 

2.50 

 
 

-0.78 

6237.9 

4 

 
 

8.74 

Syria SYR 4.11 1.89 -1.83 -6.28 9.44 3.22 0.00 3.52 1.26 

Tajikistan TJK 0.59 0.37 -0.81 -1.85 2.81 1.00 9.12 17.52 2.86 

Tanzania, 

United Republic 

of 

 
 
 

TZA 

 
 
 

14.83 

 
 
 

4.09 

 
 
 

69.87 

 
 
 

5.56 

 
 
 

107.00 

 
 
 

16.60 

 
 
 

3.54 

 
 
 

32.55 

 
 
 

3.48 

Thailand THA 4.14 -1.20 14.74 0.90 24.76 1.58 1.87 134.37 4.90 

Togo TGO 24.60 8.00 26.00 1.00 62.60 13.40 -1.98 9.77 2.28 

Trinidad and 

Tobago 

 
 

TTO 

 
 

2.75 

 
 

0.75 

 
 

65.75 

 
 

7.25 

 
 

84.00 

 
 

14.25 

 
 

-2.54 

 
 

344.11 

 
 

5.84 

Tunisia TUN 6.90 4.45 -1.05 -5.35 12.75 5.80 2.46 59.82 4.09 

Turkey TUR 8.89 4.88 1.70 -0.26 12.25 5.88 3.71 21.14 3.05 

Turkmenistan TKM 0.71 0.47 -3.12 -9.17 9.64 2.29 0.00 0.51 -0.68 

Uganda UGA 36.05 8.43 35.86 2.00 84.10 13.81 2.37 101.12 4.62 

Ukraine UKR 15.11 10.18 4.51 0.80 20.96 12.11 5.16 60.32 4.10 

United Arab 

Emirates 

 
 

ARE 

 
 

0.00 

 
 

0.00 

 
 

-3.11 

 
 

-10.54 

 
 

9.04 

 
 

1.93 

 
 

-3.31 

 
 

0 

 
 

0 

United 

Kingdom 

 
 

GBR 

 
 

0.27 

 
 

0.31 

 
 

0.07 

 
 

-1.87 

 
 

3.07 

 
 

1.49 

 
 

-0.46 

2681.6 

0 

 
 

7.89 

United States USA -1.02 -2.60 12.85 1.68 16.52 1.96 3.87 789.72 6.67 

Uruguay URY 4.29 1.82 -6.82 -8.53 15.76 3.12 3.26 37.95 3.64 
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Uzbekistan UZB 1.80 1.25 -1.66 -5.20 7.23 2.36 6.58 1.27 0.24 

Vanuatu VUT 2.15 3.23 11.85 5.46 17.00 14.00 3.71 21.53 3.07 

Venezuela VEN 0.84 -0.08 69.85 3.38 96.80 10.78 0.28 26.65 3.28 

Vietnam VNM -0.75 -3.25 9.13 0.71 11.23 -1.58 2.44 78.72 4.37 

Western Samoa WSM 0.00 0.00 0.00 0.00 0.00 0.00 -4.11 120.07 4.79 

Yemen YEM 0.45 0.43 -1.61 -7.35 5.16 1.84 0.00 1.89 0.64 

Zambia ZMB 2.84 0.77 105.16 7.61 141.95 19.23 1.08 22.80 3.13 

Zimbabwe ZWE 11.00 3.22 29.66 -1.78 67.09 10.25 7.18 NA NA 
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Table SI IV-6: Species richness (SR loss) combined with z-scores of agricultural growth (World Bank Group, 
2013) and spending/km2 (Waldron et al., 2013) for each of the three pathways. *Countries are ranked by species 
loss in the Both (Intensification + expansion) pathway + agricultural growth (fifth column). 

 

Species loss + 
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Suriname SUR 1.06 5.93 5.66 -0.93 3.94 3.68  

Congo, Rep. COG 0.52 3.79 3.60 -1.62 1.65 1.45 18 

Guyana GUY -0.56 3.51 3.30 -1.63 2.44 2.23 5 

Paraguay PRY 1.38 3.27 3.21 -1.40 0.49 0.44 
 

Liberia LBR 0.62 3.06 2.98 -0.51 1.92 1.84 
 

 
-1.34 3.28 2.97 NA NA NA 

 

GUF        

 
-0.09 3.01 2.83 -1.37 1.73 1.55 

 

