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Abstract 

Synthesis gas (syngas) is a gas mixture consisting mainly of H2, CO, and CO2 and can be derived from different sources, 
including renewable materials like lignocellulose. The fermentation of syngas to certain biofuels, using acetogenic 
bacteria, has attracted more and more interest over the last years. However, this technology is limited by two things: 
(1) the lack of complete knowledge of the energy metabolism of acetogenic bacteria, and (2) the lack of sophisti-
cated genetic tools for the modification of acetogens. In this review, we discuss the bioenergetic constraints for the 
conversion of syngas to different biofuels. We will mainly focus on Acetobacterium woodii, which is the best under-
stood acetogen in terms of energy conservation. Syngas fermentation with Clostridium autoethanogenum will also 
be discussed, since this organism is well suited to convert syngas to certain products and already used in large-scale 
industrial processes.
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Background
�e finiteness of fossil energy sources and the negative 

effects of global warming as a consequence of the CO2 

emissions have led to an increasing demand to develop 

new technologies for the usage of renewable energy 

sources. For the production of electricity, eco-friendly 

technologies like the usage of wind, heat, and solar power 

are highly developed and make an appreciable contribu-

tion to the demand of electricity. However, the fuel indus-

try as well as the production of commodities required for 

industrial processes is almost completely based on crude 

oil. Many technologies using different strategies are 

developed to produce the corresponding biofuels from 

alternative energy sources, but so far no technology has 

evolved which would lead to independence of the indus-

try on crude oil.

Whether the production of biofuels from renewable 

energy sources is eco-friendly and sustainable depends 

mainly on the feedstock used. �e usage of crops (sugar 

cane, wheat, corn) for the generation of first-generation 

biofuels is in conflict with production of food for man-

kind [1, 2]. �erefore, a lot of efforts are being made to 

use non-food crops or residues as feedstock. �e biomass 

used contains high amounts of lignocellulose, which has 

to be digested chemically and enzymatically before it can 

be fermented. Appropriate organisms have to be geneti-

cally modified in order to be able to use the hemicellu-

lose-derived C5 sugars (pentoses) which can make up 

to 30  % in lignocellulose [3]. Another possibility is the 

gasification of the biomass, which leads to a gas mixture 

called synthesis gas (syngas). Syngas mainly consists of 

H2, CO, and CO2 and can be used in the Fischer–Tropsch 

process to chemically produce synthetic fuels [4]. For 

biotechnological applications, it is important to note that 

syngas derived from different sources differs with respect 

to the ratio of H2, CO, and CO2 [5]. In addition, syngas 

often contains side products such as sulfur, chlorine, or 

ammonia that are inhibitory to bacterial growth [6].

Syngas can also be metabolized by bacteria such as 

Eubacterium limosum [7], Clostridium autoethanoge-

num [8], or Acetobacterium woodii [9]. �ey belong to 

the group of strictly anaerobic, acetogenic bacteria, many 

of which grow on H2 + CO2 or CO or mixtures of both. 

�ese bacteria can use syngas as carbon and energy 
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source. Naturally occurring end-products are acetate, but 

also ethanol, butanol, butyrate, lactate, and 2,3-butan-

ediol (2,3-BD) [10, 11]. In the last years, tremendous 

progress was made in developing acetogens by metabolic 

engineering to convert syngas to biofuels [12]. However, 

the energetics of product formation from H2 + CO2 and 

CO are only poorly understood in most acetogens. �is, 

though, is a prerequisite for predicting the carbon and 

electron flow in a certain production pathway, which is 

required for optimizing the technology up to a produc-

tion level where it becomes industrially attractive. �e 

focus of this review is to describe bioenergetic con-

straints for the production of biofuels from syngas using 

acetogenic bacteria.

Review
Energy conservation in acetogens

Acetogens convert H2  +  CO2 to acetate according to 

Eq. 1:

Acetate formation from CO proceeds via Eq. 2:

CO2 and CO are converted to acetate via the Wood–

Ljungdahl pathway (WLP). �e enzymology of the WLP 

has been reviewed in great detail [13–15] and will be 

summarized here only briefly to an extent necessary to be 

able to follow the argumentation. In the methyl branch, 

CO2 is reduced to formate which is condensed in an ATP-

dependent reaction with tetrahydrofolate (THF) to yield 

formyl-THF (Fig. 1). Water is split off, and the resulting 

methenyl-THF is reduced via methylene- to methyl-THF. 

�e methyl group is transferred via a methyl transferase 

and a corrinoid–iron-sulfur protein to the CO dehydro-

genase/acetyl-CoA synthase (CODH/ACS). In the car-

bonyl branch, CO2 is reduced by CODH/ACS to CO. 

In the next step, the methyl group, the carbonyl group, 

and coenzyme A are condensed to acetyl-CoA which is 

further converted by phosphotransacetylase and acetate 

kinase to acetate. �e latter reaction yields one ATP. In 

sum, the ATP yield by substrate-level phosphorylation is 

zero.

