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Abstract

Methylotrophic bacterial community is very important group of bacteria utilizing reduced carbon compounds and plays signif-

icant role in plant growth promotion (PGP), crop yield and soil fertility for sustainable agriculture. Abiotic and biotic stresses are

very important factors affecting PGP in agriculture. A vast number of microbial communities play an important role in abiotic

stress tolerance. The PGP methylotrophic microbes have been reported well enough to mitigate different types of biotic and

abiotic stresses. The abiotic stress tolerance was well documented by several methylotrophic bacterial communities such as

Hyphomicrobium, Methylarcula, Methylobacillus, Methylobacterium, Methylocapsa, Methylocella, Methyloferula,

Methylohalomonas, Methylomonas, Methylophilus, Methylopila, Methylosinus, Methylotenera, Methylovirgula and

Methylovorus. The abiotic stress tolerance ability of different methylotrophs and their colonization in different parts of plants

under severe low temperature, high temperature, drought and salt stress conditions have been investigated in various studies. The

methylotrophic communities help in proliferation of plant directly through solubilization of phosphorus, potassium and zinc,

production of phytohormones viz., auxins and cytokinins; production of Fe-chelating compound, biological nitrogen fixation and

ACC-deaminase activities or indirectly through productions of ammonia, siderophores and secondary metabolites. The auxin and

cytokinin secreted by methylotrophs influence seed germination and plant root growth and help plants to endure water stress. On

the plant surface, the abundant methylotrophs exude osmo-protectants such as sugars and alcohols which ultimately help to

protect the plants from desiccation and excessive radiations. The utilisation of these potent methylotrophic strains may facilitate

proper crop production, PGP by ameliorating abiotic stresses.
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Introduction

Plants are sensitive to the environmental changes and there-

fore their growth and development are greatly affected by

several biotic and abiotic factors. Several microbial commu-

nities prevalent in soil, facilitate plants to grow in adverse

environmental conditions. This plant-microbe interaction is

very beneficial and climate resilient through which plant

growth is not affected under biotic and abiotic stress condi-

tions. Therefore, the natural microbial communities inhabiting

inside the soil ecosystem make the agriculture sector more

sustainable (Kumar et al. 2017; Kumar et al. 2016; Rana

et al. 2018). Out of these diverse microbial communities,

methylotrophs are another separate large bacterial population.

Methylotroph is a unique group of microorganisms, which

consume methane and its derivatives, such as; methanol, me-

thylamine, etc. Methylotrophic bacteria are well enough to sur-

vive in all types of environmental conditions including low

temperature (Romanovskaia et al. 2005; Sapp et al. 2018;

Schouten et al. 2000; Yadav 2015; Yadav et al. 2017d); high
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temperature (Amin et al. 2017; Bodrossy et al. 1997, 1999;

Trotsenko et al. 2009; Verma et al. 2016b); hyper saline

(Doronina et al. 2003b, 2013, 2000b; Poroshina et al. 2013;

Shmareva et al. 2018); drought (Kerry et al. 2018; Sivakumar

et al. 2017; Verma et al. 2014); acidic habitats (Dedysh et al.

2000; Röling et al. 2006; Verma et al. 2013; Vorob’ev et al.

2009) and alkaline habitats (Doronina et al. 2003a, 2005,

2003b; Shmareva et al. 2018; Trotsenko et al. 2007). Plants

receive valuable nutrients from this sub-population in stress

and therefore plants acquire abiotic stress tolerance.

The global necessity to increase agricultural production

from a decreasing land resource base has placed consider-

able strain on the fragile agro-ecosystems. Soil and plant

microbiomes are considered vital for maintaining the sus-

tainability of agriculture production systems. There are

many links between microbial diversity and ecosystem

processes (Yadav et al. 2018a). The plant growth promot-

ing (PGP) methylotrophic microbes help plant for growth,

yield and adaptation under diverse unfavourable environ-

mental conditions. The plant microbiomes (rhizospheric,

epiphytic and endophytic) play a vital role in plant growth

and adaptations. The subpopulation of pink pigmented fac-

ultative methylotrophic (PPFMs) bacteria is abundantly

present as plant epiphytes and endophytes as well

rhizospheric and has been reported worldwide (Verma

et al. 2016b, 2015; Yadav 2009). The methylotrophic mi-

crobes present in rhizospheric zone of plants are influenced

by root exudates (Meena et al. 2012). A number of novel

methylotrophic bacteria have been sorted out allied with

the plant rhizosphere as rhizospheric methylotrophs e.g.

Methylobacterium soli, Methylobacterium goesingense,

Methy lobac ter ium var iab i le , Methy lobacter ium

suomiense, Methylopila helvetica, Methylobacterium

t h i o c y a n a t u m , M e t h y l o p i l a c a p s u l a t a a n d

Methylobacterium aminovorans (Cao et al. 2011;

Doronina et al. 1998, 2002; 2000c; Gallego et al. 2005c;

Idris et al. 2006; Urakami et al. 1993; Wood et al. 1998);

from the phyllosphere as epiphytic methylotrophs e.g.

Methy lobac t e r i um ce ra s t i i , Methy lobac t e r i um

gossipi icola , Methylobacterium phyl losphaerae ,

Methylobacterium phyllostachyos, Methylobacterium

p l a t a n i , Me t h y l o b a c t e r i um p s e u d o s a s i c o l a ,

Methylobacterium thuringiense and Methylobacterium

trifolii (Kang et al. 2007; Madhaiyan and Poonguzhali

2014; Madhaiyan et al. 2009, 2012; Wellner et al. 2013;

Wellner et al. 2012) and from internal part of plant as en-

dophytic methylotrophs Methylobacterium nodulans and

Methylobacterium populi (Jourand et al. 2004; Van Aken

et al. 2004). The methylotrophic microbial communities

have been sorted out as most ubiquitous as plant

microbiomes in form of phyllospheric, rhizospheric and

endophytic. Along with plant microbiomes several novel

methylotrophs have reported from diverse natural habitats

(Gallego et al. 2005a; Gallego et al. 2006; Kalyuzhnaya

et al. 2006; Kato et al. 2008; Patt et al. 1976).

Methylotrophs, being associated with plants have the abil-

ity to enhance the plant growth and improve the soil health.

Methylotrophs perform different functions for improvement

of crop yield and quality. Various biological processes includ-

ing Nitrogen-fixation (Jourand et al. 2004; Raja et al. 2006;

Rekadwad 2014; Sy et al. 2001); P, K and Zn solubilization

(Agafonova et al. 2013; Jayashree et al. 2011b; Verma et al.

2013, 2014, 2016b); production of Fe-chelating compounds

(Lacava et al. 2008; Verma et al. 2014, 2016b; Verma et al.

2015); production of PGP hormones such gibberellic acids,

auxin and cytokinin (Chanratana et al. 2017; Ivanova et al.

2001; Meena et al. 2012; Omer et al. 2004; Pattnaik et al.

2017; Trotsenko et al. 2001) and ACC deaminase activities

(Abeles et al. 1992; Chinnadurai et al. 2009; Madhaiyan et al.

2007a, 2006a, 2007b) are performed by methylotrophs. The

methylotrophic microbes act as biocontrol agents against di-

verse plant pathogenic microbes through in-direct PGP attri-

butes of siderophores, ammonia, HCN and diverse groups of

secondary metabolites including extracellular hydrolytic en-

zymes (Madhaiyan et al. 2004, 2006b).

The methylotrophic microbes associated with crops may

promote plant growth in terms of increased biomass, chloro-

phyll content, germination rates, hydraulic activity, leaf area,

nitrogen content, Fe and Zn content, protein content, roots and

shoot length, yield and tolerance to abiotic stresses like acidic

and alkaline, draught, flood, radiation, salinity and tempera-

ture. The PGP methylotrophs as single bioinoculants or with

co-inoculated with others beneficial PGP microbes

(Arthrobacter, Bacillus, Pseudomonas, Rhizobium,

Burkholderia, Serratia, Azotobacter, Azospirillum) as micro-

bial consortium may be used as bioinoculants/biofertilizers of

biocontrol agents for enhanced crops production and soil fer-

tility for sustainable agriculture (Verma et al. 2016a; Yadav

et al. 2017a, b, c). The present critical review describes the

different types of association between plant microbiome and

environments. Further, the phydiological, biochemical and

molecular aspects are also explored. This review may help

in the development of biotechnological applications of plant-

microbe interaction and particularly, methylotrophs-plant in-

teraction in plant growth development and crop improvement

under natural and abiotic stress environment.