ZAR        

Mali MLI 3.04 2.71 2.77 -1.44 -1.77 -1.71 
 

Cameroon CMR 0.73 2.74 2.67 0.10 2.10 2.03 
 

Belize BLZ -0.23 2.51 2.38 -0.13 2.62 2.48 
 

Zimbabwe ZWE 2.53 1.89 2.38 NA NA NA 
 

Guinea GIN 1.24 2.27 2.35 0.06 1.09 1.16 
 

Malawi MWI 2.62 1.83 2.18 1.94 1.15 1.50 
 

Algeria DZA 2.42 2.24 2.14 -1.72 -1.90 -2.00 10 

Brazil BRA -0.47 2.22 2.13 -0.93 1.75 1.67 
 

Rwanda RWA 7.09 1.14 2.12 6.95 1.00 1.97 
 

Bolivia BOL 0.03 2.12 2.09 -0.52 1.58 1.55 
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Peru PER -0.10 2.26 2.05 -0.77 1.59 1.39  

Mozambique MOZ 0.64 1.99 2.05 -0.22 1.13 1.18 

Tanzania TZA 1.77 1.73 2.01 1.21 1.17 1.45 

Afghanistan AFG 2.48 1.95 1.95 -0.93 -1.46 -1.46 

Zambia ZMB -0.62 1.84 1.94 -0.48 1.98 2.08 

Sierra Leone SLE 2.90 1.55 1.88 1.63 0.28 0.61 

Colombia COL -0.57 1.75 1.72 -0.40 1.93 1.89 27 

Estonia EST 1.10 1.76 1.67 0.56 1.21 1.12 
 

Tajikistan TJK 1.85 1.73 1.62 -0.87 -1.00 -1.10 
 

Ecuador ECU 0.23 1.73 1.61 0.09 1.59 1.48 
 

Morocco MAR 2.50 1.50 1.61 -0.40 -1.41 -1.30 15 

Ethiopia ETH 2.00 1.35 1.58 -0.27 -0.92 -0.68 
 

Gabon GAB -1.23 1.77 1.54 -0.71 2.29 2.06 
 

Honduras HND 0.75 1.51 1.51 0.56 1.32 1.32 
 

Swaziland SWZ 0.69 1.22 1.47 0.80 1.33 1.58 
 

Iraq IRQ 1.73 1.21 1.29 -5.03 -5.56 -5.47 1 

Guatemala GTM 1.32 1.17 1.24 1.60 1.45 1.53 
 

Ghana GHA 1.52 1.00 1.20 0.86 0.35 0.55 
 

Cambodia KHM 1.65 1.02 1.20 0.97 0.34 0.52 
 

Nigeria NGA 3.19 0.82 1.19 2.01 -0.36 0.00 
 

Burundi BDI 5.76 0.28 1.12 5.55 0.07 0.91 
 

Dominican 

Republic 

 
 

DOM 

1.87 1.09 1.11 1.30 0.52 0.54 
 

Uganda UGA 4.11 0.40 1.10 4.41 0.70 1.40 
 

Equatorial 

Guinea 

 
 

GNQ 

-0.91 1.21 1.04 -1.21 0.92 0.74 
 

Guinea- 

Bissau 

 
 

GNB 

0.96 0.78 0.92 1.08 0.90 1.04 
 

Cote d'Ivoire CIV 1.61 0.56 0.89 1.67 0.62 0.95 
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Kenya KEN 1.28 0.30 0.87 0.95 -0.03 0.54  

Benin BEN 1.91 0.49 0.85 1.90 0.48 0.84 
 

Uzbekistan UZB 1.13 0.83 0.85 -1.78 -2.08 -2.06 14 

Nicaragua NIC 1.57 0.52 0.82 1.88 0.83 1.13 
 

Moldova MDA 2.71 0.64 0.82 1.03 -1.05 -0.86 30 

Brunei 

Darussalam 

 
 
BRN 

-0.69 1.00 0.78 0.63 2.32 2.10 
 

Costa Rica CRI -0.90 0.89 0.72 0.30 2.09 1.91 
 

Sri Lanka LKA 0.16 0.87 0.70 -0.05 0.66 0.49 37 

Ukraine UKR 2.37 0.51 0.66 1.50 -0.36 -0.20 
 

Venezuela, 

RB 

 
 
VEN 

-1.16 0.61 0.66 -0.67 1.09 1.15 28 

Jamaica JAM 0.42 0.81 0.62 0.10 0.49 0.29 
 

Angola AGO -1.15 0.50 0.53 -3.11 -1.46 -1.42 3 

Poland POL 1.45 0.45 0.49 1.14 0.13 0.17 
 

Indonesia IDN -0.15 0.70 0.48 -1.13 -0.28 -0.49 31 

Romania ROM 1.35 0.41 0.43 -0.14 -1.08 -1.05 
 

Mongolia MNG 0.53 0.43 0.38 -1.71 -1.80 -1.85 25 

Latvia LVA 0.56 0.40 0.38 0.31 0.15 0.13 
 

Lebanon LBN 0.34 0.57 0.36 -0.84 -0.61 -0.82 
 

Slovak 

Republic 

 
 
SVK 

0.85 0.35 0.29 0.72 0.22 0.16 
 

Senegal SEN 0.54 0.04 0.26 0.26 -0.25 -0.03 11 

Australia AUS 0.10 0.28 0.21 -0.42 -0.24 -0.31 38 

Iran, Islamic 

Rep. 

