Statistical Science
1996, Vol. 11, No. 4, 283-319

Bioequivalence Trials, Intersection-Union
Tests and Equivalence Confidence Sets

Roger L. Berger and Jason C. Hsu

Abstract. The bioequivalence problem is of practical importance be-
cause the approval of most generic drugs in the United States and the
European Community (EC) requires the establishment of bioequivalence
between the brand-name drug and the proposed generic version. The
problem is theoretically interesting because it has been recognized as
one for which the desired inference, instead of the usual significant dif-
ference, is practical equivalence. The concept of intersection—union tests
will be shown to clarify, simplify and unify bioequivalence testing. A
test more powerful than the one currently specified by the FDA and EC
guidelines will be derived. The claim that the bioequivalence problem
defined in terms of the ratio of parameters is more difficult than the
problem defined in terms of the difference of parameters will be refuted.
The misconception that size-a bioequivalence tests generally correspond
to 100(1 — 2a)% confidence sets will be shown to lead to incorrect sta-
tistical practices, and should be abandoned. Techniques for constructing
100(1—a)% confidence sets that correspond to size-a bioequivalence tests
will be described. Finally, multiparameter bioequivalence problems will
be discussed.
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1. BIOEQUIVALENCE PROBLEM

Two different drugs or formulations of the same
drug are called bioequivalent if they are absorbed
into the blood and become available at the drug ac-
tion site at about the same rate and concentration.
Bioequivalence is usually studied by administering
dosages to subjects and measuring concentration of
the drug in the blood just before and at set times
after the administration. These data are then used
to determine if the drugs are absorbed at the same
rate.

The determination of bioequivalence is very im-
portant in the pharmaceutical industry because
regulatory agencies allow a generic drug to be mar-
keted if its manufacturer can demonstrate that the
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generic product is bioequivalent to the brand-name
product. The assumption is that bioequivalent
drugs will provide the same therapeutic effect. If
the generic drug manufacturer can demonstrate
bioequivalence, it does not need to perform costly
clinical trials to demonstrate the safety and effi-
cacy of the generic product. Yet, this bioequivalence
must be demonstrated in a statistically sound way
to protect the consumer from ineffective or unsafe
drugs.

These concentration by time measurements are
connected with a polygonal curve and several vari-
ables are measured. The common measurements
are AUC (area under curve), C,,, (maximum
concentration) and T',,,, (time until maximum con-
centration). The two drugs are bioequivalent if the
population means of AUC and C,,,, are sufficiently
close. Descriptive statistics for T, are usually
provided, but formal tests are not required.

For example, let up denote the population mean
AUC for the generic (test) drug and let up denote
the population mean AUC for the brand-name (ref-
erence) drug. To demonstrate bioequivalence, the
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following hypotheses are tested:

H,: ESSL or ﬂzéSU
MR MR

(1) versus

H KT

a- 6L < — < SU'
MR

The values 6; and &y are standards set by regula-
tory agencies that define how “close” the drugs must
be to be declared bioequivalent. Currently, both the
United States Food and Drug Administration (FDA,
1992a) and the European Community use é; = 1.25
and 6; = 0.80 = 1/1.25 for AUC. For C_,,, the
United States again uses 6y = 1.25 and §; = 0.80,
but Europe uses the less restrictive limits 6;; = 1.43
and 6; = 0.70 = 1/1.43 (Hauck et al., 1995). Note
that these limits for AUC and C,,,, are symmetric
about 1 in the ratio scale.

Often, logarithms are taken and hypotheses (1)
are stated as

Hy: mp—mp=<0y or mp—mg=>0y

(2) versus

Ha: 0L<7]T—7]R<6U.

Here, np = log(ur), ng = log(ug), 0y = log(dy)
and 6;, = log(6;). With 6y = 1.25 and §; = 0.80

or 8y = 1.43 and 6; = 0.70, 6y = —6;, and the
standards are symmetric about zero.

In a hypothesis test of (1) or (2), the Type I error
rate is the probability of declaring the drugs to be
bioequivalent, when in fact they are not. By setting
up the hypotheses as in (1) or (2) and controlling
the Type I error rate at a specified small value, say,
a = 0.05, the consumer’s risk is being controlled.
That (1) or (2) is the proper formulation in problems
like these was recognized early on by some authors.
For example, Lehmann (1959, page 88), not specifi-
cally discussing bioequivalence, says, “One then sets
up the (null) hypothesis that [the parameter] does
not lie within the required limits so that an error of
the first kind consists in declaring [the parameter]
to be satisfactory when in fact it is not.” But not un-
til Schuirmann (1981, 1987a), Westlake (1981) and
Anderson and Hauck (1983) were hypotheses cor-
rectly formulated as in (1) or (2) in bioequivalence
problems.

Despite the fact that bioequivalence testing prob-
lems are now correctly formulated as (1) or (2),
many inappropriate statistical procedures are still
used in this area. Tests that claim to have a spec-
ified size «, but are either liberal or conservative,

are used. Liberal tests compromise the consumer’s
safety, and conservative tests put an undue burden
on the generic drug manufacturer. Tests are often
defined in terms of confidence intervals in statis-
tically unsound ways. These tests, again, do not
properly control the consumer’s risk.

In this paper, we will describe current bioequiva-
lence tests that have incorrect error rates. We will
offer new tests that correctly control the consumer’s
risk. In several cases, the tests we propose are uni-
formly more powerful than the existing tests while
still controlling the Type I error rate at the speci-
fied rate . We will examine and criticize the cur-
rent practice of defining tests in terms of 100(1 —
2a)% confidence sets. We will show that this only
works in special cases and gives poor results in
other cases. We will discuss how properly to con-
struct 100(1 — «)% confidence sets that correspond
to size-« tests. And we will discuss how our methods
can be applied to complicated, multiparameter bioe-
quivalence problems that have received only slight
attention in the literature. The intersection—union
method of testing will be found to be very useful
in understanding and constructing bioequivalence
tests. Section 2 provides a more detailed outline of
our discussions.

Hypotheses such as (1) and (2) that specify only
that population means should be close are called
average bioequivalence hypotheses. Hypotheses that
state that the whole distribution of bioavailabilities
is the same for the test and reference populations
are called population bioequivalence hypotheses. If
a parametric form of these populations is assumed,
then hypotheses such as (25) that specify that all
population parameters (e.g., variances as well as
means) should be close are population bioequiva-
lence hypotheses. Sometimes bioequivalence is de-
fined in terms of parameters that more directly mea-
sure equivalence of response within an individual.
Good introductions to individual bioequivalence are
given by Anderson and Hauck (1990), Hauck and
Anderson (1992), Sheiner (1992), Schall and Luus
(1993) and Anderson (1993). Although we do not
explicitly consider individual bioequivalence in this
paper, many of the concepts and techniques we de-
scribe should be applicable in that area also.

In this paper, our discussion will be entirely in
terms of bioequivalence testing. But our comments
and techniques apply to other problems, such as
in quality assurance, in which the aim is to show
that two parameters are close or that a parame-
ter is between two specification limits. Because of
this wider applicability, the methods we will discuss
might more properly be referred to as equivalence
tests and equivalence confidence intervals.
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2. TESTS, CONFIDENCE SETS
AND CURIOSITIES

Various experimental designs are used to gather
data for bioequivalence trials. Chow and Liu (1992)
describe parallel designs (two independent samples)
and two-period and multiperiod crossover designs.
The issues we discuss apply to all these different
designs. For brevity, we will discuss only the simple
parallel design and two period crossover design.

2.1 Difference Hypotheses

It is customary to employ lognormal models in
bioequivalence studies of AUC and C,,,,. See Sec-
tion 2.2 for rationales for this model.

Let X* denote a lognormal measurement from the
test drug in the original scale, and let X = log(X*).
Similarly, let Y* denote an original measurement,
and let Y = log(Y™*) for the reference drug. Let
(7, 02) denote the lognormal parameters for X*
and (ng, 0?) denote the lognormal parameters for
Y*. Then the test and reference drug means are
wr = exp(ng + 0%/2) and pg = exp(ng + 02/2), re-
spectively. Therefore, the condition

5%y
8, < — =exp(ny —Mg) < 8y
MR
is equivalent to

(3) 0 <mr—mgr < by,

where 0; = log(6;) and 6y = log(éy) are known
constants. Thus, the hypothesis to be tested in this
lognormal model can be stated as either (1) or (2).
Usually the hypotheses are stated as (2) and the
test is based on log transformed data that is nor-
mally distributed with means n; and 7y and com-
mon variance o2. The equivalence of (1) and (2) is
dependent on the assumption of equal variances. On
the other hand, if u; and pp represent the medians
of X* and Y* and 0y = log(uy) and g = log(ug),
then nr and ny are the medians of X and Y, re-
spectively. So, in terms of medians, (1) and (2) are al-
ways equivalent, and the analysis can be carried out
in either the original or log transformed scale. But,
bioequivalence is almost always defined in terms of
means rather than medians.

Westlake (1981) and Schuirmann (1981) proposed
what has become the standard test of (2). It is called
the “two one-sided tests” (TOST). The TOST has this
general form. Let D be an estimate of ny — np that
has a normal distribution with mean ny — n and
variance o3. Let SE(D) be an estimate of o, that is
independent of D and such that r[SE(D)]?/o? has
a x2 distribution with r degrees of freedom. Then

= D —(np —ng)
SE(D)

has a Student’s ¢-distribution with r degrees of free-
dom. The TOST is based on the two statistics

D — 6y D -6,
4 = T, = .
@ U™ SE(D) L™= SE(D)
The TOST tests (2) using the ordinary, one-sided,
size-a t-test based on T, for

and

Hy: mp—mp < 6g
(5) versus
Hy,i: mr—mg>0g

and the ordinary, one-sided, size-a t-test based on
Ty for

Hy: np—mp >0y
(6) versus
Hy: mp—mg < 0y.

It rejects H at level o and declares the two drugs
to be bioequivalent if both tests reject, that is, if

(7) TU < _ta,r and TL > ta,r’

where t, , is the upper 100« percentile of a Stu-
dent’s ¢-distribution with r degrees of freedom. For
testing (2), all the tests we will discuss are func-
tions of (D, SE(D)). The distribution of (D, SE(D))
is determined by the parameter (17, 1z, 0'12)).

In the simple parallel design, let X7,..., X}
denote the independent lognormal (7, 0?) mea-
surements on m subjects from the test drug in
the original scale, and let X;,..., X,, denote the
logarithms of these measurements. Similarly, let

1,....,Y: and Y,,...,Y, denote the original
measurements [lognormal(ng, 02)] and logarithms
for an independent sample of n subjects on the
reference drug. If X denotes the sample mean
of X;,...,X,,, Y denotes the sample mean of
Y,,...,Y, and S? denotes the pooled estimate of
o2, computed from both samples, then

D=X-Y

and
1 1
SE(D) = S\/ + —.
m n

The degrees of freedom are r = m +n — 2.

In bioequivalence studies, much more com-
mon than simple parallel designs are two-period,
crossover designs. In a two-period, crossover de-
sign, a group of m subjects (Sequence 1) receives
the reference drug and observations on the phar-
macokinetic response are made. After a washout
period to remove any carryover effect, this group
receives the test drug and observations are again
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made. A second group of n subjects (Sequence 2)
receives the drugs in the opposite order. After log
transformation, the response of the kth subject in
the jth period of the ith sequence is modeled as

Yip=v+8Sa+P;+Fq )+ e

where vy is the overall mean; P; is the fixed effect
of period j; F(; ;) is the fixed effect of the formu-
lation administered in period j of sequence i, that
iS, F(l,l) = F(2,2) = FR and F(1’2) = F(Z,l) = FT;
S;; is the random effect of subject £ in sequence
i; and &;j, is the random error. It is assumed that
Py + Py = Fp + Fp = 0. The S;’s and the ¢;’s
are all independent normal random variables with
mean 0. The variance of S;;, is 0% and the variance
of &5, is o and o for the test and reference for-
mulations, respectively. For this design,

Yige — Yite+ Yoo — Yoo
2

is a normally distributed unbiased estimate of F, —
Fr = np — ng with variance

1/1 1
0% = (o +072«)4(m + n)

D=

The standard error of D is

1/1 1
SE(D =S\/ =,
(D) 2 m+n
where
2 _ 1
m+n-—2
“ - - 2
| 2 (Vi = Y = (Fize = Vi)
k=1

n
+ 2 (Yo — Yoo — (Yore — Yzz-))g]
k=1
The estimate D is the average of the averages of
the intrasubject differences for the two sequences,
and S? is a pooled estimate of the variance of an in-
trasubject difference. For this crossover design, also,
the degrees of freedom are r =m +n — 2.
Following Lehmann (1959), we define the size of
a test as

size = sup P(reject Hy).
H,

The size of the TOST is exactly equal to «, even
though P(reject H,) < a for every (ns, ng, 05) in
the null hypothesis. The supremum value of « is at-
tained in the limit as ny — np = 61 (or 6y) and
0% — 0. Both the FDA bioequivalence guideline
(FDA, 1992a) and the European Community guide-
line (EC-GCP, 1993) specify that bioequivalence be
established using a 5% TOST.

The TOST is unusual in that two size-a tests are
combined to form a size-a test. Often, when multi-
ple tests are combined, some adjustment must be
made to the sizes of the individual tests to achieve
an overall size-a test. Why this is not necessary for
the TOST is best understood through the theory of
intersection—union tests (IUT’s), which we describe
in Section 3. In Sections 4.1 and 4.2 we will show
that the IUT theory is useful for understanding the
TOST. Also, the IUT theory can guide the construc-
tion of tests for (2) that have the same size « as the
TOST but are uniformly more powerful than the
TOST.

2.2 Ratio Hypotheses

Sometimes, a normal model should be used. In
this model, the original measurements are normally
distributed with means wp and pgp. This model is
different from the lognormal model in that now the
hypothesis to be tested concerns the ratio of the
means of these normal observations. That is, we
wish to test (1). This problem has received less at-
tention than (2). Dealing with the ratio up/ng has
been perceived as more difficult than dealing with
the difference np — np.

For AUC and C,,,, the FDA (1992a) strongly
recommends logarithmically transforming the data
and testing the hypotheses (2). They offer three ra-
tionales for their recommendation. Based on these,
the FDA (1992a, page 7) states:

Based on the arguments in the preceding
section, the Division of Bioequivalence
recommends that the pharmacokinetic
parameters AUC and C,,,, be log trans-
formed. Firms are not encouraged to test
for normality of data distribution af-
ter log transformation, nor should they
employ normality of data distribution
as a justification for carrying out the
statistical analysis on the original scale.

The emphasis is ours.

The FDA’s three rationales for log transformation
are labeled “Clinical,” “Pharmacokinetic” and “Sta-
tistical.” The Clinical Rationale is that the real in-
terest is in the ratio wp/up rather than the differ-
ence wp — p. But, the link between this fact (which
we certainly do not dispute) and the log transfor-
mation of the data is based on statistical considera-
tions. It is that a linear statistical model can be used
for the transformed data to make inferences about
the difference n;—np. These inferences then can be
restated in terms of wp/wg. Thus, the justification
of the log transformations seems to be based mainly
on the perceived difficulty in dealing with the ratio
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ur/ug, rather than the difference ny —ng. If appro-
priate statistical procedures can be used to make in-
ferences about the ratio up/up directly, then there
seems to be no need for a log transformation.

The Pharmacokinetic Rationale is based on multi-
plicative compartmental models of Westlake (1973,
1988). The multiplicative model is changed to a lin-
ear model by the log transformation. Part of the
Statistical Rationale is that, in the original scale,
much bioequivalence data is skewed and appears
more lognormal than normal. We agree that these
two considerations suggest that the first method of
analysis to be considered in bioequivalence studies
is on the log transformed data, and, in most cases,
this analysis will be appropriate.

The Statistical Rationale consists of the previous
lognormal justification and two more points. The
first is that:

Standard parametric methods are ill-
suited to making inferences about the
ratio of two averages, though some valid
methods do exist. Log transformation
changes the problem to one of making in-
ferences about the difference (on the log
scale) of the two averages, for which the
standard methods are well suited.

The second is that the small sample sizes used in
typical bioequivalence studies (20—-30) will produce
tests for normality that have fairly low power in
either the original or log scale. The FDA recom-
mends that no check of normality be made on the
log transformed data. But, if a low-power normality
test rejects the hypothesis of normality for the log
transformed data, then surely some caution is war-
ranted in the use of procedures that assume nor-
mality. In this case, tests such as the TOST, based
on the Student’s #-distribution, are inappropriate.
If normality of the log transformed data is rejected
and the original data appear more normal than the
log transformed data, then procedures that assume
normality of the original data would seem more ap-
propriate. In Section 4.3, we show that Sasabuchi
(1980,1988a,b) described the size-a likelihood ratio
test for (1). It is a simple test based on the Stu-
dent’s ¢-distribution. So the FDA’s statement about
ill-suited standard parametric procedures seems un-
founded. We also show that the tests commonly used
are liberal and have size greater than the nomi-
nal value of «. Furthermore, we show that the IUT
method can be used in this problem, also, to con-
struct size-a tests that are uniformly more power-
ful than the likelihood ratio test. Thus, the FDA’s
avoidance of (1) because of statistical difficulties is
unwarranted.

An alternative test, when normality is in doubt,
might be to use a Wilcoxon—-Mann—Whitney ana-
logue of the TOST [based on the original loga-
rithmically transformed data for a parallel design,
or the intrasubject between-period differences of
the logarithmically transformed data, as proposed
by Hauschke, Steinijans and Diletti (1990), for a
crossover design].

