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Abstract

Neuronal activity is a high-energy demanding process recruit-

ing all neural cells that adapt their metabolism to sustain the

energy and redox balance of neurons. During neurotransmis-

sion, synaptic cleft glutamate activates its receptors in neurons

and in astrocytes, before being taken up by astrocytes through

energy costly transporters. In astrocytes, the energy require-

ment for glutamate influx is likely to be met by glycolysis. To

enable this, astrocytes are constitutively glycolytic, robustly

expressing 6-phosphofructo-2-kinase/fructose-2,6-bispho-

sphatase-3 (PFKFB3), an enzyme that is negligibly present

in neurons by continuous degradation because of the ubiqui-

tin-proteasome pathway via anaphase-promoting complex/

cyclosome (APC)-Cdh1. Additional factors contributing to the

glycolytic frame of astrocytes may include 50-AMP-activated

protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1),

pyruvate kinase muscle isoform-2 (PKM2), pyruvate dehydro-

genase kinase-4 (PDK4), lactate dehydrogenase-B, or mono-

carboxylate transporter-4 (MCT4). Neurotransmission-

associated messengers, such as nitric oxide or ammonium,

stimulate lactate release from astrocytes. Astrocyte-derived

glycolytic lactate thus sustains the energy needs of neurons,

which in contrast to astrocytes mainly rely on oxidative

phosphorylation. Neuronal activity unavoidably triggers reac-

tive oxygen species, but the antioxidant defense of neurons is

weak; hence, they use glucose for oxidation through the

pentose-phosphate pathway to preserve the redox status.

Furthermore, neural activity is coupled with erythroid-derived

erythroid-derived 2-like 2 (Nrf2) mediated transcriptional acti-

vation of antioxidant genes in astrocytes, which boost the

de novo glutathione biosynthesis in neighbor neurons. Thus,

the bioenergetics and redox programs of astrocytes are

adapted to sustain neuronal activity and survival. Developing

therapeutic strategies to interfere with these pathways may be

useful to combat neurological diseases.
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Neural activity is energy costly

The brain consumes about 20% of inhaled O2 suggesting a

high-energy-demanding tissue. Most of the neural energy

expenditure is accounted for by the electrical impulses,

which require continuous re-setting of ion (Na+, K+, and

Ca2+) gradients across the plasma membrane of dendrites and

axons through primary active transporters, including Na+/K+-

and Ca2+-ATPase pumps (Cai and Sheng 2009). Accord-

ingly, it is not unexpected that stimulation of glutamate
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receptors in cortical neurons causes rapid ATP consumption

(Almeida and Bola~nos 2001), which is immediately followed

by a rise in mitochondrial O2 consumption (Thompson et al.

2003; Jekabsons and Nicholls 2004; Garcia et al. 2005). This

suggests that the energy requirements of neurons during

activity are met by mitochondrial oxidative phosphorylation

(OXPHOS) (Nicholls 2008). Interestingly, prior to the rise in

O2 consumption, there is an increase in intracellular Ca2+

concentrations (Gleichmann et al. 2009), suggesting an early

regulatory role for Ca2+ in the bioenergetics of neurotrans-

mission (Nicholls et al. 2007). Furthermore, mitochondrial

influx of Ca2+ alters mitochondrial OXPHOS efficiency;

hence, the production of reactive oxygen species (ROS) by

this organelle is an inherent phenomenon of neurotransmis-

sion (Mattson and Liu 2002).

An issue that has remained controversial over decades is

the unequivocal identification of the main energetic precursor

for neuronal activity. According to in vivo studies using

functional magnetic resonance imaging and positron emis-

sion tomography, glucose is the preferred energy substrate for

the brain (Hertz et al. 2007). However, the occurrence of a

lag between activation of cerebral blood flow and O2

consumption following neural activity (Fox and Raichle

1986) challenges this notion and lays the foundation for a

long-lasting debate (Hertz et al. 2007; Pellerin et al. 2007;

Ivanov et al. 2014). The aim of this review was to revisit our

current knowledge on the brain’s management of the

bioenergetics and redox needs that result from neural activity,

as well as to identify potential gaps requiring future research.

Energy management of astrocytes during neural
activity

Astrocytes are crucial to the metabolic and structural support

of the brain (Parpura et al. 1994; Allen and Barres 2009), as

they are essential partners in neurotransmission and behavior

(Perea et al. 2014; Oliveira et al. 2015). During glutamater-

gic neurotransmission, astrocytes efficiently take up neu-

ronal-derived glutamate from the synaptic space through

secondary, Na+-dependent active transporters. Thus, gluta-

mate uptake is energy-costly for astrocytes, as re-setting the

Na+ gradient across the plasma membrane to the resting

levels requires Na+ pumping by the Na+/K+-ATPase. The

mechanism used by astrocytes to couple glutamate uptake

with its energy requirement is currently controversial.