 
 
IRN 

0.63 0.13 0.20 -0.83 -1.33 -1.26 
 

Armenia ARM 1.38 0.04 0.20 0.95 -0.39 -0.23 29 

Kyrgyz 

Republic 

 
 
KGZ 

0.49 0.21 0.20 -1.69 -1.96 -1.98 
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Cuba CUB 1.10 0.10 0.19 0.87 -0.12 -0.03  

Bangladesh BGD 0.12 0.30 0.17 -0.31 -0.14 -0.26 
 

Belarus BLR 0.49 0.13 0.17 -0.74 -1.11 -1.07 
 

Kazakhstan KAZ 0.27 0.09 0.14 -1.82 -2.00 -1.94 
 

United States USA -0.16 0.29 0.12 0.45 0.90 0.73 
 

Lao PDR LAO -0.12 0.23 0.12 -0.83 -0.47 -0.58 
 

Azerbaijan AZE 0.95 -0.01 0.11 -0.05 -1.01 -0.89 33 

Vanuatu VUT 0.19 0.21 0.08 -0.59 -0.57 -0.70 13 

Albania ALB 1.01 0.06 0.07 0.89 -0.06 -0.05 
 

Malaysia MYS -0.94 0.31 0.04 -1.17 0.07 -0.20 7 

India IND 1.26 -0.09 0.01 0.84 -0.51 -0.41 
 

Finland FIN -0.11 0.16 -0.01 -0.20 0.07 -0.11 17 

Turkey TUR 1.07 -0.06 -0.03 0.27 -0.86 -0.82 
 

China CHN 0.00 0.07 -0.10 -1.07 -0.99 -1.16 39 

Nepal NPL 1.76 -0.29 -0.10 1.76 -0.28 -0.09 
 

Uruguay URY 0.32 -0.45 -0.10 -0.09 -0.85 -0.50 
 

Sudan SDN -0.10 -0.28 -0.11 -1.67 -1.85 -1.68 34 

Grenada GRD 0.68 -0.11 -0.15 2.02 1.22 1.19 
 

Niger NER 0.19 -0.20 -0.18 -1.06 -1.45 -1.43 
 

Lithuania LTU 0.75 -0.28 -0.21 0.98 -0.05 0.02 
 

Burkina Faso BFA 0.72 -0.74 -0.21 0.51 -0.95 -0.42 
 

Qatar QAT -0.09 -0.16 -0.22 -0.71 -0.78 -0.84 
 

Chad TCD -0.07 -0.31 -0.23 -1.43 -1.66 -1.58 
 

Panama PAN -1.51 -0.23 -0.24 0.85 2.14 2.13 
 

Canada CAN -0.38 -0.19 -0.37 -0.24 -0.05 -0.23 
 

Thailand THA -0.18 -0.34 -0.38 0.40 0.24 0.20 
 

Lesotho LSO 0.23 -0.51 -0.42 0.21 -0.52 -0.43 
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Antigua   and 

Barbuda 
 
ATG 

-0.08 -0.35 -0.43 1.86 1.60 1.51  

Tunisia TUN 0.38 -0.57 -0.45 0.43 -0.51 -0.39 
 

Egypt, Arab 

Rep. 

 
 
EGY 

-0.33 -0.36 -0.46 -1.23 -1.27 -1.36 
 

New Zealand NZL -0.48 -0.35 -0.48 0.51 0.64 0.51 
 

Vietnam VNM -0.62 -0.30 -0.49 -0.44 -0.13 -0.31 
 

Papua New 

Guinea 

 
 
PNG 

-1.31 -0.30 -0.49 -0.97 0.04 -0.16 
 

Greece GRC -0.43 -0.33 -0.53 -0.98 -0.88 -1.08 
 

Bhutan BTN 0.00 -0.44 -0.53 0.38 -0.06 -0.14 23 

Philippines PHL 0.31 -0.57 -0.53 0.91 0.02 0.06 
 

Montenegro MNE 0.01 -0.45 -0.54 -2.36 -2.82 -2.91 
 

Dominica DMA -0.33 -0.40 -0.56 1.27 1.20 1.04 
 

Norway NOR -0.35 -0.39 -0.56 0.26 0.22 0.05 
 

Trinidad and 

Tobago 

 
 