Electrons for the reduction pathway are generated by 

oxidation of molecular hydrogen, catalyzed by electron-

bifurcating hydrogenases [16]. �is novel mechanism 

of energy coupling [17] enables the reduction of ferre-

doxin (E0′ ≈ −500 mV) with hydrogen (E0′ = −414 mV), 

an endergonic reaction that is driven by simultaneous, 

(1)

4 H2 + 2 CO2 → 1 CH3COO−
+ 1 H+

+ 2 H2O

�G
0′

= −95 kJ/mol

(2)

4 CO + 2 H2O → 1 CH3COO−
+ 1 H+

+ 2 CO2

�G
0′

= −175 kJ/mol

exergonic electron transfer from H2 to NAD(P)+ 

(E0′ = −320 mV).

If CO is the electron donor, CO dehydrogenases 

(CODHs) catalyze the oxidation of CO to CO2 [18]. 

Due to the low redox potential of the CO/CO2 cou-

ple (E0′  =  −520  mV), a low potential ferredoxin 

(E0′  ≈  −500  mV) can be reduced directly. Reduced 

ferredoxin (Fd2−) is the key electron donor in cellular 

bioenergetics in acetogens [19]. It is oxidized by mem-

brane-bound, electron transfer enzymes that couple 

exergonic electron transfer to an acceptor with the trans-

location of ions across the membrane, thus establishing 

an electrochemical ion gradient across the membrane 

Fig. 1 Enzymology of the Wood–Ljungdahl pathway. One CO2 is 
reduced to a THF-bound methyl group, a second CO2 is reduced 
to an enzyme-bound CO group. The methyl and the CO group are 
condensed by the CODH/ACS and further converted to acetate. [H] 
reducing equivalent; THF tetrahydrofolate; CoFeS corrinoid–iron-sulfur 
protein; CODH/ACS carbon monoxide dehydrogenase/acetyl-CoA 
synthase
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[19]. To date, only two classes of energy-conserving che-

miosmotic enzymes are known in acetogens: the ferre-

doxin: NAD+ oxidoreductase (Rnf) [20, 21] and the 

ferredoxin: H+ oxidoreductase (Ech) [22]. �e ion trans-

located can be either a sodium ion or a proton. �e elec-

tron transfer from Fd2− to NAD+ via Rnf (ΔG0
′ = −25 kJ/

mol) would allow the transfer of 2 Na+/H+ across the 

membrane, assuming a transmembrane electrochemi-

cal ion potential of −180 mV [19]. �e electron transfer 

from Fd2− to H+ via Ech (ΔG0
′  =  −7  kJ/mol) releases 

less energy and is strongly dependent on the hydrogen 

pressure.

Although the basic chemistry used by acetogens to pro-

duce acetate from H2 +  CO2 or CO is identical, aceto-

gens have an astonishing repertoire of different enzymes 

to catalyze these reactions. For bioenergetics considera-

tions, it is noteworthy, (1) that they differ in the reduct-

ant used for reduction of CO2 to formate, (2) whether or 

not the methylene-THF reductase (MTHFR) uses elec-

tron bifurcation to reduce ferredoxin, (3) the presence or 

absence of transhydrogenases, and (4) the chemiosmotic 

enzyme catalyzing energy conservation.

In this review, we will mainly focus on A. woodii, which 

is the best understood acetogen in terms of energy con-

servation and is known for its industrial potential for pro-

ducing acetic acid from H2 + CO2 [23, 24]. In addition, 

we will discuss syngas fermentation with C. autoethano-

genum, which is used in large-scale industrial processes 

due to its ability to convert syngas to acetate and ethanol 

and also traces of lactate and 2,3-BD [8, 25].

Basic principles for calculating energy balances

�e amount of ATP which can be synthesized per mol 

acetate produced in the WLP is mainly dependent on 

the enzymes catalyzing the four redox steps and their 

demand of reduced ferredoxin. �e higher the imbal-

ance between demand and supply of reduced ferredoxin, 

the more Na+/H+ can be translocated by the Rnf or Ech 

complex. If the amount of ions required for ATP syn-

thesis via the ATP synthase is known, exact calculations 

can be done concerning ATP yields. In A. woodii, the 

reductant used by every enzyme of the pathway is known 

(Fig. 2) [19]. Reduction of CO2 to formate is catalyzed by 

a H2-dependent CO2 reductase (HDCR) [26], and reduc-

tion of CO2 to CO is catalyzed by the CODH/ACS with 

Fd2− as electron donor [27]. �e reactions catalyzed by 

the methylene-THF dehydrogenase [28] and the MTHFR 

[29] require NADH for reduction. �us, reduction of 2 

CO2 to acetate requires 1 H2, 2 NADH, and 1 Fd2−.