Intracellular glutamate may follow at least two metabolic

fates, namely conversion into a-ketoglutarate for oxidation

within mitochondria via the tricarboxylic acid (TCA) cycle,

or conversion into glutamine to be released and taken up by

neighbor neurons, which convert it back into glutamate

(Fig. 1). Estimations, made on the bases of the energetic

efficiencies of substrates, initially concluded that the energy

required for glutamate uptake exceeds that provided by the

mitochondrial oxidation of glutamate alone (Hertz et al.

2007). Considering this, the increase in the rate of glucose

uptake (Loaiza et al. 2003; Porras et al. 2008) coupled to

glutamate influx by astrocytes, suggests that invoked

glycolysis likely supplements the energy needs of the

process, which is part of the so-called astrocyte-neuronal

lactate shuttle (Pellerin and Magistretti 1994; Magistretti and

Allaman 2015) that will be discussed below. Nonetheless,

this issue has been the matter of debate. Comparing the use

of glucose or lactate in cortical neurons and astrocytes under

resting conditions by 13C-nuclear magnetic resonance (13C-

NMR), it was concluded that lactate was a preferential TCA

cycle substrate over glucose in neurons, whereas astrocytes

oxidized less lactate indicating a less active oxidative

metabolism than neurons (Bouzier-Sore et al. 2006). This

notion has been confirmed in resting cerebellar neurons (Bak

et al. 2006), albeit glucose – not lactate – utilization via TCA

cycle oxidation increases upon glutamatergic activity in these

cells (Bak et al. 2006, 2009, 2012). Therefore, it seems

likely that cerebellar and cortical neurons have different

intrinsic responses against depolarization. Interestingly,

extracellular lactate inhibits glucose usage by astrocytes, an

effect that is stronger in resting than in K+-stimulated

conditions (Sotelo-Hitschfeld et al. 2012). This suggests the

occurrence of a negative feedback regulatory mechanism of

glucose consumption in astrocytes by lactate that diverts

glucose utilization from resting to active zones. Moreover,

astrocytes store glycogen particularly in areas of high

synaptic activity (Pellerin and Magistretti 2012), and glyco-

gen-derived lactate (Pellerin et al. 2007) can sustain neuronal

activity specially during hypoglycemia (Brown and Ransom

2007; Suh et al. 2007) (Fig. 1). Neurons also synthesize

glycogen that is continuously degraded (Vilchez et al. 2007),

the physiological function of which is a matter of investi-

gation (Duran and Guinovart 2015).

Therefore, it seems likely that cerebellar and cortical

neurons have different intrinsic responses against depolar-

ization. (Bittner et al. 2011). However, the nature of the

functional coupling between glycolysis and Na+/K+-ATPase

may not be energetic (Fernandez-Moncada and Barros 2014).

The effect of glutamate on glycolysis is delayed and

persistent, in contrast to the effect that is observed using

K+ at concentrations compatible with those during gluta-

matergic neurotransmission, which stimulates glycolysis

rapidly and reversibly (Bittner et al. 2011). Ammonium

(NH4
+), which is produced stoichiometrically with glutamate,

can rapidly activate lactate release from astrocytes, as can

glutamate (Lerchundi et al. 2015); however, this effect is not

coupled with glycolysis but with inhibition of mitochondrial

uptake of pyruvate. Thus, the long-lasting effect of glutamate

(Bittner et al. 2011) suggests the action of adaptive

metabolic mechanisms of astrocytes to neurotransmission,

which will be discussed below. The mechanisms responsible

for the short-term effects on glycolysis and lactate release

triggered by K+ and NH4
+ deserve further investigation.
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Is OXPHOS dispensable for energy generation in
astrocytes?

Nitric oxide (•NO) is a neural messenger (Garthwaite et al.

1988) that is formed by neurons following glutamatergic

neurotransmission. Experiments performed in astrocytes

revealed the inhibition of the mitochondrial respiratory chain

(MRC) by a •NO synthase-mediated mechanism (Bola~nos

et al. 1994). The most susceptible component of the MRC

was found to be cytochrome c oxidase (complex IV)

(Bola~nos et al. 1994). Subsequent studies confirmed this

effect and revealed such inhibition to be reversible (Brown

and Cooper 1994; Cleeter et al. 1994; Schweizer and Richter

1994), occurring by competition with O2 (Brown and Cooper

1994). During endogenous •NO production inhibiting the

MRC at cytochrome c oxidase in astrocytes, ~ 90–100% of

the glucose they consumed was released as lactate, and cells

remained alive (Bola~nos et al. 1994). These results suggest

that OXPHOS inhibition invokes glycolysis as a survival

pathway in astrocytes. In fact, endothelial cells-derived •NO

activates glycolytic lactate from neighbor astrocytes through

hypoxia-inducible factor-1 (HIF-1)-mediated induction of

glycolytic enzymes and monocarboxylate transporter-4

expression (Brix et al. 2012). Glycolytic ATP drives the

reverse ATP synthase reaction, which pumps H+ into the

intermembrane space, thus sustaining the mitochondrial

membrane potential (∆Ψm) (Beltran et al. 2000; Almeida

et al. 2001). As long as glycolytic ATP sustains ∆Ψm

astrocytes avoid apoptosis (Almeida et al. 2001), confirming

that glycolysis is a survival pathway (Bola~nos et al. 2010).

