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Abstract: The present study investigated the distribution status and biodiversity of Trichoderma
species surveyed from coffee rhizosphere soil samples from Ethiopia and their potential for biocontrol
of coffee wilt disease (CWD) caused by Fusarium xylarioides. Trichoderma isolates were identified
based on molecular approaches and morphological characteristics followed by biodiversity analysis
using different biodiversity indices. The antagonistic potential of Trichoderma isolates was evaluated
against F. xylarioides using the dual confrontation technique and agar diffusion bioassays. A relatively
high diversity of species was observed, including 16 taxa and 11 undescribed isolates. Trichoderma
asperellum, T. asperelloides and T. longibrachiatum were classified as abundant species, with dominance
(Y) values of 0.062, 0.056 and 0.034, respectively. Trichoderma asperellum was the most abundant
species (comprising 39.6% of all isolates) in all investigated coffee ecosystems. Shannon’s biodiversity
index (H), the evenness (E), Simpson’s biodiversity index (D) and the abundance index (J) were
calculated for each coffee ecosystem, revealing that species diversity and evenness were highest in
the Jimma zone (H = 1.97, E = 0.76, D = 0.91, J = 2.73). The average diversity values for Trichoderma
species originating from the coffee ecosystem were H = 1.77, D = 0.7, E = 0.75 and J = 2.4. In vitro
confrontation experiments revealed that T. asperellum AU131 and T. longibrachiatum AU158 reduced
the mycelial growth of F. xylarioides by over 80%. The potential use of these Trichoderma species for
disease management of F. xylarioides and to reduce its impact on coffee cultivation is discussed in
relation to Ethiopia’s ongoing coffee wilt disease crisis.

Keywords: bioassays; biodiversity indices; coffee ecosystem; Fusarium xylarioides; Trichoderma species

1. Introduction

Trichoderma species are widely found in different soil types, ecosystems and climatic
zones and categorized based on their metabolic, physiological and genetic diversity fea-
tures [1]. They are economically significant because of their functions as primary decom-
posers, producers of antimicrobial compounds and enzymes, and are used as biocontrol
agents against diverse phytopathogens [2–5]. Many research studies have revealed that Tri-
choderma species inhibit the growth of phytopathogens through mycoparasitism, antibiosis
and competition for niches and nutrients [6]. In addition, some Trichoderma species have
beneficial effects on plants resulting from plant growth promotion, solubilization of soil
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micro- and macronutrients [7] and activation of plant systemic resistance [8,9]. To date,
studies on Trichoderma diversity have mainly been conducted in Asia, Europe and Amer-
ica [10]; there have been few investigations into the diversity and distribution of Trichoderma
in Africa, with the exception of some studies targeting specific ecological niches [11,12]. In
particular, there has been only one published study on Trichoderma species inhabiting coffee
plants, which focused on species isolated from the rhizosphere of C. arabica in Ethiopia [13].
In contrast to the previous report, the present study covers a broad range of geographical
regions with three coffee production systems, viz., garden coffee, semi-forest coffee and
forest coffee.

Morphological characterization and distinction were first used by Rifai [14] and later
by Bisset [15–18] to investigate the diversity and evolution of Trichoderma species. However,
species identification and delimination based on morphology alone are very difficult, mak-
ing such approaches unreliable and subjective [19]. A more reliable approach is molecular
phylogenetic analysis based on DNA sequencing data; over 375 Trichoderma species have
been validly described and characterized in this way [20]. Reliable phylogenetic informa-
tion is also important for studying the diversity of secondary metabolites of Trichoderma
species. Consequently, molecular biological analysis is essential for the accurate identifica-
tion of Trichoderma [21]. The internal transcribed spacer (ITS) is a widely used “universal”
fungal molecular barcode [22,23]. However, it has low species resolution in the genus
Trichoderma [24]. Therefore, the sequence of translation elongation factor 1-alpha (TEF1-α)
was recommended as an alternative molecular barcode for the phylogenetic analysis of
this genus [24].

Trichoderma species stand out among rhizospheric microorganisms due to their high
biocontrol potential and their ability to facilitate nutrient uptake by plants while also
protecting phytopathogens [25]. To maximize their beneficial effects on crop plants, it is
essential to evaluate the functional and structural diversity of Trichoderma species found
in specific agro-climatic conditions. The rhizosphere of coffee exhibits particularly high
diversity with a wide range of putative Trichoderma species and is a hotspot for the evolution
of this genus [13]. Trichoderma species have been extensively studied and used as biocontrol
agents against diverse plant pathogens, including bacteria [26,27], fungi [28], oomycetes [29]
and nematodes [30] for many different crops and agro-climatic conditions [31].

Ethiopia is the center of origin for Arabica coffee (Coffea arabica L.) and hosts a large
germplasm diversity. It is also Africa’s largest coffee producer and the world’s fifth-largest
coffee exporter, with a forecasted production of 457,200 metric tons (MT) in 2021/2022,
having a value in excess of USD 900 million [32,33]. Coffee cultivation provides a livelihood
for around 25 million people [34,35], accounting for 25–30% of total export incomes [36].
In addition to the worldwide reputation of Ethiopia’s genetic resources, coffee plays a
major role in the national economy and the livelihoods of approximately 4.5 million coffee
farmers [37,38]. Despite its leading position in coffee cultivation in Africa, the Ethiopian
coffee sector is underachieving due to the rise of various fungal and bacterial diseases,
and these pressures are predicted to increase with climate change [39,40]. During the last
decade of the 20th century, coffee wilt disease (CWD) caused by Fusarium xylarioides became
the principal production constraint for Arabica coffee in Ethiopia, Uganda, the Democratic
Republic of the Congo (DRC) and Tanzania [40]. The yearly coffee yield loss due to CWD
in Ethiopia is estimated to be 30–40% [40–43]. CWD incidence is greatly affected by the
farming system, with much higher rates in garden and plantation coffee. CWD has been
conventionally managed by uprooting and burning the affected coffee plant and using
resistant varieties [44].

The potential use of Trichoderma species for plant pathogen control is now well-
documented, although this approach is largely unexploited for many diseases of tropical
perennial crops. Therefore, given the importance of coffee in Ethiopia’s national economy,
the damaging nature of CWD, the limited availability of resistant crop lines and the lack
of information on the biocontrol of CWD, a study on the potential of Trichoderma species
to suppress the growth of F. xylarioides is needed to identify new genomic resources for
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management of this pathogen. Screening the biodiversity of different coffee ecosystems
and the ecophysiology of Trichoderma species from a genomic perspective and analyzing
their diversity will provide important insights into the potential value of Trichoderma for
controlling CWD in the future.

The prospect of influencing coffee rhizospheres by inoculating potential Trichoderma
species to control CWD and enhancing coffee growth and health was studied substantially
under laboratory, greenhouse and field conditions (Mulatu A., unpublished data). However,
the reduced efficiency of biocontrol agents under field conditions is hindered due to their
ability to adapt to local biotic and abiotic environmental conditions. To understand this
phenomenon, it is necessary to study the biocontrol agents’ geographical distribution and
habitat preference in the rhizosphere. Hence, the present investigation was undertaken
to study the distribution and biodiversity patterns of Trichoderma species in major coffee-
growing regions of Ethiopia to assess their potential as biocontrol agents of CWD.

