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grant for research training in Denmark). 

This work is based on six journal papers: 

i) Heimann AC, Friis AK & Jakobsen R (2005) Effects of sulfate on anaerobic 
chloroethene degradation by an enriched culture under transient and steady-state 
hydrogen supply. Water Res. 39(15): 3579-3586. 

ii) Heimann AC, Batstone DJ & Jakobsen R (2006) Methanosarcina spp. drive 
vinyl chloride dechlorination via interspecies hydrogen transfer. Appl. Environ. 
Microbiol. 72: 2942-2949. 

iii) Heimann AC & Jakobsen R (2006) Experimental evidence for a lack of 
thermodynamic control on hydrogen concentrations during anaerobic 
degradation of chlorinated ethenes. Environ. Sci. Technol. 40: 3501-3507. 

iv) Heimann AC, Friis AK, Scheutz C & Jakobsen R (2007) Dynamics of reductive 
TCE dechlorination in two distinct H2 supply scenarios and at various 
temperatures. Biodegradation 18: 167–179. 

v) Heimann AC, Jakobsen R (2007) Filtration through nylon membranes 
negatively affects analysis of arsenic and phosphate by the molybdenum blue 
method. Talanta DOI 10.1016/j.talanta.2006.11.012, in press. 

vi) Heimann AC, Blodau C, Postma D, Larsen F, Viet PH, Nhan PQ, Jessen S, Duc 
MT, Hue NTM, Jakobsen R (2007) Hydrogen thresholds and steady-state 
concentrations associated with microbial arsenate respiration. Environ. Sci. 
Technol. 41: 2311-2317. 
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Abstract
This thesis investigates anaerobic microbial respiration of two different classes of 
groundwater contaminants, chlorinated ethenes and arsenic. A combination of pure and 
mixed culture experiments, sediment microcosm studies, and thermodynamic 
calculations was used to elucidate energetic constraints on a key parameter in anoxic 
systems, the concentration of dissolved hydrogen. 

Degradation of trichloroethene (TCE) by the mixed dechlorinating culture KB-1 was 
studied over a wide temperature range (4–60 °C) using propionate and lactate as a 
slowly and rapidly fermenting substrate, respectively. While the overall rate of 
dechlorination was temperature-dependent, the choice of substrate and the resulting 
difference in H2 levels strongly influenced end points of dechlorination and the 
occurrence of methanogenesis. Slow H2 supply during propionate fermentation resulted 
in a lag phase prior to further dechlorination of cis-dichloroethene (cDCE), 
accompanied by a characteristic increase of H2 and methane. 

The same culture was used to study the impact of parameters determining the reactions’ 
Gibbs free energy yield on H2 levels during degradation of cDCE and vinyl chloride 
(VC). Changes in temperature (10-30°C) as well as variation of chloride levels (10-110 
mmol/L) did not influence H2 levels in a way that suggested thermodynamic control. 
Hence, it seems that partial equilibrium modeling is not directly applicable to 
dechlorinating systems. 

Aceticlastic methanogens of the genus Methanosarcina drive dechlorination of VC by 
supplying Dehalococcoides spp. with H2 derived from anaerobic acetate oxidation. This 
process, which was found during growth of KB-1 on acetate and VC, was studied using 
a combination of fluorescence in situ hybridization (FISH), radiotracer experiments, H2

measurements, and thermodynamic calculations. Intriguingly, the transfer of H2 to 
Dehalococcoides spp. is rendered thermodynamically favorable only by the very low H2

levels maintained during dechlorination of VC. 

Hydrogen thresholds for microbial respiration of arsenate (As(V)) were studied in a 
pure culture of Sulfurospirillum arsenophilum, a microbe growing by reducing As(V) to 
As(III). The H2 thresholds (0.03-0.09 nmol/L) for this culture are among the lowest 
values measured so far compared with other terminal electron-accepting processes 
(TEAPs).

Similarly, sediment microcosm from an arsenic-contaminated aquifer in Vietnam 
showed rapid reduction of As(V) to As(III) accompanied by comparatively low steady 
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state H2 levels. Collectively, these data suggest that microbial As(V)-reduction, a 
suspected culprit in arsenic contamination of groundwater, is a highly competitive 
TEAP in terms of substrate utilization and H2 uptake.
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Dansk resumé 
I afhandlingen undersøges anaerob mikrobiel respiration for to forskellige typer af 
kontaminanter i grundvandet, klorerede ethener og arsen. En kombination af ren- og 
blandkultur eksperimenter, sedimentmikrokosmos studier og termodynamiske 
beregninger blev benyttet, for at belyse energetiske begrænsninger af en nøgle 
parameter i anoxiske systemer, koncentrationen af opløst brint.

Triklorethen (TCE) nedbrydning af den deklorerende blandkultur KB-1 blev undersøgt 
ved forskellige temperaturer (4-60 °C) med hjælp af henholdsvis propionat og laktat 
som langsomt og hurtigt gærende substrater. Mens den overordnede dekloreringsrate 
var afhængig af temperaturen, havde valget af substrat og den afledte forskel i brint 
niveauet en stor indflydelse på de endelige produkter af dekloreringsprocessen og 
forekomsten af metandannelse. Langsom brintdannelse i løbet af propionat gæring 
resulterede i en nølefase inden videregående deklorering af cis-dikloroethene (cDCE), 
ledsaget af en karakteristisk stigning i koncentrationen af brint og metan.  

Den samme kultur blev benyttet til at studere effekten af parametre, som bestemmer 
Gibbs fri energi for nedbrydning af cDCE og vinyl klorid (VC) på brint niveauet i 
systemet. Ændringer i temperaturen (10-30°C) og variationer af klorid niveauet (10-100 
mmol/L) havde ikke en indflydelse på brint niveauet på en måde som kunne antyde 
termodynamisk kontrol. Dermed er partiel ligevægts modellering ikke direkte 
anvendelig på deklorerende systemer. 

Acetiklastiske metanogener af genus Methanosarcina driver deklorering af VC ved at 
levere brint, dannet ved anaerob acetat oxidation, til Dehalococcoides spp. Denne 
proces, som blev opdaget under dyrkning af KB-1 på acetat og VC, blev undersøgt med 
en kombination af ”fluorescence in situ hybridization” (FISH), radioaktive sporstoffer, 
brintmålinger og termodynamiske beregninger. Disse viste at overførselen af brint til 
Dehalococcoides spp. først bliver termodynamisk gunstig ved de lave brint niveauer, 
som er typisk for anaerob deklorering af VC. 

Tærskelværdier for brint under mikrobiel respiration af arsenat (As(V)) blev studeret i 
en renkultur af Sulfurospirillum arsenophilum, en mikroorganisme, som vokser ved at 
reducere As(V) til As(III). Tærskelværdierne for brint i denne kultur (0.03-0.09 nmol/L) 
er blandt de laveste værdier som hidtil er målt, hvis man sammenligner med andre 
terminale elektron-accepterende processer (TEAPs). 

Ligeledes viste sediment mikrokosmer fra en arsen-forurenet aquifer i Vietnam hurtig 
omsætning af As(V) til As(III) ledsaget af forholdsvis lave steady state brint niveauer. 
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Sammen, tyder data på, at As(V)-reduktion, mistænkt for at spille en rolle i arsen 
kontaminering i grundvandsystemer, er en meget konkurrencedygtig TEAP med hensyn 
til substrat udnyttelse og brint optage.  
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1. Introduction 
Oxygen-depleted sediments are fascinating environments. The absence of aerobic 
respiration as the most favorable energy-yielding process allows for the development of 
a complex biogeochemistry featuring astounding strategies of anaerobic life. In these 
settings, microbial communities often get by on minute amounts of energy while 
displaying various interdependencies in scavenging growth-supporting substrates.

The overall pattern of electron and carbon flow in anoxic environments is a succession 
of several degradation reactions involving different microbes (42). Organic 
macro-molecules (e.g. carbohydrates, proteins, nucleic acids, or lipids) are degraded by 
the successive co-action of several microbial groups such as primary and secondary 
fermenters (obligate proton reducers) and methanogens (128). The final step in this 
pattern is the terminal electron-accepting process (TEAP) in which inorganic electron 
acceptors are reduced with low molecular weight intermediates such as acetate or 
hydrogen (H2) (8). TEAPs in pristine environments may include denitrification, iron and 
manganese oxide reduction, sulfate reduction, or methanogenesis.  

A key intermediate in anaerobic degradation is dissolved hydrogen (H2) which is not 
only a common product of many fermentation reactions, but also the TEAP-driving 
electron donor with the highest turnover and therefore shortest residence time in anoxic 
sediments (24). Consequently, aqueous hydrogen concentrations in aquifers tend to be 
extremely low, often at nanomolar or sub-nanomolar levels. This makes dissolved 
hydrogen an excellent parameter to evaluate the redox state of a given system in terms 
of dominant and/or thermodynamically feasible TEAPs (93). Since the energy yield of a 
given TEAP decreases with the redox potential (Eh) of the electron acceptor (e.g. EhNO3-

/N2 > EhCO2/CH4) bacteria reducing nitrate are able to outcompete methanogens for H2 at 
standard conditions. Following this line of thought, Lovley and Goodwin (96)
empirically identified H2 levels associated with different TEAPs (manganese or nitrate 
reduction, < 0.05 nM; iron reduction, 0.2 nM; sulfate reduction, 1-1.5 nM; 
methanogenesis, 7-10 nM), the H2 level increasing with decreasing redox potential of 
the electron acceptor.  

Lovley and Goodwin (96) also derived the same qualitative order of TEAPs from 
Michaelis-Menten kinetics for hydrogen uptake at steady-state conditions (no net 
growth). This is due to decreasing Michaelis-Menten constants (Km) and increasing 
yield coefficients (Y) with increasing energy yields of a given reaction. Accordingly, 
the most straightforward approach for using H2 as a descriptive redox parameter is to 
compare the concentration in a given system with these empirical ranges. The implicit 
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assumption of this approach is that H2 levels characteristic of e.g. Fe(III) reduction are 
too low to support H2-dependent sulfate reduction or methanogenesis, and so forth. 
Several studies on redox conditions in pristine sediments have followed this line of 
reasoning (21,22,98).