Fig. 1 Bioenergetics adaptations of astrocytes to neurotransmission.

Synaptic cleft glutamate (Glu) released by the pre-synaptic neuron acts

on glutamate receptors (Glu-R) placed in the post-synaptic neurons,

triggering the influx of Ca2+ (and Na+, not indicated) and causing

plasma membrane depolarization, which is needed to propagate the

nervous impulse (neuronal activity). To reset basal levels of glutamate

in the synaptic cleft, it is taken up by astrocytes through glutamate

transporters (Glu-T), which require Na+ uptake. Astrocytes convert

glutamate into glutamine (Gln), which is released and then taken up by

neurons, which convert it back into glutamate (blue arrowed lines). The

Na+/K+-ATPase hydrolyses ATP to conserve its energy to reset Na+

(and K+) homeostasis. Such ATP can be obtained by glutamate

oxidation in the tricarboxylic acid cycle in the mitochondria (m.).

However, strong evidence indicates that glutamate uptake is coupled,

via a yet unknown mechanism, with glucose conversion into lactate

through the glycolytic pathway (red arrowed lines). Neuronal activity is

also coupled with glucose uptake from the blood, and with glycogen

conversion into lactate. As neuronal activity-associated glycolytic

activation in astrocytes is coupled with stoichiometric lactate release,

it is likely that glycolytic-derived ATP would be in charge of sustaining

Na+/K+ homeostasis during glutamate uptake. Astrocytes are genet-

ically adapted to support a constitutive glycolytic phenotype in view of

their low activity of APC/C-Cdh1 (anaphase-promoting complex/cyclo-

some/Cdh1), the E3 ubiquitin ligase responsible for the degradation of

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), a

pro-glycolytic enzyme. In contrast to astrocytes, neurons express high

APC/C-Cdh1 activity hence continuously degrading PFKFB3 causing

their low glycolytic phenotype. Thus, neurons need an energy source

different from glucose. Evidence obtained from cultured cells and

in vivo strongly suggest that astrocyte-released lactate support

neuronal functions, both serving as a fuel and, possibly, as a signaling

molecule. Thus, astrocytes are metabolically adapted to sustain the

bioenergetics status of neurons during neural activity. The stoichiom-

etry of the reactions has been omitted for clarity. Likewise, additional

factors involved in these adaptations could not be depicted herein and

can be found in the main text.
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Neurotransmission-associated NH4
+ formation acidifies the

mitochondrial matrix in astrocytes leading to inhibition of

pyruvate uptake (Lerchundi et al. 2015), which likely leads

to TCA cycle impairment and mitochondrial energy stress,

thus, contributing to glycolytic activation. Therefore, it is

tempting to speculate that glycolysis is essential in astrocytes

whereas OXPHOS is dispensable for the generation of

energy associated with neurotransmission.

In contrast to astrocytes, neurons are highly vulnerable to

the inhibition of the MRC. Incubation of neurons and

astrocytes with •NO or its derivative peroxynitrite anion

causing identical degree permanent inhibition of cytochrome

c oxidase and mitochondrial respiration in both cell types

dramatically triggered neuronal death, whereas astrocytes

remained intact (Bola~nos et al. 1995; Almeida et al. 2001).

Interestingly, under these conditions, neurons were unable to

up-regulate glycolysis, and neuronal apoptosis was preceded

by ∆Ψm collapse and ATP depletion (Almeida et al. 2001).

Furthermore, these features were mimicked by stimulation of

glutamate receptors, which immediately caused ATP decline

(Almeida and Bola~nos 2001; Gleichmann et al. 2009) that

did not result in a concomitant up-regulation of glucose

uptake (Porras et al. 2004) or glycolytic activation (Delgado-

Esteban et al. 2000). Thus, during neuronal activity, neurons

– in contrast to astrocytes – are tightly dependent on

OXPHOS for energy generation and survival.

