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Abstract Ecosystems are faced with high rates of

species loss which has consequences for their func-

tions and services. To assess the effects of plant

species diversity on the nitrogen (N) cycle, we

developed a model for monthly mean nitrate (NO3-

N) concentrations in soil solution in 0–30 cm mineral

soil depth using plant species and functional group

richness and functional composition as drivers and

assessing the effects of conversion of arable land to

grassland, spatially heterogeneous soil properties, and

climate. We used monthly mean NO3-N concentra-

tions from 62 plots of a grassland plant diversity

experiment from 2003 to 2006. Plant species richness

(1–60) and functional group composition (1–4 func-

tional groups: legumes, grasses, non-leguminous tall

herbs, non-leguminous small herbs) were manipulated

in a factorial design. Plant community composition,

time since conversion from arable land to grassland,

soil texture, and climate data (precipitation, soil

moisture, air and soil temperature) were used to

develop one general Bayesian multiple regression

model for the 62 plots to allow an in-depth evaluation

using the experimental design. The model simulated

NO3-N concentrations with an overall Bayesian

coefficient of determination of 0.48. The temporal

course of NO3-N concentrations was simulated dif-

ferently well for the individual plots with a maximum

plot-specific Nash–Sutcliffe Efficiency of 0.57. The

model shows that NO3-N concentrations decrease with

species richness, but this relation reverses if more than

approx. 25 % of legume species are included in the

mixture. Presence of legumes increases and presence

of grasses decreases NO3-N concentrations compared

to mixtures containing only small and tall herbs.

Altogether, our model shows that there is a strong

influence of plant community composition on NO3-N

concentrations.
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Introduction

Evidence accumulates that biodiversity is essential in

maintaining the functioning and stability of ecosys-

tems and biogeochemical cycles, but global change
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and human intervention in ecosystems lead to an

alarming loss of biodiversity (Hooper et al. 2005;

Loreau et al. 2001; Tilman et al. 1997). Disentangling

the specific role of plant biodiversity on the N-cycle

requires a modeling approach that reflects the com-

plexity of the N-cycle with its multitude of driving

factors and players. Process models have been used to

derive hypotheses about biodiversity-ecosystem func-

tioning relationships (Loreau 1998). There are several

approaches for modeling NO3-N concentrations in soil

solution, the closest approximation of N availability

for plants, but they don’t consider plant diversity,

especially not in grasslands. For example, Jonard et al.

(2012) used a process-oriented model for nutrient

cycling in forests to investigate temporal trends in

NO3
- and other nutrient concentrations in soil solu-

tion. Li et al. (2007) presented a spatially referenced

biophysical model for soil water dynamics and C and

N cycling, which allows the simulation of NO3-N

concentrations in soil solution on agricultural sites.

Other deterministic approaches used for simulating

NO3-N concentrations in soil solution, mainly aiming

at NO3-N leaching from cropland, include a process-

oriented biogeochemical model (Li et al. 2006), a

semi-mechanistic agro-ecosystem model (Pedersen

et al. 2007), and several other mechanistic models

(e.g., Gu and Riley 2010; Riley and Matson 2000; and

van der Laan et al. 2010). These models usually

require time series of many variables with high

temporal resolution and without missing values. Most

of the existing deterministic models try to account for

the whole N-cycle or even several nutrients. Conse-

quently, these models are extensive, if only NO3-N

concentrations in soil solution are to be modeled.

Statistical models, in contrast, require less parameter-

ization effort and can extract novel information

directly from the data and thus provide new insight

into ecosystem-processes by giving the opportunity to

disentangle processes in the environment that cannot

be controlled for in field and laboratory experiments.

An important precondition is that statistical models

adequately reflect the spatiotemporal heterogeneity of

interacting processes.

Unlike classical regression-type models, novel

hierarchical Bayesian approaches provide the required

level of complexity. Majumdar et al. (2008) and

Oleson et al. (2006) successfully developed hierar-

chical Bayesian models to analyze and predict soil

nutrient concentrations as well as Cable et al. (2011)

for soil respiration. Bayesian statistical modeling is an

emerging method in ecological sciences for quantify-

ing patterns and processes in nature (Clark 2005;

Majumdar et al. 2008). In a Bayesian framework,

model parameters are considered as random variables

and described by a prior distribution from which, in

combination with the traditional likelihood, the pos-

terior distribution of the parameter of interest can be

obtained (Ntzoufras 2009). For the analysis of a

complex Bayesian model, Markov chain Monte Carlo

methods (MCMC) are used, which allow simultaneous

estimation of large numbers of parameters (Gelman

et al. 2003; Ntzoufras 2009), i.e. multiple effects can

be modeled simultaneously (Majumdar et al. 2008).

The software OpenBUGS (Lunn et al. 2009) allows

the development and analysis of complex Bayesian

models using MCMC methods. To our knowledge,

there is no study that has developed a Bayesian model

for NO3-N concentrations in soil solution and also no

model that is able to simulate the influence of plant

diversity on NO3-N concentrations in soil solution.

The macronutrient N is one of the key resources in

natural ecosystems (Stevenson and Cole 1999). The

processes of the N-cycle are governed by land

management (land-use type, fertilizer regime), soil

properties (such as pH, soil organic matter concentra-

tions or texture), climatic conditions (air and soil

temperature, precipitation, and soil moisture), and

deposition from the atmosphere. Plant-available NO3-

N concentrations in soil depend on the relation

between uptake by plants and soil organisms, N2

fixation, N mineralization (i.e. ammonification and

nitrification), N deposition from the atmosphere,

denitrification, volatilization and leaching (Corre

et al. 2002; Schimel and Bennett 2004). Fertilization

of arable land means a nutrient input in the system and

often causes increased nitrate leaching, whereas

mowing and subsequent removal of the biomass

represents a removal of nutrients from the ecosystem.

The transition phase after land-use change may take

many years, e.g. when fertilized arable land is

converted to unfertilized grassland, and the former

land-use can still affect ecosystem variables from the

new system after several years (Christian and Riche

1998; Oelmann et al. 2007a; Schilling and Spooner

2006). Spatial variations in NO3-N concentrations can

be caused by differences in soil properties like pH, soil

organic matter concentrations, and soil texture con-

trolling soil water content (Corre et al. 2002; Gu and
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Riley 2010). Climatic conditions indirectly drive NO3-

N concentrations in soil because temperature and

water availability control plant growth and therefore N

uptake as well as microbial activity (Christian and

Riche 1998; Corre et al. 2002). Rosenkranz et al.