Enumeration and characterization
of methylotrophic bacterial communities

Plant microbiomes, specially the rhizospheric microbes are

influenced by substances or roots exudates surrounding the

host plants. To know the population of methylotrophic bacte-

rial communities associated with crops, different techniques

may be used. Methylotrophic microbes may be isolated from
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rhizosphere by serial dilution and standard spread/pour plate

technique and ammonium minerals salt (0.70 g K2HPO4;

300 μg H3BO3; 0.5 g NH4Cl; 0.54 g KH2PO4; 0.2 g

CaCl2.2H2O; 10 μg CuCl2.2H2O; 30 μg MnCl2.4H2O;

200 μg CoCl2 .6H2O; 20 μg NiCl2 .6H2O; 60 μg

Na2MoO4.2H2O 1 g MgSO4.7H2O; 4.0 mg FeSO4.7H2O;

ZnSO4.7H2O per litre composition) as a selective media

(Corpe 1985). The epiphytic methylotrophic bacteria may be

isolated by leaf imprinting technique (Holland et al. 2000). In

the leaf imprinting method, the leaves should be pressed on

the solidified plates of the ammonium mineral salt medium.

After 30–45 min of imprinting the leaf should be removed

from the plates and plates should be incubated at the 5–

55 °C in the BOD incubator for 7–30 days for isolation of

psychrophilic, mesophilic and thermophilic bacteria. For iso-

lation of endophytic methylotrophic population, surface ster-

ilization techniques are followed. Plant samples (root, stem or

leave) should be sterilized for 1–3 min with 70% C2H5OH

followed by 3–5 min with 1–3% NaOCl and finally residual

NaOCl is removed by repeated washing with sterile double

distilled water (Suman et al. 2016). Various growth conditions

were used for the development of abiotic stress tolerant

methylotrophic bacteria. This includes growth of halophilic

methylotrophs in AMS (Ammonium mineral salt) media sup-

plemented with 5–20% NaCl concentration; growth of

drought to le ran t methylo t rophs in 7–10% PEG

(Polyethylene Glycol); growth of alkaliphilic methylotrophs

in pH from 8 to 11; growth of acidophilic methylotrophs in

pH 3–5; growth of psychrophilic methylotrophs in low tem-

perature (>5 °C) and growth of thermophilic methylotrophs in

high temperature (>45 °C).

Identification of methylotrophic bacteria is confirmed by

molecular method, Genomic DNA of bacteria is extracted and

purified using well established method. The isolated genomic

DNA is analysed by agarose gel-electrophoresis techniques

using 0.8% agarose and quantified by spectrophotometry

techniques. The purified genomic DNA may be amplified

using the universal primers pA (5’-AGAGTTTGATCCTG

GCTCAG-3 ’ ) and pH (5 ’ -AAGGAGGTGATCCA

GCCGCA-3’) (Edwards et al. 1989). The amplicon of 16S

rRNA gene may be analysed through electrophoresis tech-

niques using 1.2% agarose gel and purified. The technique

amplified rDNA restriction analysis (ARDRA) may be used

for reduction of numbers of methylotrophic microbial popu-

lation using three different restriction endonucleases Msp I,

Alu I, and Hae III. After the ARDRA, the clustering analysis

may be done using NTSYS-2.02e software package

(Numerical taxonomy analysis program package, Exeter soft-

ware, USA), and dendrogram should be constructed for selec-

tion of representative strains. PCR amplified 16S rRNA gene

product may be purified and sequenced and the partial 16S

rRNA gene sequences should be analysed with Codon Code

Analyser and compared with sequences available in the NCBI

GenBank database (https://www.ncbi.nlm.nih.gov). The

phylogenetic tree can be constructed to know the

taxonomical affiliations of methylotrophic communities

using MEGA 4.0.2 software (Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0) (Fig. 1).

The PPFMs may be screened for the presence of methanol

dehydrogenase (mxaF gene) using specific primers 1003f

(5′-GCG GCA CCA ACT GGG GCT GGT-3′) and 1561r

(5′-GGG CAG CAT GAA GGG CTC CC-3′) (McDonald

et al. 1995). The amplified mxaF gene product may be se-

quenced and should be compared with GenBank database

and the phylogenetic tree may be constructed using MEGA

4.0.2 software (Fig. 2).

The methylotrophic bacteria from diverse habitats may

have potential application in industry, agriculture and medi-

cine. The methylotrophic bacteria may be screened for differ-

ent hydrolytic enzymes production using standard protocols

included1-aminocyclopropane-1-carboxylate (ACC) deami-

nase activities (Jacobson et al. 1994); ammonia production

(Cappucino and Sherman 1992), biological N2-fixation

(Boddey et al. 1995); gibberellins production (Brown and

Burlingham 1968), HCN production (Bakker and Schippers

1987), phosphorus solubilization (Pikovskaya 1948), K-

solubilization (Hu et al. 2006), production of phytohormones

indole-3-acetic acid (Bric et al. 1991), Fe-chelating com-

pounds production (Schwyn and Neilands 1987); Zn-

solubilization (Fasim et al. 2002); biocontrol against different

fungal pathogens (Sijam and Dikin 2005).

Biodiversity of methylotrophic bacteria

Different classes of methylotrophic bacteria have been report-

ed from diverse extreme habitats as plant microbiomes. The

methylotrophic bacterial communities belong to diverse clas-

ses of proteobacteria namely α, β and γ–proteobacteria. The

class α-proteobacteria has been reported as most dominant

followed by β–proteobacteria (Fig. 3). In a review on seven

different families of plant associated methylotrophs, namely

Beijerinckiaceae, Hyphomicrobiaceae, Methylobacteriaceae,

Methylococcaceae, Methylocystaceae, Methylophilaceae and

Rhodobacteraceae have been sorted out (Fig. 3b). The

methylotrophic bacterial communities belong to 15 different

genera such as Hyphomicrobium, Methylarcula ,

Methylobacillus, Methylobacterium, Methylocapsa,

Methylocella, Methyloferula, Methylohalomonas,

Methylomonas, Methylophilus, Methylopila, Methylosinus,

Methylotenera, Methylovirgula and Methylovorus (Fig. 3c).

Bassalik (1913) described first Methylobacterium in the

literature, which was isolated from earthworm. Kouno and

Ozaki (1975) isolated and characterized 59 different

methylotrophs from soil and water samples. Patt et al.

(1976) described a new genus of methane-oxidizing bacteria
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and named it Methylobacterium organophilum XX (= ATCC

27886). M. organophilum is rod-shaped, methane-oxidizing

bacteria. Wood et al. (1998) isolated and characterized a novel

species of pink-pigmented methylotroph, Methylobacterium

thiocyanatum. Balachandar et al. (2008) reported prevalence

of several epiphytic strains of methylotrophs found in cotton,

maize and sunflower phyllosphere. The phyllospheric mi-

c robes a re r epo r ted as n iche - spec i f i c such as ,

Methylobacterium extorquens C5, Methylobacterium

thiocyanatum C1 from cotton; Methylobacterium

aminovorans M4, Methylobacterium extorquens M3,

Methylobacterium fujisawaense M2 and Methylobacterium

thiocyanatum M1 from maize; Methylobacterium

aminovorans S4, Methylobacterium suomiense S2,

Methylobacterium thiocyanatum S1 and Methylobacterium

zatmanii S9 from sunflower. The studies on methylobacterial

community are necessary to explore the complexity of

interaction between these Methylobacterium and host plants.

Twelve PPFM bacterial strains have been isolated and

identified as M. Variabile and M. aquaticum using 16S

rDNA sequencing. Sahin et al. (2008) have reported the tax-

onomical variability within the genus Methylobacterium.

Fig. 1 Phylogenetic profiling of

methylotrophic bacterial

communities using 16S rRNA

genes obtained from NCBI

GenBank database
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Raja et al. (2008) have reported theMethylobacterium from

phyllosphere of cotton, maize, sunflower, soybean, and

mentha plants using culturable and 16S ribosomal RNA

(rRNA) gene sequencing techniques. The pink pigmented fac-

ultative methylotrophs (PPFMs) isolated from leaf samples

have been identified and reported as Methylobacterium

populi, Methylobacterium thiocyanatum, Methylobacterium

suomiense, M. aminovorans, and Methylobacterium

fujisawaense. Jayashree et al. (2011a) have isolated

methylotrophic bacterial communities from water samples of

Cooum and Adyar and soil samples in Tamil Nadu.

