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ABSTRACT: 

 

Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set 

of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation 

programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity 

and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone 

LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the 

perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) 

collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects 

of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of 

classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as 

proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed 

adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field 

references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds 

implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the 

utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy 

mapping-derived class probabilities as proxies for species presence and absence. 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

1.1 Natura 2000 and Essential Biodiversity Variables 

The ongoing biodiversity crisis has fuelled increasing efforts to 

quantify and map biodiversity, both for monitoring purposes 

and for a deeper scientific understanding. Biodiversity, defined 

as the variability of all living organisms, is a complex 

phenomenon with many different levels, therefore difficult to 

quantify with a single indicator. The Natura 2000 network of 

the European Union, which was established by the Habitats 

Directive (European Commission, 1992) is monitored by 

assessing the  conservation status of each site every six years. 

Conservation status is based on a system health approach and 

the indicator itself is defined as a weighted sum of several 

variables, each related to different aspects of the habitat. The 

directive requires that characteristic species, structure of the 

habitat, human influence and future prospects be assessed 

through individual proxies, and combined to output a final 

conservation status on a categorical scale of A (favourable), B, 

(unfavourable –inadequate) of C (unfavourable-bad). 

Essential Biodiversity Variables (EBV-s) take a less complex 

approach, they are "a measurement required for study, reporting 

and management of biodiversity change" (Pereira et al., 2013), 

keeping in mind that “any attempt to define a set of variables for 

tracking biodiversity change should indeed ensure that 

information on all components and dimensions of biodiversity 

are being captured” (Pettorelli et al., 2016). In this sense, they 

represent spatially explicit and scalable proxies of individual 

biophysical variables that are relevant to biodiversity by 

influencing it in some way or being closely linked to an 

important aspect of it. The idea of EBV-s was raised with 

global-scale satellite remote sensing-based monitoring in mind 

and global data coverage is regarded as a requirement towards 

candidate EBV-s (Pettorelli et al., 2016), but biodiversity 

monitoring at a finer scale is also in demand, both from the side 

of decision support and scientific research. Identifying 

measurable variables that "balance specificity and generality, 

enabling valid aggregation of data from multiple monitoring 

programs, while allowing for flexibility in the species or 

taxonomic groups addressed by these programs" (Pereira et al., 

2013) is just as relevant at this scale as it is globally, since 

conservation action takes place at national or regional level. At 

regional scale and national to continental coverage, not only 

satellite-based sensor products may be considered but also 

airborne sensors. Airborne LIDAR has been identified to hold 

especially high potential for biodiversity monitoring (Simonson 

et al., 2014; Zlinszky et al., 2015b) due to its ability to capture 

three-dimensional spatial structure in high resolution together 

with radiometric properties in a spectral band relevant for 

ecophysiology. Studies have proven that LIDAR can be used 

even on its own for detailed phytosociological classification or 
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vegetation health studies, both in forests (Maltamo et al., 2014) 

and in herbaceous vegetation (Zlinszky et al., 2014, 2012). 

Meanwhile, data coverage continues to increase both through 

ongoing national survey projects and dedicated campaigns at 

individual sites serving a wide variety of purposes. This means 

that LIDAR will play an important role in regional-scale 

biodiversity monitoring (Zlinszky et al., 2015b).  

 

1.2 Objectives 

In this study we revisit a dataset collected originally for the 

purpose of developing LIDAR as a tool for Natura 2000 

monitoring (Zlinszky et al., 2015a) from the perspective of 

identifying potential EBV-s. The original study aimed to create 

proxies for all variables required by the national Natura 2000 

monitoring guidelines, using only LIDAR data and field 

references, and based on these, to create a high-resolution 

complete Natura 2000 conservation status assessment for the 

study area. Here we investigate the processing steps and results 

in order to identify LIDAR-based Essential Biodiversity 

Variables that could potentially support regional-scale 

biodiversity monitoring also beyond the framework of Natura 

2000. 