2. Materials and Methods
2.1. Collection of Soil Samples and Isolation of Trichoderma Species

Trichoderma isolates were collected from ten major Ethiopian coffee-growing areas
(Jimma, Kaffa, Benchi Maji, Sheka, Bunno Bedele, Bale, Sidama, Gedio, West Wollega and
West Guji) in different agro-climatic zones. Trichoderma isolates were obtained from coffee
rhizosphere soil gathered during surveys conducted between May 2016 and August 2017.
The surveys covered all major coffee-growing areas of Ethiopia’s southern, western and
southwestern regions. The upper surface soil litter (4–6 cm) was discarded during soil
collection, and 200 g soil samples were collected from a depth of approximately 10–15 cm.
Over 184 soil samples were obtained from 28 districts (categorized under 10 zones) along
the main roads (Figure 1 and Table S1). The soil samples were placed in sterile polyethylene
bags, transported to the laboratory and processed immediately. The strains were isolated
using Trichoderma Specific Medium (TSM) according to previously reported methods by
Gil et al. [45] and Saravanakumar et al. [46] and purified by subculturing on potato dextrose
agar (PDA). Fusarium xylarioides (DSM No. 62457, strain: IMB 11646), the causative agent of
coffee wilt disease [9,47,48], was used as a test pathogen to evaluate the biocontrol potential
of Trichoderma species.

2.2. Morphological Characteristics

The Trichoderma isolates were characterized based on their morphology by growing
them on PDA at 28 ± 2 ◦C for 5 days following the protocol described by Samuels and
Hebbar [49]. The Trichoderma colonies were visually observed to determine their color
(obverse and reverse), texture, margin and sporulation. All Trichoderma isolates were
classified and identified at the species level using morphological characteristics as suggested
by Rifai [31] and Leahy and Colwell [50]. For further experiments and long-term storage,
Trichoderma isolates were subcultured, and slants were prepared in cryovials overlaid with
20% glycerol and stored at −80 ◦C, respectively.

2.3. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was extracted according to Gontia-Mishra et al. (2014). Polymerase
chain reaction (PCR) amplification of the TEF1-α region was performed using EF2-EF1728M
primer following the conditions given by White et al. [51]. PCR amplifications were carried
out in a total reaction volume of 12.5 µL, including 0.25 µL of each primer, 1.25 µL of BSA,
6.25 of Taq polymerase (including dNTPs), 0.25 µL of genomic DNA (30 ng/µL); 0.25 µL
DMSO and 4 µL of sterile ultrapure water. PCR conditions for TEF1-α were 94 ◦C/2 min,
followed by nine cycles at 94 ◦C/35 s, 66 ◦C/55 s and 35 cycles at 94 ◦C/35 s, 56 ◦C/55 s
and 72 ◦C/1 min 30 s. PCR products were visualized by Gelred (Thermo Fisher Scientific,
Bremen, Germany) staining following electrophoresis of 4 µL of each product in 1% agarose
gel. The PCR products were sequenced by the Eurofins Sanger sequencing facility, Germany.
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Figure 1. Map of study areas and illustration of the geographical locations of districts from which rhizospheric soil samples were collected, Ethiopia. SNNP = 

South Nations and Nationalities Peoples region. 

Figure 1. Map of study areas and illustration of the geographical locations of districts from which rhizospheric soil samples were collected, Ethiopia. SNNP = South
Nations and Nationalities Peoples region.
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2.4. Phylogenetic Analysis

Consensus sequences were assembled from forward and reverse sequencing chro-
matograms using the CLC Main Workbench 8.1 software packages. TEF1-α contigs of all
isolates were compared to homologous sequences deposited in the NCBI GenBank database.
Sequences generated and used in the current study were deposited in this database (Table 1).
Sequences utilized from other studies were retrieved from the NCBI GenBank database for
use in our phylogenetic analyses. Sequence alignments were carried out using MUSCLE
as implemented in MEGA 10 [52]. Before phylogenetic analyses, the most appropriate
nucleotide substitution model for each locus was chosen using MRMODELTEST v.2126.
Finally, the maximum likelihood phylogenetic tree was constructed using MEGA 10 soft-
ware [53]. Maximum likelihood phylogenetic inference was used in this study, since it is
consistent on gapped multiple sequence alignments (MSAs), as long as substitution rates
across each edge were greater than zero. Maximum likelihood analyses were estimated
with nucleotide substitution of HKY + I + G model. Trichoderma species matching the
isolates obtained in this work were retrieved and used to construct the phylogenetic tree,
including two Nectria species as the outgroup. Nodal robustness was checked using the
bootstrap method, and phylogenetic robustness was evaluated using 1000 replicates. Only
sequences that matched published results identified through BLASTN searches with >97%
sequence identity and an e-value of zero were used.

Table 1. Identification, origin, NCBI Genbank accession numbers and isolation details of Trichoderma
species from coffee rhizospheric soil of Ethiopia.

Trichoderma Species Isolate ID Accession Number
(TEF1-α) District/Location Zone Coffee Ecosystem

Trichoderma hamatum AU2 MZ361591 Gera Jimma Semi-forest
Trichoderma asperellum AU3 MZ361592 Gera Jimma Semi-forest
Trichoderma asperellum AU6 MZ361593 Melko Jimma Semi-forest
Trichoderma asperellum AU8 MZ361594 Gera Jimma Semi-forest

Trichoderma viride AU9 MZ361595 Yeki Jimma Semi-forest
Trichoderma asperelloides AU10 MZ361596 Gera Jimma Semi-forest
Trichoderma asperelloides AU11 MZ361597 Gera Jimma Semi-forest
Trichoderma asperellum AU13 MZ361598 Gera Jimma Semi-forest

Trichoderma
longibrachiatum AU14 MZ361599 Gera Jimma Semi-forest

Trichoderma asperellum AU15 MZ361600 Yeki Sheka Semi-forest
Trichoderma hamatum AU19 MZ361601 Gera Jimma Semi-forest

Trichoderma asperellum AU21 MZ361602 Gera Jimma Semi-forest
Trichoderma asperellum AU22 MZ361603 Yeki Sheka Semi-forest
Trichoderma hamatum AU23 MZ361604 Gera Jimma Semi-forest

Trichoderma asperellum AU24 MZ361605 Odo Shakiso West Guji Garden Coffee
Trichoderma asperellum AU26 MZ361606 Odo Shakiso West Guji Garden Coffee

Trichoderma asperelloides AU28 MZ361607 Gera Jimma Garden Coffee
Trichoderma asperelloides AU29 MZ361608 Gera Jimma Garden Coffee

Trichoderma hamatum AU30 MZ361609 Shebedino Sidama Garden Coffee
Trichoderma

longibrachiatum AU32 MZ361610 Gera Jimma Garden Coffee

Trichoderma asperelloides AU34 MZ361611 Yeki Sheka Forest
Trichoderma asperellum AU37 MZ361612 Gera Jimma Forest
Trichoderma asperellum AU38 MZ361613 Yeki Sheka Forest
Trichoderma asperellum AU39 MZ361614 Gimbo Kaffa Forest

Trichoderma
longibrachiatum AU40 MZ361615 Gomma Jimma Forest

Trichoderma
brevicompactum AU41 MZ361615 Yeki Sheka Forest

Trichoderma asperellum AU42 MZ361615 Gomma Jimma Forest
Trichoderma asperellum AU44 MZ361618 Gomma Jimma Forest
Trichoderma asperellum AU46 MZ361619 Gomma Jimma Forest

Trichoderma asperelloides AU47 MZ361620 Chena Kaffa Forest
Trichoderma

longibrachiatum AU49 MZ361621 Andaracha Sheka Forest

Trichoderma hamatum AU50 MZ361622 Andaracha Sheka Forest
Trichoderma asperellum AU51 MZ361623 Andaracha Sheka Forest
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Table 1. Cont.