2.3 100(1 — 2a)% Confidence Intervals

One would expect the TOST to be identical to
some confidence interval procedure: for some ap-
propriate 100(1 — @)% confidence interval [D~, D*]
for np — mp, declare the test drug to be bioequiva-
lent to the reference drug if and only if [D~, D*] C
(01, 6y).

It has been noted (e.g.,, Westlake, 1981;
Schuirmann, 1981) that the TOST is operationally
identical to the procedure of declaring equivalence
only if the ordinary 100(1 — 2a)%, not 100(1 — )%,
two-sided confidence interval for n; — 15,

)] [D—¢, . SE(D), D +¢, SE(D)],

is contained in the interval (60;, 6;;). In fact, both
FDA (1992a) and EC-GCP (1993) specify that the
TOST should be executed in this fashion.

The fact that the TOST seemingly corresponds to
a 100(1—2a)%, not 100(1 — a)%, confidence interval
procedure initially caused some concern (Westlake,
1976, 1981). Recently, Brown, Casella and Hwang
(1995) called this relationship an “algebraic coin-
cidence.” But many authors (e.g., Chow and Shao,
1990, and Schuirmann, 1989) have defined bioequiv-
alence tests in terms of 100(1—2a)% confidence sets.

Standard statistical results, such as Theorems 3
and 4 in Section 5, give relationships between size-a
tests and 100(1 — «)% confidence intervals. In Sec-
tion 5, we discuss a 100(1 — a)% confidence interval
that corresponds exactly to the size-a TOST. We also
explore the relationship between 100(1 — 2«a)% con-
fidence intervals and size-« tests. We describe situ-
ations more general than the TOST in which size-a
tests can be defined in terms of 100(1 — 2a)% confi-
dence intervals. But we also give examples from the
bioequivalence literature of tests that have been de-
fined in terms of 100(1 — 2a)% confidence intervals
and sets that are not size-a tests. Tests defined by
100(1 — 2a)% confidence intervals can be either lib-
eral or conservative. Because of these potential diffi-
culties, our conclusion is that the practice of defining
bioequivalence tests in terms of 100(1 — 2«)% confi-
dence intervals should be abandoned. If both a confi-
dence interval and a test are required, a 100(1—a)%
confidence interval that corresponds to the given
size-a test should be used.
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2.4 Multiparameter Problems

In Section 6, we discuss multiparameter bioequiv-
alence problems. We discuss two examples in which
the IUT theory can be used to define size-a tests
that are uniformly more powerful than tests that
have been previously proposed. These examples
concern controlling the experimentwise error rate
when several parameters are tested for equivalence,
simultaneously.

3. INTERSECTION-UNION TESTS

Berger (1982) proposed the use of intersection—
union tests in a quality control context closely
related to bioequivalence testing. Tests for many
different bioequivalence hypotheses are easily con-
structed using the IUT method. The TOST is a
simple example of an IUT. Tests with a specified
size are easily constructed using this method, even
in complicated problems involving several param-
eters. And tests that are uniformly more powerful
than standard tests can often be constructed using
this method.

The TUT method is useful for the following type
of hypothesis testing problem. Let 6 denote the un-
known parameter (6 can be vector valued) in the dis-
tribution of the data X. Let ® denote the parameter
space. Let O, ..., ®, denote subsets of . Suppose
we wish to test

k k
(9) Hy6elJO; versus H, 0e ()05,
i=1 i=1

where A° denotes the complement of the set A. The
important feature in this formulation is the null hy-
pothesis is expressed as a union and the alterna-
tive hypothesis is expressed as an intersection. For
i =1,...,k, let R; denote a rejection region for a
test of Hy;: 6 € O, versus H,;: 6 € OF. Then an
IUT of (9) is the test that rejects H, if and only if
X ¢ NX, R;. The rationale behind an IUT is sim-
ple. The overall null hypothesis, Hy: 6 € U* 0,
can be rejected only if each of the individual null
hypotheses, Hy,: 0 € O;, can be rejected.

Berger (1982) proved the following two theorems.

THEOREM 1. If R; is a level-a test of H,;, for i =
1,..., k, then the intersection—union test with rejec-
tion region R = ﬂle R; is a level-a test of H versus
H, in (9).

An important feature in Theorem 1 is that each
of the individual tests is performed at level-a, but
the overall test also has the same level a. There is
no need for multiplicity adjustment for performing
multiple tests. The reason there is no need for such a

correction is the special way the individual tests are
combined. Hypothesis H|, is rejected only if every
one of the individual hypotheses, H;, is rejected.

Theorem 1 asserts that the IUT is level-a. That
is, its size is at most «. In fact, a test constructed
by the IUT method can be quite conservative. Its
size can be much less than the specified value «a.
However, Theorem 2 (a generalization of Theorem
2 in Berger, 1982) provides conditions under which
the IUT is not conservative; its size is exactly equal
to the specified a.

THEOREM 2. For some i = 1, ..., k, suppose R; is
a size-a rejection region for testing H, versus H ;.
Forevery j=1,...,k, j#1i, suppose R ; is a level-a
rejection region for testing H ; versus H ,;. Suppose
there exists a sequence of parameter points 60;,1 =
1,2,...,in O, such that

llim Py(XeR)=c
and, forevery j=1,...,k, j#1,
llim Py(XeRj)=1

Then the intersection—union test with rejection re-
gion R = ﬂle R; is a size-a test of H versus H,.

Note that in Theorem 2 the one test defined by
R; has size exactly a. The other tests defined by
R;, j=1,...,k, j#1, are level-a tests. That is,
their sizes may be less than «. The conclusion is the
IUT has size a. Thus, if rejection regions R4, ..., R,
with sizes ay, ..., a; are combined in an IUT and
Theorem 2 is applicable, then the IUT will have
size equal to max;{«;}. We will discuss bioequiva-
lence examples in which tests of different sizes are
combined. The resulting test has size equal to the
maximum of the individual sizes.

4. OLD AND NEW TESTS FOR DIFFERENCE
AND RATIO HYPOTHESES

4.1 Two One-Sided Tests

The TOST is naturally thought of as an IUT. The
bioequivalence alternative hypothesis H,: 6; <
nr — Mg < Oy is conveniently expressed as the
intersection of the two sets,

0f ={(nr, g, 0p): nr — Mg > 0.}
and
05 ={(nr, Mg, 0p): np — Mg < Oy}

The test that rejects Hy;: ny — np < 67 in (5) if
Ty > t, ,is asize-a test of H(;. The test that rejects
Hyy: np —mp > 0y in (6) if Ty < —¢, , is a size-a
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test of Hyy. So, by Theorem 1, the test that rejects
H, only if both of these tests reject is a level-a test
of (2).

To use Theorem 2 to see that the size of the TOST
is exactly «, consider parameter points with np —
nr = Oy and take the limit as 0% — 0. Such pa-
rameters are on the boundary of Hy,. Therefore,

P(X € Ry) = P(Ty < —t,,) =a,
for any o2 > 0. But,
PXeR)=P(T,>t,,)—>1 asop—0,

because the power of a one-sided ¢-test converges to
1 as 05 — 0 for any point in the alternative. The
value ny — np = 0y is in the alternative, H,;.

The advantage of considering bioequivalence
problems in an IUT format is not limited to verify-
ing properties of the TOST. Rather, other bioequiv-
alence hypotheses, such as (1), state an interval
as the alternative hypothesis. This interval can
be expressed as the intersection of two one-sided
intervals. So two one-sided, size-a tests can be com-
bined to obtain a level-a (typically, size-a) test.
Furthermore, as we will see in Section 6, even
more complicated forms of bioequivalence can be
expressed in the IUT format. This allows the easy
construction of tests with guaranteed size-a for
these problems.

4.2 More Powerful Tests

Despite its simplicity and intuitive appeal, the
TOST suffers from a lack of power. The line labeled
TOST in the top part of Table 1 shows the power
function, P(reject H,), for parameter points with
ny — Mg = Oy (or 61), points on the boundary be-
tween H, and H,. The power function is near «
for o2 near 0, but decreases as % grows. An unbi-
ased test would have power equal to « for all such
parameter points. The TOST is clearly biased. The

TABLE 1
Powers of three bioequivalence tests; r = 30, a = 0.05 and 6y =
log(1.25) = -6y,

I9p

0.00 0.04 0.08 012 0.16 020 0.30 00

nr —mg =0y or 0,
TOST 0.050 0.050 0.050 0.031 0.003 0.000 0.000 0.000
BHM 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
New 0.050 0.050 0.050 0.047 0.049 0.050 0.050 0.050

nr—nmr=0
TOST 1.000 1.000 0.720 0.158 0.007 0.000 0.000 0.000
BHM 1.000 1.000 0.721 0.260 0.131 0.093 0.066 0.050
New 1.000 1.000 0.720 0.247 0.128 0.092 0.066 0.050

bottom part of Table 1 shows the power function
when the two drugs are exactly equal, 1y = 1. The
power is near 1 for o3 near 0, but decreases to 0 as
o% increases. Despite these shortcomings, Diletti,
Hauschke and Steinijans (1991) declared that the
TOST maximizes the power among all size-a tests.
This is incorrect.

Anderson and Hauck (1983) proposed a test with
higher power than the TOST. Whereas the TOST
does not reject H, if SE(D) is sufficiently large, the
Anderson and Hauck test always rejects H if D is
near enough to 0, even if SE(D) is large. This pro-
vides an improvement in power. However, the An-
derson and Hauck test does not control the Type I
error probability at the specified level a. It is liberal
and the size is somewhat greater than «. Shortly
after Anderson and Hauck proposed their test, Pa-
tel and Gupta (1984) and Rocke (1984) proposed
the same test. This scientific coincidence was com-
mented upon by Anderson and Hauck (1985) and
Martin Andrés (1990).

Due to the seriousness of a Type I error, declar-
ing two drugs to be equivalent when they are not,
the search for a size-a test that was uniformly more
powerful than the TOST continued. Munk (1993)
proposed a slightly different test. Munk claims that
this test is a size-a test that is uniformly more pow-
erful than the TOST, but this claim is supported by
numerical calculations, not analytic results.

Brown, Hwang and Munk (1995) constructed an
unbiased, size-a test of (2) that is uniformly more
powerful than the TOST. Their construction is re-
cursive. To determine if a point (d, se(D)) is in the
rejection region of the Brown, Hwang and Munk
test, a good deal of computing can be necessary. This
may limit the practical usefulness of the Brown,
Hwang and Munk test. Also, sometimes the Brown,
Hwang and Munk rejection region has a quite irreg-
ular shape. An example of this is shown in Figure 1.

We will now describe a new test of the hypotheses
(2). This test is uniformly more powerful than the
TOST. Unlike the Anderson and Hauck and Munk
tests, our test is a size-a test. Our test is nearly
unbiased. It is simpler to compute than the Brown,
Hwang and Munk test. It will not have the irregu-
lar boundaries that the Brown, Hwang and Munk
test sometimes possesses. The construction of this
new test again illustrates the usefulness of the IUT
method.

To simplify the notation in describing our test, we
assume, without loss of generality, that 0; = —60y
and we call 6; = A. Following Brown, Hwang and
Munk, define S? = r[SE(D)]?. It is simpler to define
our test in terms of the polar coordinates, centered



290 R. L. BERGER AND J. C. HSU

-A 0 A

Fic. 1. Irregular boundary of Brown, Hwang and Munk test
(solid line) and smoother boundary of test from Section 4.2
(dashed line); the TOST rejection region is bounded by the tri-
angle with vertices at —A, A and T. Here r = 3, a = 0.16 and
-0, =0y = 1.

at (A, 0),
v2=(d—A)?+s?
and
b=cos 1((d—A)/v).

In the (d, s,) space, v is the distance from (A, 0) to
(d, s,) and b is the angle between the d axis and the
line segment joining (A, 0) and (d, s,). To define a
size-a test, we need the distribution of (V, B) when
0 = A. In this case, it is easy to verify that V and
B are independent. The probability density function
of B is

I((r+1)/2)
A PN
which does not depend on ¢%. To implement our
test, it is useful to note that the cumulative distri-
bution function of B has a closed form given by

[sin(b)]"",

0<b<m,

b 1
F&) =T —577

- Y [sin(®)]** ! cos(b)
k=1
if r is odd, and

L'(k+(1/2))°

1 1 2 I'(k—(1/2
F(b)= - NG kg [sin(b)]?*2 cos(b)(r((k)/)),

if r is even. The probability density function of V
will be denoted by g, (v).

We will describe the rejection region of the new
test geometrically here. Exact formulas are in the

Appendix. The new test will be an IUT. We will de-
fine a size-a, unbiased rejection region, R, for test-
ing (6). This R, will contain the rejection region
of the size-o TOST and will be approximately sym-
metric about the line d = 0. Then we will define
R, = {(d,s,): (—d,s,) € Ry}; R; is R, reflected
across the line d = 0; R, is a size-a, unbiased rejec-
tion region for testing (5). Then R = R; N R, is the
rejection region of the new test. Because R, is ap-
proximately symmetric about the line d = 0, R; is
almost the same as R,, and not much is deleted
when we take the intersection. This foresight in
choosing the individual rejection regions so that the
intersection is not much smaller is always useful
when using the IUT method.

The set {V = v} is a semicircle in (d, s,) space.
For each value of v, Ry(v) = {V = v} N Ry is either
one or two intervals of b values, that is, one or two
arcs on {V = v}. These arcs will be chosen so that,
for every v > 0,

(10) / f(b)db = a.
Ry(v)
Then the rejection probability

P(Ry)= [ [ f®)dbg,,©v)do

= [~ ag,(v)dv=a,
0

for every op > 0 if np — np = A. This will ensure
that R, is a size-a, unbiased rejection region for
testing (6).

We now define the arc(s) that make up Ry(v). Re-
fer to Figure 2 in this description. The rejection re-
gion of the size-a TOST, call it Ry, is the trian-
gle bounded by the lines s, =0, d = A —¢, ,s,/J7
(call this line I;;) and d = —A + ¢, ,s,/+/7 (call this

-A A, 0 A

F1G. 2. Arcs that define the rejection region Ro.
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line ;). Let v, denote the distance from (A, 0) to
;. In this description, we assume 1/2 > a > «, =
1 — F(3w/4). Brown, Hwang and Munk (1995) in
their Table 1 show that if r > 4, then « = 0.05 > «,.
The new test for @ < «, is given in the Appendix.
Brown, Hwang and Munk did not propose any test
for @« < a,. The condition @ > «, ensures that the
point on [; closest to (A, 0) is on the boundary of
Ry, as shown.

Let b, denote the angle between the d-axis and
ly. For 0 < v < vy, Ry(v) =4{b: by < b < 7}. The arc
A, in Figure 2 is an example of such an arc. So, for
U < vy, Ry(v) is exactly the points in the TOST.

For vy < v, the semicircle V = v intersects /g,
at two points. Let b; < by denote the angles corre-
sponding to these two points. If vy, < v < 2A, let
Ay(v) = {b: by < b < 7}. These are the points in
R adjacent to the d-axis, and A, in Figure 2 is an
example of such an arc. If 2A < v, let Ay(v) be the
empty set. Let a(v) denote the probability content
of Ay(v) under F. That is,

a(v) = {1 — F(by), vy <v <2,
0, 2A <.

For vy < v, Ry(v) = A1(v)U Ay(v), where, to ensure
that (10) is true, A;(v) must satisfy

(11) /A [ b =a—a).

Let (d;, s,1) denote the point where the {V = v}
semicircle intersects /;;, and let v; denote the radius
corresponding to (—dy, s,q). For vg < v < vy, let by,
be the angle defined by

(12) F(by) — F(bpy) = a — a(v),

where b; is as defined in the previous paragraph.
Then A (v) = {b: b;; < b < b;} is the arc that sat-
isfies (11) whose endpoint is on ;. For vy < v < vy,
Ry(v) = A{(v) U Ay(v), using this A;(v). The arcs
labeled A; and A, in Figure 2 comprise such an
Ry(v). For v < vy, the cross sections R,(v) we have
defined are the same as the cross sections for the
Brown, Hwang and Munk (1995) test. They now de-
fine the remainder of their rejection region recur-
sively in terms of these arcs. We define our rejection
region in a nonrecursive manner.

For v; < v, define two values b;(v) < by(v) such
that F(by(v)) — F(by,(v)) = a« — a(v), and the angle
between the line joining (0, 0) and (v, b7, (v)) and the
s,-axis is the same as the angle between the line
joining (0,0) and (v, by;(v)) and the s,-axis. This
equal angle condition is what we meant earlier by
the phrase “approximately symmetric about the line
d =0."If by;(v) = by, then A (v) =4{b: by (v) < b <
by (v)}. But, if by(v) < by, then this arc does not

contain all the points in the TOST. So, if by;(v) < by,
Ai(v) = {b: by, < b < b;}, where b, is defined by
(12). For v; < v, Ry(v) = A;(v) U Ag(v). Recall,
if 2A < v, Ay(v) is empty, and Ry(v) is the single
arc A(v). Also, for v* > max{4AZ? A% + A%r/t2 },
the semicircle {V = v} does not intersect Ry, and
Ry(v) is the arc defined by b7(v) and by (v). The
b;-condition never applies in this case. In Figure 2,
the solid parts of the arcs A; and A, are examples
of Ry(v) for v; < wv.

The cross sections Ry(v) have been defined for
every v > 0, and this defines R,; R, is the reflection
of R, across the s,-axis, and the rejection region of
the new test is R = R; N R,y. This construction is
illustrated in Figure 3.