(2012) found soil water content to be an important

driver of net ammonification, which directly influ-

ences NO3-N concentrations in soil solution. While N

availability is a known driver of species richness (Sala

et al. 2000), species richness can in turn also be a

driver of NO3-N concentrations in soil (Hooper and

Vitousek 1998; Niklaus et al. 2001; Oelmann et al.

2007b; Scherer-Lorenzen et al. 2003). Several studies

have explored the effects of biodiversity on ecosystem

functioning (Hooper and Vitousek 1998; Marquard

et al. 2009; Scherer-Lorenzen et al. 2003; Tilman

et al. 1996; Tilman et al. 1997). Plant diversity

appears to enhance plant productivity and resource

use (Hooper et al. 2005; Marquard et al. 2009;

Oelmann et al. 2007c; Tilman et al. 1997). In grass-

land plant diversity experiments, it was found that

plant species richness and functional group identity

influence NO3-N concentrations in soil solution

(Hooper and Vitousek 1998; Niklaus et al. 2001;

Oelmann et al. 2007a; Scherer-Lorenzen et al. 2003).

Complementary and thus more exhaustive resource

use of different plant species (Hooper et al. 2005;

Hooper and Vitousek 1998; Tilman et al. 1996) was

assumed to explain decreasing NO3-N concentrations

with increasing plant species richness. In addition,

plant functional group identity (and partially also

functional group richness) influences NO3-N concen-

trations since legumes are known to increase NO3-N

concentrations because of their symbiotic N2 fixation

ability and grasses decrease NO3-N concentrations

because of their dense and extensive rooting system

and a more efficient exploitation of N resources

(Hooper and Vitousek 1998; Oelmann et al. 2007b;

Scherer-Lorenzen et al. 2003).

The objectives of our study were (i) to develop a

general model capable of simultaneously simulating

monthly mean NO3-N concentrations in soil solution

of all plots of a manipulative biodiversity experiment

in grassland (The Jena Experiment) driven by plant

species and functional group richness and functional

composition and (ii) to investigate the effects of plant

species and functional group richness and functional

composition on NO3-N concentrations in soil solution

(0–30 cm depth) taking into account the effects of

conversion from arable land to grassland, soil prop-

erties, and climate.

Methods

This study was conducted as part of the Jena Exper-

iment (www.the-jena-experiment.de), which is a

grassland plant diversity experiment addressing the

role of biodiversity for element cycling and trophic

interactions (Roscher et al. 2004).

Study site

The field site is located close to the city of Jena,

Germany (50�550N, 11�350E; 130 m above sea level)

on the floodplain of the Saale river. Mean annual air

temperature is 9.3 �C and mean annual precipitation is

587 mm (1961–1990, Kluge and Müller-Westermeier

2000). The soil is an Eutric Fluvisol that developed

from up to 2 m thick loamy fluvial sediments, almost

free of stones. As a result of the fluvial dynamics, the

texture ranges from sandy loam near the river to silty

clay with increasing distance from the river. The site

was converted from grassland to an arable field in the

1960s and consequently fertilized and plowed for crop

production until the beginning of the grassland plant

diversity experiment in 2002.

The entire experimental design is described in

Roscher et al. (2004). Briefly, the main experiment

comprises 82 plots (20 m 9 20 m) grouped in 4

blocks located in parallel to the river Saale (consid-

ering the systematic variation in soil texture). Each of

the 82 plots is vegetated by 1, 2, 4, 8, 16, or 60 plant

species and 1, 2, 3, or 4 different plant functional

groups (grasses, small herbs, tall herbs, legumes)

chosen by the random replacement method from a

species pool of 60 species from the Molinio-Arrhena-

theretea meadows, Arrhenatherion community (Ellen-

berg 1996). In this study, we used data from 62 plots

from blocks 1–3. As there was a strong correlation

between the number of sown species and the realized

species richness (R2 [ 0.9 in each year 2003–2007,

Marquard et al. 2009), the successful establishment of

the species richness gradient can be assumed, and we

will use the term species richness hereafter. The

management of all plots was adapted to extensive

meadows used for hay production and mown twice a

year in June and September. The plots were weeded
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regularly to maintain the sown species composition.

During the experimental period, the plots were not

fertilized.

Input data

For the NO3-N-concentration model, data between

January 2003 and December 2006 was used. Data for

NO3-N concentration in soil solution was available

between January 2003 and December 2006 for 62

plots from blocks 1 to 3. The dataset includes NO3-N

concentrations reported by Oelmann et al. (2007a, c)

for March 2003–May 2004 and additional data not

included in the published work of Oelmann et al.

(2007a, c). Sampling and measurement of soil solution

is described in Oelmann et al. (2007c). Briefly, soil

solution was collected with suction plates (UMS,

Munich, Germany, sintered glass, diameter 0.12 m,

pore size 1–1.6 lm) every second week at 30 cm

depth. NO3-N concentration was measured photomet-

rically with a Continuous Flow Analyzer (CFA) after

cadmium reduction of nitrate to nitrite and reaction

with sulfanilamide and naphthylenediamine-dihy-

drochloride to an azo-dye. The unknown contribution

of nitrite that is contained in the NO3-N concentration

is expected to be small (Oelmann et al. 2007c).

Furthermore, plot-specific data were used from the

62 plots comprising plant species richness (sr [ {1,

2, 4, 8, 16, 60}), number of functional groups (fg [
{1, 2, 3, 4}), absence (0) or presence (1) of legumes

(legumes [ {0,1}), grasses (grasses [ {0,1}), small

herbs (sherbs [ {0,1}), and tall herbs (therbs [ {0,1}),

as well as percentage of legume species (pleg), grass

species (pgra), small herb species (psh), and tall herb

species (pth) out of total species number, and clay (clay)

and sand (sand) content of the individual plots. For clay

and sand the respective mean content in 0–30 cm depth

was calculated from measurements in 10, 20, and 30 cm

depth for each plot in 2002 (Kreutziger 2006). Moreover,

monthly meteorological data from the central field

station including mean air temperature at 2 m height

in �C (T), monthly precipitation in mm (P), mean soil

moisture in 8, 16, and 32 cm depth in vol% (sm), and

mean soil temperature in 2, 4, 8, 16, and 32 cm depth

in �C (st) was used as input data. To account for the

temporal influence since conversion from agriculture to

grassland, time in months since January 2002 (time [
{13, 14,…,60 }, i.e. January 2003–December 2006) and

year since 2002 (year [ {2, 3, 4, 5 }) were also

included in the data set.

All calculations were done with the R 2.11.1

software package (R Development Core Team 2006).