With hydrogen as electron donor, oxidation of 3 H2 

via the electron-bifurcating hydrogenase [16] gives 1.5 

NADH and 1.5 Fd2−. 0.5 Fd2− are oxidized at the Rnf 

complex, which is coupled to the translocation of 1 Na+ 

out of the cell. �e ATP synthase of A. woodii requires 3.3 

Na+ for the synthesis of 1 ATP [30], thus the 1 Na+ trans-

located by the Rnf complex leads to synthesis of 0.3 ATP. 

�erefore, the synthesis of acetate from H2 + CO2 leads 

to formation of 0.3 ATP:

Since the H-clusters of most hydrogenases are inhibited 

by CO, the reduction of CO2 to formate which is cata-

lyzed by the HDCR in A. woodii is a bottleneck for for-

mation of acetate if CO is the electron donor [9]. Using 

CO as electron donor, acetate formation from CO/CO2 

via the WLP would require 1 H2 and 2 NADH (Fig.  3). 

�e oxidation of 3 CO by the CODH/ACS yields 3 Fd2−, 

whereof 2.5 Fd2− have to be oxidized at the Rnf complex. 

0.5 Fd2− and 0.5 NADH are converted to 1 H2 by the elec-

tron-bifurcating hydrogenase. �e Rnf complex translo-

cates 5 Na+ which leads to the synthesis of 1.5 ATP via 

the ATP synthase. �us, acetate formation from CO has a 

5 times higher ATP yield as from H2 + CO2:

Many pathways leading to a desired product start 

with acetyl-CoA as precursor, and thus, if acetate is not 

produced, one ATP is missing in the balance. �ere-

fore, acetyl-CoA formation from H2 + CO2 has an ATP 

demand of 0.7 ATP, while from CO, the formation of 

acetyl-CoA still yields 0.5 ATP.

It is important to know whether the further path-

way leading to the desired product requires or produces 

ATP, then it can be calculated if the production from 

H2 + CO2 or from CO has a positive energy balance. A 

negative energy balance will be compensated by produc-

ing side products (like acetate) which lead to the produc-

tion of ATP.

ATP can be generated/consumed via substrate-level 

phosphorylation or via chemiosmosis, in A. woodii via 

the Rnf complex and the ATP synthase. �e Rnf complex 

can translocate 2 Na+ per Fd2− oxidized, which leads to 

formation of 0.6 ATP by the ATP synthase. Both reac-

tions are reversible, thus the hydrolysis of 0.6 ATP at 

the ATP synthase leads to translocation of 2 Na+ which 

drives the endergonic electron transfer from NADH to 

Fd. �erefore, the electron transfer from Fd2− to NAD+ 

leads to production of 0.6 ATP per Fd2− oxidized, while 

the electron transfer from NADH to Fd requires an input 

of 0.6 ATP per NADH oxidized. For further calculations, 

it is important to calculate the amount of ATP which is 

generated or has to be invested for supplying an inter-

nal electron donor (NADH or Fd2−) by oxidation of an 

external electron donor (CO or H2). If CO is the external 

(3)
4 H2 + 2 CO2 + 0.3 ADP + 0.3 Pi

→ 1 acetate + 0.3 ATP.

(4)
4 CO + 1.5 ADP + 1.5 Pi → 1 acetate

+ 2 CO2 + 1.5 ATP
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electron donor, the oxidation by the CODH yields only 

Fd2−. �erefore, having CO as electron donor the supply 

of Fd2− neither requires investment of ATP nor produces 

ATP. If NADH is required, the CO-derived Fd2− is con-

verted into NADH via the Rnf complex, which leads to 

formation of 0.6 ATP by the ATP synthase. If H2 is the 

external electron donor, the oxidation by the bifurcat-

ing hydrogenase yields 0.5 NADH and 0.5 Fd2−. �ere-

fore, for supplying only Fd2− from H2, 0.3 ATP have to 

be invested for converting 0.5 NADH into 0.5 Fd2– via a 

reversal of the Rnf-catalyzed reaction. For supplying only 

NADH from H2, 0.3 ATP are produced upon conversion 

of 0.5 Fd2− into 0.5 NADH.

Next, we will discuss different production path-

ways leading to the formation of products like ethanol, 

butanol, or isoprene, starting with acetyl-CoA as precur-

sor (Table 1). As deduced above, the reduction of CO2 to 

acetyl-CoA with H2 requires 0.7 ATP, whereas with CO 

Fig. 2 Bioenergetics of acetate formation from H2 + CO2 in A. woodii. The reducing equivalents for the reductive steps in the WLP are provided by 
an H2-oxidizing, electron-bifurcating hydrogenase which reduces Fd and NAD+. Excess Fd2− is oxidized by the Rnf complex which reduces NAD+ 
and builds up a Na+ gradient. This gradient drives ATP synthesis via the Na+-dependent ATP synthase. In total, 0.3 ATP could be synthesized per 
acetate produced. THF tetrahydrofolate; CoFeS corrinoid–iron-sulfur protein
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as donor, 0.5 ATP is produced. �erefore, if the further 

conversion of acetyl-CoA to the desired product has a 

positive energy balance, the overall production from 

CO will be positive, from H2 +  CO2 it depends on the 

amount of ATP produced. If the pathway to the desired 

product from acetyl-CoA requires an input of ATP, the 

energy balance for production from H2  +  CO2 will be 

negative, from CO it depends on the amount of energy 

required.