A refinement of this approach is the partial equilibrium concept (76,77,123). Since 
production of H2 (i.e. fermentation) is limiting the overall rate of organic matter 
degradation, the TEAP is a comparatively fast process which renders it conducive to 
thermodynamic equilibrium calculations. Apart from the fact that steady-state 
conditions are not a prerequisite for this approach, it has the big advantage of 
accounting for the in situ conditions in a given system (e.g. activities of reactants, 
temperature). Thus, combining the information on product/educt ratios with H2 levels 
allows for calculations of in situ Gibbs free energies in the system of interest.  

Hoehler et al. (67) could nicely demonstrate the validity of this concept in a series of 
laboratory experiments. H2 concentrations in methanogenic and sulfate reducing 
sediment microcosms, respectively, responded to changes in electron acceptor 
concentrations, pH, and temperature, maintaining a nearly constant energy yield (close 
to thermodynamic equilibrium; G = -15 to -20 kJ per mol reaction). For obvious 
reasons the energy yield of a given TEAP does not reach true thermodynamic 
equilibrium ( G = 0), but is restricted to a minimum metabolically convertible energy 
yield. This corresponds to the energy required for synthesis of 1/5 to 1/3 of an ATP unit 
translating into approximately -10 to -20 kJ per mol reaction (68,128).

The aim of this study was to elucidate the validity and applicability of these concepts in 
contaminated environments, in which the natural range of TEAPs is supplemented by 
microbial types of anaerobic respiration that utilize groundwater contaminants as 
electron acceptors. The focus was put on two different classes of contaminants which, 
while physico-chemically very different, both pose severe threats to groundwater 
quality worldwide. These are (1) chlorinated ethenes and (2) inorganic arsenic.
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2. Dehalorespiration of chlorinated ethenes 

2.1. Chlorinated ethenes in groundwater: a health hazard 

Halogenated aliphatic compounds constitute a serious threat to groundwater quality in 
industrialized countries (54). Chlorinated ethenes, such as perchloroethene (PCE), 
trichloroethene (TCE), and their metabolites dichloroethene (DCE) and the more toxic 
vinyl chloride (VC), are among the most commonly encountered contaminants within 
this group (1,54). Owing to their beneficial physico-chemical properties (nearly 
noncorrosive and nonflammable), PCE and TCE have been heavily used as dry cleaning 
and metal degreasing agents since the 1940s (147,148). Intake of chlorinated ethenes 
may trigger several adverse health effects such as central nervous system depression, 
neurotoxicity, liver and kidney damage, liver cancers, angiosarcomas and hepatocellular 
carcinoma (81,147). Consequently, the World Health Organization has set the 
chlorinated ethenes guideline values for drinking water quality to 0.3-70 μg/L 
(depending on the chloroethene species (147)).

2.2. Anaerobic biodegradation of chlorinated ethenes 

Anaerobic dechlorination of chlorinated ethenes is achievable through several biological 
processes, of which dehalorespiration is the most important one in terms of plume 
attenuation at contaminated sites (148). In dehalorespiration, chlorinated ethenes are 
used as electron acceptors, yielding energy and allowing for microbial growth (70,71).
As chlorine atoms are successively replaced by hydrogen atoms PCE is reduced to TCE, 
cis-DCE (the most common of the three DCE isomers in microbial degradation), VC, 
and eventually ethene (146). This process is outlined in Figure 1. 
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Figure 1. Reductive dechlorination sequence as mediated by dehalorespiratory bacteria. 

In addition to dehalorespiration, reductive dechlorination can also occur cometabolically 
(fortuitously), catalyzed by the bacterial transition-metal coenzymes vitamin B12, 
coenzyme F430, and hematin (51) or by the CO dehydrogenase enzyme complex from 
Methanosarcina thermophila (75). However, cometabolic degradation is often slow and 
incomplete (148). Another degradation pathway under anaerobic conditions is the 
complete mineralization to CO2 (15).  

Reductive dechlorination can be stimulated by the addition of various electron donors 
such as acetate, lactate, formate, toluene, methanol, or yeast extract 
(32,40,101,129,130,132,141,153). These are either used directly or through H2

production by fermentation (9). Dehalorespiring bacteria capable of growing with every 
chlorinated ethene species as electron acceptor are to date restricted to the genus 
Dehalococcoides (28,29,38,58,107), whereas the capability to reduce PCE and TCE 
seems to be phylogenetically widespread (48). Completely dechlorinating cultures 
enriched from contaminated sites, such as the commercially available mixed culture 
KB-1TM, therefore generally contain Dehalococcoides species as vital contributors to 
site cleanup (37,38,50). All known Dehalococcoides spp. isolates require H2 as ultimate 
electron donor (3,58,106). Consequently, H2 is considered the most important electron 
donor for dehalorespiration, thus playing a key role in anaerobic dechlorination 
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(46,148). A fair amount of work done in this thesis was therefore dedicated to 
investigating the significance of H2 levels in reductively dechlorinating environments, 
both in terms of competition with alternative TEAPs and the influence of bioenergetics 
(i.e. thermodynamic constraints) on this parameter. 

2.3. Competitiveness of dehalorespirers for H2 consumption 

In general, dehalorespiring bacteria are highly competitive with respect to utilization of 
H2 as electron donor. Both H2 thresholds and steady-state concentrations during 
dehalorespiration are among the lowest when compared to competing TEAP 
(60,92,99,152). Accordingly, the relatively low half-velocity coefficients for H2

utilization by dechlorinators (roughly an order of magnitude lower than values for 
methanogens) suggest that dechlorinators can outcompete methanogens at low H2

concentrations (10).

However, even under H2-limited conditions the rate of dehalorespiration can be 
negatively affected by the presence of alternative electron acceptors like sulfate as was 
demonstrated in this thesis (59). This effect decreases in more transient systems with a 
high buildup of H2 concentrations, e.g. due to rapid fermentation of lactate. Other 
findings on the effect of sulfate on dechlorination are contradictory, ranging from no 
inhibition (33,39,69), partial inhibition (17), varying degrees of inhibition during 
different phases of microbial growth (143), inhibition even with ample hydrogen supply 
(112), to dechlorinators outcompeting sulfate reducers (108).

A rigorous comparison of dechlorination patterns under two extreme scenarios of a 
low-rate H2 releasing substrate (propionate) versus a high-rate H2 releasing substrate 
(lactate) over a wide temperature range was done as part of this thesis (64). While 
lactate amendment of the mixed dechlorinating culture KB-1 resulted in a rapid buildup 
of hydrogen to levels beyond 1000 nM, propionate served as a more moderate substrate 
in terms of H2 production (the concentrations being several orders of magnitude lower 
when compared to lactate-fed cultures; Figure 2). However, especially at colder 
temperatures low H2-release rates (propionate setup) led to slow and incomplete TCE 
dechlorination by KB-1 (64).
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Figure 2. Hydrogen concentrations at different temperatures and with two different 
fermentable substrates 

Consequently, choosing an appropriate H2-donating substrate to stimulate 
dehalorespiration is a trade-off between rapid dechlorination and negative side effects of 
adding surplus donor (bioclogging, excess methane production (45,90)). Some studies 
advise to use slowly fermentable substrates such as propionate to exploit the 
competitive advantage of dehalorespiring bacteria at low H2 levels (44,133). However, 
this point of view is challenged by others arguing that rapid and complete degradation 
of chlorinated ethenes is the primary goal in engineered dehalorespiring systems 
(20,100).

2.4. Thermodynamics and hydrogen levels in dechlorinating systems 

In pristine, anoxic settings, the energy gain from TEAPs is often very close to 
thermodynamic equilibrium (25), not exceeding 10-20 kJ per mol of reaction, e.g. for 
methanogenesis (68,128). This allows for an evaluation of redox conditions in a given 
environment by calculating in situ Gibbs free energy yields and comparing them with 
this metabolic energy threshold (76). 
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However, for reductive dechlorination of organic hydrocarbons such as TCE or cis-DCE 
the Gibbs free energies are generally much more negative (i.e. yielding more energy) 
when assuming a range of typical field conditions. An example of this is shown for the 
reduction of cis-DCE to VC: 

)(ln
2

,0

HDCEcis
HClVCTRGG T

r      (1) 

where TG ,0 is the standard state Gibbs free energy at in-situ temperatures, R is the gas 
constant, and activities of the reactants are indicated by square brackets. When 
calculating the energy yield of this reaction assuming a 1:1 ratio of cis-DCE and VC, a 
chloride activity of 0.01, pH = 7, and a temperature of 25 ºC, the resulting energy yields 
are generally more negative than -100 kJ per mol of reaction (varying the aqueous 
hydrogen concentration between 0.1 and 10 nM; (61)). Similar tendencies are found for 
dechlorination steps involving other chlorinated ethenes. 

With reductive dechlorination reactions generally proceeding far from thermodynamic 
equilibrium it seems likely that H2 levels in these systems are controlled by kinetics 
rather than by bioenergetic conditions (35). However, since the simple respiratory 
chains involved in halorespiration tend to use the available energy rather inefficiently 
(71) it is not inconceivable that a more negative threshold Gibbs energy exists that 
controls hydrogen levels in dechlorinating environments in accordance with the partial 
equilibrium concept. Neither of these views has been verified experimentally. 

In an effort to improve our understanding of what hydrogen concentrations in 
dechlorinating systems relate to, a series of laboratory experiments was conducted as 
part of this thesis (61). The experimental setup closely followed the approach taken by 
Hoehler et al. (67) in their study of sulfate reduction and methanogenesis in anaerobic 
sediments. While most of the parameters entering the Gibbs free energy expression for 
the dechlorination of cis-DCE or VC were kept constant, only one parameter (either the 
temperature or the chloride level) was varied at a time. 