In Figure 1, the rejection region R with the same
size as the Brown, Hwang and Munk test is the
region between the dotted lines. The boundary of
R is smooth compared to the irregular boundary
of the Brown, Hwang and Munk test. This smooth-
ness results from the attempt in the construction of
R to center arcs around the s,-axis. To determine
if a sample point (d, s?) is in R, two arcs, Ry(v)
and R;(v) = Ry(v) (v = (=d — A)? + s%, computed
from (—d, s2)), must be constructed. If (d, s?) is on
both arcs, (d, s?) € R. But, to determine if (d, s?)
is in the rejection region of the Brown, Hwang and
Munk test, a starting point is selected. Then a se-
quence of arcs is constructed until (d, s2) is passed.
Then another sequence of arcs is constructed from
a new starting point. This process is continued un-
til enough arcs in the vicinity of (d, s2) are obtained
to approximate the boundary of the rejection region.
From this it is determined if (d, s?) is in the rejec-
tion region. Thus, a good deal more computation is

-A 0 A

FI1G. 8. Rejection region of new test; region Ry (between solid
lines) and region Ry (between dashed lines); rejection region R =
RiNRy; r =10 and o = 0.05.
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needed to implement the Brown, Hwang and Munk
test. Also, the Brown, Hwang and Munk test is not
defined for @ < «,. This smoothness, general appli-
cability and simplicity of computation recommends
R as a reasonable alternative to the Brown, Hwang
and Munk test. But R is slightly biased whereas the
Brown, Hwang and Munk test is unbiased.

A small power comparison of the TOST, Brown,
Hwang and Munk test and our new test is given in
Table 1 for a« = 0.05 and r = 30. In the top block
of numbers, 17 — np = A. For these boundary val-
ues, the power is exactly « = 0.05 for the unbi-
ased Brown, Hwang and Munk test. The power is
also very close to 0.05 for our test, indicating it has
only slight bias. But the TOST is highly biased with
power much less than 0.05 for moderate and large
op. In the bottom block of numbers, ny — ng = 0.
The drugs are equivalent. Our test and the Brown,
Hwang and Munk test have very similar powers.
Their powers are much greater than the TOST’s
power for all but small op. For example, it can
be seen that the power improvement is about 60%
when op = 0.12 and about 85% when op = 0.16.
Sample sizes for bioequivalence tests are often cho-
sen so that the test has power of about 0.8 when
nr = ng. In this case, Table 1 indicates there is no
advantage to using the new tests over the TOST.
But if the variability turns out to be larger than
expected in the planning stage, the new tests offer
significant power improvements.

The tests of Anderson and Hauck (1983), Brown,
Hwang and Munk (1995) and our new test all have
the property that, as s, — oo, the width of the rejec-
tion region increases, eventually containing values
of (d, s,) with d outside the interval (6;, 6;;). There
will be values (d, s,;) and (d, s,5) with s,; < s,9,
but (d,s,;) is not in the rejection region while
(d, s,g) is in the rejection region. This “flaring out”
of the rejection region is evident in Figures 1 and
5 (see Section A.2). This counterintuitive shape
was pointed out by Rocke (1984). The rejection re-
gion of any bioequivalence test that is unbiased, or
approximately unbiased, must eventually contain
sample points with d outside the interval (07, 0y).
Some have suggested that such procedures should
be truncated in the sense that the narrowest point
of the rejection region be determined and then the
rejection region is extended along the s, -axis only of
this width. Brown, Hwang and Munk suggest this
as a possible modification of their test, although the
resulting test will no longer be unbiased. We be-
lieve that notions of size, power and unbiasedness
are more fundamental than “intuition” and do not
recommend truncation. But for those who disagree,
our new test could be truncated in this same way.

The narrowest point will need to be determined
numerically for all these tests, and the smoother
shape of our rejection region will make this deter-
mination easier. Referring to Figure 1, a numerical
routine might be fooled by the irregular shape of
the Brown, Hwang and Munk test.

4.3 Tests for Ratios of Parameters

Usually, data from a bioequivalence trial is loga-
rithmically transformed before analysis. This leads
to a test of the hypotheses (2), as described in the
previous section. In the model we will consider
now, the original data are normally distributed.
Let X,,..., X,, form a random sample from a nor-
mal population with mean u, and variance o2, and
let Yq,...,Y, form an independent random sam-
ple from a normal population with mean pup and
variance o2. In this section, we will present our
comments in terms of this simple parallel design.
Yang (1991) and Liu and Weng (1995) describe mod-
els for this normally distributed data in crossover
experiments.

The bioequivalence hypothesis to be tested in this
case is (1), namely,

Hy: ﬂgb‘L or ﬂzSU
KR KR
(13) versus
H, §; < Rr oy-
KR
In the past, the values of §; = 0.80 and 6; = 1.20
were commonly used (called the £20 rule). However,
the FDA Division of Bioequivalence (FDA, 1992a)
now uses 8; = 0.80 and 6; = 1.25. These limits are
symmetric about 1 in the ratio scale since 0.80 =
1/1.25.

The parameter wp is positive because the mea-
sured variable, AUC or C,,,,, is positive. Therefore
the hypotheses (13) can be restated as

Hy: pp—06Lpur =<0 or pup—oyug >0
(14) versus
Ha: [J,T—(SL/.LR>O and IU’T_SU/'LR < 0.

The testing problem (14) was first considered by
Sasabuchi (1980, 1988a, b). Let X, Y and S2 de-
note the two sample means and the pooled estimate
of o%. Sasabuchi showed that the size-a likelihood
ratio test of (14) rejects H,, if and only if

T,>t,, and Ty <-—t

a,r
where
X-6,Y

lej
S\/l/m+62L/n
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and

X—o,7

Ty=——_°U°-
S\/1/m + 8%/n

This will be called the T';/T,, test.

The T',/T, test is easily understood as an IUT.
The usual, normal theory, size-« ¢-test of Hyq: pup —
Ormp < 0 versus H,i: up — dpup > 0 is the test
that rejects H,, if T; > ¢, ,. Similarly, the usual,
normal theory, size-a ¢-test of Hyo: pp — dyup = 0
versus H,y: up — 6y < O is the test that rejects
Hy, if Ty < —t, ,. Because H, is the intersection
of H,; and H o, these two ¢-tests can be combined,
using the IUT method, to get a level-a test of H,
versus H,. Using an argument like that in Section
4.1, Theorem 2 can be used to show that the size of
this test is a.

Yang (1991) and Liu and Weng (1995) proposed
tests closely related to the T';/T test for the bioe-
quivalence problem of testing (13) in a crossover ex-
periment. Hauck and Anderson (1992) also discuss
the hypotheses in the form (14), but no reference to
Sasabuchi’s earlier work is given. The derivation of
the confidence set for wp/up in Hsu, Hwang, Liu
and Ruberg (1994) contains a mistake in the stan-
dardization. Properly corrected, their rather com-
plicated confidence set would lead to the rejection of
(14) when the simple test described above does. So,
somehow, the value of this simple, size-a test seems
to have been completely overlooked in the bioequiv-
alence literature. Rather, Chow and Liu (1992) and
Liu and Weng (1995) both report that the follow-
ing is the standard analysis. Rewrite the hypotheses
(13) or (14) as

Hy: pp —pr = (8, — Dug
(15) or ur —pgr = (8y — g

versus
H,: (6, — Dpg < ur — pr < (8y — Dup.

These hypotheses look like (2), but there is an im-
portant difference. In (2), 6; and 6y are known
constants. In (15), (67 — 1)ug and (6 — 1)up are
unknown parameters. Nevertheless, the standard
analysis proceeds to use the TOST with (6, — 1)Y
replacing 6, in T, and (8; — 1)Y replacing 6 in
T¢. The standard analysis ignores the fact that a
constant has been replaced by a random variable
and compares these two test statistics to standard
t-percentiles as in the TOST. This test will be called
the T7/T% test.

The statistics that are actually used in this anal-
ysis are

L XY -(5,-1Y
T 8/1T/m+1/n
X -5Y T\/n—i—mB%

_S,/l/m+1/n= n+m ’

and
 X-Y-(5y - 1Y

*

2 Sy/1/m+1/n
X -&yY _p n+mésy
CS8/Im+1i/n N nt+m

The statistics T'; and Ty are properly scaled to
have Student’s ¢-distributions, but 77 and T are
not. The T7/T% test is an IUT in which the two
tests have different sizes. The test that rejects H;
if T1 > t, . has size

PMT=5LH-R (TT > La, r)

n+m
= Pui—s,us <T1 > \/rH_’na%ta,r>
=0 <0,
n m
;2 > 1.
n+ més

On the other hand, the test that rejects H, if T <
—t,,, has size

because

PMT=5UMR (T§ < _t“’r)
n+m
=P by (Tz </ IH_ma%]ta,r>
=ay > a,
because

n+m
— < 1.
\/n + mé%
Theorem 2 can be used to show that, as a test of the
hypothesis (13), the T7/T% test has size ay > a. It
is a liberal test.

The true size of the T';/T% test, for a nominal size
of @ = 0.05, is shown in Table 2. In Table 2 it is
assumed that the sample sizes from the test and
reference drugs are equal, m = n. In this case, the
size of the T'j/T% test is simply

2
a2=P(T<— Qtar)>
1+62
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TABLE 2
Actual size of T7/T% test for nominal « = 0.05

m=n 5 10 15 20 30 00

Size 0.070 0.071 0.072 0.072 0.073 0.073

where T has a Student’s ¢-distribution with r = 2n—
2 degrees of freedom. It can be seen that the size of
the T7/T5 test is about 0.07 for all sample sizes.
The liberality worsens slightly as the sample size
increases. On the other hand, the T';/T, test has
size exactly equal to the nominal «. It is just as
simple to implement as the T'j/T% test. Therefore
the T,/T, test should replace the T7i/T% test for
testing (13).

In Section 4.2, the IUT method was used to con-
struct a size-a test that is uniformly more power-
ful than the TOST. For the known ¢? case, Berger
(1989) and Liu and Berger (1995) used the IUT
method to construct size-a tests that are uniformly
more powerful than the T'/T, test. In Figure 4,
the cone-shaped region labeled R, is the rejection
region of the T';/T, test for « = 0.05. The region
between the dashed lines is the rejection region of
Liu and Berger’s size-a test that is uniformly more
powerful. We refer the reader to Berger (1989) and
Liu and Berger (1995) for the details about these
tests. We believe that, for the case of o2 unknown,
size-a tests that are uniformly more powerful than
the T',/T, test will be found.

0 X

FI1G. 4. Rejection region for T1/T test is cone shaped R; region
between dashed lines is rejection region of uniformly more pow-
erful Liu and Berger (1995) test. The estimates X and Y satisfy
81, < X/Y < 8y in the larger cone-shaped region.

5. CONFIDENCE SETS AND
BIOEQUIVALENCE TESTS

5.1 A 100(1 — a)% Confidence Interval

We will show that the 100(1 — «)% confidence in-
terval [Dy, D] given by

(16) [(D ¢, ,SE(D))". (D +1, ,SE(D))’]

corresponds to the size-a TOST for (2). Here x~ =
min{0, x} and x* = max{0, x}. The 100(1 — @)%
interval (16) is equal to the 100(1 — 2«)% interval
(8) when the interval (8) contains zero. But, when
the interval (8) lies to the right (left) of zero, the
interval (16) extends from zero to the upper (lower)
endpoint of interval (8).

The confidence interval (16) has been derived by
Hsu (1984), Bofinger (1985) and Stefansson, Kim
and Hsu (1988) in the multiple comparisons setting,
and by Miiller-Cohrs (1991), Bofinger (1992) and
Hsu et al. (1994) in the bioequivalence setting. Our
derivation follows Stefansson, Kim and Hsu (1988)
and Hsu et al. (1994), which makes the correspon-
dence to TOST more explicit.

To see this correspondence, we use the standard
connection between tests and confidence sets. Most
often in statistics, this connection is used to con-
struct confidence sets from tests via a result such
as the following.

THEOREM 3 (Lehmann, 1986, page 90). Let the
data X have a probability distribution that de-
pends on a parameter 0. Let ® denote the parameter
space. For each 0, € O, let A(0,) denote the accep-
tance region of a level-a test of Hy: 0 = 0,. That is,
for each 8, € ©, Py_y (X € A(0y)) > 1 — a. Then
C(x) =1{0 € O: x € A(0)} is a level 100(1 — @)%
confidence set for 0.

However, in bioequivalence testing in the past,
tests have often been constructed from confidence
sets. A result related to this practice follows.

THEOREM 4. Let the data X have a probability dis-
tribution that depends on a parameter 0. Suppose
C(X) is a 100(1 — @)% confidence set for 0. That
is, for each 8 € 0, Py(® € C(X)) > 1 — o Con-
sider testing Hy: 0 € O versus H,: 0 € O, where
0Oy N0O; = B. Then the test that rejects H, if and
only if C(X)N Oy =D is a level-a test of H,,.

ProOOF. Let 0, € ®,. Then

Py, (reject Hy) <1— P, (6, C(X)) <. [
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Unfortunately, Theorem 4 has not always been
carefully applied in the bioequivalence area. Com-
monly, 100(1 — 2a)% confidence sets are used in
an attempt to define level-a tests. Theorem 4 guar-
antees only that a level-2a test will result from a
100(1 — 2a)% confidence set. Sometimes, the size of
the resulting test is, in fact, «, but this is not gen-
erally true. In this subsection we use Theorem 4 to
show the correspondence between the 100(1 — @)%
confidence interval (16) and the size-a TOST. In the
next subsection, we criticize the practice of using
100(1 — 2a)% confidence sets to define bioequiva-
lence tests.

Let 6 = np — ng. The family of size-a tests with
acceptance regions

(17)  A(6y) = {(d,se(D)): |d — y| < t,2. ,se(D)}

leads to the usual equivariant confidence interval,
which is of the form (8) but with ¢, , replaced by
ta/Z,r'

However, no current law or regulation states one
must employ confidence sets that are equivariant
over the entire real line. Using Theorem 4 and in-
verting the family of size-a tests defined by, for
6o >0,

(18)  A(6y) = {(d,se(D)): d — 6y = —t,, ,se(D)}
and, for 6, < 0,
(19)  A(6y) = {(d,se(D)): d — 6y < ¢, ,se(D)}

yields the 100(1—a)% confidence interval (16). Tech-
nically, when inverting (18) and (19), the upper con-
fidence limit will be open when D + ¢, ,SE(D) < 0.
This point is inconsequential in bioequivalence test-
ing. The only value of the upper bound with positive
probability is 0, and, in bioequivalence testing, the
inference np # My is not of interest. In terms of op-
erating characteristics, the confidence interval with
the possibly open endpoint has coverage probabil-
ity 100(1 — @)% everywhere. The confidence interval
(16) also has coverage probability 100(1 — a)% ex-
cept at ny — np = 0, where it has 100% coverage
probability.

Note that the family of tests (18) contains the one-
sided size-a ¢-test for (6), and the family of tests (19)
contains the one-sided size-a t-test for (5), in con-
trast to the family of tests (17). The 5% TOST is
equivalent to asserting bioequivalence, 6; < 1y —
Ng < Oy, if and only if the 95% confidence interval
[D1, D{] c (6, 6y). Therefore, as pointed out by
Hsu et al. (1994), it is more consistent with standard
statistical theory to say that the 100(1 — «)% con-
fidence interval [D7, D], instead of the ordinary
100(1 — 2a)% confidence interval (8), corresponds to
the TOST.

Pratt (1961) showed that for the r = oo case [i.e.,
SE(D) = opl, when np = np, that is, when the
test drug is indeed equivalent to the reference drug,
[D7, DY] has the smallest expected length among
all 100(1 — a)% confidence intervals for np — np.
On the other hand, when n; — np is far from zero,
[D7, DY] has larger expected length than the equiv-
ariant confidence interval (8). So the bioequivalence
confidence interval [Dy, D] can be thought of as
specifically constructed from Theorem 4 for more
precise inference when it is expected that n; is
close to 1z. One multiparameter extension of this
construction, utilized by Stefansson, Kim and Hsu
(1988), gives rise to the multiple comparison with
the best (MCB) confidence intervals of Hsu (1984),
which eliminate treatments that are not the best
and identify treatments close to the true best. In
fact, the bioequivalence confidence interval (16) is
an MCB confidence interval because, when only two
treatments are being compared, a treatment close
to the other treatment is either the true best treat-
ment or close to the true best treatment.

This ability of a MCB confidence interval to give
practical equivalence inference is useful in another
problem. Ruberg and Hsu (1992) pointed out that
whether to include certain parameters in a regres-
sion model should sometimes be formulated as a
practical equivalence problem rather than a signif-
icant difference problem. In modeling the stability
of a drug, for example, given the clear intent of
the FDA (1987) Guideline that data from batches
of a drug can be pooled only if they have practi-
cally equivalent degradation rates, the decision of
which time x batch interaction terms to include
in the model can logically be based on MCB confi-
dence intervals comparing the degradation rate of
each batch with the true worst degradation rate.
Another problem which has not been but should be
formulated as one of practical equivalence is the es-
tablishment of safety of substances such as bovine
growth hormone in toxicity studies (e.g., Juskevich
and Guyer, 1990), since the desired inference is
practical equivalence between the treated groups
and the (negative) control group (cf. Hsu, 1996,
Chapter 2).

A different multiparameter extension of the same
construction was utilized by Brown, Casella and
Hwang (1995) to obtain the confidence region for a
vector parameter O which has the smallest expected
volume when 0 = 0, generalizing Pratt’s result. The
confidence set is constructed through Theorem 4 us-
ing the family of size-a Neyman—Pearson likelihood
ratio tests for Hy: 6 = 0, versus H,: 6 = 0. When
0 is multivariate normal with unknown mean vec-
tor 0 and known variance—covariance matrix >, the
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acceptance regions are

ABy) = {0: 0,316 — 00)/V 0,310 > —2,, .,
which leads to the confidence region
(20) C(8)= { 0:0S710/VOS 1047, > JM}.