Trichoderma Species Isolate ID Accession Number
(TEF1-α) District/Location Zone Coffee Ecosystem

Trichoderma asperellum AU53 MZ361624 Andaracha Sheka Forest
Trichoderma asperelloides AU55 MZ361624 Mena Jimma Semi-forest
Trichoderma asperellum AU58 MZ361626 Gewata Kaffa Forest

Trichoderma bissettii AU59 MZ361627 Aleta Wondo Sidama Garden Coffee
Trichoderma asperelloides AU61 MZ361628 Gomma Kaffa Garden Coffee
Trichoderma asperellum AU69 MZ361629 Wonago Gedeo Garden Coffee

Trichoderma koningiopsis AU70 MZ361630 Wonago Gedeo Garden Coffee
Trichoderma asperellum AU71 MZ361631 Yirga cheffe Sidama Semi-forest

Trichoderma
longibrachiatum AU72 MZ361632 Yirga cheffe Gedeo Semi-forest

Trichoderma asperellum AU73 MZ361633 Gewata Kaffa Semi-forest
Trichoderma asperellum AU74 MZ361634 Aleta Wondo Sidama Semi-forest
Trichoderma asperellum AU75 MZ361635 Dale Sidama Garden
Trichoderma orientale AU77 MZ361636 Dale Sidama Garden

Trichoderma harzianum AU78 MZ361637 Gimbo Kaffa Forest
Trichoderma asperellum AU81 MZ361638 Haru West Wollega Forest
Trichoderma asperellum AU82 MZ361639 Sheko Benchi Maji Forest
Trichoderma harzianum AU84 MZ361640 Sheko Benchi Maji Forest

Trichoderma asperelloides AU85 MZ361641 Sheko Benchi Maji Forest
Trichoderma gamsii AU86 MZ361642 Sheko Benchi Maji Forest

Trichoderma harzianum AU87 MZ361643 Gera Jimma Forest
Trichoderma harzianum AU88 MZ361644 Gera Jimma Forest
Trichoderma asperellum AU91 MZ361645 Chena Kaffa Forest

Trichoderma asperelloides AU93 MZ361646 Chena Kaffa Semi-forest
Trichoderma asperelloides AU94 MZ361647 Chena Kaffa Semi-forest
Trichoderma asperellum AU95 MZ361648 Limmu Saka Jimma Semi-forest
Trichoderma asperellum AU97 MZ361649 Limmu Saka Jimma Garden Coffee

Trichoderma asperelloides AU98 MZ361650 Limmu Saka Jimma Garden Coffee
Trichoderma asperelloides AU99 MZ361651 Limmu Saka Jimma Garden Coffee
Trichoderma asperellum AU100 MZ361652 Limmu Saka Jimma Garden Coffee

Trichoderma asperelloides AU103 MZ361653 Limmu Saka Jimma Semi-forest
Trichoderma asperellum AU104 MZ361654 Geisha Kaffa Forest

Trichoderma aethiopicum AU106 MZ361655 Geisha Kaffa Forest
Trichoderma asperellum AU108 MZ361656 Yeki Sheka Semi-forest

Trichoderma
longibrachiatum AU109 MZ361657 Yeki Sheka Semi-forest

Trichoderma asperellum AU110 MZ361658 Yeki Sheka Semi-forest
Trichoderma viride AU112 MZ361659 Yeki Sheka Garden Coffee

Trichoderma
longibrachiatum AU114 MZ361660 Yeki Sheka Garden Coffee

Trichoderma asperellum AU115 MZ361661 Yeki Sheka Garden Coffee
Trichoderma citroviride AU116 MZ361662 Yeki Sheka Semi-forest

Trichoderma asperelloides AU118 MZ361663 Limmu Saka Jimma Semi-forest
Trichoderma asperellum AU122 MZ361664 Yeki Sheka Semi-forest

Trichoderma paratroviride AU123 MZ361665 Limmu Saka Jimma Semi-forest
Trichoderma

longibrachiatum AU125 MZ361666 Yayu Buno Bedele Forest

Trichoderma asperellum AU126 MZ361667 Yayu Buno Bedele Forest
Trichoderma asperellum AU129 MZ361668 Yayu Buno Bedele Forest
Trichoderma asperellum AU131 MZ361669 Gera Jimma Forest Coffee
Trichoderma asperellum AU133 MZ361670 Sheko Benchi Maji Semi-forest
Trichoderma asperellum AU134 MZ361671 Sheko Benchi Maji Semi-forest
Trichoderma asperellum AU135 MZ361672 Sheko Benchi Maji Semi-forest

Trichoderma
longibrachiatum AU136 MZ361673 Sheko Benchi Maji Forest

Trichoderma
longibrachiatum AU138 MZ361674 Semien Benchi Benchi Maji Semi-forest

Trichoderma asperelloides AU139 MZ361675 Semein Benchi Benchi Maji Semi-forest
Trichoderma

longibrachiatum AU141 MZ361676 Semein Benchi Benchi Maji Semi-forest

Trichoderma
longibrachiatum AU143 MZ361677 Sheko Benchi Maji Semi-forest

Trichoderma asperelloides AU144 MZ361678 Sheko Benchi Maji Forest
Trichoderma reesei AU145 MZ361679 Sheko Benchi Maji Forest

Trichoderma harzianum AU148 MZ361680 Haru West Wollega Forest
Trichoderma asperelloides AU149 MZ361681 Haru West Wollega Semi-forest

Trichoderma gamsii AU150 MZ361682 Haru West Wollega Semi-forest
Trichoderma asperelloides AU155 MZ361683 Delo Mena Bale Forest
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Table 1. Cont.