Results from these experiments suggested that hydrogen levels in dechlorinating 
systems are not controlled by thermodynamics (61). Varying the temperature (between 
10 and 30 °C), or the chloride level (between 10 and 110 mmol chloride) did not change 
hydrogen concentrations in a fashion that would allow for application of the partial 
equilibrium concept.  
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2.5. The influence of aceticlastic methanogens on dechlorination  

One aim of the present thesis was to take a closer look at the potential interaction 
between (i) dechlorinating bacteria that reduce toxic compounds such as VC and (ii) 
methanogens that convert acetate directly to methane. The motivation for this came 
largely from earlier experiments with the mixed culture KB-1 that repeatedly (and quite 
unexpectedly) showed a strong positive correlation between the rates of vinyl chloride 
dechlorination (an obligately hydrogenotrophic process) and the rates of aceticlastic 
methanogenesis when acetate was the only available electron donor (64).

While VC-respiring bacteria are not able to use acetate directly as electron donor, mixed 
dechlorinating cultures can make use of reducing equivalents of acetate by oxidizing it 
anaerobically to CO2 plus H2 (syntrophic bacteria) and subsequently oxidizing the 
evolved hydrogen with VC (dechlorinators) (57). Consequently, addition of acetate 
alone may be sufficient to stimulate dechlorination to ethene, regardless of the presence 
of methanogens. 

A curious feature of some aceticlastic methanogens is their capability of producing 
small amounts of H2 from acetate while the major part of the acetate is converted to 
methane (85,95). The pathway of hydrogen formation is identical to the reaction carried 
out by syntrophic bacteria (formation of CO2 plus H2). Hydrogenotrophic sulfate 
reducers or Fe(III)-reducers have been shown to utilize the evolved H2 and even 
increase the amount of H2 produced in these methanogenic systems (2,14,122).

Using a combination of different methods such as radiotracer experiments with 
[2-14C]acetate, fluorescence in situ hybridization (FISH), rate measurements and 
hydrogen sampling we could show that this process is also relevant in acetate-rich 
dechlorinating systems (60). Methanosarcina, one of the two genera capable of 
aceticlastic methanogenesis, may drive dechlorination of VC by transferring H2 from 
acetate to dehalorespiring Dehalococcoides spp., resulting in up to 7-fold increased 
dechlorination rates (as compared to non-methanogenic controls). The amount of H2

produced by Methanosarcina greatly increases in the presence of dehalorespirers, due to 
the low H2 levels typically maintained in VC-dechlorinating cultures (0.3-0.5 nmol/L; 
(60)). Methanosaeta, the other genus capable of aceticlastic methanogenesis, did not 
show this effect. 
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3. Microbial reduction of arsenic 

3.1. Arsenic in drinking water: a global health disaster 

Arsenic is a naturally occurring constituent of sulfidic ores and metal arsenates or 
arsenides, making it the 20th most abundant element in the Earth’s crust (27,147).
Arsenic concentrations in soils range from 0.1 to more than 1000 mg/kg (111). Release 
of arsenic into groundwater may occur upon dissolution of these arsenic-bearing 
minerals (147). Natural waters may contain arsenic levels up to more than 5000 μg/L, 
while typical concentrations in freshwater are below the WHO limit of 10 μg/L (134).
There are numerous areas with high levels of arsenic in groundwater. These include 
Argentina, Bangladesh, Chile, China, Hungary, India, Mexico, Romania, Taiwan, USA, 
and Vietnam (134).

Probably the worst and most infamous case is Bangladesh with over 50 million people 
consuming water that exceeds the arsenic limit set by the WHO (13,109). Millions of 
small tube wells were installed here in the 1970s and 80s tapping drinking water from 
shallow aquifers. Later it turned out that water from an estimated 50% of these wells 
was contaminated with arsenic of natural origin, derived from sediments that had been 
transported from the Himalaya and deposited millions of years ago (13,120). The exact 
processes leading to the release of sediment-associated arsenic into the groundwater are 
still a matter of debate. 

Consumption of drinking water with elevated arsenic levels may lead to a wide range of 
adverse health effects, most importantly various types of cancer, particularly skin, 
bladder and lung cancer, keratosis, cardiovascular diseases and diabetes (116,147). The 
toxicological mechanisms depend on the oxidation state of arsenic. Pentavalent arsenate 
(As(V)) is a structural analog of phosphate that uncouples oxidative phosphorylation 
inhibiting ATP synthesis, while trivalent arsenite (As(III)) is considered even more 
toxic showing a high reactivity towards sulfhydryl groups of proteins (119).

3.2. The biogeochemistry of arsenic 

In natural waters arsenic mostly occurs as inorganic oxyanions of pentavalent arsenate 
(As(V)) or trivalent arsenite (As(III)) (134). The ratio of As(V) to As(III) can vary 
considerably in groundwaters, depending on the redox conditions. However, in 
anaerobic sediments, As(III) is generally the predominant arsenic species (16). In fact, 
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the ratio of dissolved As(V) and As(III) has been proposed as an indicator of the redox 
conditions in groundwater (23).

Dissolved arsenic may become re-associated or re-precipitated with other sedimentary 
mineral phases. Most importantly, arsenic in sediments is often associated with iron or 
aluminum (oxyhydr)oxides (12,16,43). In water treatment, sorption to iron oxide 
coatings on sand filters may therefore play an important role in arsenic removal (78).
Consequently, release and mobilization of arsenic is often linked to the reductive 
dissolution of iron oxides (5,12,104,109,121). In a sedimentary system with a vertical 
redox gradient this may lead to reductive dissolution in the anoxic zone, upward 
diffusion and re-precipitation near the oxic sediment-water interface (12). Laboratory 
incubations of arsenic-impacted aquifer sediments from West Bengal amended with 
acetate and a culture enriched in Fe(III)-reducing bacteria demonstrated that 
metal-reducing microbes play an important role in arsenic mobilization in these 
environments (73).

As for abiotic processes, sediment-associated arsenic may be released into solution by 
competition for sorption sites with phosphate, carbonate or dissolved organic matter 
(7,11,31). In semi-arid or arid regions, development of high pH conditions due to 
mineral weathering and excessive evaporation may act as an additional mechanism for 
arsenic mobilization, leading to desorption of anionic As(V) from iron oxide surfaces 
(134).

Another factor influencing arsenic mobility is the transformation and re-crystallization 
of iron oxide minerals upon their reductive dissolution (121), both impacting the affinity 
of the mineral phase for arsenic and the specific surface area (34). To complicate things 
even further, ferrous iron (Fe2+) released by reductive dissolution of iron oxides may 
re-precipitate in more reduced mineral phases (siderite) that then again may re-capture 
some of the arsenic from the aqueous phase (5). In the presence of sulfide (S(-II)) and 
under acidic conditions, As(III) is also known to precipitate as the arsenic sulfides 
orpiment (As2S3) and realgar (AsS) (86,113,115). In addition, dissolved sulfide 
chemically reduces As(V) to As(III) (136).

The presence of sedimentary sulfide minerals, such as pyrite (FeS2) can also affect the 
mobility of arsenic (12,27,82,110). Pyrite may effectively capture arsenic at Fe/As 
ratios of around 1000 (12). In mine tailing sediments from Coeur d'Alene Lake, ID, 
around 70% of all arsenic is associated with sulfides (56). Upon oxygenation of these 
sediments (e.g. in response to excessive ground water abstraction) pyritic minerals may 
become oxidized with arsenic being released into solution (8).
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Changes in the oxidation state of arsenic may have considerable effects on its mobility 
in contaminated sediments (104). In oxidized environments, concentrations of dissolved 
arsenic tend to be low while the reduction of As(V) to As(III) may release substantial 
amounts of arsenic into the aqueous phase (73,104). In fact, mobilization of arsenic by 
reduction to the As(III) species has been suggested as a bioremediation approach for 
treating contaminated soils (36,149).  

However, the relationship between the oxidation state and the mobility of arsenic 
species is far from simple. In fact, adsorption studies done by Manning et al. (103)
suggest that As(III) will be more strongly bound to iron oxide surfaces than As(V) at 
neutral to alkaline pH. Accordingly, in sediments of a freshwater reservoir (Olancha, 
CA) treated with ferric chloride As(III) remained associated with iron oxides (47). 
Similarly, Dixit and Hering (34) showed that in the circumneutral pH range of 6-9 
As(III) was sorbed equally or even more strongly to amorphous iron oxide or goethite 
than As(V). Only at low pH values (below pH 5-6) was As(V) sorption more favorable 
than sorption of As(III). The implications are that in order to mobilize iron 
oxide-associated arsenic, reductive dissolution of the actual sorbent (i.e. the iron oxide) 
is required. This again conflicts with findings from others (as discussed below), and 
demonstrates the complexity of arsenic biogeochemistry which has led to a lively debate 
in the scientific community. 

3.3. Microbial reduction of arsenate 

Microbial reduction of As(V) to As(III) has been long known to occur in various 
environments, mediated by aquatic bacteria, activated sludge, or wine yeast (27,47,115).
The formation and subsequent expulsion of As(III) by a specific transporter is a 
widespread microbial detoxification strategy for lowering the intracellular concentration 
of arsenic (111). Some bacteria may also reduce As(V) or As(III) to arsine (AsH3, As(-
III)), although only small amounts of arsine are produced by unenriched cultures (27).
For instance, anoxic salt marsh sediment amended with millimolar levels of As(V) 
showed no quantitatively significant reduction beyond As(III) (36).