 

2. DATA AND METHODS 

2.1 Study Site and Input Data 

The methodology used for data collection and processing is 

described in detail in (Zlinszky et al., 2015a) and briefly 

summarized here. The study area is Ágota-puszta (Fig. 1), a 

Natura 2000 site within the Hortobágy Special Area of 
Conservation. The local vegetation is dominated by "1530 

Pannonic Salt Steppes and Salt Marshes" Natura 2000 habitat 

type (European Commission DG Environment, 2007), which 

represents a mosaic of arid, semi-arid and wet, but always salt-

tolerant grass- and forb-dominated vegetation. The micro-

topography has low relief but high variability, and creates 

locally very diverse water and soil conditions that result in a 

tightly-knit pattern of various grassland associations (Deák et 
al., 2014; Molnár and Máté, 2014). The site is used for 

extensive cattle grazing. 

Field references were collected at two individual levels 

(Zlinszky et al., 2015a): for the individual classifications and 

for the final Natura 2000 conservation status. Both datasets 

were split with half of the polygons used for calibration and half 

retained for accuracy evaluation. At the first level, 364 separate 

polygons of approximately 25 m2 each were located with sub-

meter accuracy using Differential GPS, noting vegetation class 

and also biodiversity-relevant features such as trampling, 

grazing, occurrence of weeds). At the second level, 20 sample 

plots of 50 m × 50 m were selected in a layout to cover the full 

range of grassland associations present in the area and their 

conservation status available at the site, and complete Natura 

2000 conservation status assessment surveys were carried out 

within each. 

The Hungarian Natura 2000 Conservation Status assessment 

scheme for grasslands requests 13 individual variables to be 

Figure 1. Location of the study site in Central Europe (a), overview of the study site including land cover, main alkali 

grassland classes and Natura 2000 conservation status reference plots. Reproduced with permission from (Zlinszky 

2015a) 
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surveyed, each with a pre-defined protocol (Zlinszky et al., 

2015a). The plot receives a positive or negative score depending 

on the status of the plot with respect to each variable 

(favourable or unfavourable), with the magnitude of the score 

representing the weighting assigned to the variable. For 

example, if no shrub encroachment is observed, +5 points are 

scored, if encroachment is present, the score is -1, if an invasive 

alien shrub species is present, it is -10. The final status is 

defined by summing the positive and negative scores separately. 

If the positive score reaches 50 and the negative is not less than 

-10, the conservation status is favourable (A). If the negative 

score is less than -20, the status is unfavourable-bad (C), in all 

other cases, it is unfavourable-inadequate (B). The 13 variables 

prescribed by the assessment scheme are naturalness, species 

density, inner patchiness, vertical structure, species pool, litter 

accumulation, soil erosion, shrub encroachment, weed growth, 

human disturbance, future threats, animal traces and landscape 

context (see Zlinszky 2015a for full details). Each of these has a 

pre-defined methodology for mapping in the field, which we 

followed during ground truthing and attempted to copy during 

LIDAR data processing. 

LIDAR data was collected using a Riegl LMSQ680i full-

waveform scanner, operating at 1550 nm wavelength. The 

flying height of ca. 620 m above ground level resulted in 10 

pt/m2 nominal stripwise echo density and a footprint size of 

approximately 20 cm diameter. The full study area of 24 km2 

was scanned twice, once before the growth season in March 

2013 and once at the peak of the growing season in June 2013 

when the grass and herb dominated vegetation is the most 

developed. 