To ensure that only positive NO3-N concentrations will

be simulated by the model and given that the NO3-N

concentrations are approximately log-normally distrib-

uted, we used the logarithm of NO3-N concentration in

soil solution. To allow the calculation of the logarithm,

not detected NO3-N concentration values were

replaced by 0.01 mg L-1, i.e. half the detection limit

for NO3-N of the CFA (Oelmann et al. 2007c). NO3-N

concentration values higher than mean ? 2*SD =

21.73 mg L-1 (with mean = 2.42 mg L-1 and stan-

dard deviation SD = 9.66 mg L-1, n = 1,972) were

assumed to be outliers and set to not available (NA).

Then, monthly mean concentrations were calculated

for each plot and finally the NO3-N concentrations were

log-transformed.

Plant species richness (sr) of each plot was

transformed to log(sr) because this transformation

represents the expected species richness effect best.

Furthermore, the depth-weighted means of soil mois-

ture (sm) and soil temperature (st) for 0–30 cm depth

were calculated for each month. The variable time was

transformed to 1
ffiffiffiffiffiffi

time
p because the effect of time since

conversion from an agricultural field to grassland is

expected to first rapidly decrease with time and then

converge to zero, as for instance the results of

Christian and Riche (1998) show.

Summary statistics for all measured input data and

the plot specific data are shown in Table 1, illustrating

an equal distribution of plant functional groups and

species richness in the considered plots of the Jena

Experiment. Concerning the NO3-N concentrations, a

high occurrence of very small values can be observed

which supports the decision to work with a log

transformation of these data. 18 % of the very small

NO3-N concentrations were below the detection limit,

and we did not exclude them from the data set because

they still contain the information that NO3-N concen-

trations were very low at the corresponding plot and

time. An exclusion of these values would cause the

model to estimate misleadingly higher NO3-N con-

centrations. The high number of missing NO3-N

values (59 %) is a common problem in soil solution

sampling. It is mainly caused by very dry conditions in

summer and autumn or failure of the sampling system
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and further justifies the need to develop a model that

can estimate these missing values.

Measures for model quality

Several measures were used to determine the model

quality. The Deviance Information Criterion (DIC),

introduced by Spiegelhalter et al. (2002), was used

during model development. The DIC depends on the

deviance and the number of ‘‘effective’’ parameters

used in a model. A model with smaller DIC can be

considered to be better than a model with higher DIC.

The Bayesian coefficient of determination RB
2 (Eq. 1)

R2
B ¼ 1� r2

sim

r2
dat

ð1Þ

with the variance of the model rsim
2 and the sample

variance of the response data rdat
2 can be interpreted as

the proportional reduction of uncertainty obtained

through inclusion of the explanatory variables in the

model (Ntzoufras 2009). In posterior predictive model

checks data are used twice, first for estimating the

posterior predictive density and second for comparing

this predictive density with the data (Ntzoufras 2009).

Although posterior predictive checks could be con-

sidered as too liberal, e.g. Kéry (2010), Meng (1994)

and Ntzoufras (2009) argue in favor of using them to

assess the discrepancy between model and data. The

Bayesian p-value (Gelman et al. 1996) quantifies the

proportion of times when the lack of fit of a perfect

data set (a replicated data set generated using the same

model that is fitted to the actual data set) is greater than

the lack of fit of the actual data set. A Bayesian p-value

close to 0.5 indicates that the model fits the data (Kéry

2010). To allow a comparison of the Bayesian model

to other models (e.g., process-oriented models), the

Table 1 Summary statistics of input variables

Variable Min. 25 % Quantile Median Mean 75 % Quantile Max. n Missing

T (�C)a -3.15 4.05 9.57 9.63 15.64 22.06 48 0

P (mm month-1)b 6.2 23.38 37.35 40.12 47.28 127.6 48 0

sm (vol%)c 16.24 20.93 27.53 26.86 32.19 43.82 48 0

st (�C)d 0.13 4.1 9.42 10.32 16.42 22.3 48 0

NO3-N (mg L-1)e 0.01 0.03 0.12 1.48 0.7 20.36 2,976 1,766

srf 1 2 4 8.65 8 60 62 0

fgg 1 1 2 2.11 3 4 62 0

legumesh 0 0 1 0.53 1 1 62 0

grassesh 0 0 1 0.56 1 1 62 0

sherbsh 0 0 1 0.52 1 1 62 0

therbsh 0 0 0.5 0.5 1 1 62 0

plegi 0 0 0.2 0.25 0.38 1 62 0

pgrai 0 0 0.25 0.29 0.5 1 62 0

pshi 0 0 0.2 0.23 0.36 1 62 0

pthi 0 0 0.13 0.23 0.33 1 62 0

Clay content (%) 14.64 17.43 21.44 20.78 24.10 26.03 62 0

Sand content (%) 10.45 13.94 21.59 25.56 35.21 47.31 62 0

a Air temperature
b Monthly precipitation
c Soil moisture in 0–30 cm depth
d Soil temperature in 0–30 cm depth
e NO3-N concentration in soil solution
f Species richness
g Number of functional groups
h Presence (1) or absence (0) of legumes, grasses, small herbs (sherbs), and tall herbs (therbs), respectively
i Percentage of legumes (pleg), grasses (pgra), small herbs (psh), and tall herbs (pth), respectively, out of total species number
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following measures were calculated from the observed

versus mean simulated NO3-N concentrations (for

both options: log transformed, as used for modeling,

and back transformed) of all plots and for plots

grouped by species number, respectively: mean abso-

lute error (MAE), average error (i.e. mean error, ME),

root mean squared error (RMSE) (Janssen and Heu-

berger 1995) and coefficient of determination R2. The

quality measures were calculated from the log-trans-

formed NO3-N values to show the quality of the model

itself and from the back-transformed values to allow

comparison with other models. Furthermore, the

Nash–Sutcliffe Efficiency (NSE) was calculated to

assess the quality of the simulated (log-transformed)

time series of the single plots (Nash and Sutcliffe

1970). NSE is a goodness-of-fit measure that ranges

from -? to 1, whereas NSE = 1 indicates a perfect

fit.