Trichoderma Species Isolate ID Accession Number
(TEF1-α) District/Location Zone Coffee Ecosystem

Trichoderma asperelloides AU158 MZ361684 Yeki Sheka Semi-forest
Trichoderma

longibrachiatum AU161 MZ361685 Berbere Bale Forest

Trichoderma asperelloides AU162 MZ361686 Kercha West Guji Garden Coffee
Trichoderma

longibrachiatum AU164 MZ361687 Jarso West Wollega Semi-forest

Trichoderma asperellum AU165 MZ361688 Jarso West Wollega Semi-forest
Trichoderma erinaceum AU166 MZ361689 Aira Guliso West Wollega Semi-forest
Trichoderma asperellum AU167 MZ361690 Semein Benchi Benchi Maji Semi-forest
Trichoderma asperellum AU169 MZ361691 Kercha West Guji Garden Coffee
Trichoderma asperellum AU171 MZ361692 Aira Guliso West Wollega Garden Coffee

Trichoderma
longibrachiatum AU173 MZ361693 Bule Hora West Guji Garden Coffee

Trichoderma asperellum AU174 MZ361694 Bule Hora West Guji Garden Coffee
Trichoderma asperellum AU175 MZ361695 Bedele Buno Bedele Forest

2.5. Diversity Analysis of Trichoderma Species

The degree of dominance index (Y) was used to quantitatively categorize the habitat
preference of Trichoderma isolates in the coffee rhizosphere. The dominance values were
computed using the following equation:

Y =
ni ∗ fi

N

Here, “N” is the total number of Trichoderma isolates, “ni” is the number of the genus
(species) i, and “fi” is the frequency with which genus (species) i appears in the samples.
The species i is dominant when Y > 0.02 [54]. Species richness (the total number of
species), abundance (the sum of the number of isolates of each species) and diversity were
evaluated using the Simpson biodiversity index (D) [55], Shannon’s biodiversity index
(H) [56], Pielou species evenness index (E) [57] and Margalef’s abundance index (J) [58].
These ecological indices were used to quantitatively describe the diversity and habitat
preference of Trichoderma species in different coffee ecosystems and major coffee-growing
zones of Ethiopia.

Trichoderma species diversity, defined as the product of the evenness and the number
of species, was evaluated using the Shannon biodiversity index (H) [56,59]. Simpson’s
diversity index was calculated to assess the dominance of individual species [55,60]. This
index shows the probability that two species selected randomly from a given ecosystem
will belong to different species categories. Margalef’s abundance index was used to eval-
uate the species richness while the Pielou index was used to determine the evenness of
the Trichoderma population. The biological diversity indices were calculated using the
following equations:

D =
1

Σs
i−1P2

i
, P2

i =
ni(ni − 1)
N(N − 1)

H =
N

∑
i=1

Pi ln Pi, Pi =
ni
N

E =
H

Hmax
, Hmax = lnS

J =
S − 1
ln N

Here, “S” is the total number of Trichoderma species, “N” is the sum of all Trichoderma
species isolates, “Pi” is the relative quantity of Trichoderma species “i’, and “ni” is the
number of isolates of Trichoderma species “i’.
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2.6. In Vitro Bioassay

In the present study, a total of 175 Trichoderma isolates were tested against F. xylarioides
according to the method of Dennis and Webster [61]. Briefly, mycelial disks (5 mm in
diameter) from seven-day-old growing edges of Trichoderma and F. xylarioides were put on
opposite sides of a PDA Petri dish (3 cm away from each other). Control plates were also
prepared without a Trichoderma disk. The culture plates were incubated at 25 ◦C with a 12 h
photoperiod for 7 days. Following the methodology of [62], the percentage of colonization
(%C) of each Trichoderma isolate was computed using the formula:

%C =

(
DT − DE

DE

)
∗ 100

Here, DT is the distance between colonies after mycelial growth stabilizes and DE is
the initial distance between the two mycelial discs.

In brief, Trichoderma species (1 × 107 spores/mL) were inoculated into 1 L of PDB
at pH 7.2 and cultured for 21 days at 28 ◦C. After the incubation, the liquid culture was
subjected to ethyl acetate extraction and the crude extract was concentrated using a rotary
evaporator. Finally, the concentrated extracts were dissolved in methanol for further
partial purification using Sephadex LH-20. A total of 25 fractions were collected from the
chromatographic column and subjected to agar diffusion assay against F. xylarioides on
King B medium.

2.7. Statistical Data Analysis

Experimental results were analyzed using one-way analysis of variance (ANOVA)
with SPSS, version 25. All statistical analyses of ecological indices used to evaluate the
biodiversity of Trichoderma species were performed using Microsoft Excel 2019 and R
software. The significance of differences between the mean results for treatments was
evaluated using the Highest Significant Difference (HSD) based on the Tukey test with a
significance threshold of p ≤ 0.05.

3. Results
3.1. Isolation and Morphological Characterization of Trichoderma Isolates

Trichoderma isolates were collected from the coffee rhizosphere conducted in south-
ern, western and southwestern parts of Ethiopia. A total of 175 Trichoderma isolates were
obtained from 184 rhizospheric soil samples collected from 28 districts distributed across
different agroclimatic zones with soil pH ranging from 4.3 to 8.2. They were morphologi-
cally characterized by culturing on PDA plates to capture a full-scale Trichoderma diversity
and distribution profile. Macroscopic morphological analysis revealed colonies with fast
mycelial growth, concentric halos and floccose or compact surfaces on the culture medium
(Figure 2). They were found to form colonies with white mycelia, becoming green when
forming conidia and conidiophores. The mycelium, initially a white color, acquired green
or yellow shades, or remained white, due to the abundant production of conidia and
secondary metabolites. Concentric rings on culture media were observed for some isolates.
Morphological variants, including phialides, conidial arrangements and conidial structures,
were also observed among the Trichoderma isolates. Microscopic analysis revealed plentiful
sporulation of conidia originating from verticillate conidiophores. The conidia of most Tri-
choderma isolates were ellipsoidal, globose and subglobose, with the apex broadly rounded
and the base more narrowly rounded (Figure 2). However, morphological characteristics
were insufficient to distinguish between different Trichoderma isolates. Therefore, molec-
ular identification was needed to differentiate the complex and overlapping Trichoderma
isolates.



Crops 2022, 2 128

Crops 2022, 2, FOR PEER REVIEW 10 
 

 

 
Figure 2. Morphological characteristics of Trichoderma species colony grown on PDA: T. asperellum (1), T. asperelloides (2), T. longibrachiatum (3), T. harzianum (4), 

T. aethiopicum (5), T. citrinoviride (6), T. hamatum (7), T. reesei (8), T. vi ride (9), T. bissettii (10), T. brevicompactum (11), T. erinaceum (12), T. gamsii (13), T. koningiopsis 

(14), T. orientale (15) and T. paratroviride (16); x = structure of conidiophores. Conidiophores were observed at 400× magnification. 