Astrocytes are constitutively glycolytic

Glycolysis is mainly regulated by the enzymatic activities of

hexokinase, 6-phosphofructo-1-kinase (PFK1), and pyruvate

kinase (PK). In resting astrocytes, PFK1 specific activity is

~fourfold that found in resting neurons, and the levels of

PFK1 positive effector, fructose-2,6-bisphosphate (F2,6P2) is

twofold (Almeida et al. 2004). There are four isoforms of the

enzyme responsible for the synthesis of F2,6P2, 6-phospho-

fructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB). How-

ever, isoform 3 (PFKFB3) is, by far, the most abundant one

found in astrocytes (Almeida et al. 2004). Interestingly,

PFKFB3 has a high, ~ 700-fold kinase versus bisphos-

phatase ratio (Pilkis et al. 1995). Hence, PFKFB3 levels are

directly proportional to F2,6-P2 synthesizing activity.

PFKFB3 knockdown abolishes the ability of astrocytes to

up-regulate glycolysis upon mitochondrial inhibition, sug-

gesting that PFKFB3 is necessary and sufficient to maintain

the glycolytic phenotype of astrocytes (Almeida et al. 2004)

(Fig. 1).

The transcriptome of the brain has been analyzed at single-

cell level by RNA-sequencing, and it was found that

PFKFB3, PK muscle-2 isoform, lactate dehydrogenase

B-isoform (LDHB), and pyruvate dehydrogenase kinase

4-isoform (PDK4) were highly expressed in astrocytes when

compared with neurons (Zhang et al. 2014). This confirms

previous findings on PFKFB3 levels and activity (Almeida

et al. 2004), strengthening the notion that astrocytes are

constitutively glycolytic (at the light of PFKFB3, PK muscle-

2 isoform, and LDHB mRNA levels) and independent on the

OXPHOS (as judged by the high mRNA levels of pyruvate

dehydrogenase kinase 4-isoform, which phosphorylates and

inhibits pyruvate dehydrogenase). In another study, the

isoforms of LDH were shown to be differentially expressed

in neurons and astrocytes, with neurons preferentially

expressing LDH1 (mainly pyruvate-producing tissues) and

astrocytes expressing LDH5 (associated with high lactate-

producing tissues) (Pellerin et al. 1998). Furthermore,

astrocytes were shown to express the monocarboxylate

transporters-1 and -4 (MCT1 and MCT4), which are

responsible for lactate efflux, whereas neurons express

MCT2, which is specialized for lactate influx (Pierre and

Pellerin 2005). These data, taken together, support the notion

that astrocytes continuously produce lactate through glycol-

ysis and explain the presence of an intracellular lactate

reservoir in these cells (Sotelo-Hitschfeld et al. 2015), which

is released through a channel upon extracellular rise in K+ or

depolarization (Sotelo-Hitschfeld et al. 2015).

Upon cellular energy stress, 50-AMP concentrations

increase and facilitate activation 50-AMP-activated protein

kinase (AMPK) by phosphorylation of a Thr172 residue on its

catalytic a1 subunit by the liver kinase-1 (Sanders et al.

2007), which is a protein kinase with tumor suppression

activity (Partanen et al. 2009). Active AMPK catalyzes the

phosphorylation of several key metabolic regulatory

enzymes, including PFKFB (Lage et al. 2008). In astrocytes,

AMPK becomes phosphorylated, F2,6P2 levels elevated, and

glycolysis activated within minutes of the inhibition of

mitochondrial respiration by •NO or cyanide (Almeida et al.

2004). Knockdown of the a1 subunit of AMPK, or PFKFB3,

abolishes F2,6P2 elevation and glycolysis activation

(Almeida et al. 2004). Thus, energy stress up-regulates

glycolysis through AMPK-mediated activation of PFKFB3

in astrocytes. There is a likely possibility that the glycolytic

activation caused by glutamate uptake (Pellerin and Mag-

istretti 1994) occurs through this AMPK-PFKFB3 pathway,

as suggested before (Ronnett et al. 2009), but this needs to

be directly elucidated. Interestingly, the ATP/AMP ratio, as

well as O2 levels and nutrients, such as glucose and amino

acids, regulate the mammalian target of rapamycin (mTOR)

(Wullschleger et al. 2006). Beside controlling key cellular

functions, including energy metabolism or autophagy,

mTOR regulates synaptic plasticity, memory storage, and

cognition, this being the subject of a recent review (Bockaert

and Marin 2015). Besides its critical importance in the tissue

energy homeostasis, no evidence for the cellular localization

and specific functions of mTOR on the bioenergetics and

redox adaptations of brain cells to neural activity has been

reported so far. The possible involvement of mTOR path-

ways in the control of brain energy metabolism during neural

activity is therefore interesting and worthy of exploration.
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Neurons are less glycolytic than astrocytes

While the widely spread notion is that glucose utilization

through glycolysis by neurons is low and they depend on

OXPHOS for energy generation (Knott et al. 2008), results

obtained from different biologic preparations and brain

regions are apparently controversial. Studies performed in

rat cerebellar neurons in culture (Budd and Nicholls 1996),

cortex synaptosomes (Kauppinen and Nicholls 1986; Choi

et al. 2009), and retinal neurons (Xu et al. 2007; Bringmann

et al. 2009) proposed glucose as the main energetic substrate.