TTO 

-1.88 -0.47 -0.59 0.60 2.00 1.89 12 

Pakistan PAK 0.04 -0.58 -0.61 -0.76 -1.38 -1.41 
 

Fiji FJI -0.71 -0.41 -0.61 0.33 0.62 0.42 
 

Kuwait KWT -0.64 -0.76 -0.62 -2.10 -2.22 -2.08 
 

Namibia NAM -0.47 -0.61 -0.62 -0.56 -0.70 -0.71 
 

Jordan JOR -0.63 -0.73 -0.64 -0.74 -0.84 -0.74 32 

Haiti HTI 1.04 -0.80 -0.65 1.15 -0.70 -0.54 
 

Argentina ARG -0.86 -0.56 -0.65 -1.11 -0.81 -0.90 
 

Mexico MEX -0.57 -0.73 -0.66 -0.05 -0.21 -0.15 
 

Mauritius MUS -0.49 -0.51 -0.70 1.05 1.03 0.84 
 

El Salvador SLV 1.88 -1.08 -0.70 3.42 0.46 0.84 
 

Russian 

Federation 

 
 
RUS 

-0.61 -0.63 -0.76 -1.26 -1.28 -1.41 
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Central 

African 

Republic 

 -3.09 -0.65 -0.76 -0.93 1.51 1.40  

 
CAF 

       

Mauritania MRT -0.60 -0.67 -0.76 -1.93 -2.00 -2.09 22 

 
-0.83 -0.59 -0.78 0.06 0.30 0.12 

 

CZE        

Denmark DNK -0.68 -0.63 -0.80 0.00 0.05 -0.12 
 

Madagascar MDG -0.89 -0.91 -0.85 -0.17 -0.19 -0.13 
 

Togo TGO 1.14 -1.36 -0.87 1.99 -0.51 -0.01 
 

Georgia GEO -0.34 -0.87 -0.88 0.28 -0.24 -0.25 
 

Comoros COM -0.20 -0.79 -0.88 -0.17 -0.77 -0.86 20 

Myanmar MMR -0.94 -0.80 -0.89 -1.62 -1.48 -1.57 
 

Botswana BWA -0.97 -0.99 -0.89 -0.72 -0.74 -0.63 35 

Spain ESP -0.97 -0.76 -0.96 -1.18 -0.97 -1.17 
 

Cyprus CYP -0.86 -0.79 -0.97 0.10 0.17 -0.01 
 

Oman OMN -0.86 -0.93 -0.99 -2.82 -2.89 -2.95 
 

Eritrea ERI -0.84 -1.26 -1.05 -1.61 -2.03 -1.82 8 

South Africa ZAF -0.84 -1.09 -1.07 0.15 -0.10 -0.09 
 

 
-0.83 -0.99 -1.09 1.07 0.91 0.81 

 

KNA        

Saudi Arabia SAU -0.99 -1.06 -1.09 -0.81 -0.89 -0.92 
 

Iceland ISL -0.93 -0.95 -1.14 0.15 0.12 -0.06 26 

 
-0.45 -1.10 -1.15 0.64 0.00 -0.06 

 

 
VCT 

       

Chile CHL -0.99 -1.01 -1.16 -0.77 -0.79 -0.95 9 

 
-1.34 -0.99 -1.18 -1.73 -1.38 -1.57 6 

SLB        

Puerto Rico PRI -1.10 -1.03 -1.18 NA NA NA 
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Bosnia and 

Herzegovina 

 -0.31 -1.26 -1.23 0.46 -0.50 -0.46  

BIH        

Malta MLT -0.93 -1.09 -1.25 1.23 1.07 0.91 
 

Djibouti DJI -1.36 -1.50 -1.29 -3.05 -3.20 -2.99 2 

Portugal PRT -0.89 -1.25 -1.32 1.02 0.66 0.59 
 

Ireland IRL -1.17 -1.31 -1.35 -0.91 -1.05 -1.09 
 

Netherlands NLD -1.16 -1.25 -1.35 2.06 1.97 1.87 
 

Barbados BRB -0.33 -1.36 -1.35 1.42 0.38 0.39 
 

Turkmenistan TKM -1.27 -1.47 -1.36 -2.28 -2.48 -2.37 
 

 
-0.83 -1.44 -1.36 -1.06 -1.67 -1.60 

 

SYR        

Yemen, Rep. YEM -1.30 -1.43 -1.46 -1.79 -1.92 -1.94 
 

Somalia SOM -1.21 -1.39 -1.46 -1.96 -2.13 -2.21 
 

Israel ISR -1.23 -1.42 -1.47 0.74 0.55 0.51 
 

Korea, Rep. KOR -1.35 -1.30 -1.47 0.67 0.72 0.55 
 

Libya LBY -1.31 -1.41 -1.51 -3.70 -3.80 -3.89 
 

Greenland GRL -1.36 -1.39 -1.57 NA NA NA 
 

Italy ITA -1.50 -1.40 -1.59 -1.04 -0.94 -1.13 
 

Switzerland CHE -1.60 -1.48 -1.63 1.44 1.55 1.41 
 

France FRA -1.59 -1.48 -1.65 0.64 0.75 0.58 36 

 
-1.48 -1.54 -1.66 1.10 1.05 0.93 

 