Ahmann et al. (4) were the first to show the existence of microbes that gain energy (i.e. 
grow) through the reduction of As(V) to As(III), a process termed dissimilatory arsenate 
respiration. An isolate obtained from arsenic-contaminated sediments could completely 
reduce millimolar levels of As(V) within a few days, stoichiometrically producing 
As(III) while using lactate as electron donor. This process takes place in the absence of 
oxygen. In addition, it was found that the same isolate (Sulfurospirillum arsenophilum)
could mobilize arsenic from a solid iron arsenate phase (5).
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To date, numerous other, phylogenetically diverse strains of arsenate-respiring microbes 
have been discovered. Apparently, arsenate respiration occurs in a large variety of 
environments ranging from freshwater sediments, hypersaline lake waters, hot springs, 
deep-sea hydrothermal vents, gold mines, and arsenic-treated wood to bovine rumen 
fluid, hamster feces, and the termite hindgut (52,65,87,114,117,124-126,135,139,140).
In extreme environments such as arsenic-rich alkaline soda lakes (e.g. Mono Lake, 
California; containing ~200 μmol/L inorganic arsenic (66)) arsenate respiration may 
actually account for a significant fraction of the total carbon mineralization (118,139).
As(V)-respiring microbes can use a variety of electron donors including lactate, acetate, 
formate, hydrogen and sulfide (120).  

An important difference between microbial As(V) reduction as (i) a detoxifying process 
and as (ii) a respiratory process is the cellular location of the enzymes catalyzing the 
respective processes (120). For the detoxifying reduction, As(V) has to enter the cell 
since the responsible protein is located in the cytoplasm. In contrast, the respiratory 
As(V) reductase is located in the periplasm making it possible for As(V) respirers to 
attack sediment-bound arsenic.  

All known microbes capable of dissimilatory arsenate reduction also use other electron 
acceptors such as nitrate, sulfate, or Fe(III) for growth (119), implying a low degree of 
specialization. Considering this together with the apparent ubiquity of arsenate-respiring 
microbes, it seems reasonable to assume an involvement of these bacteria in 
mobilization of sediment-associated arsenic in aquifers. A recent molecular approach 
seems promising for the detection of dissimilatory As(V) reduction in spite of the 
apparent phylogenetic broadness of As(V)-respiring microbes. The functional gene 
encoding for the common denominator of arsenate respiring microbes, the respiratory 
As(V) reductase, was targeted by a PCR based approach introduced by Malasarn et al. 
(102).

3.4. Energetics of arsenate respiration 

In the redox sequence of sediments turning anaerobic (i.e. the depletion of oxygen 
followed by the depletion of nitrate, iron oxides, sulfate etc.) reduction of As(V) to 
As(III) is expected to occur between sulfate reduction and iron oxide reduction under 
standard conditions (Table 1). The exact energetic position of arsenate respiring 
microbes depends, however, on the in-situ geochemical conditions of a given site (e.g. 
pH, H2 level, etc.).
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Whether reductive dissolution of iron oxides occurs before, after, or simultaneously 
with the reduction of sorbed As(V) is not clear. Masscheleyn et al. (104) found that 
As-contaminated soil incubated under reducing conditions first released some As(III) 
into solution before dissolved Fe increased. Similarly, Zobrist et al. (154) showed that 
reductive dissolution of ferrihydrite was not required for sorbed As to be reduced and 
released into solution. This was nicely demonstrated in experiments using As(V) 
coprecipitated with either ferrihydrite or aluminum hydroxide, the latter not undergoing 
microbial reductive dissolution. As(V) adsorbed to the aluminum hydroxide was 
reduced to As(III) in spite of the unreactive mineral phase sorbent (154).

In contrast to this, Islam et al. (73) found that anaerobic incubations of West Bengal 
aquifer sediment microcosms first released sediment-associated arsenic after a 
considerable time of ongoing iron oxide reduction. This decoupling of Fe(III) and 
As(V) reduction was attributed to the energetic situation at in situ conditions (i.e. the 
initially higher redox potentials of the Fe(OH)3/Fe2+ couple as compared to the 
As(V)/As(III) couple).

In a later study, it was found that the iron oxide reducing enrichment culture derived 
from these sediments was dominated by a close relative of the Fe(III)-reducer Geothrix
fermentans which is not capable of As(V) reduction (74). When a pure culture of G. 
fermentans was inoculated into heat-sterilized sediments from the same aquifer it 
reduced Fe(III), but was unable to mobilize arsenic associated with the solid phase (74).
This suggests that reduction of iron oxides in these sediments is not sufficient to release 
sediment-bound arsenic and that As(V)-reducing microbes are likely involved in its 
mobilization. 

Whether the occurrence and/or sequence of iron oxide reduction and As(V) reduction 
are controlled by energetic (i.e. thermodynamic) considerations is not known. While 
low energy yielding TEAPs (e.g. methanogenesis, sulfate reduction; see Table 1) 
generally follow a sequence that is largely dependent on their in situ energy yield, high 
energy yielding TEAPs (e.g. dechlorination, nitrate reduction) and their respective 
steady state hydrogen levels and thresholds tend to be limited by kinetics (e.g. 
enzymatic uptake of hydrogen (61,67)). The reduction of As(V) to As(III) yields a 
comparatively high amount of energy under standard conditions ( G0 = -162.4 kJ/mol; 
Table 1) as well as under in situ conditions ( G0 ~ -50 kJ/mol; (63)). This suggests that 
hydrogen levels in As(V)-reducing systems are probably not controlled by 
thermodynamics. However, the range of theses values and how they compare to values 
occurring in iron oxide reducing systems were previously unknown. 



14

Table 1. Standard Gibbs free energies ( G0) for various TEAPs 

Reactions G0 (kJ/mol)1

1/2 O2 + H2  H2O -237.2

2/5 NO3
- + H2 + 2/5 H+  1/5 N2 + 6/5 H2O -240.1

2 FeOOH(a) + H2 + 4 H+  2 Fe2+ + 4 H2O -182.5

HAsO4
2- + H2 + 2 H+  H3AsO3 + H2O -162.4

VC + H2 Ethene + H+ + Cl- -100.9

1/4 SO4
2- + H2 + 1/4 H+  1/4 HS- + H2O -48.0

1/4 HCO3
- + H2 + 1/4 H+  1/4 CH4 + 3/4 H2O -43.9

1/2 HCO3
- + H2 + 1/4 H+  1/4 Acetate- + H2O -36.1

1 Calculated from the Gibbs free energies of formation from the elements 
(61,84,137,142); The following are treated as gaseous species: O2, H2, N2,
and CH4

Thus, both the threshold for hydrogen uptake by As(V)-respiring microbes and steady 
state hydrogen levels in As(V)-reducing sediment microcosms were determined as part 
of this thesis (63). Pure cultures of Sulfurospirillum arsenophilum, an As(V)-respiring 
microorganism (135), consumed hydrogen to thresholds of around 0.03 to 0.09 nmol/L 
when reducing As(V) to As(III). Compared to hydrogen thresholds of other TEAPs 
these values are among the lowest measured (Figure 3) suggesting that As(V)-reducing 
bacteria are highly competitive at e-donor-limiting conditions. 
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Figure 3. Hydrogen thresholds for various TEAPs occurring in pristine or contaminated 
anaerobic environments (bars indicate the range given by the following references; 
CO2/acetate (26), CO2/CH4 (26,94), sulfate/sulfide (26,99), Fe(III)/Fe(II) (19,97,138), 
nitrate/N2 or NH4 (26,55,138), chlorinated ethenes/ethene (92,99,138), arsenate/arsenite 
(63)).

A quite unexpected result from this study was the high rate of As(V)-reduction in 
microcosms derived from an arsenic-contaminated aquifer in Vietnam (63). The fact 
that As(V)-reduction rates were high and remained largely unchanged when S. 
arsenophilum was added to the microcosms suggests a vital population of 
As(V)-reducing microbes in these environments. 

3.5. Analytical detection of trace aqueous arsenic species 

Increased awareness of human health problems associated with elevated arsenic levels 
in drinking water have resulted in the demand for analytical tools for quantifying trace 
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amounts of arsenic in aqueous solutions. Consequently, the last decade has seen the 
emergence of various sophisticated analytical methods for the precise determination of 
aqueous arsenic species down to nanomolar levels. The most advanced technologies 
combine the virtues of chromatographic separation techniques such as ion 
chromatography (IC) or high-performance liquid chromatography (HPLC) with atomic 
absorption spectrometry (AAS) (18,91), atomic fluorescence spectrometry (AFS) 
(88,89,151), or inductively coupled plasma mass spectrometry (ICP-MS) 
(41,83,105,145,150). In addition, electrochemical approaches (anodic stripping 
voltametry, ASV) (30,131), chemiluminescence-based methods (72,127), and microbial 
reporter technologies (144) are available. 

A more traditional low-tech alternative is the colorimetric molybdenum blue method 
(79) which was the method of choice in the present thesis. Since the method also allows 
for the determination of phosphate and silicate it is often part of flow injection analysis 
systems (49,53,80). It has also been frequently employed in studies on microbial 
As(V)-reduction (4,6,86).

When using the molybdenum blue method for the determination of arsenic species 
during microbial As(V)-reduction we found a curious result. Samples that were filtered 
with nylon syringe filters showed significantly lower absorbances (6-74%) as compared 
to unfiltered samples (62). This effect was observed with arsenic- or 
phosphate-containing synthetic solutions as well as with pure filtered water that was 
subsequently spiked with either arsenite of phosphate. This indicates that one (or more) 
compounds eluting from the filter membranes interfere with the color formation of the 
method. Consequently, cautioning against the use of nylon filters in combination with 
this widely used assay is an important collateral result of the present thesis (62).
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4. Conclusions
Chlorinated hydrocarbons and arsenic represent two distinct classes of groundwater 
contaminants. They differ greatly both in their physico-chemical properties and 
introduction pathways into drinking water resources. While chlorinated hydrocarbons 
are a good example of a man-made group of toxic contaminants, elevated levels of 
arsenic in groundwater often stem from natural sources. Despite their differences, 
chlorinated ethenes and arsenic both act as microbial electron acceptors in anaerobic 
respiration processes. 

The concentration of dissolved H2 is an excellent tool for studying the competitiveness 
and bioenergetics of both respiratory processes. H2 levels during dehalorespiration are 
among the lowest steady state concentrations observed in anaerobic systems. 
Consequently, microbes that respire chlorinated ethenes can easily outcompete other 
TEAPs such as methanogenesis during slow H2 release. This is accomplished in systems 
with low reactivity of organic matter and/or thermodynamic constraints on rapid 
fermentation (e.g. syntrophic acetate or propionate turnover).