Fig. 3 Bioenergetics of acetate formation from CO in A. woodii. The reducing equivalents for the reductive steps in the WLP are provided by the 
CO-oxidizing CODH/ACS which reduces Fd. Excess Fd2− is oxidized by the Rnf complex which reduces NAD+ and builds up a Na+ gradient. This gra-
dient drives ATP synthesis via the Na+-dependent ATP synthase. The electron-bifurcating hydrogenase provides the H2 required for the reduction 
of CO2 to formate. In total, 1.5 ATP could be synthesized per acetate produced. THF tetrahydrofolate; CoFeS corrinoid–iron-sulfur protein; CODH/ACS 
carbon monoxide dehydrogenase/acetyl-CoA synthase
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Production of biofuels

Production of ethanol

Ethanol is globally used as feedstock for the chemical 

industry, as energy carrier and in alcoholic beverages. It 

can be used as fuel additive, with certain modifications, 

engines can be altered to run on 100 % ethanol. Ethanol 

can be made from acetyl-CoA by two reduction steps 

via acetaldehyde (Fig. 4). �e reduction of acetyl-CoA to 

ethanol with NADH as electron donor is close to equilib-

rium (ΔG0
′ = −6.2 kJ/mol [31]) and catalyzed by NADH-

dependent enzymes like the bifunctional AdhE [32–34]. 

�us, 2 NADH are required for the reduction of acetyl-

CoA to ethanol. As delineated before, the reduction of 2 

NAD+ with H2 as electron donor yields 0.6 ATP by action 

of hydrogenase, Rnf complex, and ATP synthase. �us, 

the production of ethanol from acetyl-CoA (with H2 as 

reductant) yields 0.6 ATP. However, the production of 

acetyl-CoA from H2 + CO2 requires 0.7 ATP, and there-

fore, the production of ethanol from H2 + CO2 via acetal-

dehyde dehydrogenase (AldDH) requires an input of 0.1 

ATP/ethanol (Eq. 5).

Ethanol formation from H2 + CO2 via this pathway is 

not possible if the synthesis of acetyl-CoA costs more 

than 0.6 ATP, and therefore, this pathway cannot be 

implemented by metabolic engineering. However, there 

is a second way of producing ethanol from acetyl-CoA. 

Aldehyde:ferredoxin oxidoreductases (AOR; EC 1.2.7.5) 

are capable of catalyzing the reversible reduction of an 

acid to the corresponding aldehyde [35], in this case, the 

reduction of acetate to acetaldehyde. �e redox potential 

of acetate/acetaldehyde (E0′ = −580  mV) is so negative 

(5)6 H2 + 2 CO2 + 0.1 ATP → 1 ethanol

that a low potential electron donor such as ferredoxin 

is required. �e further reduction of acetaldehyde to 

ethanol could be catalyzed by a monofunctional alcohol 

dehydrogenase (ADH), or by the same AdhE as described 

above  [36]. Since acetate is formed, the acetate kinase 

produces 1 ATP via substrate-level phosphorylation. 

�e two consequent reduction steps require 1 Fd2− and 

1 NADH, which is provided by the electron-bifurcating 

hydrogenase. �us, the reduction of acetyl-CoA to eth-

anol (with H2) via acetate by the AOR pathway yields 1 

ATP, while production of acetyl-CoA from H2  +  CO2 

requires only 0.7 ATP.

(6)6 H2 + 2 CO2 → 1 ethanol + 0.3 ATP

Table 1 ATP yield for the synthesis of products from acetyl-CoA with H2 or CO as electron donor

Product Key enzymes/intermediates Conversion (acetyl-CoA as precursor) ATP yield

H2 CO

Acetate Acetate kinase Acetyl-CoA→acetate 0.3 1.5

Ethanol Acetaldehyde DH Acetyl-CoA→ethanol −0.1 1.7

AOR 0.3 2.1

Butanol BDH 2 acetyl-CoA→butanol −0.2 3.4

BDH, bifurcating Bcd 0.4 4.0

AOR 0.2 3.8

AOR, bifurcating Bcd 0.8 4.4

Isoprene Mevalonate 3 acetyl-CoA→isoprene + CO2 −4.5 −0.3

Lactate NADH-dependent LDH Acetyl-CoA + CO2→lactate −0.7 1.1

Bifurcating LDH −0.1 1.7

2,3-Butanediol Acetolactate synthase 2 acetyl-CoA→2,3-butanediol −1.7 1.6

Acetone Acetoacetate 2 acetyl-CoA→acetone + CO2 −0.4 2.0

Isobutene Acetone, 3-OH-isovalerate 3 acetyl-CoA→isobutene + 2 CO2 −2.1 1.5

Fig. 4 Ethanol formation from acetyl-CoA. Acetyl-CoA is synthesized 
via the Wood–Ljungdahl pathway (WL pathway) and can be reduced 
to ethanol either by means of acetaldehyde dehydrogenase (AldDH) 
or by means of aldehyde:ferredoxin oxidoreductase (AOR)
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In total, ethanol production from H2  +  CO2 via the 