GBR        

Japan JPN -1.75 -1.58 -1.76 -2.09 -1.93 -2.11 
 

 
-2.70 -1.59 -1.77 -0.23 0.88 0.70 

 

BHS        

Sweden SWE -1.88 -1.64 -1.81 0.24 0.48 0.31 
 

Austria AUT -1.84 -1.72 -1.88 0.79 0.91 0.75 40 

Slovenia SVN -2.22 -1.79 -1.92 0.00 0.42 0.29 16 

Belgium BEL -2.23 -1.97 -2.13 1.29 1.55 1.39 
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Macedonia, 

FYR 
 
MKD 

-1.54 -2.37 -2.34 0.38 -0.44 -0.41 

United Arab 

Emirates 

 
 
ARE 

-2.50 -2.61 -2.51 -2.10 -2.21 -2.11 

Bulgaria BGR -1.30 -2.72 -2.64 0.95 -0.47 -0.39 

Hungary HUN -2.97 -2.74 -2.90 0.38 0.62 0.46 

Samoa WSM -2.77 -2.80 -2.98 -0.18 -0.20 -0.39 

Croatia HRV -2.84 -3.01 -3.04 0.64 0.47 0.43 

St. Lucia LCA -2.44 -3.13 -3.18 1.93 1.24 1.19 

Germany DEU -3.24 -3.10 -3.27 0.20 0.34 0.17 
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1       Summary and main conclusions 
 

The overarching goal of this thesis was to advance scientific understanding of the 

relationship between agricultural land use and biodiversity. This thesis employed a variety 

of approaches to address this goal. First, by providing improved knowledge about the spatial 

concordance of the many facets of land-use intensity and biodiversity and thus highlighting 

the multidimensionality of land-use intensity along with regions that could pose a threat to 

biodiversity. Second, this work sheds new light on novel aspects of species-area relationships 

at a global scale, showing that land-use intensity indicators rival biomes in predicting broad 

scale patterns of species richness. Finally, important advances were made in assessing the 

biodiversity impact of alternative future agricultural developmental pathways. The insights 

gained from this research answer the three core research questions of this thesis. 

 Research Question I: How do patterns of land-use intensity relate to patterns of biodiversity? 
 

Chapter II provided answers to this question by introducing a global view of the geographic 

patterns of land-use intensity. Many regions were highlighted where highly intensive 

agriculture and unique biodiversity coincide. Areas where high land-use intensity may pose 

a threat to biodiversity were found predominantly in Sub-Saharan Africa, the tropical Andes, 

and South-East Asia. Results suggest that individual land-use intensity metrics highlight 

different high-pressure regions, suggesting that the choice of intensity metric is important 

when considering conservation threat. This chapter shows that conservation research should 

include multiple intensity metrics when considering biodiversity threat. By not doing so, the 

full spectrum of land-use intensity’s threat to biodiversity may be underestimated. 

 Research Question II: To what extent does the inclusion of land cover and land-use intensity 

improve global SAR models? 

Chapter III systematically compared SARs by accounting for geographic variation in 

biomes, land cover and a range of land-use intensity indicators. Land-use intensity was found 

to perform as well as biomes in predicting species richness, but only in terms of percentage 

HANPP - a system level metric. Other land-use intensity metrics, for instance, fertiliser, 

cereal yields, or irrigation did not perform as well. This shows for the first time that broad 

agricultural factors can rival environmental factors in predicting global species richness. This 

chapter suggests that the inclusion of land-use intensity in SAR models allow for better 

predictions and thus a deeper understanding of global biodiversity patterns. 
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 Research Question III: How may future pathways of agricultural expansion and 

intensification threaten biodiversity? 

Chapter IV highlighted particularly high-risk areas in terms of biodiversity loss due to 

agricultural expansion and intensification. Expansion risk areas were found across the 

Amazon and Sub-Saharan Africa. Whereas intensification risk-areas were mainly in India, 

Eastern Europe, and the Afromontane, and African Great lakes region. The single most at 

risk area in terms of species loss was found in the Peruvian Amazon and is currently only 

partially within the borders of IUCN category protected areas. On a national-level, Sub- 

Saharan African and Latin American countries dominated the top ten ranks, particularly 

Suriname, French Guiana, and Guyana, in terms of species loss, and the DRC and Rep. of 

Congo, in terms of losses of abundance. Highlighting potential future areas where 

biodiversity is most at risk is a great challenge for science today, and this chapter is among 

the first to directly address the spatial composition of future land-use pathways on 

biodiversity. The results from this work provide novel insights into this globally pressing 

issue and thus help identify areas, most notably in Sub-Saharan Africa and the Amazon, most 

at risk in terms of potentially conflicting agricultural development and biodiversity 

conservation goals. 