Unlike the TEAPs acetogenesis, methanogenesis, and sulfate reduction, H2 levels during 
chloroethene dehalorespiration are not controlled by thermodynamics. This renders 
dehalorespiring environments unfavorable for partial equilibrium modeling. 

Aceticlastic methanogens of the genus Methanosarcina may greatly increase rates of 
chloroethene degradation by transferring H2 to dehalorespiring microbes. As a response 
to low H2 levels that are maintained during chloroethene reduction Methanosarcina spp. 
oxidize an increased fraction of acetate to CO2 plus H2, a process with potential 
relevance to acetate-rich bioengineered systems. 

When respiring arsenate, S. arsenophilum reduces H2 to thresholds that are among the 
lowest reported so far. This apparent competitiveness of As(V)-respiring microbes in 
terms of H2 uptake was also observed during As(V) reduction in sediment microcosms 
from an arsenic-contaminated aquifer. These findings may lead to a better 
understanding of biogeochemical arsenic-mobilization processes that appear to be 
linked to the sequential microbial reduction of Fe(III) and As(V) in aquifer sediments. 



18



19

5. References 

(1)  Abelson, P. H.  Volatile contaminants of drinking water.  Science 1990, 247, 141. 
(2)  Achtnich, C.; Schuhmann, A.; Wind, T.; Conrad, R.  Role of interspecies H2

transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in 
anoxic paddy soil. FEMS Microbiol. Ecol. 1995, 16, 61-70. 

(3)  Adrian, L.; Szewzyk, U.; Wecke, J.; Görisch, H.  Bacterial dehalorespiration with 
chlorinated benzenes. Nature 2000, 408, 580-583. 

(4)  Ahmann, D.; Roberts, A. L.; Krumholz, L. R.; Morel, F. M. M.  Microbe grows by 
reducing arsenic. Nature 1994, 371, 750. 

(5)  Ahmann, D.; Krumholz, L. R.; Hemond, H. F.; Lovley, D. R.; Morel, F. M. M.  
Microbial mobilization of arsenic from sediments of the Aberjona watershed.  
Environ. Sci. Technol. 1997, 31, 2923-2930. 

(6)  Anderson, C. R.; Cook, G. M.  Isolation and characterization of arsenate-reducing 
bacteria from arsenic-contaminated sites in New Zealand. Curr. Microbiol.
2004, 48, 341-347. 

(7)  Appelo, C. A. J.; Van der Weiden, M. J. J.; Tournassat, C.; Charlet, L.  Surface 
complexation of ferrous iron and carbonate on ferrihydrite and the mobilization 
of arsenic. Environ. Sci. Technol. 2002, 36, 3096-3103. 

(8)  Appelo, C. A. J.; Postma, D. Geochemistry, groundwater and pollution; 2nd ed.; A. 
A. Balkema Publishers: Leiden, The Netherlands, 2005. 

(9)  Aulenta, F.; Majone, M.; Verbo, P.; Tandoi, V.  Complete dechlorination of 
tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by 
an anaerobic sediment microcosm.  Biodegradation 2002, 13, 411-424. 

(10)  Ballapragada, B. S.; Stensel, H. D.; Puhakka, J. A.; Ferguson, J. F.  Effect of 
hydrogen on reductive dechlorination of chlorinated ethenes. Environ. Sci. 
Technol. 1997, 31, 1728-1734. 

(11)  Bauer, M.; Blodau, C.  Mobilization of arsenic by dissolved organic matter from 
iron oxides, soils and sediments.  Sci. Total. Environ. 2006, 354, 179-190. 

(12)  Belzile, N.  The fate of arsenic in sediments of the Laurentian Trough.  Geochim.
Cosmochim. Acta 1988, 52, 2293-2302. 

(13)  BGS; DPHE "Arsenic contamination of groundwater in Bangladesh," Kinniburgh, 
D. G. Smedley, P. L. (Editors). British Geological Survey, 2001. 

(14)  Boone, D. R.; Menaia, J. A. G. F.; Boone, J. E.; Mah, R. A.  Effects of hydrogen 
pressure during growth and effects of pregrowth with hydrogen on acetate 
degradation by Methanosarcina species. Appl. Environ. Microbiol. 1987, 53,
83-87.

(15)  Bradley, P. M.; H., C. F.  Kinetics of DCE and VC mineralization under 
methanogenic and Fe(III)-reducing conditions.  Environ. Sci. Technol. 1997, 31,
2692-2696.

(16)  Brannon, J. M.; Patrick Jr., W. H.  Fixation, transformation, and mobilization of 
arsenic in sediments.  Environ. Sci. Technol. 1987, 21, 450-459. 

(17)  Cabirol, N.; Jacob, F.; Perrier, J.; Fouillet, B.; Chambon, P.  Interaction between 
methanogenic and sulfate-reducing microorganisms during dechlorination of a 
high concentration of tetrachloroethylene. J. Gen. Appl. Microbiol. 1998, 44,
297-301.



20

(18)  Cabon, J. Y.; Cabon, N.  Determination of arsenic species in seawater by flow 
injection hydride generation in situ collection followed by graphite furnace 
atomic absorption spectrometry - Stability of As(III).  Anal. Chim. Acta 2000,
418, 19-31. 

(19)  Caccavo Jr., F.; Blakemore, R. P.; Lovley, D. R.  A hydrogen-oxidizing, Fe(III)-
reducing microorganism from the Great Bay estuary, New Hampshire.  Appl.
Environ. Microbiol. 1992, 58, 3211-3216. 

(20)  Carr, C. S.; Hughes, J. B.  Enrichment of high-rate PCE dechlorination and 
comparative study of lactate, methanol, and hydrogen as electron donors to 
sustain activity. Environ. Sci. Technol. 1998, 32, 1817-1824. 

(21)  Chapelle, F. H.; Lovley, D. R.  Competitive exclusion of sulfate reduction by 
Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron 
ground water. Ground Water 1992, 30, 29-36. 

(22)  Chapelle, F. H.; McMahon, P. B.; Dubrovsky, N. M.; Fujii, R. F.; Oaksford, E. T.; 
Vroblesky, D. A.  Deducing the distribution of terminal electron-accepting 
processes in hydrologically diverse groundwater systems.  Water Resour. Res.
1995, 31, 359-371. 

(23)  Cherry, J. A.; Shaikh, A. U.; Tallman, D. E.; Nicholson, R. V.  Arsenic species as 
an indicator of redox conditions in groundwater.  J. Hydrol. 1979, 43, 373-392. 

(24)  Christensen, T. H.; Bjerg, P. L.; Banwart, S. A.; Jakobsen, R.; Heron, G.; 
Albrechtsen, H.-J.  Characterization of redox conditions in groundwater 
contaminant plumes.  J. Contam. Hydrol. 2000, 45, 165-241. 

(25)  Conrad, R.  Contribution of hydrogen to methane production and control of 
hydrogen concentrations in methanogenic soils and sediments.  FEMS
Microbiol. Ecol. 1999, 28, 193-202. 

(26)  Cord-Ruwisch, R.; Seitz, H.-J.; Conrad, R.  The capacity of hydrogenotrophic 
anaerobic bacteria to compete for traces of hydrogen depends on the redox 
potential of the terminal electron acceptor. Arch. Microbiol. 1988, 149, 350-
357.

(27)  Cullen, W. R.; Reimer, K. J.  Arsenic speciation in the environment.  Chem. Rev.
1989, 89, 713-764. 

(28)  Cupples, A. M.; Spormann, A. M.; McCarty, P. L.  Growth of a Dehalococcoides-
like microorganism on vinyl chloride and cis-dichloroethene as electron 
acceptors as determined by competitive PCR.  Appl. Environ. Microbiol. 2003,
69, 953-959. 

(29)  Cupples, A. M.; Spormann, A. M.; McCarty, P. L.  Comparative evaluation of 
chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.  
Environ. Sci. Technol. 2004, 38, 4768-4774. 

(30)  Dai, X.; Nekrassova, O.; Hyde, M. E.; Compton, R. G.  Anodic stripping 
voltammetry of arsenic(III) using gold nanoparticle-modified electrodes.  Anal.
Chem. 2004, 76, 5924-5929. 

(31)  Darland, J. E.; Inskeep, W. P.  Effects of pH and phosphate competition on the 
transport of arsenate. J. Environ. Qual. 1997, 26, 1133-1139. 

(32)  De Bruin, W. P.; Kotterman, M. J. J.; A., P. M.; Schraa, G.; Zehnder, A. J. B.
Complete biological reductive transformation of tetrachloroethene to ethane.
Appl. Environ. Microbiol. 1992, 58, 1996-2000. 



21

(33)  DeWeerd, K. A.; Concannon, F.; Suflita, J. M.  Relationship between hydrogen 
consumption, dehalogenation, and the reduction of sulfur oxyanions by 
Desulfomonile tiedjei. Appl. Environ. Microbiol. 1991, 57, 1929-1934. 

(34)  Dixit, S.; Hering, J. G.  Comparison of arsenic(V) and arsenic(III) sorption onto 
iron oxide minerals: implications for arsenic mobility.  Environ. Sci. Technol.
2003, 37, 4182-4189. 

(35)  Dolfing, J. Thermodynamic considerations for dehalogenation. In Dehalogenation:
Microbial Processes and Environmental Applications; Häggblom, M. M., 
Bossert, I. D., Eds.; Kluwer Academic Publishers: Boston / Dordrecht / London, 
2003; pp 89-114. 

(36)  Dowdle, P. R.; Laverman, A. M.; Oremland, R. S.  Bacterial dissimilatory 
reduction of arsenic(V) to arsenic(III) in anoxic sediments.  Appl. Environ. 
Microbiol. 1996, 62, 1664-1669. 