Subhaswaraj et al. (2017) have reported the isolation and char-

acterization of IAA and cytokinins producing epiphytic

methylotrophs from the phyllosphere of Brassica niagra and

identified asMethylobacterium extorquensMM2 using maxF

gene analysis. In another study by Kaparullina et al. (2017a),

the methylotrophic bacterial communities have been identi-

f ied from herbs, shrub, and trees in Pushchino.

Methylobacterium and other genera such as Methylophilus,

Methylobacillus, Hansschlegelia, Methylopila, Xanthobacter

and Paracoccus have been identified using sequencing of the

16S rRNA genes.

Novel methylotrophs from diverse sources

A huge number of methylotrophic microbes, belonging to

different classes and families have been reported from diverse

habitats worldwide. These novel methylotrophs have been

isolated from diverse habitats such as acidic soil, arid soil,

air, freshwater, leaf surface and rhizospheric soil (Table 1).

Genome sequencing of methylotrophic
bacteria

In the last few decades, the genome sequencing has been done

for methylotrophic bacterial isolates from diverse habitats

worldwide (Table 2). The complete genome information of

various methylotrophic bacterial strains are available, such

Fig. 2 Phylogenetic profiling of

methylotrophic bacterial

communities using maxF

obtained from NCBI GenBank

database
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as Methylobacterium populi BJ001 (Van Aken et al. 2004),

Methylovorus glucosetrophus SIP3–4 (Lapidus et al. 2011),

Methylobacterium extorquens CM4 (Marx et al. 2012),

Methylobacterium nodulans ORS 2060 (Marx et al. 2012),

Methylobacterium mesophilicum SR1.6/6 (Marinho Almeida

et al. 2013), Methylobacterium aquaticum MA-22A (Tani

et al. 2015), Methylobacterium radiotolerans JCM 2831

(Eevers et al. 2015), Methyloferula stellata AR4 (Dedysh

et al. 2015b), Methylotenera mobilis JLW8 (McTaggart et al.

2015), Methylotenera versatilis 301 (McTaggart et al. 2015),

Methylobacterium indicum SE2.11 (Chaudhry et al. 2016) and

Methylobacterium sp. AMS5 (Minami et al. 2016). A number

of informations can be deciphered from the complete genome

sequence of novel methylotrophs.

The complete genome of three representatives viz.

Methylovorus glucosetrophus SIP3–4, Methylotenera

versatilis 301 and Methylotenera mobilis JLW8, of

Methylophilaceae family have been isolated from Lake

Washington, Seattle, WA (Lapidus et al. 2011). The PPFMs

in the Rhizobiales are widespread in the environment, and

Fig. 3 a Abundance of methylotrophic bacterial communities belonging

to different classes, bmethylotrophic bacterial communities belonging to

different families, c Distribution and abundance of different predominant

genera of methylotrophic bacterial communities isolated from diverse

habitats worldwide. Sources: Low temperature (Romanovskaia et al.

2005; Sapp et al. 2018; Schouten et al. 2000; Yadav 2015, 2017d);

High temperature (Amin et al. 2017; Bodrossy et al. 1997, 1999;

Rekadwad 2014; Trotsenko et al. 2009; Verma et al. 2016b); Hyper saline

(Doronina et al. 2003b, 2013, 2000b; Poroshina et al. 2013; Shmareva

et al. 2018); Drought (Kerry et al. 2018; Sivakumar et al. 2017; Verma

et al. 2014; Veyisoglu et al. 2013); Acidic habitats (Dedysh et al. 2002,

2000; Dunfield et al. 2003; Röling et al. 2006; Verma et al. 2013;

Vorob’ev et al. 2009; Vorobev et al. 2011); Alkaline habitats (Doronina

et al. 2003a, 2005, 2003b; Shmareva et al. 2018; Trotsenko et al. 2007);

Phyllosphere (Balachandar et al. 2008; Kang et al. 2007; Madhaiyan et al.

2014; Madhaiyan and Poonguzhali 2014; Madhaiyan et al. 2009, 2012;

Raja et al. 2008; Subhaswaraj et al. 2017; Tani and Sahin 2013; Tani et al.

2012a, b; Wellner et al. 2013, 2012); Rhizospheric (Cao et al. 2011;

Doronina et al. 1998, 2002; 2000c; Gallego et al. 2005c; Idris et al.

2006; Kouno and Ozaki 1975; Urakami et al. 1993; Wood et al. 1998;

Yadav and Yadav 2018a, b); Endophytic (Jourand et al. 2004;

Prombunchachai et al. 2017; Sy et al. 2001; Van Aken et al. 2004);

Drinking water (Gallego et al. 2005b, 2006; Kato et al. 2008)
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Table 1 Biodiversity of novel methylotrophs reported from diverse habitats worldwide

Novel Methylotrophs C-Source Habitats References

Methylobacterium frigidaeris IER25–16T CH3OH Air conditioning Lee and Jeon (2018)

Methylobacillus methanolivorans ZT CH3OH Activated sludge Kaparullina et al. (2017b)

Methylocapsa palsarum NE2T CH4/ CH3OH Palsa soil Dedysh et al. 2015a)

Methylobacterium phyllostachyos BL47T CH3OH Bamboo leaf Madhaiyan and Poonguzhali (2014)

Methylobacterium pseudosasicola BL36T CH3OH Bamboo leaf Madhaiyan and Poonguzhali (2014)

Methylobacterium brachythecii 99bT CH3OH Bryophytes Tani and Sahin (2013)

Methylobacterium haplocladii 87eT CH3OH Bryophytes Tani and Sahin (2013)

Methylobacterium tarhaniae N4211T CH3OH Arid soil Veyisoglu et al. (2013)

Methylobacterium thuringiense C34T CH3OH Leaf surfaces Wellner et al. (2013)

Methylobacterium trifolii TA73T CH3OH Leaf surfaces Wellner et al. (2013)

Methylobacterium cerastii C44 CH3OH Leaf surfaces Wellner et al. (2012)

Methylobacterium gnaphalii 23eT CH3OH Cudweed Tani et al. (2012a)

Methylobacterium gossipiicola Gh-105T CH3OH Cotton leaf Madhaiyan et al. (2012)

Methylobacterium oxalidis 35aT CH3OH Oxalis corniculata Tani et al. (2012b)

Methylotenera versatilis 301T CH3NH2 Lake Washington Kalyuzhnaya et al. (2012)

Methylobacterium marchantiae JT1T CH3OH liverwort Thallus (Schauer et al. (2011)

Methylobacterium soli YIM 48816T CH3OH Soil Cao et al. (2011)

Methyloferula stellata AR4T CH4/ CH3OH Acidic Sphagnum Vorobev et al. (2011)

Methylovorus menthalis VKM B-2663T CH3OH Corn mint Doronina et al. (2011)

Methylocapsa aurea KYGT CH4 Forest Soil Dunfield et al. (2010)

Methylovirgula ligni BW863T CH3OH Beechwood Vorob’ev et al. (2009)

Methylobacterium phyllosphaerae B27T CH2O Leaf tissues of rice Madhaiyan et al. (2009)

Methylobacterium brachiatum B0021T CH3OH freshwater Kato et al. (2008)

Methylobacterium gregans 002-074T CH3OH freshwater Kato et al. (2008)

Methylobacterium komagatae 002-079T CH3OH freshwater Kato et al. (2008)

Methylobacterium persicinum 002-165T CH3OH freshwater Kato et al. (2008)

Methylobacterium tardum RB677T CH3OH freshwater Kato et al. (2008)

Methylobacterium iners 5317S-33T CH3OH Air sample Weon et al. (2008)

Methylobacterium aerolatum 5413S-11T CH3OH Air sample Weon et al. (2008)

Methylobacterium oryzae CBMB20T CH3OH Rice Madhaiyan et al. (2007a)

Methylobacterium platani PMB02T CH3OH Platanus leaf Kang et al. (2007)

Methylobacterium salsuginis MRT CH2O Sea water Wang et al. (2007)

Methylobacterium jeotgali S2R03-9T CH4 Seafood Aslam et al. (2007)