Model setup procedure

We assumed a normal distribution (Eq. 2) for the log-

transformed NO3-N data per time-step t and plot

p (NO3-Nt,p) with mean lt,p and precision s (Eq. 3).

logðNO3 � Nt;pÞ�Normal lt;p; r
2 ¼ 1

s

� �

ð2Þ

s�Gð0:01; 0:01Þ with l ¼ 1 and r2 ¼ 100 ð3Þ

lt,p was defined as a multiple regression (Eq. 4) with

parameters ai, categorical variables (Kj), and numer-

ical variables and interactions between variables (Xi).

lt;p ¼
X

ðaiXiÞ þ
X

Kj ð4Þ

A non-informative normal distribution with

mean lai
¼ 0; assuming no effect of Xi on NO3-N

concentrations, and variance rsim
2 = 1,000, represent-

ing high uncertainty about the value of ai, was

assumed for the parameters ai (Eq. 5).

ai�Normalðlai
¼ 0; r2

ai
¼ 1

sai

¼ 1; 000Þ ð5Þ

For the categorical variables (Kj) constraints were

defined according to Ntzoufras (2009) to make the

estimation feasible. A corner constraint was used for

the variables indicating the absence or presence of a

functional group, i.e. a functional group variable is set

to 0 (e.g., legumes[0] = 0) if plants of this group are

not present on the regarded plot. The absence of a

certain functional group hence forms the reference

category. The difference caused by the presence of a

functional group is estimated by a normally-distributed

variable (e.g., legumes[1] * Normal(l = 0, r2 =

1, 000)).

We accomplished a model selection procedure

from various multiple regression models using Open-

BUGS (Lunn et al. 2009) which was run from within

the R 2.11.1 software package (R Development Core

Team 2006) with the packages R2WinBUGS and

BRugs. The final model was run directly in Open-

BUGS, because of speed and memory reasons and

input data and initial values were written from R into

text files using the function bugs.data.

The variables of the model equation (Eq. 4) were

selected using a DIC-based model selection method

as described in Ntzoufras (2009, pp. 220–221). At

first, variables, which are essential for the modeling

purpose and known to have an influence on NO3-N

in soil solution (log(sr) and 1
ffiffiffiffiffiffi

time
p ; see ‘‘Input data’’

section for variable definition), were chosen to form an

initial model. The next step was to select a set of

candidate variables which could potentially improve

the initial model. The set of candidate variables

consists of categorical variables (absence/presence of

legumes, grasses, sherbs, therbs), numerical variables

(fg, pleg, pgra, psh, pth, clay, sand, year, P, T, sm, st)

and all interaction terms that can be constructed from

two variables out of the numerical variables and the

initial variables (all together 107 selectable variables

and interaction terms = candidate variables). To

decide which candidate variables should be included

in the final model, different candidate models were

compared according to their DIC. Each candidate

model consists of the initial model plus one further

variable out of the afore mentioned set of candidate

variables. The candidate variable that was included in

the best performing candidate model (model with the

lowest DIC) was subsequently included in the initial

model and removed from the set of candidate

variables. Then the procedure was repeated with the

new initial model and the reduced set of candidate

variables until the difference between the DIC of any

candidate model and the DIC of the current initial

model was 2 or less. If two or more candidate models

resulted in the same, lowest DIC, the variable to be

included in the initial model of the next selection run
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was chosen based on expert knowledge. During model

development, the DIC decreased from 5317 to 4708

with progressive improvement of the model quality.

Convergence of the final selected model was

checked with the modified Gelman-Rubin statistic,

as implemented in OpenBUGS. To be conservative,

60,000 iterations were used as ‘‘burn-in’’ and three

chains with different random starting values were

compared. One of the chains was run for further

120,000 iterations, on which the estimates of the

parameters and all further simulations are based.

Model simulations

Our model interpretation is based on various simulations

calculated in OpenBUGS to investigate the effects of

selected variables on NO3-N concentrations in soil

solution and to allow interpretation of all the terms that

were selected in the model selection procedure

(Table 2). For each simulation, again, the mean of

120,000 iterations was used. To be able to simulate the

influence of a certain variable or interaction, the values

of the considered variables were deliberately, artificially

changed in the model equation while all other variables

were kept constant, creating hypothetical conditions

which cannot be realized in reality or only with great

effort or during (more than feasible) extended experi-

mentation time. This approach allows us to disentangle

processes in the environment that cannot be disentan-

gled in field and laboratory experiments or with

deterministic models. That is, opposing but inseparable

effects can be disentangled with this approach.

We simulated the influence of selected variables by

artificially changing their values (within a natural

range) in the model equation while the remaining

variables were kept constant as follows: For the climate

variables (P, T, sm, st) and clay content (clay), we used

the mean values of the input data, rounded to the closest

integer (Table 1). Species richness (log(sr)) was set to

log(16) species and number of functional groups (fg)

was set to 4. Furthermore, an equal share of plants from

each functional group was set (pleg = pgra = psh = pth

= 0.25) and, hence, the categorical variables grasses

and legumes were set as present. The variable 1
ffiffiffiffiffiffi

time
p was

set to 1
ffiffiffiffi

40
p (i.e. 40 months since January 2002) and,

hence, the variable year to 4 (i.e. year 2005).

Results and discussion

Model for NO3-N concentration in soil solution

Selected model

The final, most parsimonious general model for NO3-

N concentrations in soil solution in 0–30 cm depth of

all 62 plots resulted in Eqs. 2–5 with the following

explanatory variables selected from the numerical

variables and interactions between variables (Xi) and

Table 2 Estimated values for model parameters

Parametera Termb Mean 2.5 %

Quantile

97.5 %

Quantile

a1 log(srp) -0.599 -0.809 -0.387

a2
1
ffiffiffiffiffiffiffi

timet

p 26.830 15.980 36.310

a3 plegp � 1
ffiffiffiffiffiffiffi

timet

p -5.831 -15.070 2.918

a4 clayp -0.554 -0.669 -0.444

a5 Pt � 1
ffiffiffiffiffiffiffi

timet

p -0.096 -0.322 0.102

a6 Pt � yeart 0.015 0.008 0.021

a7 clayp � 1
ffiffiffiffiffiffiffi

timet

p 2.161 1.653 2.711

a8 plegp � yeart 0.082 -0.234 0.399

a9 pshp � plegp -9.600 -12.660 -6.532

a10 pthp � pgrap -1.288 -3.128 0.547

a11 plegp � log(srp) 0.867 0.458 1.277

a12 Tt � yeart -0.022 -0.033 -0.012

a13 smt � Pt -0.001 -0.003 0.001

a14 pthp � plegp -8.143 -11.680 -4.615

a15 fgp � log(srp) 0.091 0.007 0.174

a16 pgrap � yeart 0.299 0.131 0.467

a17 yeart � 1
ffiffiffiffiffiffiffi

timet

p -18.680 -22.920 -13.940

a18 yeart 2.086 1.478 2.682

a19 clayp � yeart 0.026 0.006 0.045

a20 plegp � Tt -0.051 -0.101 -0.001

a21 Pt � Tt -0.001 -0.002 0.000

a22 Tt � stt 0.005 0.001 0.009

a23 clayp � plegp 0.105 0.010 0.202

gra grassesp -1.401 -1.942 -0.861

leg legumesp 1.140 0.085 2.203

sd.N Standard

deviation

1.675 1.608 1.743

a see ‘‘Model setup procedure’’ section for parameter

definition
b see ‘‘Input data’’ section for variable explanation
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categorical variables (Kj) by the model selection

procedure (see also Table 2).