 

2.2 Data Processing and Accuracy Analysis 

The point clouds were radiometrically corrected based on field 

spectroscopy measurements (Lehner and Briese, 2010). A set of 

output raster products was calculated from the point clouds 

using OPALS software (Pfeifer et al., 2014), always with 0.5 m 

× 0.5 m raster cell size. These products include a digital terrain 

model (DTM) based on iterative robust interpolation of the leaf-

off point cloud (Pfeifer et al., 2001), a canopy height model of 

the maximum relative height above the DTM in each raster cell, 

mean and variance of point reflectances, mean and maximum 

point echo width (EW) and EW variance, and finally a set of 

surface texture measures (point height variance, sigma, and 

openness) within the raster cells using two different kernel sizes 

(3 × 3 and 5 × 5 pixels). For each of these data products, the 

difference between the leaf-on and leaf-off values were also 

calculated as separate raster layers. All in all this resulted in a 

multi-band pseudo-image of 70 LIDAR data products, which 

was the basis of vegetation classification and feature detection. 

For this, we developed and used the Vegetation Classification 

Studio (VCS) software tool (Zlinszky and Kania, 2016) to train 

a random forest machine learning classifier (Breiman, 2001; 

Pedregosa et al., 2011) that supports fuzzy class prediction 

output, visualization and accuracy evaluation. In fuzzy 

classification, each pixel is assigned not only a single class but a 

vector representing the probabilities of the pixel belonging to 

each of the individual classes. VCS allows classification 

schemes created from the same set of reference data with a 

hierarchical class structure. High computation and rendering 

Figure 2: Fine-tuning threshold value for the conservation status variable "species density", represented by variance of 

leaf-on reflectance. According to this map the correct threshold value would be 0.002. Reproduced with permission 

from Zlinszky et al.(2015a) 
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performance is achieved by decoupling classifier training and 

evaluation which is only carried out on the subset of the data 

reserved for training and validation from rendering and 

visualization with adaptive resolution to support fast viewing of 

the prediction on the full dataset (Kania and Zlinszky, 2014). 

For this study, five different classification products were 

calculated in a hierarchical categorization: 4 land cover classes, 

8 main alkali habitat classes, 15 grassland vegetation 

associations, 5 classes representing disturbance, 5 classes 

relevant for shrub encroachment in each case based on the first 

level of ground truthing. 

In the next step, LIDAR-based proxies for each of the variables 

required by the Natura 2000 assessment scheme had to be 

identified. These were either probabilities of individual 

categories based on the fuzzy classification products listed 

above ( within this section 2.2), or direct LIDAR sensor product 

datasets (listed in section 2.1). Since the scheme requires 

surveying not on a numerical scale but on a categorical scale of 

2-4 steps, calibration could also only be carried out with this 

level of detail. The thresholds separating favourable or 

unfavourable status for the individual variables were pre-

selected to follow the rules laid down in the Natura 2000 field 

assessment scheme, and the exact values were fine-tuned using 

the respective parameter values in the 10 calibration plots (Fig. 

2). 

Wherever possible, we aimed to directly use the output of the 

relevant classification (such as for weeds or shrubs), and find a 

LIDAR sensor product where relevance had a plausible 

explanation (such as normalized height for vertical structure). 

For parameters where all calibration plots had the same value, 

the fine-tuning step had to be omitted. 

Accuracy was evaluated separately for each parameter. Since 

the Natura 2000 CS field evaluation plots held ca. 10000 raster 

pixels each, but were observed in the field to have 

homogeneous values within their area for each individual CS 

parameter, the ratio of pixels assigned to the correct status by 

the LIDAR classifier was a strong indicator of accuracy as long 

as differences in status were present among the validation plots. 

This could be investigated through the 10 different validation 

plots which held different conservation status scores for 

different variables. The summed conservation status scores 

based on the LIDAR data were also compared with the 

respective field-observed scores. The final status assigned to 

each plot by summing all variables and applying the pre-defined 

Figure 3: Ratio of correctly categorized validation plot pixels based on LIDAR data for individual conservation status parameters. 

Red and orange columns represent unfavourable status for the respective indicator, green columns stand for favourable status 
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thresholds from the Natura 2000 field assessment manual was 

also compared between the field-based and LIDAR-based 

results.  