AOR pathway has a positive energy balance and, there-

fore, should be feasible. Indeed, aldehyde:ferredoxin 

oxidoreductases can be found in the genomes of many 

acetogens (Table 2). �ese enzymes have in common that 

they have tungsten (W) as cofactor. So far, the structures 

of the AOR [37] and the formaldehyde:ferredoxin oxi-

doreductase (FOR) [38] of Pyrococcus furiosus have been 

published. Both proteins contain an Fe4S4 cluster which 

is coordinated by four cysteine residues. �e molybdop-

terin-based tungsten cofactor is coordinated by a total of 

16 (AOR) and 12 (FOR) amino acid residues which are 

distributed over the amino acid sequence. �e genome 

of A. woodii harbors only one gene which encodes for a 

putative FOR (KEGG: Awo_c12420). It is annotated as 

“tungsten-containing formaldehyde ferredoxin oxidore-

ductase”; however, it is only 29 and 31 % identical to the 

AOR and the FOR of P. furiosus, respectively. It is not 

surprising that only 2 of the 4 cysteine residues required 

for coordinating the Fe4S4 cluster are present, and of the 

residues required for binding the tungsten, only 6/16 

(AOR) and 4/12 (FOR) are present. �us, A. woodii most 

probably lacks a functional AOR, which would be the 

reason that this species has never found to produce etha-

nol from H2 + CO2.

If CO is used as electron donor, the production of 

acetyl-CoA is coupled to the production of 0.5 ATP/

acetyl-CoA. Since the further conversion of acetyl-CoA 

to ethanol yields also ATP (1.2–1.6 ATP), production 

of ethanol from CO will be energy positive, independ-

ent which of the two pathways is used. However, ethanol 

production from CO will be coupled to CO2 production, 

according to Eq. 7:

�erefore, the ATP yield for ethanol production from 

CO is higher than for acetate production from CO. And 

indeed, some acetogens like C. autoethanogenum (see 

“Production of biofuels using Clostridium autoethanoge-

num”) produce ethanol when growing on CO [8].

Production of butanol

Butanol is required in large scale in the chemical industry 

as solvent. As fuel additive, it has even better properties 

than ethanol, since it is not hygroscopic and therefore 

does not lead to corrosion of the engines [39].

Butanol is produced from H2 + CO2 according to

(7)6 CO → 1 ethanol + 4 CO2.

(8)12 H2 + 4 CO2 → 1 butanol.

Table 2 Potential aldehyde: ferredoxin oxidoreductases (AORs) in acetogens

a Gene accession numbers are from the KEGG database

b Pyrococcus furiosus is not an acetogen but a hyperthermophilic archaeon in which the AOR pathway has been demonstrated [36]

Organism Genea Annotation

Aldehyde:Fd oxidoreductase Formaldehyde:Fd oxidoreductase

Clostridium ljungdahlii CLJU_c20210 +

CLJU_c20110 +

Clostridium autoethanogenum CAETHG_0092 +

CAETHG_0102 +

Clostridium acetobutylicum SMB_G2050 +

Eubacterium limosum KIST612 ELI_0332 +

ELI_1752 +

ELI_3389 +

Acetobacterium woodii Awo_c12420 +

Moorella thermoacetica Moth_0154 +

Moth_0722 +

Pyrococcus furiosusb PF1203 +

PF0346 +

PF1961 +

Thermacetogenium phaeum Tph_c04180 +

Tph_c07080 +

Tph_c08220 +

Tph_c19480 +

Tph_c20350 +

Tph_c27630 +
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For the production of the C4 molecule butanol, 2 mol-

ecules of acetyl-CoA are required, and therefore, 1.4 ATP 

have to be invested with H2 as electron donor (Fig.  5). 

Two molecules of acetyl-CoA are condensed to ace-

toacetyl-CoA which is reduced to 3-hydroxypropionyl-

CoA with NADH. After water is split of, crotonyl-CoA 

is reduced to butyrate by a butyryl-CoA dehydrogenase 

(Bcd). Due to the positive redox potential of the croto-

nyl-CoA/butyryl-CoA couple (E0′  =  −10  mV), NADH-

dependent Bcds catalyze this exergonic reaction. �e 

Bcd of Clostridium kluyveri is the prototype of a flavin-

dependent, electron-bifurcating enzyme [40]. It uses the 

exergonic reaction of the NADH-dependent reduction 

of crotonyl-CoA to drive reduction of ferredoxin with 

NADH. Recently, we have demonstrated the presence 

of an electron-bifurcating Bcd in E. limosum KIST612, 

an acetogen which produces butyrate from CO [41]. 