(37)  Duhamel, M.; Wehr, S. D.; Yu, L.; Rizvi, H.; Seepersad, D.; Dworatzek, S.; Cox, 
E. E.; Edwards, E. A.  Comparison of anaerobic dechlorinating enrichment 
cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and 
vinyl chloride. Water Res. 2002, 36, 4193-4202. 

(38)  Duhamel, M.; Mo, K.; Edwards, E. A.  Characterization of a highly enriched 
Dehalococcoides-containing culture that grows on vinyl chloride and 
trichloroethene. Appl. Environ. Microbiol. 2004, 70, 5538-5545. 

(39)  El Mamouni, R.; Jacquet, R.; Gerin, P.; Agathos, S. N.  Influence of electron 
donors and acceptors on the bioremediation of soil contaminated with 
trichloroethene and nickel: laboratory- and pilot-scale study. Water Sci. 
Technol. 2002, 45, 49-54. 

(40)  Ellis, D. E.; Lutz, E. J.; Odom, J. M.; Buchanan Jr., R. J.; Bartlett, C. L.; Lee, M. 
D.; Harkness, M. R.; DeWeerd, K. A.  Bioaugmentation for accelerated in situ 
anaerobic bioremediation.  Environ. Sci. Technol. 2000, 34, 2254-2260. 

(41)  Ellwood, M. J.; Maher, W. A.  Measurement of arsenic species in marine 
sediments by high-performance liquid chromatography-inductively coupled 
plasma mass spectrometry.  Anal. Chim. Acta 2003, 477, 279-291. 

(42)  Fenchel, T.; Finlay, B. J. Ecology and evolution in anoxic worlds; Oxford 
University Press: Oxford, 1995. 

(43)  Fendorf, S.; Eick, M. J.; Grossl, P.; Sparks, D. L.  Arsenate and chromate retention 
mechanisms on goethite. 1. Surface structure.  Environ. Sci. Technol. 1997, 31,
315-320.

(44)  Fennell, D. E.; Gossett, J. M.; Zinder, S. H.  Comparison of butyric acid, ethanol, 
lactic acid, and propionic acid as hydrogen donors for the reductive 
dechlorination of tetrachloroethene. Environ. Sci. Technol. 1997, 31, 918-926. 

(45)  Fennell, D. E.; Gossett, J. M. Comment on "Enrichment of high-rate PCE 
dechlorination and comparative study of lactate, methanol, and hydrogen as 
electron donors to sustain activity".  Environ. Sci. Technol. 1999, 33.

(46)  Ferguson, J. F.; Pietari, J. M. H. Anaerobic transformations and bioremediation of 
chlorinated solvents.  Environ. Pollut. 2000, 107, 209-215. 

(47)  Field, J. A.; Sierra-Alvarez, R.; Cortinas, I.; Feijoo, G.; Moreira, M. T.; Kopplin, 
M.; Gandolfi, A. J.  Facile reduction of arsenate in methanogenic sludge.  
Biodegradation 2004, 15, 185-196. 



22

(48)  Flynn, S. J.; Löffler, F. E.; Tiedje, J. M.  Microbial community changes associated 
with a shift from reductive dechlorination of PCE to reductive dechlorination of 
cis-DCE and VC. Environ. Sci. Technol. 2000, 34, 1056-1061. 

(49)  Frenzel, W.; Titzenthaler, F.; Elbel, S.  Selective determination of arsenite by 
flow-injection spectrophotometry.  Talanta 1994, 41, 1965-1971. 

(50)  Friis, A. K.; Heimann, A. C.; Jakobsen, R.; Albrechtsen, H.-J.; Cox, E.; Bjerg, P. 
L.  Temperature dependence of anaerobic TCE-dechlorination in a highly 
enriched Dehalococcoides-containing culture. Water Res. 2007, 41, 355-364. 

(51)  Gantzer, C. J.; Wackett, L. P.  Reductive dechlorination catalyzed by bacterial 
transition-metal coenzymes.  Environ. Sci. Technol. 1991, 25, 715-722. 

(52)  Gihring, T. M.; Banfield, J. F.  Arsenite oxidation and arsenate respiration by a 
new Thermus isolate. FEMS Microbiol. Lett. 2001, 204, 335-340. 

(53)  Grudpan, K.; Ampan, P.; Udnan, Y.; Jayasvati, S.; Lapanantnoppakhun, S.; 
Jakmunee, J.; Christian, G. D.; Ruzicka, J.  Stopped-flow injection simultaneous 
determination of phosphate and silicate using molybdenum blue.  Talanta 2002,
58, 1319-1326. 

(54)  Häggblom, M. M.; Bossert, I. D. Halogenated organic compounds - a global 
perspective. In Dehalogenation: microbial processes and environmental 
applications; Häggblom, M. M., Bossert, I. D., Eds.; Kluwer Academic 
Publishers: Boston / Dordrecht / London, 2003; pp 1-29. 

(55)  Häring, V.; Conrad, R.  Kinetics of H2 oxidation in respiring and denitrifying 
Paracoccus denitrificans. FEMS Microbiol. Lett. 1991, 78, 259-264. 

(56)  Harrington, J. M.; Fendorf, S. E.; Rosenzweig, R. F.  Biotic generation of 
arsenic(III) in metal(loid)-contaminated freshwater lake sediments.  Environ.
Sci. Technol. 1998, 32, 2425-2430. 

(57)  He, J.; Sung, Y.; Dollhopf, M. E.; Fathepure, B. Z.; Tiedje, J. M.; Löffler, F. E.  
Acetate versus hydrogen as direct electron donors to stimulate the microbial 
reductive dechlorination process at chloroethene-contaminated sites.  Environ.
Sci. Technol. 2002, 36, 3945-3952. 

(58)  He, J.; Ritalahti, K. M.; Yang, K.-L.; Koenigsberg, S. S.; Löffler, F. E.  
Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic 
bacterium.  Nature 2003, 424, 62-65. 

(59)  Heimann, A. C.; Friis, A. K.; Jakobsen, R.  Effects of sulfate on anaerobic 
chloroethene degradation by an enriched culture under transient and steady-state 
hydrogen supply. Water Res. 2005, 39, 3579-3586. 

(60)  Heimann, A. C.; Batstone, D. J.; Jakobsen, R.  Methanosarcina spp. drive vinyl 
chloride dechlorination via interspecies hydrogen transfer. Appl. Environ. 
Microbiol. 2006, 72, 2942-2949. 

(61)  Heimann, A. C.; Jakobsen, R.  Experimental evidence for a lack of thermodynamic 
control on hydrogen concentrations during anaerobic degradation of chlorinated 
ethenes. Environ. Sci. Technol. 2006, 40, 3501-3507. 

(62)  Heimann, A. C.; Jakobsen, R.  Filtration through nylon membranes negatively 
affects analysis of arsenic and phosphate by the molybdenum blue method.  
Talanta 2007, DOI 10.1016/j.talanta.2006.11.012, in press. 

(63)  Heimann, A. C.; Blodau, C.; Postma, D.; Larsen, F.; Viet, P. H.; Nhan, P. Q.; 
Jessen, S.; Duc, M. T.; Hue, N. T. M.; Jakobsen, R.  Hydrogen thresholds and 



23

steady-state concentrations associated with microbial arsenate respiration.  
Environ. Sci. Technol. 2007, 41, 2311-2317. 

(64)  Heimann, A. C.; Friis, A. K.; Scheutz, C.; Jakobsen, R.  Dynamics of reductive 
TCE dechlorination in two distinct H2 supply scenarios and at various 
temperatures.  Biodegradation 2007, 18, 167–179. 

(65)  Herbel, M. J.; Blum, J. S.; Hoeft, S. E.; Cohen, S. M.; Arnold, L. L.; Lisak, J.; 
Stolz, J. F.; Oremland, R. S.  Dissimilatory arsenate reductase activity and 
arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite 
hindgut. FEMS Microbiol. Ecol. 2002, 41, 59-67. 

(66)  Hoeft, S. E.; Lucas, F.; Hollibaugh, J. T.; Oremland, R. S.  Characterization of 
microbial arsenate reduction in the anoxic bottom waters of Mono Lake, 
California. Geomicrobiol. J. 2002, 19, 23-40. 

(67)  Hoehler, T. M.; Alperin, M. J.; Albert, D. B.; Martens, C. S.  Thermodynamic 
control on hydrogen concentrations in anoxic sediments.  Geochim. Cosmochim. 
Acta 1998, 62, 1745-1756. 

(68)  Hoehler, T. M.; Alperin, M. J.; Albert, D. B.; Martens, C. S.  Apparent minimum 
free energy requirements for methanogenic Archaea and sulfate-reducing 
bacteria in an anoxic marine sediment.  FEMS Microbiol. Ecol. 2001, 38, 33-41. 

(69)  Hoelen, T. P.; Reinhard, M.  Complete biological dehalogenation of chlorinated 
ethylenes in sulfate containing groundwater. Biodegradation 2004, 15, 395-403. 

(70)  Holliger, C.; Schumacher, W.  Reductive dehalogenation as a respiratory process.  
Anton. Leeuw. Int. J. G.  1994, 66, 239-246. 

(71)  Holliger, C.; Wohlfarth, G.; Diekert, G.  Reductive dechlorination in the energy 
metabolism of anaerobic bacteria.  FEMS Microbiol. Rev. 1999, 22, 383-398. 

(72)  Idowu, A. D.; Dasgupta, P. K.; Zhang, G. F.; Toda, K.; Garbarino, J. R.  A gas-
phase chemiluminescence-based analyzer for waterborne arsenic.  Anal. Chem.
2006, 78, 7088-7097. 

(73)  Islam, F. S.; Gault, A. G.; Boothman, C.; Polya, D. A.; Charnock, J. M.; 
Chatterjee, D.; Lloyd, J. R.  Role of metal-reducing bacteria in arsenic release 
from Bengal delta sediments.  Nature 2004, 430, 68-71. 

(74)  Islam, F. S.; Boothman, C.; Gault, A. G.; Polya, D. A.; Lloyd, J. R.  Potential role 
of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic 
solubility in Bengal delta sediments.  Mineral. Mag. 2005, 69, 865-875. 