 

3. RESULTS 

The individual classification products all showed good 

agreement with their respective ground truths, with Cohen's 

Kappa values ranging from 0.58 (for grassland associations) to 

0.83 (land cover) (Zlinszky et al., 2015a). However, evaluation 

was not always possible due to the distribution of the ground 

truth values (Zlinszky et al., 2015a). For the individual CS-

relevant parameters, one of the most important findings was that 

different threshold values separating favourable or unfavourable 

status apply for different grassland association types within the 

main category. Therefore, tall-grass associations (alkali 

meadows) were separated from short-grass associations (alkali 

swards and open steppes) based on the main alkali habitat class 

map. After this step, the following proxies were identified: 

From the directly derived sensor data products, the difference 

between leaf-on and leaf-off mean point reflectance within the 

raster cells proved to be a reliable representation of the grazing 

regime, successfully identifying over- and undergrazed patches. 

This means it was a relevant proxy for “naturalness”, “litter 

accumulation”, “animal traces” and partly for “human 

disturbances”, which are four different variables requested by 

the Natura 2000 monitoring scheme. Different thresholds were 

applied to this LIDAR product for representing these different 

variables; accordingly the accuracy also varied (Fig. 3). 83% of 

the validation pixels was correctly labelled for “naturalness”, 2 

out of 10 plots had unfavourable naturalness, one of these was 

correctly identified. 82% of the full validation area was correct 

for “animal traces”, but the single unfavourable case was not 

well recognized. 79% of the pixels were correct for litter 

accumulation, and both favourable and unfavourable cases were 

mostly well identified. For disturbance, which also included 

another LIDAR product, 64% of the pixels were correctly 

labelled (see below). 

Based on the spectral variation hypothesis (Palmer et al., 2002), 

“species density” was represented with the variance of leaf-on 

point reflectance within a neighbourhood. Different kernel sizes 

were applied to the short and long-grass habitats to follow their 

characteristic patch scales, but the threshold was the same. 

However, only 47% of the pixels were assigned the correct 

status with this approach, but there seems to be no bias towards 

the favourable or unfavourable cases.  

The difference in leaf-on and leaf-off normalized height was 

used as a representation of the conservation status variable 

“vertical structure”. The field manual defines this parameter 

based on the coverage of typical overstory, medium level and 

understory grass and herb species and not physical heights. This 

explains why vertical strucutre did not perform well, completely 

missing the single unfavourable case. 

For “disturbances”, the value of the seasonal difference in 

reflectance (a proxy of overgrazing) was combined through a 

logical OR operation with the probability of the class "vehicle 

track" from the disturbance classification. The resulting 

accuracy was 64%, but for this particular variable, not all 

reference plots could be considered homogeneous, as e.g. a field 

road would only affect part of the reference plot. 

For the other variables, accuracy could not be assessed with this 

method, since the validation plots did not contain all possible 

cases. Using the products of the fuzzy classification, the 

conservation status variable “species pool” was found to be well 

represented by the summed probability of vegetation 

associations belonging to the grassland habitat in focus. It was 

assumed that if the species pool of a pixel represents the 

characteristic species of alkali grasslands, then it will be 

assigned to one or a combination of the relevant classes with 

high probability. This assumption seems to be true based on 

comparison with field-derived species lists. 91% of the plots 

were labelled correctly, but the fine-tuning could not be tested 

due to the lack of validation plots with unfavourable species 

pool.  

For “influence of weeds”, we used the probability of the weed 

class from the disturbance classification, assigning a fix 

threshold to separate favourable and unfavourable status. 

However, indicator accuracy could not be tested as no 

validation plots had weeds; therefore, it corresponds to the 

accuracy of the relevant class (69% F1-score, (Zlinszky et al., 

2015a)).  

Similarly, “shrub encroachment” was represented by the 

dedicated classification product which separately included 

invasive shrubs as a class. However, here instead of probability, 

the hard-boundary result was used, complemented by a 

morphological operation to identify dense stands which 

represent the worst status according to the field Natura 2000 

evaluation scheme. Accuracy in this case also corresponds to 

the classification accuracy, which is 70% (mean F1-score of 

native and invasive shrub classes, (Zlinszky et al., 2015a)).  