Butyryl-CoA can be further reduced via butyraldehyde 

to butanol by NADH-dependent enzymes, analogously to 

ethanol formation from acetyl-CoA.

If the Bcd is not electron-bifurcating, the pathway 

requires 4 NADH and therefore yields 1.2 ATP/butanol. 

If the Bcd is electron-bifurcating, the additional con-

servation of energy via the Rnf complex leads to a total 

ATP yield of 1.8 ATP/butanol. Since 1.4 ATP have to be 

invested to supply 2 acetyl-CoA, the butanol production 

from H2  +  CO2 via butyraldehyde dehydrogenase has 

only an energy-positive balance if a bifurcating Bcd is 

involved (Table 1).

AORs have been shown to reduce a broad range of 

acids to the corresponding aldehydes, also the reduction 

of butyrate to butyraldehyde [42, 43]. �e requirement of 

Fd2− reduces the energy yield via chemiosmosis, but the 

formation of butyrate from butyryl-CoA yields 1 ATP via 

substrate-level phosphorylation. �erefore, the produc-

tion of butanol via butyrate and an AOR pathway adds 

0.4 ATP/butanol to the equation, and therefore, butanol 

production from H2 + CO2 has a positive energy balance, 

even without a bifurcating Bcd. �us, the involvement 

of a bifurcating Bcd can be a key component for butanol 

production via butyraldehyde dehydrogenase.

With CO as electron donor, production of butanol will 

be strongly energy positive, yielding (dependent on the 

pathway) 3.4–4.4 ATP per butanol produced. However, 

butanol production from CO is also coupled to the pro-

duction of CO2, according to

Production of isoprene

Isoprene is used for the production of rubber and as pre-

cursor for hydrocarbon fuels. Two pathways are known 

for the formation of isoprene. �e mevalonate pathway 

occurs mainly in eukaryotes and archaea, and the non-

mevalonate pathway occurs mainly in bacteria [44]. �e 

mevalonate pathway starts with the condensation of 2 

acetyl-CoA, while the non-mevalonate pathway requires 

pyruvate and glyceraldehyde-3-phosphate as precursors. 

We will consider here the mevalonate pathway, which 

(9)12 CO → 1 butanol + 8 CO2

Fig. 5 Butanol formation from acetyl-CoA. Acetyl-CoA is synthesized via the Wood–Ljungdahl pathway (WL pathway) and 2 acetyl-CoA can be 
reduced to butanol either by means of butyraldehyde dehydrogenase or by means of aldehyde:ferredoxin oxidoreductase (AOR). The butyryl-CoA 
dehydrogenase (Bcd) uses NADH as electron donor, if the Bcd is electron-bifurcating it reduces ferredoxin simultaneously with crotonyl-CoA
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starts from acetyl-CoA and is not as energy-consuming 

as the non-mevalonate pathway.

2 acetyl-CoA are condensed to acetoacetyl-CoA. �e 

addition of a third acetyl-CoA yields 3-hydroxy-3-me-

thyl-glutaryl-CoA (HMG-CoA), which is reduced by a 

NAD(P)+-dependent HMG-CoA reductase to meva-

lonate. After two consequent ATP-dependent phos-

phorylations, the formed diphosphomevalonate is 

decarboxylated at the expense of ATP, giving rise to 

isopentenyl diphosphate (IPP). After an isomerization, 

the diphosphate bond is hydrolyzed, yielding isoprene. 

�us, in total, the conversion of 3 acetyl-CoA to isoprene 

requires 2 NAD(P)H and 3 ATP.

With H2 as electron donor, the supply of 2 NADH for 

the HMG-CoA reductase reaction yields 0.6 ATP (via 

hydrogenase, Rnf complex and ATP synthase). �us, 2.4 

ATP have to be invested for the conversion of 3 acetyl-

CoA to isoprene, and the synthesis of 3 acetyl-CoA from 

H2  +  CO2 requires another 2.1 ATP. In sum, 4.5 ATP 

have to be invested:

To produce 4.5  mol of ATP, A. woodii would need to 

synthesize 15  mol of acetate for every mol of isoprene 

produced. �us, after implementation of the isoprene 

production pathway by metabolic engineering, acetate 

still would be the main end product.