(75)  Jablonski, P. E.; Ferry, J. G.  Reductive dechlorination of trichloroethylene by the 
CO-reduced CO dehydrogenase enzyme complex from Methanosarcina
thermophila. FEMS Microbiol. Lett. 1992, 96, 55-60. 

(76)  Jakobsen, R.; Albrechtsen, H.-J.; Rasmussen, M.; Bay, H.; Bjerg, P. L.; 
Christensen, T. H.  H2 concentrations in a landfill leachate plume (Grindsted, 
Denmark): in situ energetics of terminal electron acceptor processes.  Environ.
Sci. Technol. 1998, 32, 2142-2148. 

(77)  Jakobsen, R.; Postma, D.  Redox zoning, rates of sulfate reduction and interactions 
with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, 
Denmark.  Geochim. Cosmochim. Acta 1999, 63, 137-151. 

(78)  Jessen, S.; Larsen, F.; Koch, C. B.; Arvin, E.  Sorption and desorption of arsenic to 
ferrihydrite in a sand filter. Environ. Sci. Technol. 2005, 39, 8045-8051. 

(79)  Johnson, D. L.; Pilson, M. E. Q.  Spectrophotometric determination of arsenite, 
arsenate, and phosphate in natural waters.  Anal. Chim. Acta 1972, 58, 289-299. 



24

(80)  Karthikeyan, S.; Hashigaya, S.; Kajiya, T.; Hirata, S.  Determination of trace 
amounts of phosphate by flow-injection photometry.  Anal. Bioanal. Chem.
2004, 378, 1842-1846. 

(81)  Kilburn, K. H.  Is neurotoxicity associated with environmental trichloroethylene 
(TCE)? Arch. Environ. Health 2002, 57, 113-120. 

(82)  Kirk, M. F.; Holm, T. R.; Park, J.; Jin, Q. S.; Sanford, R. A.; Fouke, B. W.; 
Bethke, C. M.  Bacterial sulfate reduction limits natural arsenic contamination in 
groundwater. Geology 2004, 32, 953-956. 

(83)  Klaue, B.; Blum, J. D.  Trace analyses of arsenic in drinking water by inductively 
coupled plasma mass spectrometry: High resolution versus hydride generation.
Anal. Chem. 1999, 71, 1408-1414. 

(84)  Krauskopf, K. B.; Bird, D. K. Introduction to geochemistry; 3rd ed.; McGraw-Hill, 
1994.

(85)  Krzycki, J. A.; Morgan, J. B.; Conrad, R.; Zeikus, J. G.  Hydrogen metabolism 
during methanogenesis from acetate by Methanosarcina barkeri. FEMS
Microbiol. Lett. 1987, 40, 193-198. 

(86)  Kuai, L.; Nair, A. A.; Polz, M. F.  Rapid and simple method for the most-
probable-number estimation of arsenic-reducing bacteria. Appl. Environ. 
Microbiol. 2001, 67, 3168-3173. 

(87)  Laverman, A. M.; Switzer Blum, J.; Schaefer, J. K.; Phillips, E. J. P.; Lovley, D. 
R.; Oremland, R. S.  Growth of strain SES-3 with arsenate and other diverse 
electron acceptors. Appl. Environ. Microbiol. 1995, 61, 3556-3561. 

(88)  Le, X. C.; Ma, M. S.; Wong, N. A.  Speciation of arsenic compounds using high-
performance liquid chromatography at elevated temperature and selective 
hydride generation atomic fluorescence detection.  Anal. Chem. 1996, 68, 4501-
4506.

(89)  Le, X. C.; Ma, M. S.  Short-column liquid chromatography with hydride 
generation atomic fluorescence detection for the speciation of arsenic. Anal.
Chem. 1998, 70, 1926-1933. 

(90)  Lee, I.; Bae, J.; Yang, Y.; McCarty, P. L.  Simulated and experimental evaluation 
of factors affecting the rate and extent of reductive dehalogenation of 
chloroethenes with glucose. J. Contam. Hydrol. 2004, 74, 313-331. 

(91)  Li, X.; Jia, J.; Wang, Z. H.  Speciation of inorganic arsenic by electrochemical 
hydride generation atomic absorption spectrometry.  Anal. Chim. Acta 2006,
560, 153-158. 

(92)  Löffler, F. E.; Tiedje, J. M.; Sanford, R. A.  Fraction of electrons consumed in 
electron acceptor reduction and hydrogen thresholds as indicators of 
halorespiratory physiology. Appl. Environ. Microbiol. 1999, 65, 4049-4056. 

(93)  Löffler, F. E.; Sanford, R. A. Analysis of trace hydrogen metabolism. In 
Environmental Microbiology, 2005; Vol. 397, pp 222-237. 

(94)  Lovley, D. R.  Minimum threshold for hydrogen metabolism in methanogenic 
bacteria. Appl. Environ. Microbiol. 1985, 49, 1530-1531. 

(95)  Lovley, D. R.; Ferry, J. G.  Production and consumption of H2 during growth of 
Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 1985, 49, 247-249. 

(96)  Lovley, D. R.; Goodwin, S.  Hydrogen concentrations as an indicator of the 
predominant terminal electron-accepting reactions in aquatic sediments.  
Geochim. Cosmochim. Acta 1988, 52, 2993-3003. 



25

(97)  Lovley, D. R.; Phillips, E. J. P.; Lonergan, D. J.  Hydrogen and formate oxidation 
coupled to dissimilatory reduction of iron or manganese by Alteromonas
putrefaciens. Appl. Environ. Microbiol. 1989, 55, 700-706. 

(98)  Lovley, D. R.; Chapelle, F. H.; Woodward, J. C.  Use of dissolved H2
concentrations to determine distribution of microbially catalyzed redox reactions 
in anoxic groundwater. Environ. Sci. Technol. 1994, 28, 1205-1210. 

(99)  Luijten, M. L. G. C.; Roelofsen, W.; Langenhoff, A. A. M.; Schraa, G.; Stams, A. 
J. M.  Hydrogen threshold concentrations in pure cultures of halorespiring 
bacteria and at a site polluted with chlorinated ethenes. Environ. Microbiol.
2004, 6, 646-650. 

(100)  Lutes, C. C.; Liles, D. S.; Suthersan, S. S.; Lenzo, F.; Hansen, M.; Payne, F. C.; 
Burdick, J. V.; Vance, D.  Comment on "Comparison between donor substrates 
for biologically enhanced tetrachloroethene DNAPL dissolution". Environ. Sci. 
Technol. 2003, 37, 2618-2619. 

(101)  Major, D. W.; McMaster, M. L.; Cox, E. E.; Edwards, E. A.; Dworatzek, S. M.; 
Hendrickson, E. R.; Starr, M. G.; Payne, J. A.; Buonamici, L. W.  Field 
demonstration of successful bioaugmentation to achieve dechlorination of 
tetrachloroethene to ethene. Environ. Sci. Technol. 2002, 36, 5106-5116. 

(102)  Malasarn, D.; Saltikov, W.; Campbell, K. M.; Santini, J. M.; Hering, J. G.; 
Newman, D. K.  arrA is a reliable marker for As(V) respiration. Science 2004,
306, 455-455. 

(103)  Manning, B. A.; Fendorf, S. E.; Goldberg, S.  Surface structures and stability of 
arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes.  
Environ. Sci. Technol. 1998, 32, 2383-2388. 

(104)  Masscheleyn, P. H.; Delaune, R. D.; Patrick Jr., W. H.  Effect of redox potential 
and pH on arsenic speciation and solubility in a contaminated soil.  Environ. Sci. 
Technol. 1991, 25, 1414-1419. 

(105)  Mattusch, J.; Wennrich, R.  Determination of anionic, neutral, and cationic 
species of arsenic by ion chromatography with ICPMS detection in 
environmental samples.  Anal. Chem. 1998, 70, 3649-3655. 

(106)  Maymó-Gatell, X.; Chien, Y.; Gossett, J. M.; Zinder, S. H.  Isolation of a 
bacterium that reductively dechlorinates tetrachloroethene to ethene. Science
1997, 276, 1568-1571. 

(107)  Maymó-Gatell, X.; Anguish, T.; Zinder, S. H.  Reductive dechlorination of 
chlorinated ethenes and 1,2-dichloroethane by "Dehalococcoides ethenogenes"
195. Appl. Environ. Microbiol. 1999, 65, 3108-3113. 

(108)  Mazur, C. S.; Jones, W. J.  Hydrogen concentrations in sulfate-reducing estuarine 
sediments during PCE dehalogenation.  Environ. Sci. Technol. 2001, 35, 4783-
4788.

(109)  McArthur, J. M.; Ravenscroft, P.; Safiullah, S.; Thirlwall, M. F.  Arsenic in 
groundwater: testing pollution mechanisms for sedimentary aquifers in 
Bangladesh. Water Resour. Res. 2001, 37, 109-117. 

(110)  Moore, J. N.; Ficklin, W. H.; Johns, C.  Partitioning of arsenic and metals in 
reducing sulfidic sediments.  Environ. Sci. Technol. 1988, 22, 432-437. 

(111)  Mukhopadhyay, R.; Rosen, B. P.; Phung, L. T.; Silver, S.  Microbial arsenic: 
from geocycles to genes and enzymes.  FEMS Microbiol. Rev. 2002, 26, 311-
325.



26

(112)  Nelson, D. K.; Hozalski, R. M.; Clapp, L. W.; Semmens, M. J.; Novak, P. J.  
Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture.  
Bioremediation J. 2002, 6, 225-236. 

(113)  Newman, D. K.; Beveridge, T. J.; Morel, F. M. M.  Precipitation of arsenic 
trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol.
1997, 63, 2022-2028. 

(114)  Newman, D. K.; Kennedy, E. K.; Coates, J. D.; Ahmann, D.; Ellis, D. J.; Lovley, 
D. R.; Morel, F. M. M.  Dissimilatory arsenate and sulfate reduction in 
Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 1997, 168, 380-
388.