Methylobacterium goesingense iEII3 CH3OH Soil Idris et al. 2006)

Methylotenera mobilis JLW8T CH3NH2 Lake Washington Kalyuzhnaya et al. (2006)

Methylobacterium adhaesivum AR27T CH3OH drinking water Gallego et al. (2006)

Methylobacterium aquaticum GR16T CH3OH Water Gallego et al. (2005a)

Methylobacterium hispanicum GP34T CH3OH Water Gallego et al. (2005a)

Methylobacterium variabile GR3T CH3OH soil Gallego et al. (2005c)

Methylobacterium isbiliense AR24T CH3OH drinking water Gallego et al. (2005b)

Methylobacillus pratensis F31T CH3OH Meadow grass Doronina et al. (2004)

Methylobacterium nodulans ORS 2060 T CH4 Crotalaria Jourand et al. (2004)

Methylobacterium podarium CH3OH Human foot Anesti et al. (2004)

Methylobacterium populi BJ001T CH3OH Populus Van Aken et al. (2004)

Methylobacterium nodulans 2060 T CH3OH Legume root Jourand et al. (2004)
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many plant growth-promoting substances Methylobacterium

have been characterized (Kwak et al. 2014). Some endophytic

methylotrophs have been reported from rice ecosystem and

soybean stem. The whole genome sequence of rice

endophyte Methylobacterium oryzae CBMB20T has been

done by Kwak et al. (2014) whereas, the complete genome

sequence of soybean endophyteMethylobacterium sp. AMS5

was reported by Minami et al. (2016). The complete genomic

information of methylotrophic communities is useful to un-

derstand plant microbe-interaction and mechanism of plant

growth promotion and adaptations of methylotrophic commu-

nities under diverse abiotic stress conditions (Table 2).

Plant growth promoting attributes
of methylotrophs

The plant associated methylotrophs can promote the plant

growth, enhance crop productivities and help adaption in di-

verse abiotic stresses of heat, pH and salinity. A huge diversity

of methylotrophic bacterial community has been sorted out

from different plants as epiphytic, endophytic and

rhizospheric and from diverse extreme habitats of high/ low

temperature, salinity, drought, acidic and alkaline soil. The

methylotrophs have been shown to PGP directly, e.g. by

nitrogen-fixation; P, K and Zn-solubilization; production of

Fe-chelating compounds; production of cytokinin, auxin and

gibberellins and plant hormones and ACC deaminase activi-

ties. Several methylotrophs support PGP indirectly, via pro-

duction of ammonia, HCN, siderophores, secondary metabo-

lites, extra cellular hydrolytic enzymes and antagonistic sub-

stances, which inhibits the growth of different plant pathogen

(Verma et al. 2017a, b; Yadav 2017; 2018a; b) (Table 3). The

methylotrophic microbes when inoculated and bio-inoculants

of biofertilizers, they promote the growth of plants in a num-

ber of ways through increased biomass, chlorophyll, germina-

tion rates, hydraulic activity, leaf area; nitrogen content, pro-

tein content; Fe content, Zn content, yield and tolerance to

abiotic stresses like draught, temperature, salinity, pH etc.,

thus the diverse groups of methylotrophic communities en-

hanced crops productivities and soil fertility through one or

more mechanisms for sustainable agriculture as long-term

eco-friendly technology.

Production of phytohormones and Fe-chelating
compounds

Plant-associated methylotrophs produce PGP phytohormones

such as auxins, gibberellins and cytokinin. The gibberellins

production is most typical for the rhizospheric methylotrophs

whereas, auxins production is common to all the plant associ-

ated methylotrophs. Among indole derivative auxins, indole-

Table 1 (continued)

Novel Methylotrophs C-Source Habitats References

Methylocella silvestris BL2T CH4 Acidic forest Soil Dunfield et al. (2003)

Methylobacterium lusitanum RXMT CH3OH Sewage Doronina et al. (2002)

Methylobacterium suomiense, F20T CH3OH Soil Doronina et al. (2002)

Methylocapsa acidiphila B2T CH4 Acidic Sphagnum Dedysh et al. (2002)

Hyphomicrobium chloromethanicum CM2T CH3 Cl Petroleum soil McDonald et al. (2001)

Methylobacterium chloromethanicum CM4T CH3 Cl Petroleum soil McDonald et al. (2001)

Methylobacterium dichloromethanicum CH2Cl2 Water Doronina et al. (2000c)

Methylocella palustris KT CH4 Acidic soil Dedysh et al. (2000)

Methylovorus mays CH3OH Maize Doronina et al. (2000a)

Methylopila helvetica VKMB-189 CH2Cl2 Soil Doronina et al. (2000c)

Methylarcula marina h1T CH3NH2 Sea estuary Doronina et al. (2000b)

Methylarcula terricola h37T CH3NH2 Black Sea Doronina et al. (2000b)

Methylobacterium thiocyanatum CH3OH Soil Wood et al. (1998)

Methylopila capsulata IM1T CH3OH soil Doronina et al. (1998)

Methylobacterium aminovorans TH-1 CH3OH Soil Urakami et al. (1993)

Methylovorus glucosotrophus 6B1 CH3OH waste water Govorukhina and Trotsenko (1991)

Methylobacillus glycogens T-11 CH3OH Decaying tomato Yordy and Weaver (1977)

Methylobacterium organophilum XX CH4 Lake Patt et al. (1976)
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acetic acid (IAA) is the most and well characterized from

methylotrophic bacteria and other predominant genera such

as Arthrobacter, Bacillus, Pseudomonas, Serratia,

Burkholderia, and Azospirillum. The methylotrophic microbi-

al communities producing IAA, gibberellins and cytokinins

may potentially be used to promote plant growth under normal

as well as abiotic stress conditions. Phytohormones are pro-

duced by a number of methylotrophs; to name a few:

Methylobacterium extorquens IIWP-43, Methylobacterium

extorquens MP1, Methylobacterium mesophilicum B-2143,

Me t h y l o b a c t e r i um m e s o p h i l i c um HHS1 – 3 6 ,

Me t h y l o b a c t e r i u m m e s o p h i l i c u m I IW P - 4 5 ,

Me t h y l o b a c t e r i um me s oph i l i c um NIAW1–41 ,

Me t h y l oba c t e r i um phy l l o s p hae r a e HHS2–67 ,

Me t h y l o b a c t e r i um r a d i o t o l e r a n s HHS1 – 4 5 ,

Methylobacterium radiotolerans IHD-35, Methylobacterium

sp . ABR-48 , Methy lobac t e r i um sp . CBMB20 ,

Methylobacterium sp. Mb10, Methylobacterium sp.

NIAW2–37, Methylobacter ium sp. THD-35 and

Methylobacterium zatmanii MS4 (Chanratana et al. 2017;

Ivanova et al. 2001; Meena et al. 2012; Omer et al. 2004;

Pattnaik et al. 2017; Trotsenko et al. 2001; Verma et al. 2015).

Ivanova et al. (2001) have reported the isolation of obligate

and facultative methylotrophic bacteria, having ability to

Table 2 Genome sequencing of methylotrophs isolated from diverse habitats worldwide

Methylotrophs Size (Mb) GC% Number of Proteins Number of Genes Reference

Methylobacillus flagellatus KT 2.97 55.7 2715 2815 NCBI

Methylobacillus glycogenes JCM 2850 3.25 53.4 2433 634 NCBI

Methylobacillus rhizosphaerae Ca-68 2.37 52.4 2277 2356 NCBI

Methylobacterium aquaticumMA-22A 5.35 71.1 4674 4913 Tani et al. (2015)

Methylobacterium brachiatum 3.1 M4 5.81 69.8 5511 5583 NCBI

Methylobacterium extorquens CM4 5.78 68.2 5156 5400 Marx et al. (2012)

Methylobacterium frigidaeris IER25–16 6.4 70.5 6433 6964 NCBI

Methylobacterium gossipiicola Gh-105 4.52 68.7 4224 4291 NCBI

Methylobacterium indicum SE2.11 6.93 70.5 5677 6404 Chaudhry et al. (2016)

Methylobacterium mesophilicum SR1.6/6 6.21 69.5 5945 6052 Marinho Almeida et al. (2013)

Methylobacterium nodulans ORS 2060 7.77 68.9 7020 7471 Marx et al. (2012)