With CO as electron donor, the synthesis of 3 acetyl-

CoA produces 1.5 ATP, and the supply of NADH for the 

reduction of HMG-CoA delivers another 1.2 ATP (by 

action of CODH, Rnf complex, and ATP synthase). How-

ever, since 3 ATP are required for the phosphorylation 

and decarboxylation of mevalonate, isoprene production 

from CO still requires an energy input of 0.3 ATP. �us, 

for every isoprene synthesized, A. woodii still would have 

to produce 1 acetate as side product:

Other products

Lactic acid is discussed as biofuel for enzymatic biofuel 

cells [45]. In addition, it has a large market in food, phar-

maceutical, and cosmetics industry, and the production 

of biodegradable polymers from lactic acid is also in 

the focus of industrial interests [46]. To form lactic acid 

from acetyl-CoA, this has to be carboxylated to pyruvate 

by a pyruvate: ferredoxin oxidoreductase. Further reduc-

tion of pyruvate yields lactate. Using NADH as electron 

donor, the reaction is exergonic by −25  kJ/mol. �is 

energy can be used by electron-bifurcating lactate dehy-

drogenases (LDHs) to reduce ferredoxin, which increases 

the amount of ATP produced via chemiosmosis [47]. 

(10)

12 H2 + 5 CO2 + 4.5 ATP → 1 CH2C(CH3)CHCH2.

(11)

12 CO + 0.3 ATP → 1 CH2C(CH3)CHCH2 + 7 CO2

However, even if a bifurcating enzyme is involved, pro-

duction of lactate from H2  +  CO2 still has a negative 

energy balance by −0.1 ATP/lactate and, thus, not feasi-

ble. If CO is used as electron donor, the production will 

be energy positive, even without a bifurcating enzyme.

2,3-butanediol (2,3-BD) is another product that bacte-

ria are capable of producing [25, 48]. 2,3-BD is used as 

a precursor for the industrial production of solvents and 

could be used as a fuel additive [49]. Usually, it is pro-

duced chemically from oil. If 2,3-BD is produced by ace-

togens, 2 pyruvate are condensed and decarboxylated, 

yielding acetolactate. �is is further decarboxylated, giv-

ing rise to acetoin. �e reduction of acetoin with NADH 

yields 2,3-BD. In sum, 2 acetyl-CoA are reduced with 2 

Fd2− and 2 NADH to 2,3-BD. Whether H2 or CO is used 

as external electron donor for the reduction steps has 

a strong effect on the energy balance: with H2, 1.7 ATP 

have to be invested for the synthesis of one 2,3-BD, with 

CO 1.6 ATP are produced for every 2,3-BD synthesized.

Acetone is mainly used as solvent and for the genera-

tion of plastics. Microbial production of acetone from 

starch or glucose via the acetone-butanol-ethanol fer-

mentation process using Clostridium acetobutylicum has 

been used since World War I [50]. Today, most of the 

acetone is industrially coproduced with phenol in the 

cumene process. Microbial production of acetone from 

H2  +  CO2 would require an input of ATP (−0.4 ATP/

acetone), while production from CO would be coupled 

to ATP production (+2.0 ATP/acetone). Acetone can be 

a precursor for further products. For example, with the 

patented enzyme system for the acetylation of acetone 

to 3-hydroxy-isovalerate, followed by the ATP-depend-

ent decarboxylation, isobutene could be produced [51]. 

Isobutene is a precursor for a lot of different industrial 

reactions, leading to the production of fuel additives, pol-

ymers, and antioxidants. Up to now, it is produced from 

crude oil.

Production of biofuels using Clostridium 

autoethanogenum

Clostridium autoethanogenum was originally isolated 

for its capability to produce ethanol when growing on 

CO [8]. Besides ethanol and acetate, the wild-type strain 

also produces other substances like 2,3-BD and lactate 

[25]. �e genome was published in 2013 and contains 

several genes encoding for aldehyde: ferredoxin oxi-

doreductases [52]. C. autoethanogenum contains also 

an electron-bifurcating hydrogenase, as present in A. 

woodii; however, the purified enzyme was shown to be 

NADP+-specific. In addition, it forms a complex with the 

formate dehydrogenase, providing also reducing equiva-

lents for the reduction of CO2 to formate [53]. Measure-

ments with cell-free extract demonstrated the ferredoxin: 
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NAD+ oxidoreductase activity [54]. Another important 

difference to the metabolism of A. woodii is the presence 

of an active transhydrogenase, this enzyme couples the 

exergonic NADPH-dependent reduction of NAD+ to the 

endergonic NADPH-dependent reduction of ferredoxin 

via flavin-based electron bifurcation. A still unsolved 

question is the reaction of the MTHFR which could only 

be measured with artificial dyes. It was suggested that the 

MTHFR of the MetFV type might reduce ferredoxin via 

electron bifurcation by building a complex with an elec-

tron transfer flavoprotein. Due to this remaining open 

question, the proposed ATP yield for acetate formation 

from H2  +  CO2 spans from 0.14 ATP/acetate (NADP-

dependent and non-bifurcating MTHFR) to 1 ATP/ace-

tate (NAD-dependent and bifurcating MTHFR) [54].

Cells of C. autoethanogenum growing on H2  +  CO2 

produce not only acetate but also ethanol as end product. 

Activities for the reduction of acetate to acetaldehyde 

with ferredoxin (AOR), for the reduction of acetyl-CoA 

to acetaldehyde with NADH and NADPH (CoA acetylat-

ing AldDH), and the further reduction of acetaldehyde 

to ethanol (ADH) with NADH as electron donor were 

found in cell-free extract of H2 + CO2-grown cells [54]. 