Noticeably, fast axonal transport of vesicles has a need for

locally supplied ATP, which is met by glycolysis not

mitochondria (Zala et al. 2013), and thus is a process that

specifically requires glyceraldehyde-3-phosphate dehydroge-

nase. In addition, neurons have recently been reported to

require glucose for synaptic activity (Lundgaard et al. 2015),

although it remains unclear whether the metabolic fate of

neuronally used glucose is glycolysis or pentose-phosphate

pathway (PPP) – known to be essential for antioxidant

protection (Herrero-Mendez et al. 2009) (see below). More-

over, there is question as to the reliability of the fluorescent

probe, used in Lundgaard et al. (2015), to specifically assess

glucose transport—in contrast to carrier endocytosis (Tadi

et al. 2015). Furthermore, recently, using the genetically

encoded lactate probe Laconic, it has been provided the first

in vivo evidence for a lactate gradient from astrocytes to

neurons (Maechler et al. 2016), a prerequisite for the

occurrence of the ANLS. Accordingly, glucose does not

seem to be used for the energy generation needed during

neural activity, at least by cortical and hippocampal neurons,

except for in fast vesicle transport through the axons (Zala

et al. 2013).

Studies aimed at understanding why neurons do not rely

on glycolysis for energy generation found PFKFB3 protein

to be virtually absent in neurons (Almeida et al. 2004), both

in culture and in vivo, because of the continuous destabi-

lization by the ubiquitin-proteasome pathway (Herrero-

Mendez et al. 2009). Thus, PFKFB3 – not PFKFB1, -2 or

-4 – contains a 142Lys-Glu-Asn (KEN) box that targets it for

ubiquitination by the anaphase-promoting complex/cyclo-

some (APC/C)-Cdh1 (Herrero-Mendez et al. 2009), which is

an E3 ubiquitine ligase known for its roles in the regulation

of mitosis, meiosis (Pesin and Orr-Weaver 2008), tumor

suppression, and genome stability (Garcia-Higuera et al.

2008). Besides these roles, APC/C-Cdh1 regulates important

functions in neurons, such as axonal growth (Konishi et al.

2004; Harmey et al. 2009; Huynh et al. 2009), cortical

neurogenesis and size (Delgado-Esteban et al. 2013), and

survival (Almeida et al. 2005; Stegmuller and Bonni 2005;

Maestre et al. 2008). In cortical neurons, Cdh1 knockdown

leads to PFKFB3 accumulation, which is sufficient to

increase glycolysis (Herrero-Mendez et al. 2009). This was

the first observation to describe a role for a cell cycle-related

protein (APC/C-Cdh1) in metabolism, which was mimicked

by PFKFB3 full-length cDNA over-expression (Herrero-

Mendez et al. 2009). In contrast, Cdh1 protein levels and

APC/C-Cdh1 ubiquitylating activity are very low in

astrocytes, which explains their high levels of PFKFB3 and

glycolytic activity (Herrero-Mendez et al. 2009) (Fig. 1).

Metabolic fate of neuronal glucose

The rate of [6-14C]glucose incorporated into 14CO2 (i.e., an

index of glucose that is oxidized in the TCA cycle after

having been converted into pyruvate) is negligible in cortical

neurons when compared with astrocytes (Garcia-Nogales

et al. 2003; Herrero-Mendez et al. 2009). Glucose is not

actively transformed into lactate either, as judged by the low

rate of [U-14C]glucose incorporation into 14C-lactate in

neurons (Herrero-Mendez et al. 2009). Lastly, glycolytic

rate, assessed as the rate of 3H2O formation from [3-3H]

glucose and thus accurately reflecting the flux of glucose

through glycolysis (Bouzier-Sore and Bolanos 2015), is

~ 4-5-fold lower in neurons than in astrocytes (Herrero-

Mendez et al. 2009). It seems, therefore, likely that the

neuronal ability to perform glycolysis is limited. Interestingly,

over-expression of PFKFB3 leading to up-regulation of

glycolysis causes oxidative stress and neuronal death (Her-

rero-Mendez et al. 2009), whereas over-activation of gluta-

mate receptors, which inhibits APC/C-Cdh1 (Maestre et al.

2008), stabilizes endogenous PFKFB3 protein causing neu-

ronal death that can be rescued by knocking down PFKFB3

(Rodriguez-Rodriguez et al. 2012). Together, these results

strongly suggest that high glycolysis is not safe for neurons.