(115)  Newman, D. K.; Ahmann, D.; Morel, F. M. M.  A brief review of microbial 
arsenate respiration. Geomicrobiol. J. 1998, 15, 255-268. 

(116)  Ng, J. C.; Wang, J.; Shraim, A.  A global health problem caused by arsenic from 
natural sources. Chemosphere 2003, 52, 1353-1359. 

(117)  Niggemyer, A.; Spring, S.; Stackebrandt, E.; Rosenzweig, R. F.  Isolation and 
characterization of a novel As(V)-reducing bacterium: implications for arsenic 
mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 2001,
67, 5568-5580. 

(118)  Oremland, R. S.; Dowdle, P. R.; Hoeft, S.; Sharp, J. O.; Schaefer, J. K.; Miller, L. 
G.; Blum, J. S.; Smith, R. L.; Bloom, N. S.; Wallschlaeger, D.  Bacterial 
dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, 
California. Geochim. Cosmochim. Acta 2000, 64, 3073-3084. 

(119)  Oremland, R. S.; Stolz, J. F.  The ecology of arsenic. Science 2003, 300, 939-
944.

(120)  Oremland, R. S.; Stolz, J. F.  Arsenic, microbes and contaminated aquifers.  
Trends Microbiol. 2005, 13, 45-49. 

(121)  Pedersen, H. D.; Postma, D.; Jakobsen, R.  Release of arsenic associated with the 
reduction and transformation of iron oxides.  Geochim. Cosmochim. Acta 2006,
70, 4116-4129. 

(122)  Phelps, T. J.; Conrad, R.; Zeikus, J. G.  Sulfate-dependent interspecies H2 transfer 
between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture 
metabolism of acetate or methanol.  Appl. Environ. Microbiol. 1985, 50, 589-
594.

(123)  Postma, D.; Jakobsen, R.  Redox zonation: Equilibrium constraints on the 
Fe(III)/SO4-reduction interface.  Geochim. Cosmochim. Acta 1996, 60, 3169-
3175.

(124)  Saltikov, C. W.; Cifuentes, A.; Venkateswaran, K.; Newman, D. K.  The ars
detoxification system is advantageous but not required for As(V) respiration by 
the genetically tractable Shewanella species strain ANA-3. Appl. Environ. 
Microbiol. 2003, 69, 2800-2809. 

(125)  Santini, J. M.; Stolz, J. F.; Macy, J. M.  Isolation of a new arsenate-respiring 
bacterium—physiological and phylogenetic studies.  Geomicrobiol. J. 2002, 19,
41-52.

(126)  Santini, J. M.; Streimann, I. C. A.; Hoven, R. N. V.  Bacillus macyae sp nov., an 
arsenate-respiring bacterium isolated from an Australian gold mine.  Int. J. Syst. 
Evol. Micr. 2004, 54, 2241-2244. 



27

(127)  Satienperakul, S.; Cardwell, T. J.; Kolev, S. D.; Lenehan, C. E.; Barnett, N. W.  
A sensitive procedure for the rapid determination of arsenic(III) by flow 
injection analysis and chemiluminescence detection.  Anal. Chim. Acta 2005,
554, 25-30. 

(128)  Schink, B.  Energetics of syntrophic cooperation in methanogenic degradation.
Microbiol. Mol. Biol. R. 1997, 61, 262-280. 

(129)  Schöllhorn, A.; Savary, C.; Stucki, G.; Hanselmann, K. W.  Comparison of 
different substrates for the fast reductive dechlorination of trichloroethene under 
groundwater conditions. Water Res. 1997, 31, 1275-1282. 

(130)  Sewell, G. W.; Gibson, S. A.  Stimulation of the reductive dechlorination of 
tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene.  
Environ. Sci. Technol. 1991, 25, 982-984. 

(131)  Simm, A. O.; Banks, C. E.; Compton, R. G.  Sonically assisted electroanalytical 
detection of ultratrace arsenic. Anal. Chem. 2004, 76, 5051-5055. 

(132)  Skeen, R. S.; Gao, J.; Hooker, B. S.  Kinetics of chlorinated ethylene 
dehalogenation under methanogenic conditions.  Biotechnol. Bioeng. 1995, 48,
659-666.

(133)  Smatlak, C. R.; Gossett, J. M.; Zinder, S. H.  Comparative kinetics of hydrogen 
utilization for reductive dechlorination of tetrachloroethene and methanogenesis 
in an anaerobic enrichment culture.  Environ. Sci. Technol. 1996, 30, 2850-2858. 

(134)  Smedley, P. L.; Kinniburgh, D. G.  A review of the source, behaviour and 
distribution of arsenic in natural waters.  Appl. Geochem. 2002, 17, 517-568. 

(135)  Stolz, J. F.; Ellis, D. E.; Switzer Blum, J.; Ahmann, D.; Lovley, D. R.; Oremland, 
R. S. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. 
nov., new members of the Sulfurospirillum clade of the  Proteobacteria. Int. J. 
Syst. Bacteriol. 1999, 49, 1177-1180. 

(136)  Stolz, J. F.; Oremland, R. S.  Bacterial respiration of arsenic and selenium.  
FEMS Microbiol. Rev. 1999, 23, 615-627. 

(137)  Stumm, W.; Morgan, J. J. Aquatic chemistry; 3rd ed.; Wiley: New York, 1996. 
(138)  Sung, Y.; Fletcher, K. E.; Ritalahti, K. M.; Apkarian, R. P.; Ramos-Hernández, 

N.; Sanford, R. A.; Mesbah, N. M.; Löffler, F. E. Geobacter lovleyi sp. nov. 
strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating 
bacterium.  Appl. Environ. Microbiol. 2006, 72, 2775-2782. 

(139)  Switzer Blum, J.; Burns Bindi, A.; Buzzelli, J.; Stolz, J. F.; Oremland, R. S.  
Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two 
haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium 
and arsenic.  Arch. Microbiol. 1998, 171, 19-30. 

(140)  Takai, K.; Kobayashi, H.; Nealson, K. H.; Horikoshi, K. Deferribacter 
desulfuricans sp nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile 
isolated from a deep-sea hydrothermal vent.  Int. J. Syst. Evol. Micr. 2003, 53,
839-846.

(141)  Tandoi, V.; DiStefano, T. D.; Bowser, P. A.; Gossett, J. M.; Zinder, S. H.
Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a 
high-rate anaerobic enrichment culture.  Environ. Sci. Technol. 1994, 28, 973-
979.

(142)  Thauer, R. K.; Jungermann, K.; Decker, K.  Energy conservation in chemotrophic 
anaerobic bacteria.  Bacteriol. Rev. 1977, 41, 100-180. 



28

(143)  Townsend, G. T.; Suflita, J. M.  Influence of sulfur oxyanions on reductive 
dehalogenation activities in Desulfomonile tiedjei. Appl. Environ. Microbiol.
1997, 63, 3594-3599. 

(144)  Trang, P. T. K.; Berg, M.; Viet, P. H.; van Mui, N.; van der Meer, J. R.  Bacterial 
bioassay for rapid and accurate analysis of arsenic in highly variable 
groundwater samples.  Environ. Sci. Technol. 2005, 39, 7625-7630. 

(145)  Vassileva, E.; Becker, A.; Broekaert, J. A. C.  Determination of arsenic and 
selenium species in groundwater and soil extracts by ion chromatography 
coupled to inductively coupled plasma mass spectrometry.  Anal. Chim. Acta
2001, 441, 135-146. 

(146)  Vogel, T. M.; Criddle, C. S.; McCarty, P. L.  Transformations of halogenated 
aliphatic compounds. Environ. Sci. Technol. 1987, 21, 722-736. 

(147)  WHO Guidelines for drinking-water quality. Volume 1: Recommendations; 3rd 
ed.; WHO: Geneva, 1993. 

(148)  Wiedemeier, T. H.; Rifai, H. S.; Newell, C. J.; Wilson, J. T. Natural attenuation 
of fuels and chlorinated solvents in the subsurface; John Wiley & Sons: New 
York, 1999. 

(149)  Yamamura, S.; Yamamoto, N.; Ike, M.; Fujita, M.  Arsenic extraction from solid 
phase using a dissimilatory arsenate-reducing bacterium.  J. Biosci. Bioeng.
2005, 100, 219-222. 

(150)  Yan, X. P.; Kerrich, R.; Hendry, M. J.  Determination of (ultra)trace amounts of 
arsenic(III) and arsenic(V) in water by inductively coupled plasma mass 
spectrometry coupled with flow injection on-line sorption preconcentration and 
separation in a knotted reactor.  Anal. Chem. 1998, 70, 4736-4742. 

(151)  Yan, X. P.; Yin, X. B.; He, X. W.; Jiang, Y.  Flow injection on-line sorption 
preconcentration coupled with hydride generation atomic fluorescence 
spectrometry for determination of (Ultra)trace amounts of Arsenic(III) and 
Arsenic(V) in natural water samples.  Anal. Chem. 2002, 74, 2162-2166. 

(152)  Yang, Y.; McCarty, P. L.  Competition for hydrogen within a chlorinated solvent 
dehalogenating anaerobic mixed culture.  Environ. Sci. Technol. 1998, 32, 3591-
3597.

(153)  Yang, Y.; McCarty, P. L.  Response to "Comment on 'Competition for hydrogen 
within a chlorinated solvent dehalogenating anaerobic mixed culture'".  Environ.
Sci. Technol. 1999, 33, 2128. 

(154)  Zobrist, J.; Dowdle, P. R.; Davis, J. A.; Oremland, R. S.  Mobilization of arsenite 
by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 2000,
34, 4747-4753. 





ISBN 978-87-91855-29-0

Institute of Environment & Resources
Technical University of Denmark

Bygningstorvet, Building 115

DK-2800 Kgs. Lyngby

Phone: +45 4525 1600

Fax: +45 4593 2850

e-mail: reception@er.dtu.dk

Please visit our website www.er.dtu.dk