Their paper describes and illustrates interesting ge-
ometric properties of C(0).

It should be pointed out that the utility of The-
orem 4 is not restricted to the construction of
confidence sets which give better practical equiv-
alence inference. Stefansson, Kim and Hsu (1988)
and Hayter and Hsu (1994) used Theorem 4 to con-
struct confidence sets associated with step-down
and step-up multiple comparison methods, which
are usually thought of as specifically constructed
to give better significant difference inference than
single-step methods.

5.2 100(1 — 2a)% Confidence Intervals

Bioequivalence tests are often defined in terms of
100(1 — 2a)% confidence sets. That is, if 8 denotes
the parameter of interest, ©F denotes the set of pa-
rameter values for which the drugs are bioequiva-
lent and C(X) is a 100(1 — 2a)% confidence set for
0, then the drugs are declared bioequivalent if and
only if C(X) c 0g. This practice seems to be based
entirely on the perceived equivalence between the
100(1 — 2a)% confidence interval (8) and the size-«
TOST of (2). This practice is encouraged by the fact
that both FDA (1992a) and EC-GCP (1993) specify
that the a = 0.05 TOST should be executed by con-
structing a 90% confidence interval. In the bioequiv-
alence literature, when used in this way, the 90% is
called the assurance of the confidence set.

The intent of the regulating agencies is clearly to
use a test with size o = 0.05. Unfortunately, bioe-
quivalence tests have been proposed using 100(1 —
2a)% confidence sets without any verification that
the resulting tests have size a. Theorem 4 guaran-
tees that the resulting test is a level-2a test, not
size-a. In this section, we will explore the usage of
100(1—2a)% confidence sets. We shall show that the
usual 100(1—2a)% confidence interval (8) results in
a size-a TOST of (2) because (8) is “equal-tailed.” So
the relationship is deeper than the “algebraic coin-
cidence” mentioned by Brown, Casella and Hwang
(1995). Hauck and Anderson (1992) discuss this fact
without proof. We shall see in examples that the use
of 100(1—2a)% confidence sets can result in both lib-
eral and conservative bioequivalence tests. Because
there is no general guarantee that a 100(1 — 2a)%
confidence set will result in a size-a test, we be-
lieve it is unwise to attempt to define a size-a test

in terms of a 100(1 — 2a)% confidence set. Rather,
a test with the specified Type I error probability of
a should be used. Theorem 4 might be used to con-
struct the corresponding 100(1— «)% confidence set.

Let [C~, C*] denote (8), the usual 100(1 — 2a)%
confidence interval for np — np. Why does rejecting
H, in (2) if and only if [C~,C*] C (0;, 6y) result
in a size-a test? The superficial answer is that, ob-
viously, C* < 6y is equivalent to Ty < —t, , and
C~ > 0y, is equivalent to T, > t, .. Thus, the test
based on [C~, C"] is equivalent to the size-a TOST.
But a more thorough understanding of this is sug-
gested by the following result (Casella and Berger,
1990, Exercise 9.1).

THEOREM 5. Let the data X have a probability
distribution that depends on a real-valued parame-
ter 6. Suppose (—oo, U(X)] is a 100(1 — ;)% upper
confidence bound for 6. Suppose [L(X), ) is a
100(1 — @y)% lower confidence bound for 6. Then
[LX),UX)] is @ 100(1 — a; — ay)% confidence
interval for 6.

Now consider the 100(1—2«)% confidence interval
[C~, C*] for 6 = ny — ng. The interval (—oo, C*] is
a 100(1 — a)% upper confidence bound for 6. From
Theorem 4, the test that rejects Hy, in (6) if and
only if C* < 6y is a level-a test of H,. Likewise,
[C7,00) is a 100(1 — @)% lower confidence bound
for 6, and the test that rejects Hy; in (5) if and
only if C~ > 60 is a level-a test of H(;. Forming
an IUT from these two level-a tests yields a level-a
test of H in (2), by Theorem 1. Thus, we see that
it is not so important that [C~,C"] is a 100(1 —
2a)% confidence interval for 6. Rather, it is the fact
that (—oo, C*] and [C~, o) are both 100(1 — a)%
confidence intervals that yields a level-a test. That
is, it is important that [C—, C*] is an “equal-tailed”
confidence interval.

It is easy to see that 100(1 — 2a)% confidence in-
tervals will not always yield size-a tests. Consider
an “unequal-tailed” 100(1 — 2a)% confidence inter-
val for 6 = 9y — ng, [CT, CT], defined by

21)  [D-t,, ,SE(D), D+t, ,SE(D)],

ag, T

where a; +ay = 2a. Using (—o0, C7] to define a test
of Hy, yields a size-a; test, and using [C7, o0) to
define a test of H,; yields a size-ay test. Therefore,
by Theorem 1, the IUT that rejects H if and only if
[C1,C{] c (0, 6y) has level max{«ay, ay}. That this
test has size equal to max{a;, as} can be verified us-
ing Theorem 2. This relationship between the size
of the test and the maximum of the one-sided er-
ror probabilities is alluded to by equation (1) in Yee
(1986). The size of this test can be made arbitrarily



BIOEQUIVALENCE TRIALS 297

close to 2a by choosing «; close to zero and «, close
to 2a. In this problem, the only 100(1 — 2&)% confi-
dence interval of the form (21) that defines a size-a
test happens to be the usual, equal-tailed confidence
interval, [C~, C*].

The preceding example using an unequal-tailed
test simply illustrates that defining a bioequiva-
lence test in terms of a 100(1 — 2a)% confidence
interval can lead to a liberal test with size greater
than «. But, no one has proposed using the inter-
val (21) to define a bioequivalence test. So we now
discuss two other examples that have been proposed
in the bioequivalence literature. Both examples con-
cern testing (1) about the ratio up/up.

Tests based on 100(1 — 2a)% Fieller-type con-
fidence intervals provide examples of tests that
are sometimes liberal. Mandallaz and Mau (1981),
Locke (1984) and Kinsella (1989) all propose us-
ing a Fieller-type (Fieller, 1940, 1954) confidence
interval to estimate wp/ug. Neither Locke nor Kin-
sella proposes constructing a bioequivalence test
using this interval. But Mandallaz and Mau (1981),
Yee (1986, 1990), Metzler (1991) and Schuirmann
(1989) all propose defining a test of (1) using
these Fieller confidence intervals, and all suggest
that a 100(1 — 2a)% confidence interval should be
used. A test defined in this way using the Locke
100(1 — 2a)% confidence interval is, in fact, a size-«
test because the Locke interval is equal-tailed.
However, Metzler (1991) and Schuirmann (1989)
give graphs of the power function of the Mandallaz
and Mau (1981) test that show that the test has
size greater than the specified «. For example, Fig-
ures 3 through 9 in Metzler (1991) are graphs of
1 — (power function) based on the Mandallaz and
Mau (1981) confidence interval. At §; = 1.2, the
rejection probability is about 0.07 for the a = 0.05
test, and the power is about 0.15 for the o = .10
test. These figures cover a variety of sample sizes
and variances, but in all cases the rejection prob-
ability exceeds the nominal « at 6y = 1.2. The
same liberality of the Mandallaz and Mau test is
illustrated by Figures 3—-13 of Schuirmann (1989).

On the other hand, a test defined in terms of a
100(1—2a)% confidence set might be very conserva-
tive. An example is the test proposed by Chow and
Shao (1990) for testing (1) about the ratio pp/up.
Specifically, Chow and Shao considered a two-period
crossover design with no carry-over, period or se-
quence effects. Let X denote the sample mean vector
with mean p = (g, nr) and let S denote the sum
of cross-products matrix. Let m patients receive the
first sequence, let n patients receive the second se-
quence and let n* = n + m. Then, C = {p: T <
F, 9 »_o} defines a 100(1 — @)% confidence ellipse

for p, where T, = n*(n* — 2)(X — p)'S™1(X — n)/2
and F, 5 ,-_o is the upper 100« percentile of an
F-distribution with 2 and n* — 2 degrees of freedom.
Chow and Shao propose rejecting H, in (1) and con-
cluding H,: 6; < pp/pp < 8y is true if and only if
the 90% confidence ellipse is contained in the cone
defined by H,. They do not comment on the actual
size of this test, but we assume 90% was chosen to
be 100(1 — 2a)%, where a = 0.05.

Chow and Shao’s test can be described much more
simply by recalling the relationship between the
confidence ellipse, C, and simultaneous confidence
intervals for all linear functions I’p (Scheffé, 1959).
pr € C if and only if

I'X - \/ZFQ’ 2. me_ol'SL/[n*(n* — 2)]

<Un<IX+ \J2F, 5, ,1'SL/[n*(n* - 2)]
for every vector [. In fact, the only two vec-
tors needed to define Chow and Shao’s test are
l; = (1,-6;) and Iy = (1, —6y)'. The hypothe-
ses in (1) or (14) can be written as Hy: I p <
Oorlym > 0 and H,: lyp < 0 < I p. Further-
more, the ellipse C is below the line [ ;;p = 0 if and
only if ;X + \/ZFH’Q’ w2l ySly/[n*(n* — 2)] < 0,
that is, the upper endpoint of the confidence

interval for I;p is negative. Similarly, the el-
lipse C is above the line [7p = 0 if and only if

11X = \[2F 0 0ol 1 SLL/[n*(n* = 2)] > 0. If we
define
VIS /[n*(n* = 2)]
and
. 1%

U= )
JUuSty /I (n° — 2)]
then Chow and Shao’s test rejects H, if and only if

22) T, >\/2Fa, oms and Ty < —\/2Fa,2, .

This simple description of Chow and Shao’s test
has not appeared before. In this form, it is apparent
that this test can be viewed as an IUT. A reason-
able test of Hyz: ' p < 0 versus Hyp: I p > 0 is
the test that rejects Hyz, if Ty, > \/2F, o ,_5. Area-
sonable test of Hyy: Ly > 0 versus Hy: Ly < 0
is the test that rejects Hoy if Ty < —/2F, 5 s
Thus, Chow and Shao’s test is the IUT of H ver-
sus H, formed by combining these two tests. The-
orems 1 and 2 then tell us that the actual size of
this testis o« = P(T > \/2F, 5 ,-_3), where T has a
Student’s ¢-distribution with n* — 1 degrees of free-
dom. This is because T'; has this ¢-distribution if
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I7m =0, and Ty has this ¢-distribution if ;. = 0.
That is, o« is the size of each of the two individ-
ual tests. We computed o' using a 90% confidence
ellipse as suggested by Chow and Shao. We found
that o = 0.017 for m = n = 5, 10 and 15, and
o = 0.016 for m = n = 20, 30 and oco. Thus, if the
intent of using a 100(1 — 2a)% = 90% confidence el-
lipse was to produce a bioequivalence test with Type
I error probability of a = 0.05, the result was very
conservative.

A test of H, versus H, with the desired size of «
can be obtained by replacing \/2F, 5 .., with the
t-percentile, ¢, ,._; in (22). Then each of the indi-
vidual tests is size-a and the combined IUT also
has size a. This test is uniformly more powerful
than Chow and Shao’s test because the rejection
region of Chow and Shao’s test is a proper subset
of this one. This test is the analogue of the TOST
for this crossover model. In fact, Yang (1991) pro-
posed this test for this problem as an alternative to
Chow and Shao’s test, but Yang did not state that
this test was uniformly more powerful nor quantify
the conservativeness of Chow and Shao’s test.

Our conclusions from the results and examples
in this subsection are simple. The usage of 100(1 —
2a)% confidence sets to define bioequivalence tests
should be abandoned. This practice produces tests
with the appropriate size only when special, “equal-
tailed” confidence intervals are used and offers no
intuitive insight. The mixture of 100(1—2«a)% confi-
dence sets and size-«a tests is only confusing. Rather,
a test with the specified Type I error probability of
a should be used. The IUT method can usually be
used to construct such a test. Then Theorem 4 might
be used to construct the corresponding 100(1 — @)%
confidence set.

6. MULTIPARAMETER
EQUIVALENCE PROBLEMS

Until now, we have discussed bioequivalence test-
ing in terms of only one parameter. In this section,
we discuss two problems in which the desired in-
ference is equivalence in terms of two parameters.
These results immediately generalize to situations
in which bioequivalence is defined in terms of more
than two parameters.

These two examples have been discussed as mul-
tiparameter bioequivalence problems by several au-
thors, but, in some cases, the tests that have been
proposed do not have the correct size «. The pro-
posed tests do not properly account for the multiple-
testing aspect of this problem. These two multipa-
rameter examples vividly illustrate that the IUT
method can provide a simple mechanism for con-

structing tests with the correct size «, even in seem-
ingly complicated bioequivalence problems. Size-«
tests can be combined to obtain an overall size-«
test. No adjustment for multiple testing is needed if
the IUT method is used.

6.1 Simultaneous AUC and C,,,, Bioequivalence

Sections 4 and 5 discussed bioequivalence testing
in terms of only one parameter. That is, the test and
reference drugs are to be compared with respect to
either average AUC or average C,,,.. FDA (1992a)
and EC-GCP (1993) consider two drugs to be bioe-
quivalent only if they are similar in both parame-
ters. Westlake (1988) and Hauck et al. (1995) have
considered the problem of comparing AUC and C,,,
simultaneously. (Westlake actually compares three
parameters, including 7', also, but this does not
conform to current FDA guidelines.)

Assume the measurements are lognormal so that,
after log transformation, we wish to consider hy-
potheses like (2). Let the superscripts A and C re-
fer to the variables AUC and C,,,,, respectively. For
example, 7% denotes the mean of log(Cp,,y) for the
reference drug. The test and reference drugs are to
be considered bioequivalent only if
(23) H™ 60, <np—n% <6y and

0L <% — g < Oy

Using current FDA guidelines, 6; = log(1.25) =
—10g(0.80) = —6;. If one variable is deemed more
important than another, the limits could be differ-
ent for the different variables. For example, if AUC
was considered more important than C,,,, then the
limits 62 and 64} for AUC could be chosen to be nar-
rower than the limits 6¢ and 6% for C,,,,, as they
are in Europe.

The statement H' in (23) should be the alterna-
tive hypothesis in this multivariate bioequivalence
test. The null hypothesis, Hj' should be the nega-
tion of H?'. That is, Hy' states that one or more
of the four inequalities in H is false. Westlake
proposed testing H{' versus H?' by doing two sep-
arate tests, one for each variable. Specifically, he
proposed using the TOST to test (2) for each vari-
able. The drugs will be declared bioequivalent only
if each of the tests rejects its hypothesis. Further-
more, Westlake said a Bonferroni correction should
be used, and each TOST should be performed at the
a/2 level to account for the multiple testing. (West-
lake actually said «/3 because he was considering
three tests.)

Westlake’s procedure is conservative. The size of
Westlake’s test is @/2, not «. This is true because,
although he did not use this terminology, he has
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proposed an IUT. The alternative H' is the in-
tersection of two statements, one about each vari-
able. Computing two separate TOST’s and conclud-
ing that H' is true only if both TOST’s reject is an
IUT. By Theorem 1, this test has level a/2 if each
TOST is performed at level a/2. In fact, Theorem 2
can be used to show that this test has size equal to
/2.

Therefore, to test Hi' versus H', Westlake’s pro-
cedure can be used except that each of the two
TOSTs should be performed at size a. The result-
ing test has probability at most o of declaring
the drugs to be bioequivalent if they are bioin-
equivalent.

Hauck et al. (1995) propose testing (23) using
two size-a TOST’s. They recognize that the Bonfer-
roni adjustment recommended by Westlake is un-
necessary, but they come to the opposite conclusion.
Based on a simulation study, they conclude that this
test is too conservative and suggest that the two
TOST’s might be performed using a higher error
rate than «, and the resulting test of (23) would
be size-a. (They admit that more simulations are
needed to confirm this conjecture.) However, if the
two TOST’s are each size-a, then the test of (23) is
exactly size-a. To see this, use Theorem 2 by setting
0. = % — 1, 15 =n% and considering the limit
as ops — 0 and opc — 0. Here, DA and D¢ are
the estimates of n‘}‘ — n% and n% — n%, respectively.
In this limit, three of the four one-sided tests will
have rejection probability converging to 1, because
these parameter points are in the alternative hy-
pothesis and the corresponding standard deviations
are converging to 0. The fourth one-sided test will
have rejection probability exactly equal to «, for all
such parameter points, because 6; = n4 — 0% is on
the boundary.

A test that is uniformly more powerful but still
has size o will be obtained if the test we propose in
Section 4.2 is used to perform the two tests, rather
than using the two TOST’s. Again, both of these
tests would be performed at size a.

An alternative way of assessing the simultane-
ous bioequivalence of AUC and C,,,, is to inspect
the Brown, Casella and Hwang (1995) confidence
set (20), generalized to the 3 unknown case. Sup-
pose (Xf‘, X?)/, (Yf, Y?)/, i =1,...,n, are log-
transformed i.i.d. observations on AUC and C,,,
under the test and reference drugs, respectively. Let
Z, = (XA X0 — (YA YSY, i =1,...,n, which
are assumed to be multivariate normal with mean
0 = (m% — 1%, 1% —n%) and unknown variance—
covariance matrix 3. Let 6 = (ZA, ZC)’ and S be
the sample mean vector and variance—covariance
matrix of the Z/’s. Then 0’0 is univariate nor-

mal with mean 00 and variance 0'20/n, while

(n —1)0'S0/0'30 is independent of 0’0 and has a x?

distribution with n — 1 degrees of freedom. Thus,

a size-a test for Hy,: 0 = 0, is obtained using the
(6 — 69)

acceptance region
— = > _tc{, n—1 } >
Vo,50,/n

which leads to the confidence region

00 00 }
———F o1 > — -
Vo'So/n Vo'Se/n
Brown, Casella and Hwang (1995) applied (20) to
the simultaneous AUC and C,,,, problem for il-
lustration, assuming % is known. In practice, this
assumption is perhaps unrealistic considering the
moderate sample size typical in bioequivalence
trials.