Figure 2. Morphological characteristics of Trichoderma species colony grown on PDA: T. asperellum (1), T. asperelloides (2), T. longibrachiatum (3), T. harzianum (4), T.
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orientale (15) and T. paratroviride (16); x = structure of conidiophores. Conidiophores were observed at 400× magnification.
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3.2. Molecular Identification of Trichoderma Isolates

In total, 164 isolates of Trichoderma were identified at the species level based on their
TEF1-α sequences and morphological analysis. The isolates were assigned to 16 putative
species of Trichoderma, namely T. asperellum (64 isolates), T. asperelloides (32), T. longibrachia-
tum (20), T. harzianum (8), T. aethiopicum (6), T. hamatum (6), T. viride (4), T. reesei (4), T.
koningiopsis (3), T. brevicompactum (3), T. citrinoviride (3), T. gamsii (3), T. erinaceum (2), T.
orientale (2), T. bissettii (3) and T. paratroviride (1) (Figure 3 and Supplementary Table S1).
These results represent the first observations for the following nine Trichoderma species in
Ethiopia: T. asperellum, T. bissettii, T. brevicompactum, T. citrinoviride, T. erinaceum, T. orientale,
T. paratroviride, T. reesei and T. viride. In addition, 11 undescribed and different isolates
could not be matched to any other sequence in Genbank, demonstrating the considerable
unresolved biodiversity of Trichoderma in the coffee ecosystem.
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Figure 3. Trichoderma species isolated and identified from coffee rhizospheric soil samples; the
numbers in parentheses was the percentage of each Trichoderma species.

3.3. Phylogenetic Analysis

The TEF1-α phylogenetic analysis indicated that the 164 Trichoderma isolates were
grouped into 16 highly supported monophyletic groups on the phylogeny. The TEF1-α
phylogenetic analysis and the resulting maximum likelihood tree achieved good resolution
for most of the analyzed isolates and effectively discriminated between members of the
detected clades. Five basic clades were categorized following the identification manual
for Trichoderma, namely Brevicompactum, Longibrachiatum, Hamatum, Harzianum and Viride
(Figure 4). One hundred and two isolates were categorized into three known species
belonging to the clades Hamatum: T. asperellum, T. asperelloides and T. Hamatum, while fifteen
isolates were identified as T. orientale, T. koningiopsis, T. viride, T. erinaceum, T. paratroviride
and T. gamsii in the clade Viride. In addition, 36 isolates were identified as T. longibrachiatum,
T. aethiopicum, T. citroviride, T. bissettii and T. reesei in the clade Longibrachiatum. Eight isolates
were identified as T. harzianum in the clade Harzianum, and three isolates were grouped as
T. brevicompactum belonging to the clade Brevicompactum (Figure 4).



Crops 2022, 2 130

Crops 2022, 2, FOR PEER REVIEW 12 
 

 

Eight isolates were identified as T. harzianum in the clade Harzianum, and three isolates 

were grouped as T. brevicompactum belonging to the clade Brevicompactum (Figure 4).  

 

Figure 4. Phylogenetic tree constructed from maximum likelihood analysis of TEF1-α genes of 

Trichoderma. The TEF1-α nucleotide sequences were aligned with similar sequences from taxa of 

Trichoderma species available in the GenBank. The bootstrap scores are based on 1000 iterations. The 

scale bar represents 50 substitutions per nucleotide position. Sequences from this study were desig-

nated with isolate ID: AU. 

Figure 4. Phylogenetic tree constructed from maximum likelihood analysis of TEF1-α genes of
Trichoderma. The TEF1-α nucleotide sequences were aligned with similar sequences from taxa of
Trichoderma species available in the GenBank. The bootstrap scores are based on 1000 iterations.
The scale bar represents 50 substitutions per nucleotide position. Sequences from this study were
designated with isolate ID: AU.
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3.4. Biodiversity and Distribution of Trichoderma Isolates
3.4.1. Diversity Analysis of Trichoderma Species

The dominance value (Y) was 0.048 (>0.02), indicating that the genus Trichoderma was
dominant in coffee rhizosphere soil. T. asperellum, T. asperelloides and T. longibrachiatum
were classified as the principal species, with dominance (Y) values of 0.062, 0.056 and
0.034, respectively. The analyzed data were used to compute Simpson’s biodiversity index
(D), Shannon’s biodiversity index (H), evenness (E), and the abundance index (J) for each
coffee ecosystem and coffee-growing zone, as shown in Supplementary Table S1. The
highest species diversity and evenness (H = 1.97, E = 0.79, D = 0.81) were recorded for
the forest and semi-forest coffee ecosystems of Kaffa, Jimma and Bale. The Shannon and
Simpson diversity indices estimated for the West Guji and Bunno Bedele zones garden
coffee ecosystem showed that they had lower species diversity (H = 1.57, D = 0.7). The
calculated species abundance values were E = 2.71 for forest coffee, E = 2.64 for semi-forest
coffee and E = 2.14 for garden coffee. The average diversity values for Trichoderma species
originating from the coffee ecosystem were H = 1.77, D = 0.7, E = 0.75 and J = 2.4 (Table 2).
Simpson’s index and the evenness index were close to 1 except in the West Guji zone,
indicating a very high diversity of Trichoderma species in major coffee-growing areas of
Ethiopia. The numbers of species and isolates, and the dominant species of Trichoderma,
varied geographically (Table S2). These results reveal that the forest, semi-forest and garden
ecosystems had a high diversity of Trichoderma species. The rhizosphere of C. arabica in
Ethiopia thus hosts a large and highly diverse population of Trichoderma species.

Table 2. Univariate diversity indices analysis of Trichoderma isolates in different coffee ecosystems
and major coffee-growing zones of Ethiopia.

Ecological
Indices

Coffee Ecosystem Major Coffee-Growing Zones

Native
Forest

Semi-
Forest

Garden
Coffee Average Jimma Kaffa Bench

Maji Sheka Bunno
Bedale

West
Wollega

West
Guji Gedio Sidama Bale

Simpson
index (D) 0.81 0.81 0.7 0.76 0.91 0.94 0.83 0.82 0.7 0.64 0.53 0.9 0.8 0.87

Shannon’s
index (H) 1.97 1.96 1.57 1.77 1.97 1.82 1.7 1.83 0.75 0.94 1.29 1.33 1.54 1.89

Pielou
evenness
index (E)

0.79 0.79 0.71 0.75 0.76 0.95 0.87 0.83 0.86 0.72 0.68 0.96 0.86 0.97

Abundance
index (J) 2.71 2.64 2.14 2.4 2.73 2.58 1.97 2.49 1.24 1.95 1.17 1.86 2.09 2.6

3.4.2. Distribution of Trichoderma Species in Different Coffee-Growing Zones

Distribution and habitat preference analysis showed that Trichoderma species were
widely dispersed throughout different coffee production systems. The proportion and
composition of Trichoderma species varied among the sampled coffee-growing districts
and zones. The proportion of Trichoderma species obtained from the Jimma zone was the
highest (27%), followed by the Sheka zone (16%) and Bench Maji zone (13%); the lowest
proportion was obtained from the Bunno Bedele zone (3%) (Figure 5). Species richness
was highest in the Jimma zone (25 soil samples), for which 11 Trichoderma species were
identified, followed by the Sheka zone (9 species, 18 soil samples), whereas Bunno Bedele
had only 3 Trichoderma species. Among the identified isolates, T. asperellum (39.6%) and
T. asperelloides (28%) were the most abundant species, being found in all major coffee-
growing zones and districts of Ethiopia (Figure 5). Conversely, T. paratroviride was noted
only in soil samples collected from the Jimma zone. The number of Trichoderma species
declined going from the southwest to the south. The 11 known species identified in the
Jimma zone were T. asperellum, T. asperelloides, T. longibrachiatum, T. harzianum, T. aethiopicum,
T. citrinoviride, T. viride, T. reesei, T. koningiopsis, T. erinaceum and T. paratroviride. On the other
hand, Trichoderma species obtained from the Sheka zone were T. asperellum, T. asperelloides,
T. longibrachiatum, T. viride, T. hamatum, T. brevicompactum, T. koningiopsis, T. citrinoviride
and T. bissettii. T. asperellum and T. asperelloides were found in all major coffee-growing
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areas and were the most widely dispersed species. Another widely distributed species was
T. longibrachiatum, which was scattered in all zones except Kaffa. However, some species
were unique to one zone; for instance, T. paratroviride was isolated only from the Jimma
zone (Figure 5).
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3.4.3. Distribution of Trichoderma Species in a Coffee Ecosystem