 
 

2        Cross-cutting insights 
 

The results from each core research chapter provide responses to the three research questions 

of this thesis. Based on these results, three crosscutting insights emerged that address the 

overarching goal of this thesis: gaining a deeper understanding of the relationship between 

agricultural land use and biodiversity. 

First, the importance of land-use intensity in the nexus of land use and biodiversity research 

was emphasised. The many dimensions of land-use intensity concordant with biodiversity 

were presented in Chapter II, the importance of land-use intensity in predicting species 

richness was illustrated in Chapter III, and finally the spatially explicit impact of potential 

pathways of intensification was highlighted in Chapter IV. This thesis showed that land-use 

intensity should not be treated as synonymous to yields, or indeed any one single metric. 

This was found to be the case both in terms of patterns, where different intensity metrics can 

result in a spatially explicit multitude of threats to biodiversity (Chapter II) and predictive 

ability, where a large difference was shown in the ability of various intensity metrics to 

predict global patterns of species richness (Chapter III). Moreover, all 
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three core research chapters exemplified the many ways in which land-use intensity is a 

crucial part of conservation research, in its multidimensionality, its predictive ability, and its 

potential risk to biodiversity. In general, the land use and conservation communities have 

not fully embraced either the complexity nor the importance of land-use intensity. This thesis 

made progress in shedding light on this issue and bridging this gap. 

Second, the approach taken in Chapter II and IV, where biodiverse areas at risk of agricultural 

land use were highlighted, allows for a different perspective on the nexus of agriculture and 

conservation. Such issues have generally been framed as a choice between land-sparing and 

land-sharing. Importantly, this thesis shows that there are other worthwhile ways to approach 

this complex topic. By instead illustrating the spatial patterns of land-use intensity 

concordant with biodiversity (Chapter II), and then highlighting the areas potentially most 

at risk to either expansion or intensification (Chapter II & IV), this thesis moves outside the 

land-sparing/land-sharing framework and presents an alternative context by which to 

prioritise actions. Therefore, instead of asking what hypothetical approach might be least 

harmful to biodiversity, this thesis instead highlights where and how biodiversity may be 

under threat, both now and in the future. This approach acknowledges the fact that while 

agriculture should not be seen as the antithesis of the natural world (Perfecto & Vandermeer, 

2010), current widespread industrial techniques are harmful to biodiversity (Newbold et al., 

2015) and therefore the threats they pose must be identified. Considering that these threats 

are expected to escalate in the future (Lambin & Meyfroidt, 2011), the approach adopted in 

Chapter II and IV allows for a straightforward way in which to plan for the future by 

identifying regions potentially at risk. While Chapter II achieved this through mapping 

current levels of intensity and thus the potential for intensification, Chapter IV took a step 

further by creating pathways of agricultural development. Both approaches are useful, the 

strength in Chapter II lies in a particularly nuanced view of the many facets of threat due to 

intensification, whereas, Chapter IV quantifies the potential future impact of agriculture on 

biodiversity. Timing in conservation is crucial, where well-planned proactive action, rather 

than reactive schemes, can improve the chances of success, take less time to implement, and 

make the most out of limited funds (Cook et al., 2014; Oliver & Roy, 2015). Such forward 

looking approaches provide particularly useful spatial information in designing conservation 

prioritization schemes that aim to better account for future agricultural threat. All in all, 

highlighting at risk areas is a crucial first step in effectively pin- pointing regions most in need 

of conservation attention, both now and in the future. 
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Third and finally, this thesis made important steps in bringing the relationship between 

agricultural land use and biodiversity to the global scale. The issue of scale in place-based 

research can never be fully resolved. At each level of scale from local to regional to global, 

there are obvious trade-offs to what can and cannot be known. Most research that deals with 

human impact on natural systems focuses on local to regional scales (see Newbold et al., 

2015 for review). On the other hand, broader macroecological studies, that generally focus 

on biophysical factors, span over larger regions and often work at global scales (Hawkins et 

al., 2003b; Hawkins et al., 2003a; Field et al., 2009; Hortal et al., 2012). This thesis helps to 

bridge this gap by adding to the relatively small body of literature that has assessed the 

relationship between agricultural land use and biodiversity at the global scale. 