A(0,) = {(6, 3)

(24) C(0,3) = {e:

6.2 Mean and Variance Bioequivalence

Anderson and Hauck (1990) and Liu and Chow
(1992a) discuss another type of multiparameter
bioequivalence. They point out that bioequivalence
should not be defined only in terms of the mean
responses for the two drugs. Rather, the variances
of the responses of the two drugs should also be
considered. If two drugs have bioequivalent means
but different variances, the drug with the smaller
variance might be preferred. This kind of multipa-
rameter bioequivalence is often called population
bioequivalence.

Consider a single variable, for example, AUC. Let
np and 1 denote the means of log(AUC). Let o2
and % denote the intrasubject variances of the test
and reference drugs, respectively. The test and ref-
erence drugs will be considered bioequivalent only
if np and 1y are similar and % and o% are similar.
To demonstrate bioequivalence, we wish to test

nr—mMp <0 or mp—mg=>by
H(r)n: or
07/0% <K Or 07/0% > Ky
(25) versus

0; < — <6
H;”: L <M1 —"MR U

and kj < 0%/0% < Ky.
The constants 0;, 0y, k;, and x; would be chosen

to define clinically important differences.
Liu and Chow (1992a) propose a size-«a test of

Hy: ogzp/o% <Ky oOr 0'%/0'123 > Ky
versus

H?: k< o02/0% < ky.
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Their test is an IUT composed of two size-a tests,
one for testing each inequality. Wang (1994) describe
an unbiased, size-a test that is uniformly more pow-
erful than the Liu and Chow test.

The hypotheses

Hg: mp—mp<6, or mpr—mg>6y
versus

Hj: 6, <mp—mp <6y
can be tested with a TOST. Because H' is the inter-
section of Hq and HZ, the IUT method can be used
to construct a test of Hy' versus H?'. The test that
rejects H{' only if the size-a Liu and Chow test re-
jects HY and the size-a TOST rejects H| is a size-a
test of H{' versus HJ'.

Liu and Chow, however, propose a more conser-
vative combination of these two tests. Let a denote
the desired size of the test of H{j'. Let a; denote the
size of the TOST and let ay denote the size of the
Liu and Chow test. They say to choose «; and «, so
that

(26) a=1-—(1-0a;)(1—-ay).

Liu and Chow note that the test statistics use for
the TOST are independent of the test statistics used
in their test, but they give no further explanation
of (26). The probability that H is accepted, given
that H| is true, is bounded below by 1 — «;. The
probability that H{ is accepted, given that H is
true, is bounded below by 1 — @,. So the quantity «
in (26) is an upper bound for the probability that at
least one of the two tests rejects its null hypothesis,
given that both H| and H{ are true. This is not
the error probability of the proposed test. The error
probability is the probability the both tests reject,
given that either H| or H{ is true. Hypothesis HJ'
is the union of H] and H{, not the intersection.

Again, it should be noted that a more powerful
size-a test of H{' will be obtained if the test from
Section 4.2, rather than the TOST, is used to test
H{ and Wang’s (1994) test is used to test H{.

7. CONCLUDING REMARKS

We have shown that the theory of intersection—
union tests is central to bioequivalence studies. We
have demonstrated the danger of incorrect associa-
tion of confidence sets with such tests. Due to the
traditional emphasis on significant difference infer-
ence in statistics, many practical equivalence prob-
lems have not been recognized as such, we believe.
It is our hope (and anticipation) that the concepts
and techniques discussed in this article will, in time,

prove to be useful not only in bioequivalence stud-
ies, but in other practical equivalence problems as
well.

APPENDIX
DETAILS OF NEW TEST IN SECTION 4.2

A size-a, nearly unbiased test for (2) was de-
scribed geometrically in Section 4.2. In Section
A.1, formulas and computational suggestions are
given for the quantities that define that test. The
construction in Section 4.2 is valid for @ > «,. In
Section A.2 a similar construction yields a size-a,
nearly unbiased test for @ < «,. Brown, Hwang and
Munk did not propose any test for a < a,.

A.1 Formulas for Section 4.2

Define functional notation for the transformation
from rectangular to polar coordinates by

o(d,s,) = /(d -0 + 2,

b(d, s,) = cos'((d — 4)/v(d; 5,)),

for —o0 < d < o0 and s, > 0. The inverse transfor-
mation is

d(v, b) = A+ vcos(b),

s, (v, b) = vsin(d),

for v > 0 and 0 < b < 7. The point (d,s,) =
(0,Ar/t, ) is the vertex of the triangular region
R . Therefore,

bO = b(07 Aﬁ/ta,r)’
vy = 2Asin(7 — by),
(dla 8*1) = (d(U0> bO)’ S*(UO, bO))7

vy = v(—dy, 8,1)-

The line of length v, in Figure 2 has b = 37/2 — b,,.
Therefore, The angle b;;, defined by (12), is easily
found by a numeric root-finding method such as bi-
section.

Finally, for any point (d,s,) on {V = v}, s, =
Vv2 = (d — A)2. For any point (d,, s,,) on {V = v}
with d, < 0, there is a unique point (d;, s,;) on {V =
v} with d; > 0 such that the line joining (d;, s,;)
and (0, 0) and the s,-axis form the same angle as
the line joining (d,, s,,) and (0, 0) and the s -axis.
This point satisfies

du _ dl
V= (d, —A? P —(d, -8
which has the solution
2 A2

v2 + 2d,A — A2
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Using this expression for d; in terms of d,,, the equa-
tion

F(b(du’ Su)) - F(b(dl’ Sl)) =a-— a(v)

is a function of the single variable d,. The unique
solution to this equation, in the interval A—v < d, <
0 is easily found by a numeric root-finding method
such as bisection. Call the solution d;. Define d;,
by (27) using d, = dy;. The angles b;;(v) and by (v)
are

by(v) = b(dU, Vo2~ (dy — A)? )

b, (v) = b(dL, Vo2 —(dy - A)Z).
A.2 New Test fora <,

For small values of « < «,, a size-a, nearly un-
biased test of (2) that is uniformly more powerful
than the TOST can be constructed. The construc-
tion is very similar to and somewhat simpler than
the construction in Section 4.2. The notation of Sec-
tion A.1 will be used, and Figure 5 illustrates the
construction.

For a < «, the point on I; closest to (A, 0) is
the vertex of Ry, (dy, s,¢) = (0, A7 /t, ). Let vy =
v(dy, 84). For v < vy, Ry(v) = {b: by < b < 7},
exactly the points in the TOST. The arc A, is such
an arc. For vy < v < 2A, Ry(v) consists of two arcs;

Ry(v) ={b: b1.(v) < b < by(v)}U{b: by < b < 7};

br.(v), byy(v) and b, are defined as before. The two
solid pieces of arc A; are examples of these arcs. The
semicircle {V = v} does not intersect R, near the
s,-axis so there is no need to check that {b: b;(v) <

b < by (v)} covers all the TOST. For v > 2A, Ry(v) =

A,

-A 0 A

FI1G. 5. Rejection region of new test for a < a,: region R,
(between solid lines) and region R, (between dashed lines); rejec-
tion region R = R1 N Ry; r =3 and a = 0.05.

{b: by (v) < b < by(v)}. The solid piece of arc Ay
is such an arc. In Figure 5, R, is outlined with a
solid line, R, is outlined with a dashed line, and
the intersection is the rejection region of the IUT.
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Comment
Walter W. Hauck and Sharon Anderson

We commend Berger and Hsu for this fine re-
view. This paper does a very nice job of presenting
the intersection—union principle and demonstrating
how it can be used to develop tests and confidence
intervals for various equivalence hypotheses. It will
be a valuable reference for our work and that of
others.

Note that we said “equivalence hypotheses,” not
bioequivalence hypotheses, in the above paragraph.
It would be very unfortunate if the authors’s de-
cision to bill this as a bioequivalence paper kept
it from being a major reference for general equiva-
lence problems. It seems to us that the real value
of this paper is not in the bioequivalence area. We
have a variety of reasons for this.

First, established practice for average bioequiv-
alence (two one-sided tests, TOST) is easily under-
stood by the nonstatisticians who do much of the
analysis and almost all the interpretation of that
analysis. Since the power advantage of the almost
unbiased test proposed here, as well as that of the
test proposed by Brown and colleagues (Brown,
Casella and Hwang, 1995; Brown, Hwang and
Munk, 1995) is minimal in practical cases, there is
little rationale for changing practice. That is, when
the TOST approach for the hypotheses (2) yields
reasonable power, there is essentially no advan-
tage to the other procedures (for studies designed
to have at least 80% power, for example). This is
evident in Table 1. While the bias and power loss of
the TOST are certainly real, they occur for larger
variabilities than practically encountered. As the
authors note, however, the power advantage could
be helpful if the variability assumed for study de-
sign was lower than that obtained in the study.
We do recognize that there is an obvious argument
that the better (more powerful) test should be used.

Walter W. Hauck is Professor of Medicine and
Head, Biostatistics Section, Division of Clinical
Pharmacology, Thomas Jefferson University, 125
South Ninth Street, #403, Philadelphia, Pennsyl-
vania 19107 (e-mail: w_hauck@hendrix.jci.tju.edu).
Sharon Anderson is Director of Biostatistics and
Data Management, Bristol-Myers Squibb, Prince-
ton, New Jersey 08543-4000 (e-mail: anderson_s@
bms.com), and Adjunct Associate Professor of
Medicine, Thomas Jefferson University.

However, the little power gain and the need to trun-
cate the rejection region make it a very difficult
“sell.”

Second, in the United States, at least, there
is a movement away from average bioequiva-
lence to individual bioequivalence. Most individual
bioequivalence criteria, and specifically the one
recommended by the FDA Working Group on In-
dividual Bioequivalence (August 1996 meeting of
the FDA Advisory Committee on Pharmaceutical
Sciences), are aggregate and use one-sided crite-
ria. By “aggregate” is meant that all components
(formulation means, subject-by-formulation interac-
tion and within-subject variances) are included in
a single measure of inequivalence. Since there will
be a single one-tailed criterion (and test), instead
of the interval equivalence hypothesis for average
bioequivalence, tests for these individual bioequiv-
alence criteria do not require the intersection—
union principle. References to these approaches
are largely in the pharmacology and biostatistics
literatures.

Third, and most important, we think equivalence
testing approaches are underutilized. We often see
examples where statisticians and non-statisticians
are testing the wrong hypotheses, apparently stuck
in a mode of thinking based on null hypotheses of
no-difference. For example, one sees tests of the
null hypotheses of no interaction or of equal vari-
ances when what is needed are tests of alterna-
tive hypotheses of negligible interaction and of sim-
ilar variances. The authors cite Lehmann on the
principles of hypothesis testing, but could also have
cited Fisher (1935). It is our hope that this paper
will help to stimulate better practice in this area
by providing some principles for approaching the
problems.

A related concern is confidence intervals and re-
porting so-called negative studies (i.e., studies that
do not attain statistical significance). The increased
emphasis on confidence intervals in recent years has
helped (e.g., Simon, 1986, and Braitman, 1991), but
a very common error in the clinical literature re-
mains the equating of the lack of statistical sig-
nificance with “no difference.” We raise this here,
since interpreting negative studies depends, at least
implicitly, on equivalence notions. There is clearly
some challenge to developing confidence intervals
that correspond to proper tests of interval equiva-
lence hypotheses.



304 R. L. BERGER AND J. C. HSU

Comment

Michael P. Meredith and Mark A. Heise

Professors Berger and Hsu are to be congratu-
lated for making significant contributions to the
areas of hypothesis testing and confidence set esti-
mation in bioequivalence. Their pedagogically lucid
paper illustrates the statistical shortcomings of
quite a few methods that have been proposed over
the past 15 years in the bioequivalence literature,
and then they proceed to give proper or improved
solutions to these problems. In addition, the au-
thors give a review of simultaneous AUC and C,,,,
bioequivalence testing, and mean and variance
bioequivalence. These are both important areas
that have received inadequate statistical attention.
This should prove to be an important paper for
those who work in bioequivalence trials and related
hypothesis testing since most of the major issues
appear in this paper.

Considerable effort is devoted to developing a
nearly unbiased size-« test for bioequivalence that
is uniformly more powerful than the two one-sided
tests (TOST) procedure. This component is along
the lines of several recent papers on bioequivalence
testing (Brown, Hwang and Munk, 1995; Brown,
Casella and Hwang, 1995; Hsu et al.,, 1994). In
consolidating many of the erroneous methods that
have been promulgated in journals or proceedings
that do not generally receive statistical peer review
(as well as in some statistical journals) the authors
appear to have sifted carefully through a large and
varied morass of literature as reflected in their ci-
tations. The authors also point to the overlooked
work of Sasabuchi (1980, 1988a, b) that supports
derivation of proper bioequivalence tests for ratios
of parameters.

It is worthwhile to recognize that the methods
developed for the rather narrow bioequivalence
focus are applicable to numerous other areas in
clinical trial research. Many later-phase clinical tri-
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and Statistical Sciences Department, Procter and
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Biometrics and Statistical Sciences Department,
Procter and Gamble Pharmaceuticals, Cincinnati,
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als are being conducted to demonstrate clinical or
therapeutic equivalence directly, with rather weak
statistical guidance. Anti-infectives are a common
area for this kind of equivalence trial where the
objective is to demonstrate that a new compound
is at-least-as-good-as an existing drug that may be
less useful due to evolving resistant strains of tar-
get pathogens. More generally, the TOST procedure
or the herein proposed test can be applicable in
positive control studies where it is unethical to in-
clude a placebo control arm. In pharmacoeconomics,
managed-care providers want to mandate the lowest
cost therapy that is no worse than other available
therapies. This provides another important motiva-
tion to demonstrate therapeutic equivalence. The
methodology described in this paper can be adapted
to handle clinical endpoints that are often dichoto-
mous or ordinal categorical.

The authors’ results are also important in demon-
strating clinical equivalence of a variety of products
that are not suitable for traditional demonstrations
of bioequivalence. Examples include formulations
that are applied topically (such as corticosteroidal
or analgesic ointments), are not ingested (such as
therapeutic mouth rinses) or are nonsystemically
available (e.g., those acting only within the gas-
trointestinal tract and not absorbed) as in some
laxatives and antidiarrheals. In vitro assays are
sometimes substituted for actual clinical use to
confirm a new formulation’s comparability to the
original—this practice also requires similar statis-
tical guidance for testing equivalence. Observations
from many of these clinical endpoints or in vitro
assays are not lognormally distributed, and results
from the section on bioequivalence tests for ratios
of parameters should prove useful.

Testing for bioequivalence is regarded generally
as testing AUC and C,,,, for acceptable equivalence;
however, this is not always the case, as described
above and as follows. Sometimes the primary con-
cern is showing that a test drug’s C,,,, is 125% or
less than that of the reference drug. For many drugs
this is sensible guidance from the safety perspec-
tive. Further, there is a motivation to allow wider
equivalence limits on C,,,, due to its larger variabil-
ity than AUC, and the authors cover this situation
in Section 6.1. Finally, there are drug formulations
whose C,, may be of no practical importance—
these are primarily extended release formulations
or transdermal patch delivery systems that have a
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very flat drug concentration versus time response
profile. The drug’s AUC becomes the primary focus
for bioequivalence assessment.

Note that the measures AUC and C,,,, are de-
rived simply by “connecting the dots” and “pick-
ing the maximum,” respectively, for each individual
drug concentration profile. These are clearly design
dependent responses that must reflect accurately
the extent and rate of bioavailability of the drug
in order to test bioequivalence meaningfully. One
must be assured that the time points chosen for
blood samples are sufficient to define the concen-
tration curve and yield accurate estimates of AUC
and C .. Modeling prior pharmacokinetic data can
help one develop an efficient design for selection of
time points for blood collection, although the inter-
subject variability is sufficiently large to make this
an approximation at best.

The authors claim that the TOST has greatly in-
ferior power to the new test and to the BHM test for
all but very small oy. The comparison of power (Ta-
ble 1) is sparse and fails to illuminate sufficiently
any meaningful distinctions between the tests. Very
clearly, there is no difference between any of the
tests for bioequivalence studies that are sized ad-
equately (generally accepted to be greater than or
equal to 80% power) as acknowledged in the penul-
timate paragraph of Section 4.3. If we compare the
standard error of d for a fixed level of power, then
we may consider the relative efficiency of the tests
at a specified power. For example, from Table 1 di-
rectly, the tests are indistinguishable for power of
72% or greater. If we choose a low power of 50%,
then the relative efficiency of the TOST procedure
to the new test procedure is about 96% (expanding
Table 1). Thus, about 4% more volunteers would be
needed using TOST versus the new test. It is hard
to argue that this places “...an undue burden on
the generic drug manufacturers” as stated in Sec-
tion 1. The power “advantage” occurs for trials with
inadequate power (less than 50%), where the rel-
ative efficiency of the TOST procedure to the new
test procedure finally begins to drop noticeably. The
development and discussion of the new test is quite
instructional, providing vivid interpretation of its
characteristics versus those of the TOST procedure,
but the practical advantages of the new test to the
TOST are seen to be limited.