Xi 2 flogðsrpÞ;
1
ffiffiffiffiffiffiffiffiffiffi

timet

p ; plegp �
1
ffiffiffiffiffiffiffiffiffiffi

timet

p ; clayp;

Pt �
1
ffiffiffiffiffiffiffiffiffiffi

timet

p ;Pt � yeart; clayp �
1
ffiffiffiffiffiffiffiffiffiffi

timet

p ; plegp � yeart;

pshp � plegp; pthp � pgrap; plegp � logðsrpÞ;
Tt � yeart; smt � Pt; pthp � plegp; fgp � logðsrpÞ;

pgrap � yeart;
1
ffiffiffiffiffiffiffiffiffiffi

timet

p � yeart; yeart; clayp � yeart;

plegp � Tt;Pt � Tt; Tt � stt; clayp � plegpg
Kj 2 flegumesp; grassespg

The model uses 15 variables that are included as

individual variables or in an interaction term. Both

time variables, months since January 2002 (time) and

year since 2002 (year) are included in the model as

well as clay content (clay). Furthermore, the climate

variables soil moisture (sm), soil temperature (st),

precipitation (P), and air temperature (T) were

selected during the selection procedure. The included

plant diversity variables comprise species richness

(sr), functional group richness (fg), percentage of

legumes (pleg), percentage of grasses (pgra), percent-

age of small herbs (psh), percentage of tall herbs (pth),

and the categorical variables indicating the presence/

absence of legumes (legumes) and grasses (grasses),

respectively. The variables sand content, presence of

small herbs, and presence of tall herbs are not included

in the final model.

Convergence of the final NO3-N model occurred

within 15,000 updates. The estimates of the model

equation parameters (ai) are presented in Table 2.

Model quality

The Bayesian coefficient of determination resulted in

mean RB
2 = 0.48 (SD = 0.02, 2.5 % quantile = 0.43,

97.5 % quantile = 0.52). The model has a Bayesian

p value of 0.50, which indicates that the model fits the

observed data. A p value approaching 0 or 1 would

have indicated irrelevance of the model. In Fig. 1, all

observed NO3-N concentrations in soil solution are

plotted against the simulated concentrations. The lack

of accuracy of the measured NO3-N concentrations

below the detection limit (see ‘‘Input data’’ section)

causes the piled points on the left of the detection limit

line. However, the piled points also show that the

model overestimates very low NO3-N concentrations.

The posterior predictive quality measures of all

simulated versus all observed NO3-N concentrations

are summarized in Table 3. The inaccuracy in mea-

sured NO3-N concentrations below the detection limit

probably narrowed model quality, but an exclusion of

these values would have caused a more severe

misdirection of the model, resulting in a general

overestimation of low values.

The calculated quality or predictability measures

for observed versus simulated NO3-N concentration

grouped by species richness show an increase in

predictability with species richness (Table 3). This is

probably not caused by increasing ecosystem stability

with increasing species richness because we did not

find a significant correlation between the coefficient of

variation for NO3-N concentrations and species rich-

ness. Proulx et al. (2010) found no species richness

effect on variation in belowground ecological func-

tions as well as on soil nutrient concentrations. The

decrease in predictability with decreasing species

richness might possibly originate from a stronger

variation in climate data like air and soil temperature

in less diverse plant mixtures than in more diverse

mixtures. This difference in variation could be caused

by microclimatic differences, e.g. because of an

increase in shading in more diverse mixtures which

have more biomass and a higher plant cover (Marqu-

ard et al. 2009; Spehn et al. 2000). As only climate

observed NO3−N concentration [mg L−1]

si
m

ul
ta

te
d

N
O

3−
N

 c
on

ce
nt

ra
tio

n 
[m

g
L−1

] detection limit

R2= 0.42

0.005 0.05 0.5 5 50

0.
00

5
0.

05
0.

5
5

50

Fig. 1 Simulated and measured NO3-N concentrations in soil
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data from the central meteorological station and no

plot-specific measurements were available, we can

only speculate that the used climate variables were less

representative and had less explanatory power for low

diverse mixtures. Another possible explanation for

increasing predictability with species richness might

be the generalizing structure of the model for differ-

ently diverse plant mixtures. In low diverse mixtures,

several explanatory variables in the model equation

have the value 0. For example, in the case of a grass

monoculture, the variables legumes, pleg, psh, and pth

have the value 0. This reduces the number of terms

explaining NO3-N concentrations in low diverse

mixtures and therefore the flexibility of the multiple

regression equation. 62 separate models, for each plot

a different model, would have probably resulted in

better predictability. However, the generalizing view

on the 62 plots with different plant diversity has the big

advantage that it allows to extract new information

from the whole data set, but with the drawback that

model quality might have become weaker for less

diverse mixtures.

The simulated and observed NO3-N concentrations

in soil solution (log-transformed) were plotted for the

three plots with the best and the three plots with the

worst NSE (Fig. 2). The maximum plot-specific NSE

is 0.57 and was reached on a 8 and a 4-species plot.

The lowest NSE was found on a 2-species plot. We

also found a correlation between number of missing

values per plot and NSE (R = -0.27). This is

reasonable because there was less information avail-

able from plots with many missing values and

therefore these plots had less influence on model

development. For most plots, the range of the observed

values is met reasonably well by the model. When

looking at the plots with a bad NSE, we found that 4

out of the 9 worst simulated plots have 2 species, 1

functional group and no tall herbs in common

(including plots B2A02 and B3A21, Fig. 2). For some

of these 2-species plots NO3-N concentrations are

overestimated (e.g., B2A02) and for some underesti-

mated (e.g., B3A21). This leads to the conclusion that

there are high variations between plots with these

properties and therefore NO3-N concentrations could

not be simulated better using the given set of

explanatory variables. Further analyses showed that

the insufficient simulation of NO3-N concentrations in

soil solution of plot B3A05 (Fig. 2) is probably

attributable to the fact that this 8-species plot had the

highest measured biomass of all plots in August 2003

and May 2006, qualifying it as an outlier (Weigelt

et al. 2010).