A common characteristic across all three core research chapters is that they take recently 

available global scale datasets and combine them in novel ways in order to highlight where 

and how agricultural activity relates to biodiversity. This was particularly noteworthy in the 

case of Chapter III, where human factors have never before been shown to predict species 

richness on a par with natural biophysical characteristics on a global level. This is valuable 

information given that land use is the most important driver of local biodiversity patterns, 

yet now, land-use intensity factors can allow for better predictions and a deeper 

understanding of global biodiversity patterns. The global scale is valuable in a different way 

with regard to Chapter II and IV, where global scale research can highlight the areas most at 

risk in terms of biodiversity loss - regardless of political boundaries. This is useful since 

most prioritization schemes are national to regional scale. Such schemes are therefore not 

optimized for globally relevant biodiversity conservation and may lead to sub-par solutions 

(Zimmerer et al., 2004). International conservation planning can lead to better returns on 

investment and outcomes for biodiversity than those carried out within the strict borders of 

nations (Dobrovolski et al., 2014). Thus, in order to best develop effective conservation 

plans, the global perspective has a unique advantage where benefits to conservation can be 

weighed up and the potential for the most effective cross-boundary solutions may be found. 

Moreover, national to regional level planning has the potential to outsource conservation 

conflict to developing nations – whereby strict environmental protection at home leads to 

increased imports from biodiverse rich but governance-poor regions (Lambin & Meyfroidt, 

2011). While potential leakage effects are outside the scope of Chapter II and IV, the results 

found here are not geographically constrained and therefore provide an ideal starting point 

in emphasising current and potential future agricultural landscapes most in need of 

conservation planning. 
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3 Implications for policy 

 

In light of the pressing need to best figure out how to produce more food with as little harm 

to the natural world as possible, this thesis can contribute by providing policy makers with 

fine-scale information on where biodiversity is at risk due to agricultural land use: both today 

in the case of land-use intensity, and in the future, in the case of potential for both expansion 

and intensification. The results of this thesis may be particularly useful in guiding global- 

scale conservation organisations that aim to prioritise regions most at risk under current or 

future land use regimes. This approach allows decision makers to target regions and develop 

context-specific conservation plans, either in terms of finding sustainable ways to increase 

production on already farmed land, or, where appropriate, protecting intact natural areas at 

risk of expansion. 

Some results from this thesis have already been included in such global scale initiatives. For 

example, two programs in particular in the UNEP-WCMC have taken interest in this work. 

The “Commodities and biodiversity” program aims to provide decision makers with the 

information and tools needed to balance future demands for land along with finding ways to 

ease pressure on ecosystems at risk, whilst the “Supporting national biodiversity planning” 

program support countries in developing comprehensive National Biodiversity Strategies 

and Action Plans. The results from Chapter II were taken into account in terms of rethinking 

how to conceptualise biodiversity risk due to intensification – a broader view is now taken 

that includes the many facets of land-use intensity. Chapter IV can provide useful 

information with regard to future threats and national level planning. Results should be taken 

only as one piece of the puzzle, not as a framework to be directly applied. Information on 

transdisciplinary socio-economic dimensions at multiple scales are also necessary in 

combination with the results from this thesis. 

 
 
4 Outlook 

 

This century will bring unprecedented environmental and societal challenges on a scale 

never before seen. This thesis brought an improved understanding of the complex 

relationship between agricultural land use and biodiversity by mapping current and future at 

risk areas, and showing that land-use indicators can predict broad-scale patterns of 

biodiversity on a par with natural biophysical factors. However, a number of interesting 

topics beyond the scope of this dissertation emerged during the course of this work. 
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Prevailing research within the nexus of food and fauna has overwhelmingly focused on 

agricultural production (Green et al., 2005). This makes some sense when viewed from a 

conservationist’s perspective where the direct effects of agricultural land use on biodiversity 

are of upmost concern. However, this viewpoint is overly narrow when packaged as an 

integral part of solving the broader issue of ‘feeding the world’. Increased production is by 

no means synonymous with food security (Barrett, 2010; Tscharntke et al., 2012). When 

thinking in terms of reducing hunger, it is small-scale farms, not large-scale industrially 

intensified farms, that are the backbone of food-security (Tscharntke et al., 2012). Thus, 

caution must be taken regarding whether the increasingly popular ‘feed the world’ paradigm 

includes feeding those that demand luxury items and highly inefficient meat and dairy – 

often at the expense of those living in hunger (Tscharntke et al., 2012; Rulli et al., 2013). So 

far, research in this area has sent mixed messages, both in terms of what food security means 

and how to resolve it (Barrett, 2010; Tscharntke et al., 2012). The agro-ecological approach 

may hold great promise in resolving this complex issue. While much of this thesis has 