Methylobacterium oryzae 6.29 69.8 5530 5771 Kwak et al. (2014)

Methylobacterium phyllosphaerae CBMB27 6.08 69.8 5355 5548 NCBI

Methylobacterium phyllostachyos BL47 6.02 68.7 5790 5863 NCBI

Methylobacterium platani PMB02 7.02 71.1 6062 6402 NCBI

Methylobacterium populi BJ001 5.8 69.4 5240 5427 Van Aken et al. (2004)

Methylobacterium pseudosasicola BL36 6.85 68.4 6795 6870 NCBI

Methylobacterium radiotolerans JCM 2831 6.08 71.5 5600 5756 Eevers et al. (2015)

Methylobacterium rhodinum JCM 2811 3.82 67.9 – – NCBI

Methylobacterium salsuginis CC 1.6474 5.32 69.6 5012 5082 NCBI

Methylobacterium sp. AMS5 5.44 68.5 4670 4917 Minami et al. (2016)

Methylobacterium tarhaniae DSM 25844 6.74 70.4 5746 6174 NCBI

Methylobacterium thiocyanatum 3.9 67.3 – – NCBI

Methylobacterium variabile DSM 16961 7.43 70.7 6441 6913 NCBI

Methylobacterium zatmanii 1.870 47.91 – – NCBI

Methylocapsa acidiphila B2 3.92 61.9 3520 3656 NCBI

Methylocapsa aurea KYG T 0.7 61.3 647 669 NCBI

Methylocapsa palsarum NE2 4.11 61.8 3820 3885 NCBI

Methyloferula stellata AR4 4.24 59.6 3877 3961 Dedysh et al. (2015b)

Methylotenera mobilis JLW8 2.55 45.5 2326 2396 McTaggart et al. (2015)

Methylotenera versatilis 301 3.06 42.6 2762 2842 McTaggart et al. (2015)

Methylovorus glucosetrophus SIP3–4 3 54.9 2795 2867 Lapidus et al. (2011)

Biologia (2019) 74:287–308 295



produce plant growth promoter IAA (3–100 μg/mL). Omer

et al. (2004) reported the presence of IAA in supernatants of

PPFMs microbial cultures, three out of the 16 isolates tested

showed a positive reaction in a colorimetric assay. The pres-

ence was further unambiguously confirmed by high-

performance liquid chromatography in combination with

NMR. The IAA production was significantly stimulated by

L-tryptophan. These results prove that PPFM bacteria are able

to produce the plant hormone IAA.

Pink-pigmented facultative methylotrophs are preva-

lent aerobic bacteria colonizing the phyllosphere of var-

ious plant species (Pattnaik et al. 2017). PPFMs have

the ability to utilize plant-derived methanol as an energy

substrate when plants are being colonized under stress.

PPFMs were isolated from the phyllosphere of peach

(Prunus persica L.) and strawberry (Fragaria ananassa

L.) by the leaf imprint method. The 16S rRNA gene

sequences demonstrated that the isolates MP1 and MS4 were

Methylobacterium extorquens andMethylobacterium zatmanii,

respectively. High-performance thin-layer chromatographic

analysis indicated production of indole acetic acid by

M. extorquens MP1 and M. zatmanii MS4. The amount of

IAA produced was 10.353 and 8.473 μg·mL−1 for

M. extorquens MP1 and M. zatmanii MS4, respectively. The

increased production of IAA and subsequent enhancement in

growth-promoting traits indicates that methylotrophs from di-

verse plant species can be used to improve early plant develop-

ment in tomato under controlled conditions.

Table 3 Stress adaptive methylotrophs with multifarious PGP attributes for alleviation of diverse abiotic stresses in plants (P- Phosphate solubilisation;

IAA- Indol acetic Acid production; Sid- Siderophores production; GA-Gibberellic acid production; ACC- ACC deaminase production; N2F-N2

Fixation)

Methylotrophs P IAA Sid ACC GA N2F Reference

Methylobacillus arboreus Iva + – – – – – Agafonova et al. (2013)

Methylobacterium extorquens G10 + – – – – – Agafonova et al. (2013)

Methylobacterium extorquens IIWP-43 + + + – – – Verma et al. (2014)

Methylobacterium extorquensMP1 – + – – – – Pattnaik et al. (2017)

Methylobacterium fujisawaense – – – + – – Madhaiyan et al. (2006a)

Methylobacterium lusitanum MSF 32 + – – – – – Jayashree et al. (2011b)

Methylobacterium mesophilicum AR5.1 – – + – – – Lacava et al. (2008)

Methylobacterium mesophilicum B-2143 – + – – + Ivanova et al. (2001)

Methylobacterium mesophilicum HHS1–36 – + + + + Verma et al. (2015)

Methylobacterium mesophilicum IIWP-45 + + + – – – Verma et al. (2014)

Methylobacterium mesophilicum NIAW1–41 + + + + – – Verma et al. (2016b)

Methylobacterium nodulans 2060 T – – – – – + Jourand et al. (2004)

Methylobacterium oryzae CBMB20 – – – + – – Chinnadurai et al. (2009)

Methylobacterium oryzae CBMB20T – – – + – – Madhaiyan et al. (2007a)

Methylobacterium phyllosphaerae HHS2–67 – + + + + – Verma et al. (2015)

Methylobacterium populi TNAU1 – – – + – – Raja et al. (2008)

Methylobacterium radiotolerans COLR1 – – – + – – Chinnadurai et al. (2009)

Methylobacterium radiotolerans HHS1–45 – + + + + – Verma et al. (2015)

Methylobacterium radiotolerans IHD-35 + + + – – – Verma et al. (2014)

Methylobacterium sp. ABR-48 – + – – – – Yadav et al. (2015a)

Methylobacterium sp. CBMB20 – + – – – + Lee et al. (2006)

Methylobacterium sp. HHS2–69 – – + + + Verma et al. (2015)

Methylobacterium sp. Mb10 – + – – – – Omer et al. (2004)

Methylobacterium sp. NIAW2–37 + + + + – Verma et al. (2016b)

Methylobacterium sp. THD-35 + + + – – + Verma et al. (2013)

Methylobacterium sp. WP1 – – + – Chinnadurai et al. (2009)

Methylobacterium zatmanii MS4 – + – – – – Pattnaik et al. (2017)

Methylopila musalis MUSA + – – – – – Agafonova et al. (2013)

Methylovorus menthalis MM + – – – – – Agafonova et al. (2013)
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Lacava et al. have reported the isolation ofMethylobacterium

spp., as endophyte from citrus plant; which canproduce iron

chelating compounds (Lacava et al. 2008). The Fe-chelating

compounds production of Methylobacterium strains were tested

using chromeazurol agar assay test (CAS), Csáky test

(hydroxamate-type) and Arnow test (catechol-type). All 37

strains of Methylobacterium sp. tested were CAS-positive for

Fe-chelating compounds production.Methylobacterium sp. pro-

duced hydroxamate-type, but not catechol-type siderophores.

In vitro growth of Xfp was stimulated by the presence of super-

natant siderophores of endophytic Methylobacterium

mesophilicum. A number of studies have been reported mention-

ing the siderophores production by methylotrophic bacteria such

as Methylobacterium extorquens IIWP-43, Methylobacterium

mesophilicum AR5.1, Methylobacterium mesophilicum HHS1–

36 , Methy lobac t e r ium mesoph i l i cum I IWP-45 ,

Me t h y l o ba c t e r i um me soph i l i c um NIAW1–41 ,

Me th y l o ba c t e r i um phy l l o s p ha e ra e HHS2–67 ,

Methylobacterium radiotolerans HHS1–45, Methylobacterium

radiotolerans IHD-35, Methylobacterium sp. HHS2–69,

Methylobacterium sp. NIAW2–37and Methylobacterium sp.

THD-35 (Lacava et al. 2008; Verma et al. 2014, 2016b, 2015).

N2-fixation by methylotrophic microbes

Nitrogen is the major limiting factor for plant growth, the

application of N2-fixing microbes as biofertilizers has

emerged as one of the most efficient and environmentally

sustainable methods for increasing the growth and yield of

crop plants under the natural and abiotic stress conditions.

N2-fixation by methylotrophic microbes is one of the possible

biological alternatives to N-fertilizers and could lead to more

productive and sustainable agriculture and act as ecofriendly

technology. Many plant associated methylotrophs have been

reported to fix N2 for availability to the host plants. A variety

of nitrogen fixing methylotrophs Methylobacterium

mesophilicum B-2143, Methylobacterium nodulans 2060 T,

Methylobacterium sp. CBMB20 and Methylobacterium sp.