There were slight differences in the communities of Trichoderma species observed in
the coffee rhizosphere soils of the different coffee ecosystems. Their high biodiversity was
apparent in the distribution of Trichoderma species (Table S1). In total, 72 soil samples were
collected from the native forest ecosystem, yielding 68 isolates representing 12 species of
Trichoderma. Fifty-nine soil samples were collected from disturbed semi-forests, yielding
62 isolates representing 13 species. Fewer samples were collected from garden coffee
ecosystems (53 soil samples), yielding only nine different Trichoderma species. The isolation
frequency of Trichoderma in the native forest ecosystem was 39%, which was substantially
higher than that for garden coffee ecosystems (29%; Figure 6). Except for species rep-
resented by single isolates, all species were found in multiple areas, showing that they
may be regularly distributed within the coffee rhizosphere. However, there were some
notable exceptions; T. erinaceum and T. brevicompactum were mostly isolated from the forest
rhizosphere, T. paratroviride and T. citrinoviride were only found in semi-forest zones, and
T. orientale was only observed in the garden coffee ecosystem (Figure 6).

3.5. Screening of Biocontrol Trichoderma

All isolates were capable of significantly inhibiting the mycelial growth of F. xylari-
oides. Twelve isolates exhibited the highest defined level of in vitro antagonistic activity.
ANOVA analysis revealed statistically significant (p ≤ 0.05) differences in the mycelial
growth inhibition profiles of the Trichoderma isolates against F. xylarioides, with inhibition
percentages ranging from 44.5% to 84.8% (Table 3). T. asperellum AU71, T. longibrachia-
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tum AU158 and T. asperellum AU131 were the most effective, causing 79.3%, 82.4% and
84.8% inhibition, respectively (Table 3 and Figure 7A1–C1). The mean inhibitory effect of
these isolates against F. xylarioides was such that the pathogen’s growth was suppressed
almost completely, whereas it grew rapidly on control plates lacking Trichoderma isolates
(Figure 7D1). The inhibition of F. xylarioides radial growth in the dual-culture confronta-
tion assay was attributed to inhibitory secondary metabolites released by one or both
organisms as well as competition, mycoparasitism and production of cell-wall-degrading
enzymes. The potential Trichoderma species exhibited an average growth rate of 0.45 mm/h
in dual-culture bioassays.
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Table 3. In vitro evaluation of Trichoderma isolates against F. xylarioides by dual confrontation culture
technique and agar diffusion assay.

Trichoderma Species
Mycelia Inhibition over Control (%)

Scale of Antagonistic Activity
Dual Culture Agar Diffusion Assay

T. hamatum AU23 76.9 ab ± 1.07 67.32 ab ± 4.06 +++
T. longibrachiatum AU32 75.2 b ± 0.7 69.82 ab ± 4.20 +++

T. asperellum AU53 72.6 b ± 0.3 66.3 c ± 2.3 +++
T. koningiopsis AU70 62.59 d ± 0.9 70.71 ab ± 4.82 ++
T. asperellum AU71 81.8 a ± 3.03 83.5 a ± 4.83 ++++
T. asperellum AU97 79.3 b ± 1.0 76.42 b ± 3.68 ++++

T. harzianum AU105 78.7 c ± 1.2 75.82 b ± 4.81 +++
T. aethiopicum AU106 79.3 d ± 5.1 68.50 c ± 5.12 ++

T. longibrachiatum AU121 79.2 b ± 0.9 63.4 c ± 3.4 +++
T. asperellum AU131 84.8 a ± 0.9 86.7 a ± 1.6 ++++

T. longibrachiatum AU158 82.4 a ± 0.5 88.2 a ± 3.5 ++++
T. asperellum AU171 77.7 ab ± 0.3 66.4 c ± 2.5 +++

Mean ± standard deviation 77.54 ± 1.3 74.25 ± 3.74 +++

Scale of antagonistic activity: ++++: very high antagonistic activity (>75%), +++: high antagonistic activity
(61–75%), ++: moderate antagonistic activity (51–60%). Different alphabets depicted in superscript in the columns
indicate mean treatments that are significantly different according to Tukey’s HSD post hoc test at p < 0.05; each
value is an average of 3 replicate samples ± standard error.
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Figure 7. Antagonistic effects of Trichoderma species against F. xylarioides: (A1–C1) dual-culture
bioassay and (A2–C2) agar diffusion bioassay. T. asperellum AU71 (A), T. asperellum AU131 (B),
T. longibrachiatum AU158 (C) and F. xylarioides (D1) alone as a control. Red arrows indicate the growth
of the test pathogen.

Based on the in vitro bioassay results, three potent isolates (T. asperellum AU71, T.
asperellum AU131 and T. longibrachiatum AU158) were subjected to secondary metabolite
extraction. The agar well diffusion method was used to quantify the antifungal activities
of crude metabolites extracted from these species (Table 3 and Figure 7A2–C2). All crude
metabolites from these microorganisms inhibited the mycelial growth of F. xylarioides at
the point of application around the agar wells; inhibition percentages of 83.5%, 86.7%
and 88.2% were observed for the extracts of T. asperellum AU71, T. asperellum AU131 and
T. longibrachiatum AU158, respectively, (Figure 7A2–C2) (p ≤ 0.05).

4. Discussion

A total of 164 isolates belonging to five clades were obtained from coffee rhizosphere
soil samples. Trichoderma species were primarily identified based on morphological charac-
teristics, including green coloration interleaved with a white mycelium, which is consistent
with the morphological features reported previously for this fungus [31,63]. The identifica-
tion keys of Samuels et al. [63] and Rifai [31] state that T. longibrachiatum holds subglobous
to ovoid conidia and lageniform phialides. Additionally, Moat et al. [35] describes the
presence of yellowish-green pigment on the backside of plates of T. longibrachiatum, which
was also observed in this work. However, phenotypic characters are varied and depend
partly on culture conditions [64] and secondary metabolite production [65]. This plasticity
of characteristics means that analyses based solely on phenotypic traits cannot provide
conclusive taxonomic identification of Trichoderma species [66,67].
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Phylogenetic grouping revealed that the Trichoderma isolates recovered in this study
formed a reliable maximum likelihood tree with acceptable taxonomic assumptions [68,69].
Modern methodologies for Trichoderma identification and classification into phylogenetic
clades are based on analyses of sequence data [41,67,69]. Five clades were identified in this
study, namely; Hamatum, Harzianum, Longibrachiatum, Brevicompactum and Viride (Figure 4).
The Hamatum clade contains economically important species such as T. asperellum and
T. asperelloides, which are used in agriculture as biological control agents [70,71]. The
Longibrachiatum clade has high optimal and maximum growth temperatures and yellow
reverse pigmentation due to the production of secondary metabolites such as pyrone.
Trichoderma longibrachiatum has been used to produce various antimicrobial substances with
important agricultural, health and environmental benefits [19].