In Section 4.2, Berger and Hsu point out that
the rejection region of their test, or any such ap-
proximately unbiased test that is uniformly more
powerful than the TOST, will contain sample points
for which d is outside the interval (60;, 6y). They
subsequently comment that “notions of size, power
and unbiasedness are more fundamental than “in-

tuition”.” Certainly, these statistical notions are fun-
damental. But, “intuition” aside, one must first seek
to meet the regulatory objectives in testing for bioe-
quivalence. These objectives are not well met in us-
ing the proposed test since, even in the truncated
version, outside the rejection region of the TOST
this test concludes bioequivalence secondary to over-
whelming variability. The TOST better meets the
objectives precisely because it excludes such flawed
conclusions. Further, if one could invert the Berger—
Hsu test to obtain a 100(1—«)% confidence interval,
the above appears to imply that the resulting con-
fidence set for np — np may, for some values of s,,
actually exclude d, the point estimate for ny — np.
We agree that such a result would not be “intu-
itive.” The degree to which test (or confidence re-
gion) performance is nonintuitive could make the
Berger-Hsu approach very difficult to sell to phar-
macokineticists, physicians and the general public,
who are all consumers of statistical bioequivalence
assessments to one degree or another.

In Section 4.2 the following appears: “Due to the
seriousness of a Type I error, declaring two drugs to
be equivalent when they are not, the search for a
size-a test that was uniformly more powerful than
the TOST continued.” The search for a size-a test
that was uniformly more powerful than the TOST
continues, but not due to the seriousness of any
Type I errors! Note that a Type II error is failing
to conclude bioequivalence when, in fact, the formu-
lations are bioequivalent. The seriousness of a Type
IT error is costly only to the manufacturer and does
not place any consumer at risk. We agree that a
Type I error can be very serious for consumers, and
the TOST is conservative (as noted in Table 1) with
regard to the Type I error rate for highly variable,
under-powered studies. As indicated above, the pri-
mary advantage of nearly unbiased tests is in the
case of extremely variable, underpowered studies,
in which case it could be considered detrimental to
consumers to conclude bioequivalence.

The tutorial of Section 5 reviews the proper use
of standard theorems relating confidence sets to
hypothesis tests. Their demonstration of the equiv-
alence of the [Dy, Dj] interval to the TOST ...is
more consistent with standard statistical theory...”
but is of questionable practical value. As in most hy-
pothesis testing situations, there is often a practical
interest in estimation as well. In general, nonsta-
tistical consumers of bioequivalence testing will
find the 100(1 — 2a)% confidence interval more in-
formative than the proposed 100(1 — @)% [D7, D7]
confidence interval with respect to estimation.
Granted, there is the logical discontinuity between
the size-a TOST and a 100(1 — 2a)% confidence
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set, and the best solution may be simply to report
the estimate and its associated standard error. The
[D7, D7] 100(1 — @)% confidence interval can fail
to provide a useful interval estimate, despite the
logical statistical consistency regarding test size
and stated confidence level. For example, if the 90%
confidence interval is (1.24, 1.28), the [Dy, D7]
95% confidence interval is [1.00, 1.28]. Using the
equivalence interval of [0.80, 1.25], one fails to re-
ject the null hypothesis using the TOST. However,
the 100(1 — 2a)% interval (albeit 90%) makes it
clear that the primary reason for failure to show
equivalence is a rather large difference between
formulations. Looking at the latter interval one is
unsure whether there is a large formulation differ-
ence or if perhaps the sample size was inadequate
to demonstrate equivalence. Finally, a practical
question to address regarding implementation of
[Dy, D7] versus the 100(1 — 2a)% confidence in-
terval is whether there can be any difference with
respect to conclusions about bioequivalence, and
the answer is no, as shown nicely in Section 5.
This fact should not, as set forth by the authors,
be taken as an endorsement for generating size-a
tests from 100(1 — 2a)% confidence sets!

As an aside, in the biopharmaceutical sciences the
“Min” test (Laska and Meisner, 1986, 1989), an IUT,

Comment

Jen-pei Liu and Shein-Chung Chow

1. INTRODUCTION

In the pharmaceutical industry, bioequivalence
testing is usually performed as a surrogate for
therapeutic equivalence in effectiveness and safety
between drug products, for example, different for-
mulations of the same drug product or an innovator
drug and its generic copies. Bioequivalence is
assessed based on the so-called fundamental bio-
equivalence assumption (Metzler, 1974; Chow and
Liu, 1992). The fundamental bioequivalence as-
sumption states that bioequivalent formulations or
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is often referenced for testing some intersection—
union hypotheses. In this case the simultaneous
testing of C,,, and AUC for bioequivalence using
the TOST procedure for each could be considered an
application of the Min test. Tests uniformly more
powerful than the Min test have been investigated
by Liu and Berger (1995).

In conclusion, Berger and Hsu have made valu-
able contributions by dispelling several incorrect
statistical methods that have been described in the
bioequivalence testing literature, in addition to illu-
minating the value of deriving tests and confidence
sets based upon the intersection—union test meth-
ods. We believe it would be helpful to see a tenable
example juxtaposing the TOST and the new test
where conclusions reached by the two tests differ:
that is, TOST is unable to reject the hypothesis of
bioinequivalence whereas the new test can reject
and conclude bioequivalence. The 95% [D7, D7]
confidence interval and the 95% confidence interval
corresponding to the new test, if known, could be
reported. Our greatest concern with this otherwise
excellent paper is that it focuses too much attention
on a new test that provides no practical advantage,
and possibly some practical disadvantages, over the
TOST procedure.

drug products are therapeutically equivalent (i.e.,
they have the similar therapeutic effect in terms of
efficacy and safety). Hence, they can be used inter-
changeably. This important assumption originated
from the Drug Price Competition and Patent Term
Restoration Act passed by the United States (U.S.)
congress in 1984. Based on this act, the U.S. Food
Drug and Food Administration (FDA) was autho-
rized to approve generic copies of an innovator drug
product after the patent has expired. The spon-
sors are required to conduct bioequivalence trials
to demonstrate that these generic copies are bioe-
quivalent to the innovator drug product through an
abbreviated new drug application (ANDA).

As indicated in Chow and Liu (1995), drug in-
terchangeability can be classified as prescribability
or switchability. Drug prescribability is referred
to as the physician’s choice for prescribing an ap-
propriate drug product for his or her new patients
between an innovator drug product and a num-
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ber of generic copies of the innovator drug prod-
uct which have been shown to be bioequivalent to
the innovator drug product. Drug prescribability
is usually assessed by population bioequivalence
(Chow and Liu, 1992). Drug switchability is related
to the switch from a drug product (e.g., an inno-
vator drug product) to an alternative drug (e.g.,
a generic drug product) within the same subject
whose concentration of the drug product has been
titrated to a steady, efficacious and safe level. To
assure drug switchability, it is recommended that
bioequivalence be assessed within the individual
subject.

As a result, there are three types of bioequiv-
alence, namely, average bioequivalence (ABE),
population bioequivalence (PBE) and individual
bioequivalence (IBE). The concept of PBE inves-
tigates the closeness between the distributions of
the pharmacokinetic responses (e.g., AUC or C, ).
Chow and Liu (1992) indicate that if the pharma-
cokinetic responses, or their transformations, follow
approximately a normal distribution, to ensure drug
prescribability, requires establishing bioequivalence
in both average and variability of bioavailability.
On the other hand, drug switchability is for in-
dividual bioequivalence. The concept of individual
bioequivalence is to examine the similarity between
the two distributions of the pharmacokinetic re-
sponses from the same subjects. However, current
regulations of the U.S. FDA, European Commu-
nity (EC) and Japan only require that the evidence
of average bioequivalence be provided in order to
obtain approval of generic drugs. For detailed reg-
ulations on statistical procedures for assessment
of ABE, the readers may refer to the guidance
entitled Statistical Procedures for Bioequivalence
Studies Using a Two-treatment Crossover De-
sign issued by the U.S. FDA in July 1992 (FDA,
1992b).

Berger and Hsu provided an interesting and in-
formative review of the application of intersection—
union tests (IUT) to the problem of bioequivalence
testing. Their criticisms of current statistical prac-
tices for evaluating average bioequivalence can
certainly spur further research and discussion in
the area of bioequivalence testing. In this Comment,
we further address some scientific issues from the
perspective of pharmaceutical industry. Berger and
Hsu focused on the assessment of ABE. Very lim-
ited information was given regarding IBE and
PBE. Note that ABE has been criticized due to its
limitation for addressing drug prescribability and
switchability, which will be discussed extensively in
a special issue of the Journal of Biopharmaceutical
Statistics (Chow, 1997).

2. UNIFORMLY MORE POWERFUL TESTS
VERSUS UNIFORMLY MOST POWERFUL TEST

Let (X4,...,X,) be iid. random variables in
a sample from N(7, 0%), where o? is known.
Consider the one-sample version of the interval hy-
potheses (Chow and Liu, 1992) for equivalence for
equation (2) in the article:

(1a) Hy: m<6, or n=6y
versus
(1b) H, 0; <n< 6.

The uniformly most powerful (UMP) test exists
for hypotheses (1a) and (1b) (see Roussas, 1973,
page 285). In practice, however, the variance is
usually unknown in a one-sample problem. In addi-
tion, for bioequivalence testing, we may encounter
a two-sample problem for comparing drug products
in terms of average and variability of bioavailabil-
ity. As a result, under a two-sequence, two-period
(2 x 2) crossover design as given in the article, it
is a concern whether the uniformly most powerful
unbiased or invariant tests (UMPU or UMPI) for
equation (2) in the article exist. Note that 7'; and
Ty of Schuirmann’s two one-sided tests (TOST)
as defined in (4) (or ¢; and ¢;; in Liu and Chow’s
TOST) are UMPU tests for hypotheses (5) and (6)
(or one-sided hypotheses on variability) in the ar-
ticle, respectively. The intersection—union principle
for combining these two individual UMPU tests
proposed by Berger and Hsu (1996) leads to a bi-
ased test rather than an unbiased test. Therefore, it
is of interest to know whether the UMPU or UMPI
test can be constructed from the intersection—union
principle. Suppose that there is no UMPU or UMPI
test for (2); one can always derive a test for (2)
which, under certain circumstances, will be more
powerful than either the unbiased test (BHM)
proposed in the unpublished technical report by
Brown, Hwang and Munk (1995) or the nearly un-
biased test (BH new) suggested in the article. The
same comment is applicable to the Wang test for
variability (Wang, 1994).

3. THE STANDARD ANALYSIS AND
EQUIVALENCE LIMITS

Before the U.S. FDA statistical guidance on bioe-
quivalence was issued in July 1992, the average
bioequivalence was evaluated based on the ratio of
average bioavailabilities through the hypotheses of
(15) reformulated from (13) in the article. In this
case, the bioequivalence limits involve unknown pa-
rameters. The standard analysis prior to the 1992



308 R. L. BERGER AND J. C. HSU

TABLE 1
Impact of correlation on the level of significance; sample size = 18, CV = 15%

Nonparametric Parametric
Correlation nr — Mg Standard Liu and Weng Standard Liu and Weng
0.50 80 0.0380 0.0547 0.0497 0.0650
120 0.0767 0.0577 0.0837 0.0693
0.75 80 0.0407 0.0527 0.0533 0.0633
120 0.0787 0.0557 0.0847 0.0673
0.90 80 0.0497 0.0510 0.0847 0.0570
120 0.0840 0.0547 0.0920 0.0630
0.95 80 0.0727 0.0575 0.0790 0.0593
120 0.0943 0.0520 0.1027 0.0650
0.99 80 0.1647 0.0497 0.1673 0.0633
120 0.1647 0.0500 0.1693 0.0550
0.999 80 0.3634 0.0467 0.3620 0.0580
120 0.3423 0.0440 0.3460 0.0507
0.9999999 80 0.5120 0.0473 0.5120 0.0527
120 0.4913 0.0537 0.4913 0.0600

Simulated data were generated from a normal distribution under a 2 x 2 crossover design.

Source: Liu and Weng (1995)

guidance was to substitute the unknown reference
average in the limits with its least squares estimate
(LSE) assuming that the resulting quantities are
the true parameters. Chow and Liu (1992) and Liu
and Weng (1995) reported that this was the stan-
dard analysis at the time, while academia seemed
not to pay much attention to the bioequivalence
problem. They, however, did not indicate that it is
a correct analysis. On the contrary, Chow and Liu
(1992) emphasized that the standard analysis fails
to take into account the variability of the LSE of
the reference average as the equivalence limits. Fur-
thermore, Liu and Weng (1995) not only recognized
this deficiency in the standard analysis but also,
under a 2 x 2 crossover design, proposed a para-
metric procedure and its Wilcoxon nonparametric
counterpart to overcome the drawback. Unlike the
two-group parallel design used in the article, there
are two correlated pharmacokinetic (PK) responses
from the same subject for a bioequivalence study
conducted in a 2 x 2 crossover design. When the
correlation between the two PK responses from the
same subject goes to 1, Liu and Weng (1995) showed
that, theoretically and empirically, the size of the
standard analysis approaches 0.5. Our Table 1 re-
produces the simulation results of the impact of cor-
relation on the level of significance from Table 1 of
Liu and Weng (1995). As indicated in Table 1, if
the correlation is less than 0.95, the two tests for
T*1/T*2 of the standard parametric analysis and
its nonparametric version have different sizes in the
manner which was described in the article for the
two independent samples. However, when the cor-

relation exceeds 0.95, the sizes of both tests are ap-
proximately the same but are greatly inflated. On
the other hand, the modified TOST, either the para-
metric or nonparametric version, proposed by Liu
and Weng (1995) adequately controls its size at the
nominal level.

For evaluation of therapeutic equivalence, unlike
the pharmacokinetic responses from bioequivalence
studies, the clinical endpoints are usually binary
data such as cure rate or eradication rate in the
antiinfective areas. The equivalence limits are de-
termined on the estimated eradication rate of the
reference drug from the previous studies. Our Table
2 gives the equivalence limits suggested by the FDA
(Huque and Dubey, 1990). However, quite often, the
estimated reference eradication rate, say 82%, ob-
tained from the current study is different from that,
say 77%, from previous studies. According to Ta-
ble 2, an eradication rate of 82% corresponds to the
equivalence limits of plus or minus 20%, while the
limits of plus or minus 15% are for the eradication
rate of 77%. As a result, the equivalence limits are

TABLE 2
Equivalence limits for binary responses

Response rate for Equivalence
the response drug limits
50%—-80% + 20%
81%—90% + 15%
91%-95% + 10%
> 95% + 5%

Source: Huque and Dubey (1990).
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to be changed from those stated in the protocol, and
sample size might not be adequate to provide suffi-
cient power because of the change of the equivalence
limits. See Weng and Liu (1994) for more details. A
possible approach to resolve this issue is to find a
TOST for hypothesis (14) in the article, with aver-
ages replaced by eradication rates for the test and
reference drug products. However, difficulty arises
from the fact that the variance of binary responses
is a function of the average. Further research in this
area is needed.

4. POWER AND SAMPLE SIZES

Table 1 of the article provides the sizes and pow-
ers of the Schuirmann TOST, the BHM unbiased
test and the new nearly unbiased BH test suggested
by the article. Clearly, the Schuirmann’s TOST is
conservative as op increases. However, the bottom
line is whether the variability in Table 1 of the ar-
ticle is frequently encountered in bioequivalence
trials. Our Table 3 converts op on the logarithmic
scale into the intrasubject coefficient of variation
(CV) of the reference product on the original scale.
In practice, a reference is classified as a highly
variable drug if the intrasubject CV of its phar-
macokinetic responses such as AUC exceeds 30%.
From Table 3, except for o = 0.04, sometimes,
op = 0.08 the variability used for comparison of
size and power in the article is very unlikely to be
encountered in practice. On the other hand, when
most bioequivalence trials generate a CV under
30%, Table 1 of the article demonstrates that the
size and power of the Schuirmann TOST, the BHM
unbiased test and the new BH test are almost in-
distinguishable. The relative improvement of power
over the Schuirmann TOST given in Table 1 of the
article is more than 60% when o, is large. However,
one needs to realize that the largest absolute im-
provement in power by both the BHM and the new
BH tests is only 10.2%. Furthermore, sample size

TABLE 3
Sample sizes required for Schuirmann’s two one-sided test pro-
cedure for 80% power at the 5% significance level for Table 1 of
the article

Power when np —mp =0

Sample size

op Cv TOST BHM New TOST
0.04 16.1% 1.000 1.000 1.000 12
0.08 32.8% 0.720 0.721 0.720 42
0.12 50.9% 0.158 0.260 0.247 94
0.16 71.1% 0.007 0.131 0.128 178
0.20 94.7% 0.000 0.093 0.092 312
0.30 179.5% 0.000 0.066 0.066 1112

determination for bioequivalence trials is to achieve
an absolute power of at least 80%. Liu and Chow
(1992b) provided an approximate formula of sample
size determination based on TOST which later was
extended to logarithmic responses by Hauschke,
Steinijans, Diletti and Burke (1992). Table 3 also
gives estimated sample sizes to achieve a power
of 80% for various values of op at np —nyp = 0.
From Table 3, unless o < 0.08, the sample size
are formidably large compared to the sample size
of a typical bioequivalence trial conducted by phar-
maceutical industry, which ranges from 16 to 36
subjects. Because neither Brown and colleagues
(Brown, Casella and Hwang, 1995; Brown, Hwang
and Munk, 1995) nor Berger and Hsu provide the
formulas for sample size estimation with respect to
the BHM unbiased and the new BH nearly unbi-
ased tests, a direct comparison in savings of sample
size cannot be made.