THD-35 have been isolated from the rhizosphere of various

crops, which contribute fixed nitrogen to the associated plants

(Jourand et al. 2004; Lee et al. 2006; Madhaiyan et al. 2015,

2014; Raja et al. 2006; Rekadwad 2014; Sy et al. 2001).

Sy et al. (2001) isolated N2-fixing Methylobacterium

nodulans a facultative methylotroph fromCrotalaria legumes.

Rekadwad (2014), isolated N2- fixing methylotrophs from

mud near hot springs, Unkeshwar, Maharashtra, India and

which has been identified asMethylobacterium organophilum

using morphological and biochemical tests. The isolated

methylotrophic bacteria were found to enhanced plant growth

and yield when inoculated with Vigna radiate. Raja et al.

(2006), reported 11 nitrogen fixing methylotrophic microbes

out of 250 Methylobacterium studied. In another study by

Madhaiyan et al. (2014), Methylobacterium sp. L2–4 is

reported as nitrogen fixing Methylobacterium isolated from

leaf Jatropha curcas.

P-solubilization

Phosphorus (P) is major essential macronutrients for plant

growth and development. The Methylotrophs have capabili-

ties to solubilise inorganic form of soil P and make it available

to the host plants. Some methylotrophic bacteria can convert

insoluble phosphorus to soluble orthophosphate and make

available to the plants in rhizosphere region (Kumar et al.

2016). The rhizospheric methylotrophic microbial communi-

ties possessing P-solubilizing attributes could be used as bio-

inoculants or biofertilizers and act as ecofriendly bioresources

for replacements of chemical phosphorus fertilizers. P-

solubilization by methylotrophic communities is common

PGP traits which help the crops for plant growth and devel-

opment under the normal as well as abiotic stress conditions.

Avast number of PGPmethylotrophs with P-solubilizing abil-

ity have been sorted out including the members such as

Methylobacillus arboreus Iva, Methylobacterium extorquens

G10 , Me th y l obac t e r i um ex t o rqu en s I IWP -43 ,

Methylobacterium lusitanum MSF 32, Methylobacterium

mesophilicum IIWP-45, Methylobacterium mesophilicum

NIAW1–41, Methylobacterium radiotolerans IHD-35,

Methylobacterium sp. NIAW2–37, Methylobacterium sp.

THD-35, Methylopila musalis MUSA and Methylovorus

menthalis MM (Agafonova et al. 2013; Jayashree et al.

2011b; Verma et al. 2013, 2014, 2016b). Microbial strains

solubilize Phosphorus, probably by producing the organic

acids such as acetate, ketogluconate, oxalate, citrate,

glycolate, succinate, gluconate, lactate and tartarate (Stella

and Halimi 2015; Yadav et al. 2015b).

P-solubilizing activity was found in 14 strains of plant-

associated aerobic methylobacteria belonging to the five gen-

era Methylophilus, Methylobacillus, Methylovorus,

Methylopila and Methylobacterium with 12 distinct species

Methylobacillus arboreus, Methylobacterium extorquens,

Methylobacterium extorquens, Methylobacterium nodulans,

Methylophilus flavus, Methylopila capsulata, Methylopila

capsulate, Methylopila musalis, Methylopila turkiensis,

Methylovorus fructose, Methylovorus mays, Methylovorus

menthalis (Agafonova et al. 2013). The growth of

Methylobacterium on medium with methanol as the carbon

and energy source and insoluble tricalcium phosphate as the

phosphorus source was accompanied by a decrease in pH due

to the accumulation of up to 7 mM formic acid as a methanol

oxidation intermediate and by release of 120–280 μM phos-

phate ions, which can be used by both bacteria and plants.

Thirteen PO4-solubilization PPFM isolates were reported

from Adyar and Cooum river, Chennai and forest soil

Tamilnadu, India (Jayashree et al. 2011b) and they were iden-

tified as Methylobacterium extorquens, Methylobacterium
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k omag a t a e , Me t h y l o b a c t e r i um g re g a n s , a n d

Methylobacterium organophilum. The higher phosphate solu-

bilization was observed in four strains 202 mg l−l by MSF 34,

279 mg l−l by Methylobacterium komagatae, 301 mg l−l by

MDW 80 and 415 mg l−l by MSF 32, after 7 days of

incubation.

In research by Verma et al. (2013), the acid tolerant

methylotrophic P-solubilizing bacteria have been isolated

from wheat growing in acidic soil of southern hill zone of

India and found that Methylobacterium sp. IARI-THD-35

and Methylobacterium radiotolerans IARI-THW-31 solubi-

lized 3.6.35 ± 1.0 and 21.35 ± 1.0 μg mg−1 day−1 respectively

under the abiotic stress of low pH. The Acid olerant

methylotrophic microbes may have application as bio-

inoculants or biofertilizers and biocontrol agents in crops

growing under acidic conditions. In another study by Verma

et al. (2014) the thermotolerant methylotrophic microbes have

been isolated fromwheat growing in sub-arid region as central

zone of India. The P-solubilizing attributes were found in

three Methylobacterium as Methylobacterium extorquens

I AR I - I IWP - 4 3 ( 2 3 . 6 ± 1 . 0 μ g mg − 1 d a y − 1 ) ,

Methylobacterium mesophilicum IARI-IIWP-45 (12.6 ±

1.5 μg mg−1 day−1) and Methylobacterium radiotolerans

IARI-IHD-35(14.6 ± 1.2 μg mg−1 day−1) under abiotic stress

of high temperature. These promising isolates showing a

range of useful PGP attributes may be explored for agricultur-

al applications. The biodiversity of wheat associated bacteria

were deciphered from peninsular zone of India for their po-

tential application for plant growth under the high temperature

conditions (Verma et al. 2016b). Among the 264 bacterial

isolates, twoMethylobacteriumwere found to solubilize phos-

phorus as Methylobacterium sp. IARI-NIAW2–37 (41.6 ±

0.1 mg L−1) and Methylobacterium mesophilicum IARI-

NIAW1–41(43.2 ± 1.1 mg L−1) isolated from wheat.

Alibrandi et al. (2018) isolated several Methylobacterium

exhibiting both PGP and antimicrobial activities from seed

endosphere of Anadenanthera colubrine. The isolates were

able to solubilize organic phosphate and can grow without

inducing a colour change, thus suggesting an enzymatic

mechanism of phosphate solubilisation. The activities have

been shown by four strains namely Methylobacterium

indicum SE2. 11, Methylobacterium extorquens IAM 12631,

Methy lobac ter ium hispanicum DSM 16372 and

Methylobacterium rhodesianum DSM 5687.

ACC deaminase activity

Ethylene is one of the most important plant hormones which is

usually found in the gaseous form and is produced endoge-

nously. It is efficient at low concentrations controlling various

activities such as growth, cellular metabolism and even senes-

cence. The methylotrophic bacteria possess an enzyme ACC

deaminase which converts ACC, the immediate precursor of

ethylene to α-ketobutyrate and ammonium thus lowering the

concentration of the ethylene during the stress conditions and

stimulating the growth of the plants. The ACC deaminase

activity has been reported in Methylobacterium fujisawaense

(Madhaiyan et al. 2006a), Methylobacterium mesophilicum

HHS1–36 (Verma et al. 2015), Methylobacterium

mesophi l icum NIAW1–41 (Verma et a l . 2016b) ,

Methylobacterium oryzae CBMB20 (Chinnadurai et al.

2009), Methylobacterium oryzae CBMB20T (Madhaiyan

et al. 2007a), Methylobacterium phyllosphaerae HHS2–67

(Verma et al. 2015), Methylobacterium populi TNAU1 (Raja

et al. 2008), Methylobacterium radiotolerans COLR1

(Chinnadurai et al. 2009), Methylobacterium radiotolerans

HHS1–45 (Verma et al. 2015), Methylobacterium sp.

HHS2–69 (Verma et al. 2015), Methylobacterium sp.

NIAW2–37 (Verma et al. 2016b) and Methylobacterium sp.