focused on negative effects of industrial agriculture, a relatively small body of research is 

beginning to show that some agroecological practises can benefit biodiversity and provide 

competitive yields (Foley et al., 2005; Tscharntke et al., 2005). Encouragingly, this approach 

also been shown to be highly beneficial for long-term sustainability and food security, as the 

food produced is for direct local consumption (De Schutter, 2011). Thus, in order to better 

distinguish between food production and food security, a clearer differentiation between 

crops for direct consumption versus feed and fuel crops is needed. Better integration of 

spatially explicit ground based data with satellite imagery could fill this gap by verifying 

whether crops are destined for direct consumption or are part of a chain of livestock or 

biofuel production. Following this, investigating the biodiversity impacts of such food 

systems could hold interesting results, where synergies between landscapes that produce 

food for direct consumption and simultaneously support biodiversity may be found. 

While this thesis took a global view, the impact of globalisation on land-use transitions and 

associated biodiversity change was beyond the scope of current work. How and where 

consumption patterns affect agricultural land use and biodiversity is a field ripe with 

fascinating research avenues. For example, China announced new dietary guidelines this 

year recommending a 50% reduction in meat consumption (Chinese Dietary Guidelines, 

2016), if such a transition were to occur, what could this mean for soy feed expansion and 

intensification in Latin America? Or, considering Norway’s recent ‘ban’ on all products 

linked to deforestation (Norwegian Rainforest Foundation, 2016), if this policy was adopted 
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across the EU, how could this transform tropical deforestation frontiers and associated 

threats to biodiversity? While recent research has shown the overall amount of land that 

would be saved under various global changes in diet and land use (Erb et al., 2016a), spatially 

explicit results were not possible due to data gaps in spatial information on trade flows. 

Bridging such gaps would allow for the investigation of levers of change from the 

fundamental level of root drivers. 

Improvements in both land use and biodiversity datasets are needed in order to achieve many 

of the above mentioned goals. First, of the available land use datasets, livestock data remains 

most neglected (Erb et al., 2016b). No global datasets are currently available indicating areas 

suitable for livestock, with large data gaps remaining in assessing the extent and intensity of 

grazing activities (Erb et al., 2016b). More worrying still, due to strict data protection, 

mapping current industrialised livestock units is problematic (Wint & Robinson, 2007), let 

alone assessing the impact of such operations on biodiversity. 

Second, Chapter II and III of this thesis could not provide a causal analysis between global 

land use and biodiversity. This was primarily due to a lack of global time series datasets for 

both biodiversity and land use (particularly intensity) indicators. Developing such indicators 

might be possible on the biodiversity side by mining natural history museums records and 

databases of historical species occurrences. On the land use side, this may be possible by 

better integrating historical satellite- and ground-based data, along with more comprehensive 

incorporation of land management in Earth system models (Erb et al., 2016c). 

Third, the PREDICTs database gives unprecedented information on the effect of land use on 

biodiversity by using a space-for-time approach (Newbold et al., 2015). Still, there is more 

contained in this data than is currently openly available. Assessing the effect of land use on 

biodiversity split by taxa, species traits, and threatened vs non-threatened species could hold 

a treasure-trove of valuable information. 

Fourth and finally, much of this thesis focused on species richness. However, this metric is 

far from ideal: it can be over-representative of common, widespread species and can 

overshadow rare or small-ranged species, often most in need of conservation (Grenyer et al., 

2006). On top of this, species richness alone gives no indication of endemism, rarity, species 

turnover, phylogenetic diversity, genetic diversity, functional diversity, ecological resilience 

or trophic interaction. For this reason, endemism richness was used in Chapter II, thus giving 

a more holistic view of the importance of a grid cell for conservation. Unfortunately, using 

alternative metrics such as this can become difficult when later comparing to other research, 
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and in being able to utilise larger databases that are often based on commonly used indicators 

such as species richness (e.g. the PREDICTs database; Hudson et al., 2014). If data collection 

in the field and collation in the lab included a richer set of biodiversity indicators, then our 

understanding of ecological effects would not be so constricted. 

The way in which we conceptualise problems shapes how we come to design and implement 

solutions. Agriculture currently impacts the majority of the world’s ecosystems (Ellis & 

Ramankutty, 2008) and threatened species (Maxwell et al., 2016), and this impact is set to 

rise in the future (Sala et al., 2000). Policy makers and research efforts should better reflect 

the importance of agriculture in conservation research and action. Within this, more careful 

attention should be given to the multifaceted nature of farming, specifically: a better 

inclusion of the many ways in which we produce crops, a more holistic view of the 

destination of produce in terms of food versus feed versus fuel, and a deeper understanding 

of the underlying levers worth pulling in order to truly reconcile food and fauna. 
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