One characteristic shared by both the BHM un-
biased and the new BH tests is that the rejection
region is an open region whose width increases as
the estimated variability increases. This disturbing
anomaly is exacerbated when sample points in the
rejection region eventually lie outside the equiva-
lence limits. On the other hand, the rejection region
of the Schuirmann TOST does not share this coun-
terintuitive shape of the rejection region because
it is a triangle. Any sample points with variability
greater than A,/r/t, , will be outside the rejection
region. This conservativeness may provide a desir-
able consequence. Currently, all regulatory agencies
in the world only require the evidence of average
bioequivalence assessed by the Schuirmann TOST
for approval of generic drug products. Note that o2,
in Section 2.1 of the article is a function of the av-
erage of the intrasubject variabilities over the test
and reference formulations. Therefore, when the
usual intrasubject CV observed in bioequivalence
studies is less than 30%, because the Schuirmann
TOST cannot declare average bioequivalence if the
r[SE(D)]* exceeds A,/r/t, ,, any difference in in-
trasubject variability between test and reference
formulations may have less serious consequences
than the BHM unbiased test and the new BH test.
This may be one reason no disastrous mishap has
occurred since implementation of the Schuirmann
TOST by the U.S. FDA, European Community and
other countries more than 10 years ago.

Construction of the BHM unbiased test is recur-
sive and requires intensive computation. Although
the new BH nearly unbiased test is simpler to com-
pute than the BHM unbiased test, it is still much
more complicated than the Schuirmann TOST. Most
of all, both the BHM unbiased test and the new
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BH test are based on the polar coordinates. Hence,
they lack a direct intuitive interpretation for phar-
macologists, clinicians or scientists to understand.
Furthermore, it is more difficult to present the re-
sults from the BHM unbiased test and the BH new
test than the Schuirmann TOST in the report of a
bioequivalence study for nonstatistician reviewers
with limited statistical background. In summary, for
most of bioequivalence trials with an intrasubject
CV less than 30%, the BHM unbiased test and the
new BH test do not offer any real advantages over
the current Schuirmann TOST. As a result, BHM
and BH are of little practical importance in bioe-
quivalence testing.

5. CONFIDENCE INTERVAL

A very important fact was established in the
article: that an equal-tailed (1 — 2a)100% confi-
dence interval always yields a two one-sided test
of size a for the interval hypothesis obtained from
the intersection—union principle. Let L and U de-
note the lower and upper limits for equal-tailed
(1 — 20)100% confidence interval. Then the arti-
cle showed that the lower and upper limits of the
(1 — «)100% confidence interval corresponding to a
size-a TOST are given, respectively, as

(2)

However, because both intervals lead to the same
TOST of the same size, it follows that, as demon-
strated in our Table 4, the same decision of claim-
ing bioequivalence (or not bioequivalence) will be
concluded from both intervals. Therefore, in the ac-
tual decision-making process, the conclusion will not
be altered by the (1 — «)100% confidence interval.

L™ =min(0,L) and U™" =max(0,U).

R. L. BERGER AND J. C. HSU

In addition, the consumer’s risk associated with the
decision is the size of the TOST and is not 1 minus
the confidence level of the interval. On the other
hand, unfortunately, the article does not provide the
(1—a)100% confidence interval corresponding to the
BHM unbiased and the BH nearly unbiased tests.
Otherwise, performance of these confidence inter-
vals could then be evaluated.

6. LOGARITHMIC TRANSFORMATION

We agree with the viewpoints about the logarith-
mic transformation required for AUC and C,,,, by
the FDA statistical guidance on bioequivalence. Af-
ter logarithmic transformation, the equivalence lim-
its in hypothesis (2) in the article are still known
constants. On the other hand, if the analysis were to
be performed on the original scale, the equivalence
limits in hypothesis (15) in the article are unknown
constants. As a result, the reason for the logarith-
mic transformation is to avoid the unknown param-
eters as the equivalence limits in (15). However, we
think that scientific integrity should not and cannot
be sacrificed nor compromised for regulatory conve-
nience. In addition, the TOST for hypothesis (15)
has been proposed by Liu and Weng (1995) and oth-
ers. Therefore, we agree with the article that the
scale of the PK responses for the analysis cannot be
dictated by regulations and should be determined by
the distributions of the random components of the
model such as the one in Section 2.1 of the article for
a 2 x 2 crossover design. For detailed comparisons
of TOST between the original scale and logarithmic
scale, see the simulation results of Liu and Weng
(1994).

Logarithmic transformation has been required
by the FDA and European Community and has been

TABLE 4

Decision of claiming bioequivalence by confidence intervals in (8) and (16) of the article with respect to the equivalence limits of
In(1.25) = —In(0.8)

Decision of BE

Situation (L,U) (L,U") L > In(0.8) U < 1n(1.25) (L,U) (L,UT)
L<0<U (L,U) (L,0) Yes Yes BE BE
Yes No NBE NBE
No Yes NBE NBE
No No NBE NBE
0<L<U (L,U) (0,U) Yes Yes BE BE
Yes No NBE NBE
L<U<o0 (L, U) (L,0) Yes Yes BE BE
No Yes NBE NBE

L=D-t,,SE(D); U=D+t, ,SE(D); L~ =min(0, L); U* = max(0, U).

BE = bioequivalent; NBE = not bioequivalent.
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implemented by industry for quite some time. Al-
though the FDA guidance requests that the results
of analysis on the logarithmic scale also be pre-
sented in the original scale after the inverse trans-
formation, little attention is paid to the estimation
of the ratio of averages, exp(ny — ng). Clearly, its
maximum likelihood estimator (MLE), a ratio of
geometric means on the original scale, produces a
positive bias. This bias could be large because the
sample size of bioequivalence is quite small. Some-
times, no estimated standard error of the MLE for
exp(ny — mg) is even given in the report. If it is
provided, it is incorrect. Liu and Weng (1992) dis-
cussed the minimum variance unbiased estimator
(MVUE) of exp(nr —mg) and its variance which
should be used for bioequivalence studies. The arti-
cle suggested that, when the normality assumption
is in doubt, the nonparametric counterpart of TOST
can be used as an alternative. However, simulations
performed by Liu and Weng (1993) and Hauck et al.
(1997) indicate that for evaluation of average bioe-
quivalence the TOST based on ¢-statistics given in
(4) in the article are quite robust to the departure
from the normality assumption.

7. IUT AND INDIVIDUAL BIOEQUIVALENCE

Although the current requirement of average
bioequivalence performs satisfactorily for approval
of generic drugs, Chen (1997) pointed out the
following limitations of average bioequivalence:

1. It only focuses on population average of test and
reference formulations.

2. It ignores distribution of interest between test
and reference formulations.

3. It ignores subject-by-formulation interaction.

Individual bioequivalence has the following mer-
its for assessing equivalence between drug products:

1. It compares both averages and variances.

2. It considers subject-by-formulation interaction.

3. It addresses “switchability.”

4. It provides flexible bioequivalence criteria for dif-
ferent drugs based on their therapeutic window.

5. It provides reasonable bioequivalence criteria for
drugs with high intrasubject variability.

6. It encourages and rewards sponsors to manufac-
ture a better formulation.

Currently, the criterion proposed by Scall and
Luus (1993) is under consideration by the U.S. FDA
for individual bioequivalence. However, this crite-
rion is an aggregation of three components: square
of average differences; subject-by-formulation; and

difference in intrasubject variabilities. As a result,
the use of an aggregate criterion in fact masks
the contribution made by each component. On the
other hand, inference for the aggregate criterion is
quite complicated and the bootstrap technique has
to be used for the pharmacokinetic responses from
a bioequivalence study with sample size only from
18 to 36 because its estimators and distribution of
the estimators are intractable.

However, we can consider the average, subject-by-
formulation interaction and intrasubject variability
as three characteristics representing the quality as-
surance for a drug product. It follows that these
important characteristics should be examined in-
dividually, and the results then can be combined
through the intersection—union principle. According
to Chen (1997), to demonstrate individual bioequiv-
alence we need to test the following: (1) intrasubject
variability,

7 af
(3a) Hy: —5 <c, or — >cy
R OR
versus
2
gr
(3b) H,:c, < — <cy;

OR

(2) subject-by-formulation interaction,

(4a) Hy: of > ¢;
vVersus
(4b) H,:o0? <cp;

and (3) average,

(5a) Hy,: mpr—mr<Ap or nmp—mp=>Ay
versus
(5b) Haa: AL <MNr—7MRr < AU:

where ¢z, ¢y, ¢;, A; and Ay are chosen to define
clinically important differences. One concludes indi-
vidual bioequivalence if each of (3a)—(3b), (4a)—(4b)
and (5a)—(5b) is rejected at the « significance level.
Under a replicated design (Liu, 1995; Chow, 1996),
inference for the unknown parameters in each of
these three hypotheses is straightforward and is
based on the exact distributions such as the F dis-
tribution. Therefore, our proposed procedure based
on IUT is more intuitively appealing and easier to
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implement than the aggregated method considered
by the U.S. FDA.

In conclusion, the intersection—union test is an
interesting concept to combine the results from in-
dividual tests for different objectives. However, the
BHM unbiased and the BH new nearly unbiased
methods need further evaluation before they can be
used as routine practice.

Comment

Donald J. Schuirmann

The authors have written a very comprehensive
paper that will be a valuable reference source for
statisticians who wish to learn about the statisti-
cal aspects of bioequivalence testing. I would like to
comment on three points made in the paper.

POINT 1

The authors comment on a feature that their pro-
posed new test [of their hypotheses (2)] shares with
the Anderson and Hauck test (Anderson and Hauck,
1983) and the Brown, Hwang and Munk (BHM) sim-
ilar test (Brown, Hwang and Munk, 1995), namely,
that beyond a certain value of s, the width (in the
d direction) of the rejection region increases as s,
continues to increase. There exist sample outcomes
(d, s,) for which one would not reject H,, but for
the same value of d but a larger value of s, one
would reject H,. Eventually the rejection region in-
cludes values (d, s,) with d outside the interval (6,
0y). The authors note that any similar or approxi-
mately similar test of hypotheses (2) must have this
property.

In my personal opinion, this property renders
all similar or approximately similar tests of the
hypotheses (2) unacceptable. The authors dismiss
these concerns as “intuition.” However, there is a
probabilistic argument against these tests, and it is
illustrated in the authors’ Table 1. For three tests,
Table 1 compares the power at the endpoints, 6;
and 0;, of the equivalence interval to the power at

Donald J. Schuirmann is a member of the Quanti-
tative Methods and Research Staff, Center for Drug
Evaluation and Research, U.S. Food and Drug Ad-
ministration, 5600 Fishers Lane, Rockville, Mary-
land 20857 (e-mail: schuirmann@cder.fda.gov).
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the midpoint of the equivalence interval, as a func-
tion of op. For the case of op = 0.20, the power
of the new test or the BHM test at the midpoint is
less than twice as much as the power at the end-
points. For o = 0.30, the power at the midpoint for
these two tests is only 32% higher than the power at
the endpoints. In the limit, as o — oo, the power
curve is perfectly flat, as illustrated in Table 1. Even
for finite op, there comes a point where o is large
enough that there is no practical difference between
the power at the midpoint and the power at the end-
points. In other words, for all intents and purposes
you are no more likely to conclude equivalence if the
means are as equivalent as can be than you are if
the means are inequivalent. This is also true of the
TOST. However, in the case of the TOST, when o, is
large enough to produce this situation, the power is
truly negligible. For the new test or the BHM test,
the power is a, which is usually 5%—a nonnegligi-
ble chance of concluding equivalence from an inade-
quate study. For further discussion, see Schuirmann
(1987D).

In my personal opinion, not only should the rejec-
tion region not get wider as s, increases, but there
should be a value of s, beyond which we do not re-
ject Hy no matter what the value of d.

POINT 2

In those circumstances where it is deemed more
appropriate to analyze bioavailability metrics (such
as AUC and C,,,,) without transformation, we are
interested in testing the authors’ hypotheses (1)
[same as the authors’ hypotheses (13)]. Restat-
ing these hypotheses as the authors’ hypotheses
(14) suggests the TOST, as proposed by Sasabuchi
(1980), which the authors call the T';/T5 test. This
test is clearly preferable to the test that the authors
call the T7/T% test.
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I would point out that carrying out the T';/T,
test when the data come from a crossover study,
where the intrasubject correlation is unknown, can
be tricky. The test statistics are not so simple as the
T, and T, presented by the authors, which are ap-
plicable to a parallel study. Locke (1984) describes
a procedure for obtaining a Fieller-type confidence
set for up/up in the case of a standard two-period
crossover study. Locke’s method is easily extended
to general crossover designs. Although Locke (in the
1984 paper) does not explicitly suggest using such a
confidence set to carry out the TOST of hypotheses
(1), he does so in a more recent paper (Locke, 1990).

In the past, the U.S. FDA routinely used the

1/T% test to test hypotheses (1) using untrans-
formed data, but I can report that this is no longer
the case. Most bioequivalence studies submitted
to the agency are analyzed after log transforma-
tion, but when analysis of untransformed data is
thought to be more appropriate, the agency now
suggests basing the test on the methodology de-
scribed by Locke. See, for example, the recent

Comment

J. T. Gene Hwang

Professors Roger Berger and Jason Hsu are to be
congratulated for their interesting article, which
surveys thoroughly the area of bioequivalence from
a statistical perspective. This is a fast-developing
research area, and before it diverges in various
directions it is very useful to have this article to
summarize and, to some extent, unify the important
results.

Two main themes of their paper are to demon-
strate that the concept of intersection—union tests
“clarify, simplify and unify” bioequivalence testing,
and to argue against the “misconception that size-a
bioequivalence tests generally correspond to 100(1—
2a)% confidence sets”. I shall comment along these
two lines.

Professor Hwang is with the Department of Math-
ematics, White Hall, Cornell University, Ithaca, New
York 14853 (e-mail: hwang@math.cornell.edu).

Guidance—Topical Dermatologic Corticosteroids: In
Vivo Bioequivalence (FDA, 1995).

POINT 3

The authors make an important point by noting
that one cannot always obtain a size-a TOST by re-
jecting H, iff a 100(1 — 2a)% confidence set is con-
tained within the equivalence interval. This proce-
dure only works if the 100(1 — 2a)% confidence set
is “equal-tailed.” Yet, as the authors point out, both
the U.S. FDA and the European Community suggest
that the test should be carried out by constructing
a 90% confidence interval, in order to obtain a size-
0.05 TOST. Fortunately, the confidence procedures
currently proposed for testing the authors’ hypothe-
ses (2) after log transformation, and for testing the
authors’ hypotheses (1) using the methodology of
Locke with untransformed data, are equal-tailed.
Nevertheless, I agree with the authors that it is mis-
leading to imply that one may always base a size-a
test on a 100(1 — 2a)% confidence set.

1. INTERSECTION-UNION METHODS
AND THE NEW TEST

I agree that the intersection—union method has a
prominent position in bioequivalence tests. For one
thing, the two one-sided tests procedure is one such
test. As has been pointed out, the test can, how-
ever, be improved by the Brown, Hwang and Munk
test (Brown, Hwang and Munk, 1995). The authors
then use the intersection—union method to derive
a new test which is almost as powerful as Brown,
Hwang and Munk’s test. The idea is quite interest-
ing. The authors argue that the new test has the fol-
lowing advantages over Brown, Hwang and Munk’s
test:

(i) The new test is computationally less inten-
sive.

(ii) The new test provides boundaries which are
smooth, unlike the boundaries of Brown, Hwang
and Munk’s test, which sometimes have a quite ir-
regular shape.

The disadvantages of the new test, as is pointed
out, are that it is biased and it has slightly smaller
power than Brown, Hwang and Munk’s test. How-
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FiG. 1. The rejection region of Brown, Hwang and Munk for r = 12 and A = 1. It contains the triangle which corresponds to the two

one-sided tests procedure.

ever, the authors demonstrated in Table 1 that the
loss is small.

Overall, I agree with the advantages and also the
assertion that the loss in power is small. This new
test is therefore theoretically useful.

From the practical side, it should be noted that
the test of Brown, Hwang and Munk is not com-
putationally intensive. It takes about 5 minutes to
calculate 7200 pairs of boundary points for Figure
1 below, using a 90-mega Hertz Pentium personal
computer with the Gauss program. Note that the
boundary can be approximated well by a line where
D > b for a bound b. Furthermore, 7200 points are
quite dense within (0, ).

About (ii), it is true that the shape of Brown,
Hwang and Munk’s test is irregular when the de-
grees of freedom r equal 3, as shown in the authors’s
Figure 1. However the boundaries of Brown, Hwang
and Munk’s test are typically smooth, if r is not too
small. See the smooth curve in Figure 1 below for
r = 12. When r > 12, the boundary has a shape sim-
ilar to Figure 1 below. In this figure, A is taken to be
1 without loss of generality since otherwise we may
use the transformation (D, S) — (D/A, S/A). In ap-
plications, we typically have 24 subjects or more,
and hence the degrees of freedom (taking into con-
sideration the subject effects, etc.) is at least 20,
depending on the model. Therefore Brown, Hwang
and Munk’s test has smooth boundaries anyway.

In conclusion, it remains to be seen whether the
authors’ new test would become popular in appli-
cations.