WP1 (Chinnadurai et al. 2009). Joe et al. (2014), reported

Azospirillum brasilense CW903 and Methylobacterium

oryzae CBMB20 showing ACC deaminase activity reduced

ethylene levels in plants. Rhizobial strains possessing ACC

deaminase activity have been known to be 40% more profi-

cient in forming nitrogen-fixing nodules as compared to

strains lacking this activity (Ma et al. 2004, 2003). The phy-

tohormone ethylene plays an important role in PGP and

development including fruit ripening, germination, leaf

and flower senescence and abscission, root-hair initia-

tion, nodulation and response to wide variety of stresses

(Abeles et al. 1992).

Madhaiyan et al. (2006a), reported the presence of ACC

deaminase inMethylobacterium fujisawaense and its lowering

of ethylene levels and promotion of root elongation in canola

seedlings under gnotobiotic conditions. Chinnadurai et al.

(2009), isolated epiphytic Methylobacterium radiotolerans

from rice and characterized for their PGP attributes of ACC

deaminase and its role in regulating plant ethylene level.

Foliar spray of ACC deaminase enhanced the shoot and root

length of rice under the gnotobiotic condition. The possible

interaction of the plant hormones auxin and ethylene and the

role of 1-aminocyclopropane-1-carboxylate (ACC) deami-

nase containing bacteria on ethylene production in canola

(Brassica campestris) in the presence of inhibitory concentra-

tions of growth regulators were investigated by Madhaiyan

et al. (2007b). In another research of Madhaiyan et al.

(2007a), A pink-pigmented, facultatively methylotrophic bac-

terium, strain CBMB20T, isolated from stem tissues of rice,

was analysed by a polyphasic approach. Verma et al. (2015),

isolated and characterized the ACC deaminase in

Methylobacterium mesophil icum IARI-HHS1–36,

Methylobacterium radiotolerans IARI-HHS1–45,

Me t h y l o b a c t e r i u m s p . I A R I - HH S 2 – 6 9 a n d

Methylobacterium phyllosphaerae IARI-HHS2–67 from

wheat (Triticum aestivum) from the northern hills zone of

India. Prombunchachai et al. (2017) evaluated the production
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of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase

enzyme from endophytic Methylobacterium radiotolerans

ED5–9. Activity of ACC deaminase enzyme was observed

at 365.05 ± 90.51 nmol of a-ketobutyrate/mg of protein/h.

The ACC deaminase determines the ability of bacteria to in-

crease the resistance of plants to various types of stress. The

genes of ACC deaminase (acdS) and the closely related en-

zyme D-cysteine desulfhydrase (dcyD) were searched in type

s t ra ins of var ious representa t ives of the genus

Methylobacterium by Ekimova et al. (2018).

Abiotic stress and microbial responses

Under stressed conditions, the microbes change their physiol-

ogy and metabolic activities according to the environment.

These environmental stimuli induce the methylotrophic phys-

iology in response to various stress environments. This is

therefore called as microbial stress responses (Boylan et al.

1993; Gaidenko and Price 1998). Biotic and abiotic factors

have major impact on a plant that lead to significant losses

in crop productivity. Several abiotic factors are responsible for

changes in environmental balance that ultimately affecting the

plant productivity. Agriculture sector is mostly affected by

numerous abiotic factors such as water stress, salinity stress,

temperature stress and drought stress. The microbial entities

present on earth are most abundant and fundamental living

system, present naturally in soil ecosystem. The microbial life

is affecting plant growth development as interacting with plant

as a part of their metabolism in soil. To fight against abiotic

stresses, microbial system associated with plants is providing

basic defence to plants combating diseases by providing es-

sential nutrients (Turner et al. 2013) (Fig. 4).

To avoid and to accommodate under abiotic stress condi-

tion, plants are fighting with their intrinsic metabolic activities

for the improvement of plant growth and development.

Moreover, microorganisms are those cosmopolitan natural

inhabitants, helping plants to mitigate abiotic stresses by ex-

ploring their metabolic capabilities. In the natural ecosystem,

microbial interaction with plant is beneficial that enhances the

local and systemic metabolic mechanisms providing strength

to plant system under unfavourable conditions. This beneficial

interaction comprises a very tedious plant cellular mechanism.

A number of molecular and biochemical approaches are being

used to resolve and to understand the complex pathways and

processes inside the cell. The understanding of complex cel-

lular processes along with physiological aspects provides the

interpretation of plant-microbe association and defence mech-

anism against abiotic stresses. Further it is required to look

into deeper insights to understand the mitigation mechanism

of abiotic stresses in crop plants for their translation in en-

hance crop productivity. This is achieved by various ‘multi-

omics’ approaches such as genomics, proteomics, transcripto-

mics and metabolomic studies on crop-microbe interaction

and their impact on external environment (Meena et al.

2017). Microbial system interacting with plants induces vari-

ous local and systemic responses, triggering plant metabolic

activities to sustain and to accommodate them under

unfavourable abiotic stress condition (Nguyen et al. 2016).

Apart from epiphytic microorganisms, endophytic bacteria

and fungi are also reported to survive in extreme climatic con-

dition within healthy crop plants inside the tissues and enhance

plant growth and development under stress environment such

as drought, salinity, heat and nutrient deficient environment

(Fig. 4). The endophytic microbial communities are reported

to utilise their molecular mechanism for increasing stress toler-

ance along with antioxidant activities like reactive oxygen spe-

cies scavenging (Rana et al. 2018; Lata et al. 2018).

Salt stress tolerance and mitigation

One very important group of methylotrophs i.e. PPFM is re-

ported to survive in extreme saline environment and

colonization of methylobacterium strain with plant root was

Fig. 4 Abiotic stress mitigation

by methylotrophic bacterial

community
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analysed. Egamberdieva et al. (2015) has shown that

Methylotrophic strain Methylobacterium mesophilicum has

the ability to survive in higher saline condition and was able

to colonize plant roots and shoot under extreme salt and

drought environment. In a gnotobiotic sand system, the surviv-

al of bacterial strain along with different salt concentrations

added was investigated and analysed in a pot experiment.

Even in saline soil, Methylobacterium mesophilicum strain

was well enough to colonize plant root and shoot. In salt-free

environment the bacterial population was observed to be 6.4 ×

104 while under saline environment it was found to be 2.6 ×

104 CFU/g root. In the study, theMethylobacterium strain was

found to be antibiotic resistant also and that may be a probable

reason for facilitating microbial colonization with plants such

as cucumber, tomato and paprika (Egamberdieva et al. 2015).

In a very interesting report, Gourion et al. (2008) demon-

strated the necessity of PhyR (for phyllosphere-induced regu-

lator) coding gene expression in Methylobacterium

extorquens AM1 for the stress tolerance of most of the plants

under multiple stress conditions such as oxidative stress, os-

motic stress, drought stress water stress and others. They

emphasised that during Methylobacterium-plant interaction

in various stress environment, the protein coding PhyR gene

is synthesized more that is facilitating the microbial coloniza-

tionwith the plant. This microbial colonization further induces

the tolerance in plant cells by triggering several protecting

metabolic machinery (Gourion et al. 2008). During induction

of physiological pathways inside the plants, several proteins

were expressed and synthesised such as catalase (KatA),

lactoylglutathione lyase (GloA), a heat shock protein

(Hsp20) and DNA protection protein (Dps).

A tolerance towards acidic environment was observed by

Dedysh et al. (2004), which showed the isolation and identi-

fication of three different methanotrophic bacterial strains

(T4T, TCh1 and TY1). After molecular characterization these

acid tolerant methylotrophic strains were identified as

Methylocella sp., Methylocella palustris and Methylocella

silvestris, respectively. Out of these three, first strain T4T

was reported a novel strain as Methylocella tundra isolated

from Sphagnum tundra peatlands in acidic environment

(Table 4).

One of the earlier investigations reported extremophilic

bacteria from sediment samples of soda lake Magadi in

Kenya and the chloride–sulfate lakes in Kulunda Steppe

(Russia). Study reported the isolation and identification of

halophilic and salt tolerant obligate methylotrophic strain

(Sorokin et al. 2007). This obligate methylotrophic strain

was declared as a novel strain Methylohalomonas lacus gen.

nov., sp. nov., HMT 1T. From the sediment, two other restrict-

ed facultative methylotrophic strains (AMT 1T and AMT 3)

were obtained that were identified as a member of family

Ectothiorhodospiraceae.