Besides the independent development of individual

models for each of the 62 plots, which would,

however, not have allowed for the in-depth evaluation

using the experimental design, the quality of the

general model for all 62 plots could have possibly been

improved by including further known controls of NO3-

N concentrations in soil solution. These controls

include microclimatic conditions (e.g., soil tempera-

ture per plot) which affect microbial transformation

processes, measures of microbial activity (e.g., micro-

bial biomass or respiration), redox potential, or soil

carbon to N ratios. Moreover, N concentrations in

throughfall, which significantly differed between plots

with and without legumes (Oelmann et al. 2007a),

could have improved the model. But these controls

were either not measured, only measured on a

Table 3 Posterior predictive model quality measures: ME, MAE, RMSE, and R2 for simulated versus observed NO3-N values (for

both log-transformed values, as used for modeling, and back-transformed values) for all values and for values aggregated by species

richness (sr)

sr (–) Log-transformed NO3-N Back-transformed NO3-N

ME (–) MAE (–) RMSE (–) R2 (–) ME (mg L-1) MAE (mg L-1) RMSE (mg L-1) R2 (–)

All -0.00031 1.33 1.66 0.42 -0.85 1.18 3.05 0.27

1 -0.31 1.61 1.98 0.31 -2.16 2.72 5.10 0.16

2 0.32 1.42 1.75 0.36 -0.59 1.18 2.92 0.25

4 0.05 1.24 1.55 0.45 -0.61 0.88 2.41 0.41

8 0.19 1.18 1.46 0.48 -0.43 0.67 1.97 0.45

16 -0.22 1.24 1.52 0.29 -0.42 0.48 1.61 0.54

60 -0.13 1.13 1.39 0.44 -0.58 0.64 2.06 0.54
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relatively small subset of the 62 plots, or measured in a

very coarse temporal resolution which could not have

been included in the model. Macroclimatic conditions,

land use, topography, and pH are further controls of

NO3-N concentrations in soil solution used in other

models to explain variation in NO3-N concentrations

in soil solution. Because of the relatively small size of

our study site, these controls show no (e.g., macrocli-

mate) or only a limited variation [in 2002, pH was

between 7.1 and 8.4, i.e. all within carbonate buffer

(Oelmann et al. 2007b)]. The limited variation results

in a limited explanatory capability of these controls for

NO3-N concentration in soil solution at our study site

and therefore the model would not be improved by

inclusion of these variables. Modeling NO3-N con-

centrations on a finer temporal scale might improve

model quality, but handling of such a big dataset

(already almost 3,000 NO3-N concentrations in

monthly resolution whereas each concentration is

estimated from 120,000 iterations) would probably not

be possible because of computational memory limita-

tions. The incorporation of a random plot effect like in

Kristensen et al. (2004), resulting in a linear mixed

model, would probably increase model quality but at

the same time make predictions (e.g., for plots of block

4) impossible. Kristensen et al. (2004) investigated

NO3-N concentration in soil solution in forest ecosys-

tems with mixed linear models and could increase the

explanatory power of their model by 34 % through

inclusion of such a random site effect. This random

site effect explains differences between sites without

the identification of a cause. In our study, we accepted

a lower R2 through not including a random plot effect

because we wanted to extract as much information

from known explanatory variables as possible.

Comparing our model to other models which are

able to simulate NO3-N concentrations in soil solution

is difficult, because many studies only report NO3-N

leaching as final product or give only a graphical

comparison between observed and simulated NO3-N
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Fig. 2 The three plots with the best NSE and the three plots

with the worst NSE. Simulated mean NO3-N concentrations in

soil solution (mg L-1) (solid continuous line) and 95 % credible

interval (shaded area) per month (years 2003–2006) as well as

measured NO3-N concentrations (connected circles)
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concentrations in soil solution. For instance, Li et al.

(2007) show plots of measured versus simulated NO3-

N concentration in soil solution for two study sites,

produced by the spatially referenced biophysical

model WNMM. For one study site, the simulated

agree well with the measured NO3-N concentrations,

but for the other site they assume that the discrepancies

between observed and simulated values might be

caused by strong spatial variation. In our model, clay

content per plot is already included to catch spatial

variations within the field site, but there might be other

spatially varying properties that affect NO3-N con-

centrations in soil solution and are not caught by soil

texture. A detailed graphical evaluation of NO3
-

concentrations in soil solution in several depths is

given by van der Laan et al. (2010). Comparing their

figures to Fig. 2, we come to the conclusion that our

model shows a similar capability of predicting NO3-N

concentrations. Pedersen et al. (2007) tested three

different variations of the model Daisy and reached a

minimum RMSE of 4.0 mg L-1 NO3-N concentration

in soil solution. Except for the monocultures, RMSE

of back-transformed simulated NO3-N concentrations

of our model was below this value (Table 3). With a

process-oriented model, Jonard et al. (2012) reached

good results for some simulated nutrient concentra-

tions, but for NO3
- in soil solution the modeling

efficiency (equals NSE) was -0.9. As already pointed

out above, our model did not work well on all plots, but

54 of 62 plots had a NSE [ - 0.9. Compared to other

models for NO3-N concentration in soil solution, as far

as a comparison was possible, we judge our model as

working satisfyingly well. Majumdar et al. (2008)

achieved very high correlations between simulated

and observed soil nutrient and carbon pools with a

static hierarchical Bayesian model. Predicting the

temporal variation in nutrient concentrations correctly

is another difficulty that our model had to cope with. A

not ideal simulation of these temporal variations

possibly resulted in reduced quality measures. Oleson

et al. (2006) analyzed NO3-N concentrations with a

Bayesian approach and found that it yielded similar

results as other statistical methods. At the same time,

the Bayesian approach resulted in a more accurate

description of the explanatory variables, which is one

of our objectives addressed in the following sections.

Another Bayesian approach in the field of biogeo-

chemistry was successfully applied by Cable et al.

(2011) on soil respiration in deserts. Cable et al.

(2011) investigated 7 deserts and achieved model

qualities for the different desserts ranging from

R2 = 0.33 to R2 = 0.70.

Model interpretation

In the following paragraphs, we present and discuss

the results obtained from simulations where the values

of selected variables were artificially changed while

the remaining variables were kept constant (see

‘‘Model simulations’’ section). Before addressing

plant diversity effects on NO3-N concentrations in

soil solution, we first assessed the possibly interfering

effects of time since conversion from arable land to

grassland, spatial variations, and climate.