PPP converts glucose-6-phosphate (G6P) into ribulose-5-

phosphate (R5P) in three consecutive steps, the first one

catalyzed by G6P dehydrogenase (G6PD), which forms

6-phosphogluconolactone; 6-phosphogluconolactone is then

converted into 6-phosphogluconate (6PG) by a lactonase,

followed by its decarboxylation into R5P by 6PG dehydro-

genase (Wamelink et al. 2008; Bouzier-Sore and Bolanos

2015). Two of these reactions (G6PD and 6PG dehydroge-

nase) occur, each, at the expense of one mole of NADPH(H+)

regenerated per mole of substrate, and constitute the oxidative

branch of the PPP. Thus, this branch of the PPP can

regenerate 2 moles of NADPH(H+) per mole of G6P entering

the pathway with the loss of one carbon atom as CO2. This

branch (the non-oxidative branch) is followed by a series of

reactions that produce, from three moles of R5P, one mole of

the glycolytic intermediates fructose-6-phosphate (F6P) and

glyceraldehyde-3-phosphate (Wamelink et al. 2008; Bouzier-

Sore and Bolanos 2015). The oxidative PPP branch is

therefore a process that conserves the glucose redox energy in

reducing NADP+ to NADPH(H+), a necessary cofactor for

antioxidant (GSH) regeneration (Wamelink et al. 2008).

G6PD catalyzes the PPP rate-limiting reaction (Eggleston

and Krebs 1974). A large body of evidence now supports the
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notion that the PPP has antioxidant and cytoprotective roles.

In cortical neurons, exogenous H2O2 stimulates PPP activity

and regenerates NADPH(H+) and GSH, thus contributing to

neuroprotection (Ben-Yoseph et al. 1996). By stimulating

glutamate receptors in neurons, GSH becomes oxidized to

oxidized glutathione, which triggers an increase in the rate of

glucose oxidation through the PPP to regenerate neuropro-

tective NADPH(H+) and GSH (Delgado-Esteban et al.

2000). At low doses, peroxynitrite activates G6PD, causing

an enhancement of neuroprotective PPP activity in neurons

(Garcia-Nogales et al. 2003). Moreover, inhibition of APC/

C-Cdh1 activity leading to PFKFB3 stabilization or PFKFB3

over-expression shifts glucose-6-phosphate utilization from

PPP to glycolysis causing neuronal death (Herrero-Mendez

et al. 2009). Taken together, these results strongly suggest

that neurons use glucose through the PPP as an essential

survival pathway (Vaughn and Deshmukh 2008; Herrero-

Mendez et al. 2009). Thus, by using glucose preferentially

through the PPP for antioxidant purposes (Herrero-Mendez

et al., 2009), neurons can mainly rely on ANLS-derived

lactate as metabolic fuel (Kasparov 2016; Maechler et al.

2016). Furthermore, APC/C-Cdh1 is likely to coordinate the

metabolic adaptation of neurons and astrocytes to the

astrocyte-neuronal lactate shuttle (Pellerin and Magistretti

1994, 2012; Bouzier-Sore et al. 2003; Magistretti 2006;

Allaman et al. 2011) (Fig. 1).

An astrocyte-neuronal glutathione shuttle couples
neural activity with redox balance

Neurotransmission unavoidably increases mitochondrial

ROS in neurons, possibly because of mitochondrial Ca2+

influx (Mattson and Liu 2002). However, neuronal antiox-

idant machinery is generally weak (Makar et al. 1994;

Bola~nos et al. 1995, 1996), albeit provided with some

intrinsic defense (Papadia et al. 2008; Deighton et al. 2014;

Baxter et al. 2015). The antioxidant defense of neurons is

repressed because of continuous protein destabilization of the

master antioxidant transcriptional activator, nuclear factor-

erythroid 2-related factor-2 (Nrf2), by Cullin 3/Kelch-like

ECH-associated protein 1 (Bell et al. 2015; Jimenez-Blasco

et al. 2015). In contrast, Nrf2 is highly stable in neighbor

astrocytes, which explains their robust antioxidant defense

and resistance against oxidative stress (Habas et al. 2013;

Jimenez-Blasco et al. 2015), although this notion has been

disputed (Haskew-Layton et al. 2010). Moreover, astrocytes

release GSH precursors, which neurons can use for the

de novo GSH biosynthesis (Dringen et al. 1999), a system

that contributes to neuroprotective ischemic preconditioning

(Bell et al. 2011). However, a definitive answer as to

whether astrocytes sense neurotransmission to activate the

release of GSH precursors upon neuronal activity has long

remained elusive. Like post-synaptic neurons, astrocytes

express glutamate receptors (Conti et al. 1996; Schipke et al.