For the sustainable agriculture system, various PGP mi-

crobes are being utilized since several years back (Kumar

et al. 2015a, b, 2016; Madhaiyan et al. 2011; Yadav and

Saxena 2018). In the recent investigation, it was found that

the PGP methylotrophic strain Methylobacterium oryzae

CBMB20 was able to tolerate salt stress and desiccation, heat,

UV irradiation, different temperature regimes, oxidative

stress, starvation condition. In exposure to various NaCl con-

centrations, the ACC deaminase activity was also observed

along with gradual and drastic reduction in aggregated and

Table 4 Methylotrophs from

diverse sources and their

application in mitigation of

abiotic stresses in plants

Methylotrophs Stress Sources Reference

Methanotrophs Water Upland soil Von Fischer et al. (2009)

Methylobacterium extorquens Multiple Common Plants Gourion et al. (2008)

Methylobacterium mesophilicum Salt Tomato Egamberdieva et al. (2015)

Methylobacterium mesophilicum Drought Cucumber Egamberdieva et al. (2015)

Methylobacterium oryzae Salt Paddy field Chanratana et al. (2017)

Methylobacterium sp. Drought Coastal sage Irvine et al. (2012)

Methylocella tundrae pH Tundra Peatlands Dedysh et al. (2004)

Methylomonas lacus Salt Hypersaline lake Sorokin et al. (2007)

Methylonatrum kenyense Salt Hypersaline lake Sorokin et al. (2007)

Methylosinus trichosporium Water Forest soil Schnell and King (1996)

Methylomonas rubra Water Forest soil Schnell and King (1996)

PPFMs Drought Tomato plant Chanratana et al. (2017)

PPFMs Drought Tomato plant Sivakumar et al. (2017)

Type I, II methanotrophs Drought Paddy field Collet et al. (2015)

Type II methanotrophs Water Sphagnum mosses Putkinen et al. (2012)
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non-aggregated methylotrophic bacterial cells over increased

salt concentrations (Chanratana et al. 2017).

Drought stress tolerance and mitigation

A major abiotic stress i.e. drought is considered as a great

challenge for the growth and development of crop plants,

inhibiting the proper seed germination and seedling growth

under drought condition. Drought is considered as a limiting

factor for the growth and development of crop plants in dry

ecosystem (Brown et al. 1985; Daneshian and Zare 2005).

Several study reported the involvement of bacterial commu-

nities (specially plant growth promoting bacteria) in allevia-

tion of drought stress (Saikia et al. 2018; Ngumbi and

Kloepper 2016; Yadav and Yadav 2018a, b). Like other bac-

terial communities, methylotrophs are very important group of

microbes alleviating drought stress and facilitating proper

plant growth and development.

The genus Methylobacterium is represented by a subpop-

ulation of methylotrophs, PPFMs (Pink pigmented facultative

methylotrophs) (Green and Bousfield 1983) and this subpop-

ulation is very peculiar group of bacteria mitigating the

unfavourable and adverse abiotic stress such as drought stress

in agriculture. The application of PPFMs improves the plant

growth and development (Hayat et al. 2010). They are very

helpful in making agriculture sustainable by protecting plants

against abiotic and biotic stresses (Van Loon et al. 1998).

In a recent research outcome, it was emphasized that PPFM

(Pink pigmented facultative methylotrophs) along with other

PGPR (Plant growth promoting rhizobacteria) helps in allevi-

ating drought stress in tomato plant in early growth stage.

Study reveals that, the co-inoculation of PGPR and PPFM

improves the seed germination related characters along with

stress tolerant index (Sivakumar et al. 2017). The PPFM (2%)

in combination with PGPR enhanced the antioxidant activity

also under drought stress. The impact of PPFMs and PGPRs

in alleviation of drought stress was analysed by conducting a

pot culture experiment with tomato plant varieties. The pot

experiment was carried out with foliar spray of different plant

growth regulators like salicylic acid, gibberellic acid and

PPFMs. Data suggested that PPFMs foliar spray was able to

mitigate drought stress significantly (Sivakumar et al. 2017).

In another study in California, the abiotic stress tolerance

ability of PPFM was elaborated in which PPFM abundance

was assessed in the root zone of five different invasive plant

species, ranging from 102 to 105CFU/g dry soil. In annual and

biennial plant species the PPFM abundance was found more

as compared to perennial plant species. The abundant root of

coastal sage scrub plants colonised with PPFMs was influ-

enced by surrounding and immediate plant communities. In

this natural ecosystem PPFMsmay be utilized as a good target

for the alleviation of abiotic and biotic stress (Irvine et al.

2012). From air dried paddy field soil several methanotrophs

were reported in a recent investigation (Collet et al. 2015). The

methanotrophic community and their resistance were exam-

ined in a dry paddy field soil stored for 1 to 18 years and their

drought tolerance was documented. In this investigation, Type

II methanotrophic community was found to be abundant as

compared to Type I methanotrophs (Collet et al. 2015).

Water stress tolerance and mitigation

The water stress tolerance was observed well enough by the

methanotrophic bacterial communities in several studies. One

of the investigations revealed the effect of water stress mitiga-

tion by Type II MOB (Methanotrophs oxidizing bacteria) in

Sphagnum mosses (Putkinen et al. 2012). It was concluded in

a study Van Winden et al. (2010) that peatland water

Table (WT) play an important factor influencing activity of

methane oxidizing bacterial community in mosses. Due to

natural fluctuation in WT level, the Sphagnum associated

methanotrophs also get fluctuated i.e. either deactivated or

reactivated. In the study it was emphasized that water serve

as an important route for the methanotroph abundance in

Sphagnum-methanotroph association. Peatland drainage can

change the methanotroph community composition (Jaatinen

et al. 2005) and Sphagnum coverage is reduced consequently

affecting Mosses-Methanotrophs association (Yrjälä et al.

2011). An experiment conducted in upland (well drained,

oxic) ecosystem described the decrease in methanotroph

activity, suggesting that the diminished activity of

methanotroph community resulted from water stress to

methanotrophs but presence of some resistance strains also

(Von Fischer et al. 2009).

In a chamber based approach soil methanotroph activity

was measured on the basis of measures of soil diffusivity.

The experiment showed that the rate of methane consumption

is proportional to change in methanotroph activity and

diffisivity. The field experiment over a seven week period

represents soil moisture fell from 38% to 15% water-filled

pore spaces, and diffusivity doubled as the larger soil pores

drained of water. However, methane consumption was re-

duced by 40%, following a huge decrease (about 90%) in

methanotroph activity, suggesting that the decline in

methanotroph activity resulted from water stress to

methanotrophs (Von Fischer et al. 2009). The fluctuations in

the atmospheric methane utilization rate were documented

under high water contents and low water contents situations.

At a 25% soil water content and with 20.2MPawater potential

the maximum atmospheric methane consumption was report-

ed. The uptake rates were highest at soil water content 38%

with 20.03 water potential in the presence of 200 ppm initial

methane. The experiment results showed that atmospheric and

elevated methane consumption was decreased with decrease

in water potential on addition of ionic solutes to soil. In soil

samples, the methane consumption was not seen effective but
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the methanotrophic isolates (Methylosinus trichosporium

from a freshwater peat and Methylomonas rubra from an in-

tertidal marine mudflat) have shown a great potential to sur-

vive and to consume methane in adverse water stress condi-

tion (Schnell and King 1996).

Conclusion and future scope

Generally, abiotic stresses have shown a reciprocal relation-

ship with bacterial survival but a number of bacterial entities

are reported to tolerate stresses bymanipulating its physiology

to accommodate. Here, in the current review it was

emphasised to show the ability of a particular group of bacte-

ria i.e. methylotrophs that how they cope with the stresses in

the environment and how they can be utilised further as

bioinoculants. Under abiotic stress condition such as salt

stress, physiological changes occur inside the methylotrophic

cells such as increased extracellular polysachharides produc-

tion, increased cell hydrohobocity, formation of biofilm and

accumulation of osmolytes like proline. The changes facilitate

the growth of methylotrophs in several harsh environments.

The methanotrophic community comprises methanotrophs

Type I and methanotrophs Type II methylotrophs, actively

reported to tolerate stresses like drought and water.

Interestingly, different methanotrophs were reported from

the soil samples of a barren paddy field. This review is em-

phasizing not only the diversity of abiotic stress tolerant

methylotrophic community but also their exploitation and ap-

plication in future for the sustainability.
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