The diversity of Trichoderma species in Africa in general [43,72] and Ethiopia in par-
ticular [24,73] is somewhat understudied compared to other parts of the world. Nine
Trichoderma species were identified for the first time in Ethiopia in this work. It is no-
table that these species were previously described in America [74], Asia [46,54,75] and in
European Mediterranean countries [42,76]; their presence in coffee rhizosphere soils in
Ethiopia can be attributed to the diverse ecological substrata and climate conditions of the
country’s coffee-growing areas and reflects the high Trichoderma biodiversity present in
coffee ecosystems. The only previous study comparable to this one in terms of sampling
size and studied area was conducted in the neotropical forests of South America, mainly in
Colombia [77]. In that study, a high diversity of Trichoderma (29 species among 183 isolates)
was detected, with a high proportion of putative new species among the isolates (11 species,
corresponding to 6% of the sample). The main difference between their findings and ours
is that we investigated a well-defined microecological niche, namely the rhizosphere of
C. arabica.

The biodiversity of Trichoderma species is difficult to evaluate comparatively due to the
range of indices suggested for this purpose [78]. In the present study, several widely used
diversity indices were tested using a range of simple and multifaceted statistical analyses
to evaluate whether some were better for certain analyses than others. The Shannon index
values calculated for native forest and semi-forest ecosystem samples were almost twice
those obtained for soils in Sardinia at H = 1.97 versus 1.59, respectively, even though the
number of samples investigated in the latter case was almost three times that collected in
this work. However, the Shannon indices of the Sardinian ecosystems and the garden coffee
zones were quite similar (H = 1.59 versus 1.57), possibly reflecting the extensive disturbance
of both ecosystems by human activities [79]. These results show that Trichoderma diversity
and habitat preference can be used as a natural indicator of rhizosphere soil health. Forest
and semi-forest coffee regions had richly varied Trichoderma populations with relatively
high diversity and very similar biodiversity indices and evenness values.

The number of Trichoderma species detected in this work was almost twice that reported
in earlier studies on biodiversity in Ethiopia [24] and other countries, including Poland [80],
Central Europe [76] and China’s Northern Xinjiang region [75]. In addition, significant
differences were observed between the Trichoderma populations of different coffee-growing
zones; this variation may reflect differences in the zones’ ecological environments. The
populations of Trichoderma species in the southwestern Ethiopia forest and semi-forest
coffee ecosystems were diverse, and their composition varied between ecosystems. The
Jimma zone had 11 Trichoderma species and the largest number of Trichoderma isolates (48),
followed by the Sheka (9 species, 27 isolates), Benchi Maji (7 species, 22 isolates) and Bunno
Bedele (3 species, 6 isolates) zones (Table 1). Our results suggest that forest and semi-forest
ecosystems are particularly favorable for the survival and colonization of Trichoderma,
indicating that this genus has a clear environmental preference, in keeping with previous
reports [54,75,76].

T. asperellum (39%) was found to be the most widely distributed and abundant fungal
species in this work (Figure 3). The occurrence of Trichoderma species is modulated by
several factors, including metabolic variety, reproductive ability, substrate availability and
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the competitive abilities of Trichoderma isolates in nature [76,81,82]. Trichoderma isolates
were obtained from different coffee ecosystems, with T. asperellum, T. asperelloides and T.
longibrachiatum being the most widely distributed species. T. asperellum is the most dom-
inant and cosmopolitan species, such as T. harzianum [83], whereas T. asperelloides and T.
longibrachiatum were found mostly in forest ecosystems of South America and Asia [77,84].
Conversely, previous studies have found T. harzianum, T. hamatum, T. spirale and T. as-
perelloides to be the most widely distributed species of this genus in coffee ecosystems in
Ethiopia [24]. Except for species that were only found as single isolates, all species were
obtained in multiple districts, suggesting that they are quite evenly distributed within the
coffee rhizosphere. T. erinaceum and T. brevicompactum were only isolated from the native
forest; T. paratroviride and T. citrinoviride were only obtained from semi-forest areas, and T.
orientale was only isolated from garden coffee ecosystem samples. Studies conducted by
Hoyos-Carvajal and Bissett [77] indicated the dominant Trichoderma species in the neotrop-
ics are T. asperellum, followed by T. harzianum. Our results confirm the predominance of
T. asperellum, followed by T. asperelloides. Conversely, Belayneh et al. [24] reported that
T. hamatum was the most dominant species in the rhizosphere of coffee plants. The large
number and wide distribution of Trichoderma species identified within Ethiopia’s coffee
ecosystem demonstrate the presence of significant genetic diversity, suggesting that further
study of these species may offer opportunities to improve the sustainable management of
coffee cultivation and discover effective biocontrol agents for managing CWD.

This work represents the first investigation of the biodiversity of Trichoderma species
in the rhizospheres of Ethiopia’s coffee ecosystem and their suitability as biological control
agents (BCA) against CWD (F. xylarioides). The results presented herein mainly concern
the taxonomy of the Trichoderma isolates with some observations on their ecology, and
will support the selection of candidate biocontrol agents for the management of CWD in
Ethiopia. This work is part of a larger project seeking to control CWD using a classical
biological control strategy involving sourcing and releasing potential BCAs from the center
of origin of coffea arabica to minimize the incidence and severity of the disease. Such
approaches using fungal natural enemies have been used successfully to control various
soil-borne plant pathogens [9,24,73,85,86]. Our results indicate that there is a significant
number of Trichoderma species that are substantially antagonistic to F. xylarioides and which
could be exploited for the biocontrol of CWD in this way. In the previous study, we
formulated a biofungicide from T. asperellum AU131 and T. longibrachiatum AU158 under
solid-state fermentation (SSF) to control CWD [87].