Temporal and spatial effects

If only the variables 1
ffiffiffiffiffiffi

time
p and year are artificially

changed, temporal effects on NO3-N concentrations in

soil solution caused by the conversion from agricul-

ture to grassland can be observed (Fig. 3). As 1
ffiffiffiffiffiffi

time
p

converges to zero with increasing time, positive values

for parameters a (Table 2) in combination with the

variable 1
ffiffiffiffiffiffi

time
p represent a decrease in NO3-N concen-

trations over time and negative values an increase over

time. First, there is a rapid decrease of NO3-N

concentrations in soil solution after conversion

(Fig. 3). This observation complies with the expected

development because the area was not fertilized

anymore after conversion and NO3-N uptake by plants

as well as leaching reduced the plant-available N

concentrations in the system. After approximately

4 years, NO3-N concentrations started to slowly

increase. This coincides with an increase in carbon

stocks in the ‘‘new’’ grassland ecosystem (Steinbeiss

et al. 2008) and increasing organic matter concen-

trations result in enhanced ammonium release

(Rosenkranz et al. 2012) supplying additional sub-

strate for nitrification.

Although the study area is quite small, spatial

variations in clay content had an effect on NO3-N

concentrations in soil solution (artificially changed

variables: clay, 1
ffiffiffiffiffiffi

time
p ; and year). At the beginning of

the second year, NO3-N concentrations increased with

clay content (Fig. 4). This could be explained by a

higher organic matter content on plots with higher clay
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content (correlation between organic carbon concen-

tration and clay content was R = 0.23, Steinbeiss

et al. 2008) shortly after conversion from the organic

matter-depleted agricultural field, which would sup-

port a higher mineralization rate and therefore a higher

NO3-N concentration on plots with higher clay

content. But already within the second year, the

relation changed and NO3-N concentrations increased

with decreasing clay content and there was less

variation in NO3-N concentrations with clay contents.

The reason might be that a higher clay content

indicates a higher fertility of the soil which improves

the growth conditions of plants and further enhances

NO3-N uptake by plants. The consequences are lower

NO3-N concentrations with higher clay content.

Climatic effects

All possible climatic variables were selected in at least

one interaction term during the model selection

procedure. Some of these interaction terms show a

changing influence of the climatic variable over time.

Other interaction terms depict the seasonal influences

on NO3-N concentrations in soil solution.

Over time, the influence of precipitation on NO3-N

concentrations changed (Fig. 5) if soil moisture and

other variables were kept constant according to

‘‘Model simulations’’ section (except P, 1
ffiffiffiffiffiffi

time
p ; and

year which were artificially changed). The parameter

associated to the interaction between precipitation and
1
ffiffiffiffiffiffi

time
p (a5) is not significantly different from zero, but

the parameter for precipitation and year (a6) is

(Table 2). In the second year after conversion from

agriculture to grassland, NO3-N concentrations

decreased with increasing monthly precipitation. This

is probably attributable to dilution effects as NO3-N

concentrations were high at the beginning of the

experiment (Fig. 3). In the following years a decreas-

ing variation in NO3-N concentrations for different

precipitation volumes can be observed which could be

attributed to the establishment of the system. The

establishment of a closed plant cover on the whole

experimental field might have reduced small-scale

variations within the plots. Moreover, the disappear-

ance of the effects of former fertilization probably

reduced variation in NO3-N concentrations with

precipitation volumes. In the fifth year the variation

slightly increased again and, now, NO3-N concentra-

tions increased with monthly precipitation. Rosenkranz

et al. (2012) found that in-situ net ammonification

increased under higher soil moisture which could

explain this precipitation effect, if nitrification is

assumed to increase as well. On the other hand, if

precipitation is kept constant (see ‘‘Model simulations’’

section) and soil moisture is artificially changed, the

model simulates generally higher NO3-N concentra-

tions at lower soil moisture (Fig. 6). These higher
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NO3-N concentrations under drier conditions could

be described as a physical concentration effect.

However, the parameter a13 of the interaction

between precipitation and soil moisture (the only

appearance of the variable soil moisture in the model)

is not significantly different from zero.

The interaction between air temperature and time

(Table 2) continuously showed lower NO3-N concen-

trations at higher temperatures which complies with

the vegetation period when plant uptake of NO3-N is

highest. This implies that air temperature mainly

generated the seasonal variation of NO3-N concentra-

tions in the model. On the contrary, the interaction

between air and soil temperature (Table 2) indicates

that NO3-N concentrations increase with air and soil

temperature. This might be due to increasing evapo-

transpiration with increasing soil temperature and

therefore decreasing soil moisture which leads to the

afore mentioned concentration effect under dry soil

conditions (i.e. higher NO3-N concentrations).

The influence of precipitation on simulated NO3-N

concentrations differed with air temperature (Fig. 7) if

only P and T were varied artificially. At high air

temperatures (i.e. in the vegetation period), high

precipitation decreased NO3-N concentrations. But at

low air temperatures (i.e. in winter) NO3-N concentra-

tions increased with precipitation. In the vegetation

period, this might be a dilution effect of high precip-

itation causing a decrease in NO3-N concentrations. In

winter, plant uptake is strongly reduced and as miner-

alization of N also occurs at low temperatures, provided

that the soil is moist enough (van Schöll et al. 1997),

this might explain why NO3-N concentrations increase

with precipitation in winter. Particularly during frost

periods in winter, additional N might be released from

decomposing roots, nodules, and aboveground plant

residues and appear in the soil solution especially in

months with high precipitation in winter (Dubach and

Russelle 1994; Oelmann et al. 2007c).

Effects of species richness and functional group

identity

NO3-N concentrations in soil solution decreased with

increasing plant species richness in mixtures without

legumes (Fig. 8) if species richness and percentage of

legumes were artificially changed (and subsequently

also legumes, indicating presence or absence of

legumes). However, this effect reversed if more than

approximately 25 % of a mixture’s species number

were legumes. This suggests that the fertilizer effect of

legumes exceeds the diversity effect. High contribu-

tions of legumes in mixtures lead to increased N

availability in soil and thus minimize resource com-

petition associated with no need for complementary N

uptake. This threshold value can also be interpreted as

the transformation of a complementarity effect at a

low species contribution of legumes to a functional

group identity effect at a high species contribution of

legumes. The interaction term between species rich-

ness and functional group number shows an increase

in NO3-N concentrations with increasing species and

Time since conversion from agriculture to grassland
pr

ec
ip

ita
tio

n 
[m

m
/m

on
th

]

10

30

50

70

90

110

130

year 2 year 3 year 4 year 5

0.005     

0.05

0.5

5

N
O

3−
N

 c
on

c.
 [m

g 
L−1

]Fig. 5 NO3-N

concentrations in soil

solution for varying monthly

precipitation over time with

constant values as described

at the beginning of ‘‘Model

simulations’’ section

20 25 30 35 40

0.
01

0.
05

0.
20

soil moisture [%]
N

O
3−

N
 c

on
c.