For 4 out of the 13 parameters required by the assessment 

scheme, all reference plots (even the calibration plots) had the 

same status, therefore indicator variables were assigned but not 

quantitatively evaluated. For "future threats" the most important 

threat to this protected area observed in the field was lowering 

of the water table. DTM height represents distance to the 

groundwater table at this scale and was therefore expected to be 

a good proxy of this threat. All field references were assessed to 

be negatively affected by this risk, therefore the threshold was 

set at a height below the lowest calibration plot. Based on 

terrain model height accuracy, this proxy is expected to be valid 

in 95% of the cases, but this could not be directly evaluated. 

“Patchiness of vegetation” is also a CS parameter, however, it is 

less relevant to this habitat type which is always highly patchy. 

Therefore, all areas within the land cover class "alkali 

grassland" were assigned high patchiness. The class “alkali 

grasslands” of the land cover classification has 95% accuracy 

(F1-score). “Soil erosion” was also represented by the same 

indicator, as soil erosion has a favourable effect on this habitat 

type.  

Finally, “landscape context”, which represents the neighbouring 

habitats, and the distance to the nearest similar habitat, was 

evaluated using pixel counts within a kernel: if alkali grasslands 

dominated the local neighbourhood and occurred within a 100 

m distance, then this parameter had favourable status. 

The individual uncertainties and errors of these proxy variables 

are partly averaged out by the aggregation process that sums the 

respective scores of the parameters to a final positive and 

negative score for each plot. Conservation status scores based 

on summing the individual parameter layers calculated from the 

LIDAR products were found to correlate strongly with the field-

mapped scores of the validation plots. The scores can 

theoretically have a range between -85 and +100, the median 

bias was found to be -2.3 (slight underestimation of 

conservation status) with a standard deviation of 6.5. For the 

final conservation status classification into three categories (A, 

B and C), a frequency-based upscaling from pixel to plot level 

was developed, and after this, 8 out of 10 validation plots were 

assigned the correct score (Zlinszky et al., 2015a). 
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4. DISCUSSION 

These results show that airborne LIDAR has a very strong 

potential for biodiversity mapping. This is especially true in the 

context of Natura 2000, where pre-defined variables and 

integration rules exist that can be exactly followed through 

LIDAR-derived proxies and processing rulesets, and individual 

weaknesses are partly overcome by aggregation. Despite the fact 

that the studied grassland vegetation class has only very fine-

scale vertical vegetation structure (which would be the main 

target variable observed by LIDAR), the accuracy of the final 

classification is comparable to the repeatability of field 

mapping. LIDAR-derived proxies were successfully identified 

for all biophysical parameters requested by the field monitoring 

manual. 

This raises the question "If Natura 2000 conservation status 

could be calculated across large areas using remote sensing, 

would it therefore qualify as an EBV at European scale?". From 

a certain perspective, the answer is clearly yes. Natura 2000 

conservation status is currently evaluated nearly exclusively 

using fieldwork, but it is an indicator that is used across large 

areas: 20% of the EU or 0,5% of the total land surface of the 

Earth). If this indicator can be operationalized using remote 

sensing, it would certainly meet the requirements of an EBV: it 

is regularly updated, sensitive to changes, highly relevant for 

biodiversity, focuses on ‘state’ variables (contrary to drivers or 
results) and is at an intermediate level between primary 

observations and high-level indicators. If it will be evaluated 

based on regional-scale airborne datasets, extrapolation beyond 

Natura 2000 sites or habitats will also be feasible. Nevertheless, 

Natura 2000 monitoring with remote sensing will always 

require labour-intensive field references, and is more of a tool 

for extending the findings of fieldwork outside the reference 

plots, beyond the time of study and to up to several orders of 

magnitude finer spatial resolution. In this sense, the use of 

Natura 2000 CS as a regional-scale EBV is not feasible, but 

individual sensor or classification products are closer to such 

operational use. 