All Trichoderma strains isolated in this work effectively inhibited the mycelial growth
of F. xylarioides colonies. However, there were notable differences between Trichoderma
strains in controlling the mycelial growth of F. xylarioides in dual-culture experiments. For
example, Filizola et al. [88] state that some isolates of certain species suppress the growth
of phytopathogens via hyper-parasitism, whereas others achieve growth suppression via
mechanisms such as antibiosis or competition. It has also been reported that Trichoderma
species grow faster than competing phytopathogens because they use food sources more
efficiently. Another important mechanism involves the secretion of metabolites and hy-
drolytic enzymes that reduce or hinder the growth of plant pathogens in the area; this
mechanism has been suggested to contribute to the success of Trichoderma species against
phytopathogenic fungi [89]. The potential of T. asperellum and T. longibrachiatum as effec-
tive biocontrol agents of fungi and bacterial strains of both annual and perennial crops
was clearly stated by many research reports [90,91]. For instance, T. asperellum exhibits
strong control effects on F. graminearum, F. oxysporum and Verticillium wilt of olive [92,93].
On the other hand, T. longibrachiatum is also used as a potential biocontrol agent, being
most effective against P. grisea, F. verticillioides, H. oryzae, F. moniliforme and A. alternate
with inhibition percentages of 98.9, 96.4, 95.1, 93.6 and 93.0%, respectively [94]. Here, we
should point out that the three T. asperellum strains assessed in this work were isolated from
coffee rhizosphere in production fields from southwestern Ethiopia. This aspect should be
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considered a valuable asset for biocontrol applications, as native isolates are better adapted
to their local climate conditions and pathogenic targets than foreign isolates.

Various secondary metabolites produced by Trichoderma species, including harziano-
lide, peptaibols, pyrones and other secondary metabolites, have been suggested to have
antimicrobial potential and to act as plant growth promoters (Mulatu, unpublished data).
In addition to achieving higher growth rates than F. xylarioides in competition experiments,
the Trichoderma strains isolated in this work achieved growth rates significantly exceeding
the value of 0.33 mm/h reported by Moretto et al. [95]. Moreover, field and greenhouse
experiments using Geisha coffee varieties of C. arabica (the most susceptible to CWD) gave
similar results (Afrasa Mulatu, unpublished data). The results obtained indicate that un-
derstanding the genetic variation within the genus Trichoderma is essential for selecting
novel indigenous Trichoderma species that can be used as biocontrol agents against CWD. In
addition, our findings display the distribution and diversity profile of Trichoderma species
and provide insights into their potential usefulness as microbial fungicides to safeguard
coffee cultivation across different agroclimatic zones in Ethiopia.

5. Conclusions

A total of 175 isolates of Trichoderma were identified at the species level based on
TEF1-α sequence analysis, yielding 16 putative species. T. asperellum, T. asperelloides and
T. longibrachiatum were classified as the abundant species, and the average diversity values
for Trichoderma species originating from coffee ecosystems were H = 1.77, D = 0.7, E = 0.75
and J = 2.4. The results obtained suggest that T. asperellum and T. longibrachiatum are
promising suppressors of F. xylarioides’ growth and promoters of plant growth, suggesting
that they could be valuable biocontrol agents for the management of CWD. Additionally,
our results demonstrate the existence of a guild of Trichoderma species that are potentially
antagonistic to F. xylarioides, which could be exploited to develop more effective biological
control of CWD. In addition, future research should focus on assessing any toxicity or risks
associated with potential Trichoderma species (T. asperellum and T. longibrachiatum) in
animal models. Secondary metabolites (volatile and nonvolatile metabolites) must also be
characterized and elucidated utilizing various chromatographic methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/crops2020010/s1, Table S1: Trichoderma species isolated and
identified from major coffee growing zones of Ethiopia, Table S2: Identification, origin, and isolation
details of Trichoderma isolates.
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59. Konopiński, M.K. Shannon diversity index: A call to replace the original Shannon’s formula with unbiased estimator in the
population genetics studies. PeerJ 2020, 8, e9391. [CrossRef]

60. Gregorius, H.-R.; Gillet, E.M. Generalized Simpson-diversity. Ecol. Model. 2008, 211, 90–96. [CrossRef]
61. Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans. Br.

Mycol. Soc. 1971, 57, 41–48. [CrossRef]
62. Szekeres, A.; Leitgeb, B.; Kredics, L.; Antal, Z.; Hatvani, L.; Manczinger, L.; Vágvölgyi, C. Peptaibols and related peptaibiotics of

Trichoderma. Acta Microbiol. Immunol. Hung. 2005, 52, 137–168. [CrossRef] [PubMed]
63. Samuels, G.J.; Ismaiel, A.; Bon, M.-C.; De Respinis, S.; Petrini, O. Trichoderma asperellum sensu lato consists of two cryptic species.

Mycologia 2010, 102, 944–966. [CrossRef]
64. Mazrou, Y.S.; Makhlouf, A.H.; Elseehy, M.M.; Awad, M.F.; Hassan, M.M. Antagonistic activity and molecular characterization of

biological control agent Trichoderma harzianum from Saudi Arabia. Egypt J. Biol. Pest Contr. 2020, 30, 4. [CrossRef]
65. Hermosa, R.; Cardoza, R.E.; Rubio, M.B.; Gutiérrez, S.; Monte, E. Secondary metabolism and antimicrobial metabolites of

Trichoderma. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–137.
66. Bridge, P.; Spooner, B.; Roberts, P. The impact of molecular data in fungal systematics. Adv. Bot. Res. 2005, 42, 33–67.
67. Atanasova, L.; Le Crom, S.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics

reveals different strategies of Trichoderma mycoparasitism. BMC Gen. 2013, 14, 121. [CrossRef]
68. Druzhinina, I.; Kubicek, C.P. Species concepts and biodiversity in Trichoderma and Hypocrea: From aggregate species to species

clusters? J. Zhejiang Univ. Sci. B 2005, 6, 100. [CrossRef]
69. Druzhinina, I.S.; Kubicek, C.P. Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 2017,

10, 1485–1499. [CrossRef]
70. Liu, B.; Ji, S.; Zhang, H.; Wang, Y.; Liu, Z. Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their

biocontrol and growth promotion function. Microbiol. Res. 2020, 235, 126445. [CrossRef]
71. Sumida, C.H.; Daniel, J.F.; Araujod, A.P.C.; Peitl, D.C.; Abreu, L.M.; Dekker, R.F.; Canteri, M.G. Trichoderma asperelloides antagonism

to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontr. Sci. Technol. 2018,
28, 142–156. [CrossRef]

72. Mutawila, C.; Vinale, F.; Halleen, F.; Lorito, M.; Mostert, L. Isolation, production and in vitro effects of the major secondary metabolite
produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol. 2016, 65, 104–113. [CrossRef]

73. Belayneh, T.; Druzhinina, I.S.; Kubicek, C.P.; Atanasova, L. Novel endophytic Trichoderma spp. isolated from healthy Coffea arabica
roots are capable of controlling coffee Tracheomycosis. Diversity 2013, 5, 750–766.

74. Holmes, K.A.; Schroers, H.-J.; Thomas, S.E.; Evans, H.C.; Samuels, G.J. Taxonomy and biocontrol potential of a new species of
Trichoderma from the Amazon basin of South America. Mycol. Progr. 2004, 3, 199–210. [CrossRef]

75. Jiang, Y.; Wang, J.-L.; Chen, J.; Mao, L.-J.; Feng, X.-X.; Zhang, C.-L.; Lin, F.-C. Trichoderma biodiversity of agricultural fields in east
china reveals a gradient distribution of species. PLoS ONE 2016, 11, e0160613. [CrossRef] [PubMed]
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