Dependent on whether the MTHFR reduces ferredoxin 

and whether acetaldehyde is formed by action of an AOR 

or a CoA acetylating AldDH, ATP gains ranging from 

−0.3 ATP/ethanol to 1.2 ATP/ethanol can be calculated 

for the production of ethanol from H2 + CO2 [54].

If a NAD-dependent and electron-bifurcating MTHFR 

is assumed, as done by Mock and colleagues [54], acetate 

formation from H2  +  CO2 would yield 1 ATP/acetate, 

and therefore, acetyl-CoA formation from H2  +  CO2 

would require no ATP input. �is would have a tremen-

dous effect on the formation of certain products: the con-

version of acetyl-CoA to acetone, for example, yields 1 

ATP/acetone produced (Eq. 12):

Since under the assumed conditions, the synthesis of 2 

acetyl-CoA would not require an input of ATP (as is the 

case in A. woodii, where 0.7 ATP have to be consumed 

to produce 1 acetyl-CoA from H2 +  CO2), acetone for-

mation from H2  +  CO2 would yield 1 ATP/acetone. 

However, this is based on the presence of an electron-

bifurcating MTHFR, but the different scenarios for the 

mechanism of the MTHFR do not permit exact calcula-

tions and predictions of the different pathways.

Simultaneous utilization of H2 and CO
In times of global warming, processes are required which 

produce as little CO2 as possible. Syngas consists mainly 

of H2, CO, and CO2, and the concentrations of the gases 

(12)

2 acetyl-CoA + 1 ADP + 1 Pi

→ 1 acetone + 1 CO2 + 1 ATP

are dependent on the raw material used for the genera-

tion of syngas. In syngas-based fermentation processes, 

H2 can be used as energy source, CO2 as carbon source, 

and CO as carbon and energy source. However, the usage 

of CO as electron donor goes along with the production 

of the unwanted CO2, as can be seen in the equations for 

the production of ethanol and butanol from CO (Eq.  7, 

9). �erefore, fermentation processes where CO/CO2 are 

the only carbon sources and all the electrons are derived 

from H2 would produce no CO2 at all. And indeed, aceto-

gens are known which can grow on syngas by consuming 

H2 and CO simultaneously, for example, C. ljungdahlii 

can convert syngas in a bioreactor with a conversion effi-

ciency for H2 and CO of almost 100 % [55]. However, the 

consumption of H2 in the presence of CO comprises a 

problem because most hydrogenases known are strongly 

inhibited by low concentrations of CO. CO-insensitive 

hydrogenases have been described in carboxydotrophic 

bacteria and in Knallgas bacteria [56, 57]; however, so 

far no CO-tolerant hydrogenase has been found in ace-

togens. And indeed, in the before-mentioned bioreactor 

with C. ljungdahlii, it took 6  days to reach steady-state 

conditions, and in this time, only CO was consumed. 

H2 consumption did not start before the CO in the inlet 

gas stream was consumed by 90  %. �is was also dem-

onstrated in batch cultures of C. ljungdahlii [58]. With 

pressures of 1.6 and 1.8  atm, H2 consumption did not 

start before CO had been almost completely consumed 

(after 60 h). A. woodii does grow on H2 + CO2 + CO in 

batch cultures; however, hydrogen oxidation does not 

start before CO is completely consumed [9]. �e simul-

taneous consumption of H2 and CO reported in several 

publications can be explained with the poor solubility of 

CO. At certain cell densities, the consumption of CO can 

be so high that the concentration of solubilized CO is low 

enough to allow simultaneous H2 oxidation. �is makes 

a process possible where H2 is used for the reduction of 

CO/CO2; however, optimizing such a process by increas-

ing flow rates or gas pressures might lead to inhibition 

of H2 consumption. If no CO-insensitive hydrogenase is 

present in the syngas-converting acetogen, simultaneous 

oxidation of CO and H2 in an unlimited system will not 

be possible.

Conclusions
From our calculations, it is obvious that with H2 as elec-

tron donor, synthesis of most of the products by the path-

ways discussed here has a negative energy balance. �is 

would lead to the synthesis of unwanted by-products like 

acetate. Modifications of the pathways can improve the 

energy yield, which in some cases makes the production 

energy-positive (ethanol, butanol). With CO as electron 

source, synthesis of most products goes along with the 
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synthesis of ATP and would, in theory, allow a complete 

conversion. However, CO oxidation goes along with pro-

duction of CO2 which could be circumvented by analo-

gous oxidation of H2. Simultaneous consumption of H2 

and CO, however, will be limited by CO-sensitive hydro-

genases. By an elaborate selection of the employed organ-

ism and implementation of certain enzymes by metabolic 

engineering, in theory, a 100  % conversion of synthesis 

gas into many biofuels is feasible.
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