2001; Seifert and Steinh€auser 2001; Verkhratsky and Kirch-

hoff 2007; Lee et al. 2010; Palygin et al. 2011), though their

function in these glial cells has been enigmatic.

Recently, it was shown that subtle and persistent stimu-

lation of glutamate receptors in astrocytes, through a

mechanism not requiring extracellular Ca2+ influx, up-

regulates a signal transduction pathway involving phospho-

lipase C-mediated endoplasmic reticulum release of Ca2+ and

protein kinase Cd activation. Through phosphorylation,

active protein kinase Cd promotes the stabilization of p35,

a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/

Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr395,

Ser433, and Thr439 that is sufficient to promote Nrf2

translocation to the nucleus and induce the expression of

antioxidant genes. Furthermore, this Cdk5-Nrf2 transduction

pathway boosts GSH metabolism in astrocytes efficiently

protecting closely spaced neurons against oxidative damage.

These results demonstrate that neural activity is coupled with

astrocyte release of GSH for neuronal de novo GSH

biosynthesis (astrocyte-neuronal glutathione shuttle or

Fig. 2 Redox adaptation of astrocytes to neurotransmission. Synaptic

cleft glutamate (Glu) released by the pre-synaptic neuron acts on

glutamate receptors (Glu-R) placed both in the post-synaptic neuron and

astrocytes. Part of intracellular Ca2+ at the post-synaptic neurons is

removed from the cytosol by entering mitochondria, and this causes

mitochondrial production of reactive oxygen species (ROS). Synaptic

cleft glutamate interactswith its receptors placed in astrocytes, triggering

a cascade of events via cyclin-dependent kinase-5 (Cdk5)-mediated

phosphorylation of Nrf2 (nuclear factor-erythroid 2-related factor-2),

which enters the nucleus (n.) and binds to the antioxidant responsive

elements (ARE) to promote the expression of antioxidant genes (green

arrowed lines). This pathway leads to the biosynthesis and release of

glutathione (GSH), whose precursors are taken up by neurons for the

de novo GSH biosynthesis necessary to detoxify neuronal activity-

mediated mitochondrial ROS. Thus, through this astrocyte-neuronal

glutathione shuttle, astrocytes sustain the redoxstatus of neuronsduring

neural activity. The stoichiometry of the reactions has been omitted for

clarity. Likewise, additional factors involved in these adaptations could

not be depicted herein and can be found in the main text.
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ANGS) as a strategy for balancing the neuronal redox status

(Jimenez-Blasco et al. 2015) (Fig. 2).

Pathophysiological implications of disruption in
energy and redox adaptations of astrocytes

Disruption of the metabolic and redox adaptations of

astrocytes and neurons to neural activity cause neuronal

death and is likely to play important roles in neurological

diseases. A condition underlying several of these diseases is

the excitotoxic phenomenon, in which there is a Ca2+-

dependent component following glutamate receptor over-

activation-mediated neuronal death (Choi 1987). Besides the

rapid increase in cytosolic Ca2+ by N-methyl-D-aspartate

(NMDA) receptor over-stimulation, there is a delayed Ca2+

deregulation process, which persists even after glutamate

removal from the synaptic cleft, which is responsible for the

activation of secondary cascades, notably those involving

calpain (Brustovetsky et al. 2010). Calpain triggers the

proteolytic cleavage of the Na+/Ca2+ exchanger, a major

plasma membrane system for Ca2+ extruding, thus impairing

Ca2+ homeostasis and leading to neuronal death (Bano et al.

2005; Brustovetsky et al. 2010). Furthermore, the increase in

intracellular Ca2+ causes a mitochondrial Ca2+ overload

responsible for enhanced ROS formation and cytochrome c

release, both playing a crucial role in glutamate-induced

excitotoxicity (Luetjens et al. 2000). Oxidative stress asso-

ciated with excitotoxicity also leads to mitochondrial frag-

mentation, an observation that concurs in several

neurodegenerative diseases (Knott et al. 2008; Nguyen et al.

2011). Moreover, mitochondrial dynamics imbalance can

trigger NMDA receptor up-regulation, further contributing to

propagate the excitotoxic process (Nguyen et al. 2011).

A bioenergetics-redox component in this excitotoxicity

cascade has also been shown. Upon a glutamatergic

excitotoxic stimulus in cortical neurons, APC/C-Cdh1 is

inhibited by Cdk5-mediated phosphorylation of Cdh1

(Maestre et al. 2008), a process that is triggered by Ca2+-

dependent calpain activation (Maestre et al. 2008). This

leads to PFKFB3 stabilization triggering neuronal death as a

consequence of the PPP inhibition that leads to oxidative

stress (Rodriguez-Rodriguez et al. 2012). Interestingly,

PFKFB3 knockdown in cultured human astrocytes leads to

extracellular ß-amyloid accumulation (Fu et al. 2015).