One of the most important lessons learned during this study was 

that classification is an essential first step towards using an 

EBV. Very few (if any) remote sensing derived variables 

correlate closely to biodiversity indicators regardless of the 

local habitat; on the contrary, a certain sensor-derived value can 

mean high biodiversity in one type of ecosystem and low 

biodiversity or even nothing at all in another. Considering eg. 

the example of fractional canopy cover, which is regarded as an 

established EBV (Pettorelli et al., 2016), 70% coverage would 

mean high diversity in a forest habitat but severe degradation 

for a heathland. In our case, different spatial scales or threshold 

values were found to apply to the same sensor product within 

short and tall grass alkali grasslands. 

Another important finding is the utility of fuzzy classification. 

Evaluating the probability of a certain habitat instead of its 

presence or absence often allows better representation of natural 

conditions (Foody, 1996). Additionally, in a biodiversity 

mapping context, we have suggest here that the fuzzy class 

membership correlates strongly with the species pool of each 

pixel. Similarly, the LIDAR-derived probability of weed 

encroachment proved to be a good proxy, allowing 

identification of this threat even when weeds were not the actual 

dominant class. Although the limits of the input data source and 

category set clearly apply to these findings, they are 

encouraging for future research, especially since species pool is 

one of the classical proxies of biodiversity and also one of the 

most challenging for remote sensing (Ichter et al., 2014). 

Finally, the importance of seasonality was recognized from this 

dataset. Seasonal vegetation phenology is established as an 

EBV (Pettorelli et al., 2016), but using multi-temporal data 

opens up several additional potential EBV-s such as grazing 

pressure or grassland structure for research that would be less 

accurately represented in single season investigations.  

These findings imply not only to local LIDAR surveys, they can 

also be adapted to the global-scale satellite remote sensing 

approach where EBV-s originate from. Aiming for single sensor 

products that support global biodiversity monitoring is probably 

only relevant over the background of a detailed and accurate 

vegetation classification. Land cover is perhaps the most well 

established EBV (Skidmore et al., 2015) but is not necessarily 

integrated into the analysis of other EBV-s. Based on our 

results, we argue that it is necessary to move beyond land cover 

to global habitat-level classification. If such classification is 

done with a fuzzy approach and to a sufficiently detailed level 

of categorization, the probability of certain vegetation types 

characterized by high species numbers would be a strong 

representation of the presence of their species and thus a valid 

EBV (additionally, fuzzy mapping might help solve some of the 

problems of class boundaries, transitions and accuracies which 

are limiting global mapping). Global-scale satellite monitoring 

inherently offers the possibility of multi-seasonal datasets, 

which should prove highly relevant for certain biodiversity 

variables beyond phenology.  

The advantage of airborne LIDAR lies in its high resolution, 

which in our case meant that every ground truth polygon we 

collected covered at least 100 LIDAR-derived data pixels, and 

each pixel was a product of at least 4 independent LIDAR 

measurements (points). Even harvesting-based quantitative 

biodiversity measurements or full species releveés are feasible 
at the scale of the individual data pixels. This allows direct 

quantitative comparison of the reference data with the sensor 

products, upscaling from sensor data pixels to the reference 

plots. In most cases, for satellite data this has to take place the 

other way: even a single satellite pixel is larger than the ground 

reference polygon, which means the references have to be 

upscaled to the sensor data. This is an inherent source of 

uncertainty. A potential solution for this lies in the use of high-

resolution airborne data as an intermediate level for EBV-s, 

calibrating airborne sensor-based rasters using fieldwork, and 

upscaling the regional coverage of airborne-based data to serve 

as references for calibration and validation of global-scale 

Essential Biodiversity Variables. 

While ongoing work on identifying global EBV-s continues to 

be very important for international policy support, establishing 

robust and accurate high-resolution regional-scale EBV-s using 

airborne LIDAR data and in-situ references could significantly 

advance our understanding of the processes and trade-offs 

controlling biodiversity. 
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