2. “THE MISCONCEPTION THAT SIZE-a TESTS
CORRESPOND TO 100(1 — 2a)%
CONFIDENCE SETS”

In Section 5.2, the authors argue forcefully that
it is incorrect to always use a (1 — 2a) confidence
set to construct a test without verifying that the re-
sultant test has size «. While the approach is all
right for the one-dimensional case, often it causes
some problem in the higher-dimensional case. The
authors give an example about the ratio problem
using a two-dimensional test in the paragraph con-
taining (22).

While I agree with the authors’s assertion, it
seems interesting here to point out another exam-
ple relating multivariate bioequivalence hypothesis
(23). We shall assume the canonical form that
X = (X4,...,X,) is a p-dimensional normal ob-
servation with mean o = (o0y,...,0,) and co-
variance matrix 2; also, S, independent of X, has
a Wishart distribution with d degrees of free-
dom (d > p). This canonical form applies to a
general linear model including the crossover de-
sign with period effects and subject effects. Hence
o; is the difference of the logarithmically trans-
formed characteristic (such as AUC, C,.x; Tmax
etc.) of the brand name drug and the generic
drug.

We focus on the p-dimensional bioequivalence hy-
pothesis

H:|loj| <A foralli=1,2,..., p,
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which is a generalization of (23). The symmetry of
the interval of o; with respect to the origin is made
without loss of generality.

A 1 — 2a confidence set based on Hotelling’s 72 is
dp
2
T < mFm p,d—p+l-

where
T? =d(X - 0)S™H(X —0)

and Fy, , 4,41 18 the 2a upper quantile of the F'-
distribution with p and d— p+1 degrees of freedom.

If we use this confidence set to construct a test,
then we will declare H”, that is, bioequivalence,
if the confidence set is contained in H”'. The corre-
sponding rejection region is recently shown in Wang,
DasGupta and Hwang (1996) to be described by the
inequality

__ P
d—p+1
where X is the ith element of X and S;; is the ith
diagonal element of S. The Type I error of the test,
however, is « if and only if p = 1.

In general, the actual size can be shown to be

dp 1/2
gy = P<Td > (d—PH‘lFZQ’ p,d—p+l> )

where T; is a Student’s-f random variable with
d degrees of freedom. Note that if p = 1, the
above probability equals

P(Ty> (Fau14)?) =a

1/2
|X;| <A- ( F2a,p,d_p+lsii> for all i,

Rejoinder

Roger L. Berger and Jason C. Hsu

We thank the Editors of Statistical Science for so-
liciting these discussions of our article. All of the
discussants make interesting and important points
about various aspects of bioequivalence problems.
We are especially pleased that the discussants rep-
resent the views of regulatory agencies, pharmaceu-
tical companies and academics, all of whom have an
interest in bioequivalence problems.

1. OTHER EQUIVALENCE PROBLEMS AND
USEFULNESS OF EQUIVALENCE
CONFIDENCE INTERVALS

We join Anderson and Hauck on the soap box in
saying “Practical equivalence problems should be

TABLE 1
Actual size oy for d = 22 when a=0.05

p @
1 0.05
2 0.0150
3 5.18 x 1073
4 1.88 x 1073
5 6.79 x 10~*
10 2.36 x 106

However, when p # 1, Table 1 below shows that
the actual size «, can be very small and hence the
recommended test is very conservative. In this ta-
ble, d is taken to be 22, corresponding to a standard
2 x 2 crossover design involving altogether 24 sub-
jects with subject and period effects. This example
demonstrates that using 1 — 2« confidence set to de-
rive a test may give a test of size much smaller than
a as long as p > 1. Even for p = 2, the actual size
already drops to 0.015 for a target size 0.05.

To achieve a correct size «, one needs to use a con-
fidence set with coverage probability 1 — a, where a
is such that

dp 12
P(Td><d_p+1Fa,p,dp+l) >=Ol,

or, equivalently,
dp
d—p+1
Again using a = 2a leads to a correct size a only

when p = 1. Values of a are given in Wang, Das-
Gupta and Hwang (1996).

Fa, p,d—p+1 = ta,d'

treated as such!” The drug shelf-life example men-
tioned in Section 5.1 is one in which the exclusion
of the interaction terms in the model should be,
but has not been, treated as a practical equivalence
problem. The bovine growth hormone safety stud-
ies example alluded to in the same section is also
one in which comparison with the negative control
should be, but has not been, treated as a practical
equivalence problem. We thank Meredith and Heise
for pointing out additional examples. In vitro com-
parison of dissolution profiles of two formulations of
the same drug is certainly a practical equivalence
problem. However, in vivo trials with the objective
of demonstrating that a new compound is at least as
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good as an existing drug seem to us more appropri-
ately formulated as one-sided inference problems.

Meredith and Heise as well as Liu and Chow
seem to doubt the usefulness of insight into equiv-
alence confidence sets. We think it would be a good
reflection on the statistics profession if the official
FDA documents indicated some cognizance of the
equivalence confidence interval associated with the
TOST, the stated decision rule. More important, in-
sight into equivalence confidence sets in the simple
two-drug problem is a reliable guide toward solving
nontrivial multiple equivalence problems, as shown
below using the drug shelf-life determination exam-
ple from Section 5.1.

When the degradation of a drug can be repre-
sented as a simple linear regression model, both
FDA (1987) and CPMP/ICH/380/95 (1993) (which
applies to the United States, Europe and Japan)
specify that the shelf-life be calculated as the one-
sided lower 95% confidence bound on the time at
which the true content reaches the lowest accept-
able limit, usually 90% of the labeled amount of
drug.

It is generally to the advantage of the manufac-
turer to establish a long shelf-life for a drug, but
different batches of the same drug may degrade at
different rates. When the degradation rate varies
greatly from one batch to another, the guidelines
intend that the shelf-life be calculated conserva-
tively, from the worst degradation rate. On the
other hand, the guidelines intend to reward a man-
ufacturer making consistent batches with a longer
shelf-life, by allowing it to be calculated from a
single degradation rate based on data pooled from
batches with degradation rates practically equiv-
alent to the worst rate. Thus, if B4,..., B, denote
the degradation rates of the & batches of the drug
sampled, and rates within 6 of the worst rate are
practically equivalent to the worst, then data from
batches i with 8; —min;_; 8; < 6 can be pooled.

Currently the guidelines state that if the null hy-
pothesis of equality of degradation rates (i.e., the
hypothesis of no time xbatch interaction) is accepted
at the 25% level, then a reduced model with a com-
mon degradation rate (slope) is to be used with all
batches pooled. This clearly violates the intent of the
guidelines, as the acceptance of the no-interaction
hypothesis may be due to small sample size and/or
noisy data, thus rewarding with a longer shelf-life a
manufacturer who does an inadequate study and/or
makes inconsistent batches.

The intent of the guidelines can be met by testing
the multiple hypotheses

(1) Hi: B, —minB; >0, i=1,...,k,
J#

and pooling all batches i with H f) rejected. (Note the
similarity between these hypotheses and the TOST
hypotheses.) It is not obvious how to generalize the
TOST or the more powerful tests to test (1) because
an IUT would not allow for the possibility of reject-
ing some, but not all, hypotheses. Further, since up
to £ — 1 hypotheses in (1) may be true, there may
appear to be the need for multiplicity adjustment.
However, insight from Section 5.1 leads directly to
95% simultaneous equivalence confidence intervals,
and pooling decisions can be based on these. Fur-
thermore, the construction of these confidence in-
tervals requires no multiplicity adjustment for the
hypotheses in (1).

Recall that the equivalence confidence set in Sec-
tion 5.1 was constructed by testing, within each
half of the parameter space where 7; is smaller
(i = 1,2), against the alternative that the larger
m,, J # 1, 1s larger by no more than a specified posi-
tive quantity. In the shelf-life problem, since equiva-
lence with the worst rate is desired, within the part
of the parameters space where B; is the smallest
(i =1,..., k), one tests against the alternative that
the other rates B;, j # i, are larger by no more
than specified positive quantities. If one-sided 5%
Dunnett’s treatments versus control tests are used
(in analogy with one-sided 5% ¢-tests), then the con-
fidence intervals for 8; — min_; §; that result from
Theorem 3 are typically

(B~ min{B, +dis,,}) -

(Bi - T?;{l{éj - dj&érﬁj}y ]

where 3, and 62 , are the usual estimates of j3;
and Var(B3; — 8 ]): and d; is the 5% critical value for
one-sided Dunnett’s test with the ith batch as the
control. (The lower bounds are always as given here,
but the upper bounds can be improved for some data
sets. See Ruberg and Hsu, 1992.) Clearly, the in-
tent of the guidelines is met if one pools data from
batches whose upper confidence bounds in (2) are
less than 6. (Logically, if no batch meets this cri-
terion, the conclusion is the manufacturer has not
done an adequate study.) This is a vivid illustra-
tion of the usefulness of the insight given in Section
5.1 toward solving more complicated equivalence
problems.

Of course, pooling decisions can also be based
on 90% confidence intervals which are of the form
(2) but without the constraints to contain zero. For
such confidence intervals to achieve 90% confidence,
the critical values d; must be increased to the 10%
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critical value of the Tukey—Kramer method for all-
pairwise comparisons of degradation rates (proof is
as in Section 4.2.4.1 of Hsu, 1996). A calculation
then shows the decision to pool batches based on
these latter confidence intervals to be rather conser-
vative, with an error rate less than 3% in the set-
ting of the real data sets in Ruberg and Hsu (1992).
This is yet another illustration of the danger of care-
less application of 90% confidence sets in practical
equivalence problems.

2. REJECTING FOR LARGE s,

Schuirmann, Meredith and Heise, and Liu and
Chow all criticize the new test we proposed in Sec-
tion 4.2 because it rejects H, and concludes bioe-
quivalence for some sample points with arbitrarily
large values of s,. We want to question why one
should not reject for large s,, and, if there is good
reason not to, we want to propose that this require-
ment be made a formal part of the problem.

Schuirmann states the claim most succinctly:
“...there should be a value of s,, beyond which we
do not reject H, no matter what the value of d.”
This criticism has been made against other tests
that have tried to improve the power of the TOST,
such as Anderson and Hauck’s (1983) test. We ask,
“Why is this criticism made of bioequivalence tests
when it is not made of other tests?” Consider a drug
that claims to lower blood pressure. Measurements
are made on subjects before and after adminis-
tration of the drug, and a paired ¢-test is used to
demonstrate that the blood pressure is lowered.
This ¢-test uses the statistic d/(sy/+/n). This ¢-test
will reject the null hypothesis for arbitrarily large
values of s;, but we have never seen it suggested
that one should not reject H, if s; is too large. Why
are large values of the standard error such a con-
cern in bioequivalence tests when they do not seem
to be a concern in ¢-tests?

Large values of s, suggest that o is large. Pre-
sumably it is large values of o that are the concern.
Liu and Chow note that o2 is related to the intra-
subject variances of the test and reference drugs. So,
by not rejecting for large s,, we are somehow guard-
ing against large intrasubject variances. If control
of o or the intrasubject variances is really the con-
cern, then this should be explicitly stated as part of
the problem. For example, if the regulatory agency
sets an upper bound of opg, then the alternative

hypothesis should be stated as
Ha: 0L<’T]T—7]R<6U and Op < Opg-

Because this just adds a third condition to the alter-
native hypothesis, a size-a test could be constructed

using the IUT method. Our new test or the BHM
test could be used to test the hypothesis about 1y —
Nng- A chi-squared test could be used to test the hy-
pothesis about op. In this way, the variability could
be controlled in a well-defined way, rather than in
the informal way it is now controlled by the TOST.
When formulated in this way, the problem is closely
related to the population bioequivalence problem of
Section 6.2.

Finally, Schuirmann offers another argument why
one should not reject for large values of s,. It is that
the power function of our new test or the BHM test
is nearly constant at the value « for large values of
op. However, a t-test, as described above, has ex-
actly this same property. So, again, why is one con-
tent to reject for large values of s; in the ¢-test, but
not in a bioequivalence test?

3. INDIVIDUAL BIOEQUIVALENCE

Hauck and Anderson and Liu and Chow both sug-
gest that individual bioequivalence might be a more
appropriate formulation of the problem than the av-
erage bioequivalence formulation we used. We sug-
gested in Section 1 that the IUT method might also
be useful for individual bioequivalence problems. We
thank Liu and Chow for providing a concise example
in which this is true. They formulate three hypothe-
ses that place bounds on the parameters of interest.
Then the IUT method is used to construct a size-
a test designed to ensure that all the parameters
are within their specified bounds. We think this is
a very reasonable and easy to understand formu-
lation of the individual bioequivalence problem. We
are happy to see that the IUT method again pro-
vides a simple solution. A careful analysis of this
problem, like the analysis that led to our new test
in Section 4.2, might yield a more powerful test than
the simple test proposed by Liu and Chow.

Hauck and Anderson, on the other hand, mention
an aggregate criterion for individual bioequivalence
that was recommended by the FDA Working Group
on Individual Bioequivalence to the FDA Advisory
Committee for Pharmaceutical Science at an August
1996 meeting. The aggregate individual bioequiva-
lence criterion (IBC) proposed was

(nr — mg)% + c107 + co(0F — 0F)
2 b
TR+

IBC =

where 17, ng, 07, 0% and o% are as defined by Liu
and Chow, and o3, = max{c%, o5,}. To define this
criterion, the regulatory agency would need to spec-
ify three constants, c;, ¢y and 0%30. In addition, the
agency would need to specify an upper bound on
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IBC to define when the two drugs were bioequiva-
lent. We agree with some members of the FDA Ad-
visory Committee that this criterion is very diffi-
cult to understand. We think it would be difficult to
specify these four constants. We believe it would be
much easier to consider each of the relevant param-
eters individually, as proposed by Liu and Chow. If
two-sided bounds are set symmetrically, only three,
rather than four, constants would need to be speci-
fied by the regulatory agency. And, we think it would
be easier to specify these individual bounds than
to specify constants like c;, ¢, and 0%, that some-
how attempt to balance the relative importance of
the various parameters. Note also that to achieve
complete flexibility in balancing the relative impor-
tance of the various parameters, a fifth constant, c,
to serve as a coefficient of (9, — ng)?, is needed in
the definition of the IBC. This complicates the ag-
gregate criterion even more.

It should be noted that, at the August 1996
meeting, the FDA Advisory Committee for Phar-
maceutical Science did not take any action on the
Working Group’s recommendation. It remains to
be seen if any form of individual bioequivalence
will be adopted to replace average bioequivalence.
If the “disaggregate” form proposed by Liu and
Chow is adopted, then IUT tests will continue to be
important in the bioequivalence field.

4. ELLIPSOIDAL PEGS IN SQUARE HOLES

Hwang gives another example to illustrate that
attempting to define size-a tests using 100(1—2a)%
confidence sets is unwise. Hwang’s example is sim-
ilar to our Chow and Shao example in Section 5.2.
Both examples use ellipsoidally shaped confidence
sets. In our example, the alternative hypothesis
region has a conical shape. In Hwang’s example,
the alternative hypothesis region is a hypercube.
In both examples, the resulting test can be de-
scribed in terms of a finite number of inequalities
involving ¢ statistics. And, in both examples, the
resulting test is very conservative; the size of the
test is much less than a. The general conclusion
that one can draw from these two examples is that,
when defining a test in terms of a confidence set,
the confidence set should have the same shape as
the alternative hypothesis region.

Hwang did not point out one interesting feature of
his example. The test that he derives from the con-
fidence ellipsoid, corrected to be size-a, is the IUT
combination of size-a TOST’s that we describe in
Section 6.2. Using the correct ¢-distribution critical
value, as Hwang describes in the last display of his

comment, his test becomes, reject H, if

|y(i)‘ <A—t, 4 _\/m for all i.

This is the same as reject H, if T'y; > t, , and
Ty; < —t,, g, for all i, where

Ty = (X" = (=4))/v/S;/d
and
Ty = (X - A)/y/Ss/d.

For each i, this defines the size-a TOST for the ith
parameter, and the requirement that all the TOST’s
reject is the IUT combination. So Hwang’s exam-
ple is another case in which the IUT combination of
size-a tests yields a reasonable, size-« test in a bioe-
quivalence problem. We mention in Section 6.2 that
a uniformly more powerful, size-a test may be ob-
tained by using our new test or the BHM test, rather
than the TOST, for each of the p coordinates.

The confidence set described by Hwang does have
one advantage over rectangular confidence sets in
that its shape indicates the correlations among the
variables. Thus, when the number of variables is
two or three (e.g., AUC and C,,,), displaying the
confidence ellipsoid may be useful, but the confi-
dence ellipsoid does not appear useful for construct-
ing bioequivalence tests.

5. MINOR COMMENTS

Two other points made by the discussants deserve
brief comment.

Meredith and Heise thought we confused Type I
and Type II errors in Section 4.2. The paragraph
beginning “Due to the seriousness...” immediately
follows a description of the Anderson and Hauck
test. This test is more powerful than the TOST, but
it is liberal; its Type I error probability is greater
than @. Our next sentence meant that it was un-
acceptable to have a more powerful test at the ex-
pense of having size greater than «. Due to the se-
riousness of a Type I error, it is important that any
proposed more powerful test strictly maintains the
Type I error probability at «. That is, the consumer’s
risk is the overwhelming concern to the regulatory
agency. The discussion of equivalence problems in
Berger (1982) was explicitly in terms of consumer’s
risk.

To us, Meredith and Heise’s comment that non-
statistical consumers will find the 90% equivari-
ant confidence interval more informative than the
95% nonequivariant confidence interval for estima-
tion confuses point estimation with interval esti-
mation, the two not being mutually exclusive. We
see no reason why a point estimate cannot be given
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along with the equivalence confidence interval if the
former is of interest, in which case, the reason for
the failure to conclude bioequivalence in their ex-
ample becomes apparent.
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