 [m
g 

L−1
]

Fig. 6 Influence of soil moisture (sm) on NO3-N concentrations

in soil solution (solid line) and 95 % credible interval (dotted

line). Constant values are as described at the beginning of

‘‘Model simulations’’ section

Biogeochemistry (2014) 118:141–157 153

123



functional group richness (Table 2), although one

would expect a decrease in NO3-N concentrations. As

more functional groups represent a higher functional

diversity and therefore more complementary resource

use, NO3-N concentrations would be expected to

decrease with functional group number (Hooper and

Vitousek 1998; Marquard et al. 2009). But the prob-

ability that legumes are included in a mixture

increases with its number of functional groups which

might be the reason why the number of functional

groups increased NO3-N concentrations. In previous

studies, it was also found that the presence of

particular functional groups, especially legumes, has

more influence on N in soil solution and N leaching,

respectively, than the number of functional groups

(Hooper and Vitousek 1998; Oelmann et al. 2007a;

Scherer-Lorenzen et al. 2003).

Functional group identity strongly affected NO3-N

concentrations in soil solution (Fig. 9). If grasses were

present, NO3-N concentrations were lower and if

legumes were present, NO3-N concentrations were

higher (see also Table 2). Moreover, NO3-N concen-

trations increased strongly with the percentage of

legumes present in the mixture. The contributions of

tall herbs and small herbs did have almost no effect on

NO3-N concentrations. The associated parameter of

the interaction between percentage of grasses and

percentage of tall herbs (a10) is not significantly

different from zero. These effects of presence or

absence of particular functional groups, especially

grasses and legumes on NO3-N concentrations are in

accordance with previous findings of e.g., Hooper and

Vitousek (1998), Oelmann et al. (2007b), and

Scherer-Lorenzen et al. (2003).

The presence of grasses generally decreased NO3-N

concentrations in soil solution, but a higher percentage

of grasses in mixtures without legumes reduced this

decrease in NO3-N concentrations (Fig. 9). The reason

for this is likely a dryness effect caused by the dense

and extensive rooting system of grasses. Rosenkranz

et al. (2012) also considered differences in microcli-

matic conditions, in particular soil water content,

between species mixtures as a driver of differing in-

situ net ammonification rates releasing NH4
? into soil

solution, which after nitrification influence NO3-N

concentrations. The difference in mean water content

(0–30 cm depth) of plots without grasses minus plots

with grasses was ?3.7 mm (calculated from ca.

15,000 measured water contents (at the 10, 20 and

30 cm mineral soil depth) on all 82 plots between June

2002 and January 2006, see Kreutziger 2006). Another

argument for the dryness effect with increasing

percentage of grasses is that the model simulated

higher NO3-N concentrations under dryer soil condi-

tions (Fig. 6).

Furthermore, interactions between spatial, climatic,

and temporal variables and functional group identity

were selected during model development (Table 2).
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Fig. 7 NO3-N concentrations in soil solution for varying

monthly precipitation (P) and varying monthly mean air

temperature (T). Constant values are as described at the

beginning of ‘‘Model simulations’’ section
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These selected interactions include the interactions

between percentage of grasses and year as well as the

interactions between percentage of legumes and clay

content, air temperature, year, and 1
ffiffiffiffiffiffi

time
p ; respectively.

Compared to the effects of the variables and interac-

tions presented above, these interactions have a

weaker influence on the NO3-N concentrations and

can hardly be recognized in the model simulations.

Probably, the effects of the above presented variables

and interactions overlay the interactions between

functional group identity and spatial, climatic, and

temporal variables. The interaction between percent-

age of legumes and air temperature indicates that the

difference in NO3-N concentrations between mixtures

with a high percentage (e.g., 80 %) and a low

percentage (e.g., 20 %) of legumes was highest at

low air temperatures in winter (T = -5 �C with

2.12 mg L-1 difference) and almost disappeared at

high temperatures in the vegetation period (T = 25 �C

with 0.04 mg L-1 difference). This means that the

additional NO3-N, contributed by more legume spe-

cies, was mostly consumed during the vegetation

period leaving almost no surplus. The parameters a,

associated to the interactions between temporal vari-

ables and percentage of grasses and legumes,

respectively (Table 2), indicate that the effects of

grasses and legumes on NO3-N concentrations became

more important with time (year).

Conclusions

The quality of the presented Bayesian multiple

regression model for monthly mean NO3-N concen-

trations in soil solution is acceptable because the

Bayesian p value was optimal with a value of 0.5, the

model predicted NO3-N concentrations in soil solution

with an overall ME near 0, and the quality (e.g.,

measured as NSE) of our model was comparable to

that of other published models for NO3-N concentra-

tions in soil solution. Our model uses temporal, spatial,

and climatic factors, plant species and functional

group richness, and functional composition as explan-

atory variables and allows estimation of missing

values simultaneously for all considered 62 plots and

the time period used for model development. Such a

general model for all plots has the advantage that it can

be used for an overall evaluation using the experi-

mental design which would not be the case if

individual models were developed for each plot (with

a presumably better fit per plot).

After accounting for the effects of the conversion

from arable land to grassland, soil properties, and

climate, plant diversity played an important role for

NO3-N concentrations in soil solution. Species rich-

ness decreased NO3-N concentrations if no or few

legumes were included in the mixture. If a threshold

value of approx. 25 % of legume species out of total

species number was exceeded, the species richness

effect reversed and increased NO3-N concentrations.

This is caused by the fertilizer effect of legumes which

exceeded the diversity effect. Functional group rich-

ness did not play an important role, but functional

identity and composition. Within mixtures containing

grasses, higher percentages of grasses in total species

number increased NO3-N concentrations. Probably,

the dense and extensive rooting system of grasses

leads to dryer soil and therefore increases NO3-N

concentrations by a concentration effect. This inter-

action leads us to the hypothesis that a strong

underlying mechanism of species richness effects on

ecosystem functioning consists of the variation in

microclimatic conditions under different plant

mixtures.

20 40 60 80 100

0.
00

5
0.

02
0

0.
10

0
0.

50
0

2.
00

0

percent of first functional group 
 (= 100 % − second functional group)

N
O

3−
N

 c
on

ce
nt

ra
tio

n 
[m

g 
L−1

]
legumes & small herbs
legumes & tall herbs
grasses & tall herbs
small herbs & tall herbs
95 % credible intervall
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fg = 2, presence or absence of grasses and legumes is set
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are as described at the beginning of ‘‘Model simulations’’

section
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