Moreover, PFKFB3 is increased in the astrocytes of an

Alzheimer’s disease mouse model that over-expresses ß-

amyloid (Fu et al. 2015). Specific inhibition of GSH

released from astrocyte triggers neuronal death in co-culture

systems (Jimenez-Blasco et al. 2015), and disruption of

astrocyte function in adult mice causes oxygen and nitrogen

redox species imbalance of neurons in vivo (Schreiner et al.

2015). Glucose metabolism is altered in the brains of

Alzheimer’s disease patients (Silverman et al. 2001), and ß-

amyloid causes an enhancement in the flux of glucose

utilization via the PPP (Soucek et al. 2003). Interestingly,

increased G6PD levels are found in the surviving pyramidal

neurons of hippocampal slices from the post-mortem brains

of Alzheimer’s disease patients (Palmer 1999; Russell et al.

1999). In a cell model of Huntington’s disease there is

evidence for inhibition of the PPP and decreased mitochon-

drial NADH(H+)/NAD+ ratio (Ferreira et al. 2011).

Together, these findings strongly suggest that during the

oxidative stress associated with human brain pathologies, the

consumption of glucose through the PPP is critical for

maintaining the neuronal antioxidant redox status and

survival. Thus, besides their critical role in controlling

energy metabolism, astrocyte redox metabolism is also

adapted to protect neurons against oxidative stress and

neurodegeneration, likely playing an important role in

neurological disorders.

Concluding remarks and perspectives

Astrocytes and neurons are metabolically programmed to

spatiotemporally deal with the energy and redox require-

ments of neural activity. Astrocytes show a prominent

constitutive glycolytic metabolism whereas neurons do not,

and this is coordinated by the E3 ubiquitin ligase APC/C-

Cdh1 (Herrero-Mendez et al. 2009). High Cdh1 levels keep

APC/C active, thus destabilizing the pro-glycolytic enzyme

PFKFB3; whereas low Cdh1 levels in astrocytes allows

PFKFB3 stabilization responsible for the high glycolytic

phenotype (Herrero-Mendez et al. 2009; Bola~nos et al.

2010) (Fig. 1). In addition, messengers such as •NO or

NH4
+ also contribute to the glycolytic phenotype of astro-

cytes (Almeida et al. 2004; Brix et al. 2012; Lerchundi et al.

2015), and an appropriate redox balance is critically

important to sustain antioxidant protection during neural

activity. Neurons spare glucose for its oxidation through the

PPP, which serves to regenerate GSH and exert protection

against oxidative stress (Vaughn and Deshmukh 2008;

Herrero-Mendez et al. 2009). In addition, neurons constitu-

tively destabilize Nrf2, whereas astrocytes accumulate it

(Jimenez-Blasco et al. 2015). Thus, neurons rely on astro-

cyte-derived precursors for de novo GSH biosynthesis

(Dringen et al. 1999), and in astrocytes neural activity

triggers the signaling pathway needed to activate this redox

regulatory system (Jimenez-Blasco et al. 2015) (Fig. 2).

Such mechanisms do not exclude the occurrence of other,

still unknown systems helping neural cells adapt their

metabolism to the necessary rapid changes occurring during

neural activity. These may include mTOR (Bockaert and

Marin 2015) and/or hypoxia-inducible factor-1 (Brix et al.

2012) signaling pathways, the importance of which is still

elusive. In any case, the metabolic status of neural cells

would favor the necessary spatiotemporal changes in energy

homeostasis following neural activity to satisfy neuronal

needs. Recent studies in Drosophila (Volkenhoff et al. 2015)
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and in mice (Sada et al. 2015; Tadi et al. 2015) confirm the

occurrence of the metabolic adaptations of astrocytes in vivo.

The use of novel fluorescent probes has confirmed the key

role of glycolytic-derived lactate from astrocytes during

neural activity at a real-time resolution (Sotelo-Hitschfeld

et al. 2015), suggesting dual roles for lactate as metabolic

fuel (Pellerin and Magistretti 2012) and intercellular mes-

senger (Barros 2013). Further advances in similar tools

would be desirable to investigate roles for neuronal use of

glucose through the PPP as an antioxidant strategy during

neural activity (Bouzier-Sore and Bolanos 2015). Thus

prominent neurochemical advances have been made over

the past few decades in our understanding of the physiolog-

ical mechanisms that coordinate the metabolic adaptations of

neural cells to neurotransmission. Key conserved pathways

have been identified that are regulated by specific molecules,

the disruption of which causes neural problems. Therefore, it

seems reasonable to move forward and develop therapeutic

interventions aimed to interfere with these targets for the

treatment of neurological disorders.
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