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Abstract
Many shorebird species undertake long-distance migrations punctuated by brief stays at

food-rich, estuarine stopover locations. Understanding use of these food resources helps

guide conservation and responsible development decisions. We determined the extent and

degree to which Western Sandpiper (Calidris mauri) utilized biofilm as a food resource

across a large and variable stopover location during northward (spring) migration. We inves-

tigated the spatial heterogeneity in diet composition, to determine whether shorebirds were

consistently feeding on biofilm or whether diet varied between naturally and anthropogenic-

ally delineated sites. We used stable isotope analysis to estimate that biofilm conservatively

comprised 22% to 53% of Western Sandpiper droppings across all sampling sites and that

prey composition differed significantly between areas within the stopover location. Wide-

spread biofilm consumption demonstrates the importance of biofilm as a dietary component.

Variable diet composition suggests that habitat heterogeneity may be an important compo-

nent of high quality stopover locations in the context of “state-dependant trade-offs” of West-

ern Sandpiper population sub-groups. Future management decisions must consider and

address potential impacts on the biofilm community throughout a stopover location, as sin-

gle site studies of diet composition may not be adequate to develop effective management

strategies for entire stopover sites.

Introduction
High-quality stopover locations are integral in the life cycle of many migratory birds [1–3].
Successful migration of gregarious shorebirds depends on their ability to acquire adequate re-
sources from these locations, often over only a few days, to fuel long-distance migrations [4–5].
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It is therefore important to understand how shorebirds use the food resources at stopover loca-
tions [6–7] to make appropriate conservation and land-use management decisions.

Intertidal mud and sandflats often host matrix-enclosed microorganism communities ge-
nerically known as biofilm [8–9]. Biofilm is complex and variable but generally consists of a
thin layer of organic detritus, microbes, meiofauna, and sediment which forms on the surface
of intertidal flats. Biofilm is largely dominated by diatom species, in addition to microbes, pro-
karyotes, and eukaryotes suspended in a mucilaginous matrix of extracellular polymeric sub-
stances combined with non-carbohydrate organic compounds [8–10]. The density and quality
of biofilm determine its potential as a food source; both of these factors vary spatially and tem-
porally [7, 11–14]. Biofilm is a substantial food source for calidrid sandpipers at several migra-
tory stopover sites [10, 13, 15–16].

Major estuarine stopover locations supporting biofilm are often strategic places for trans-
port, industrial and residential development. Such development can significantly change the
extent and quality of estuarine ecosystems by altering hydrology and sedimentation, converting
habitats, and introducing pollutants or invasive species. Each of these factors could potentially
affect biofilm quality, abundance and distribution. An understanding of the extent and degree
to which migratory shorebirds use biofilm is therefore necessary, to assess the possible impacts
of development, and to help guide design and management.

A globally significant portion of the world’s Western Sandpiper (Calidris mauri) population
and the entire population of the Pacific subspecies of Dunlin (Calidris alpina pacifica) migrate
along North America’s Pacific flyway, regularly stopping during spring northward migration at
a few, food-rich locations that are separated by hundreds or thousands of kilometres [17–19].
The Fraser Estuary—Boundary Bay system in southwestern British Columbia, Canada is one of
the larger stopover locations on this flyway, and is a globally significant Important Bird Area
[20]. It is also located adjacent to a major urban center, supports a major port, and is subject to
large-scale development proposals. We focus onWestern Sandpipers because they are strongly
associated with biofilm feeding [13] and are dependent on this stopover location; 14%–21% of
the total flyway population of Western Sandpipers regularly passes through a small sub-section
of the estuary during spring migration, possibly up to 42%–64% in some years [20–21]; when
the additional extent of the estuary is taken into consideration, these proportions are likely
much higher.

Western Sandpiper and Dunlin are widespread across the Fraser Estuary—Boundary Bay
system during northward migration [22–23] but the relative density of birds varies throughout
the area. Habitat choice theory for the Western Sandpiper is largely focused on the concept of
“state-dependant trade-offs” [24–26], wherein different individuals may exhibit different die-
tary preferences. Factors driving site selection include predation risk [27–28], morphological
sex differences such as variation in bill length [29], physiological condition [25, 30] and food
availability [31–33, 28]. Biofilm comprises a substantial portion of Western Sandpiper diet dur-
ing spring migration in a small section of the Fraser Estuary—Boundary Bay system [10, 13],
yet the importance of biofilm and other prey to Western Sandpipers across the entire stopover
location has not been studied, nor has the spatial heterogeneity in biofilm feeding and diet
composition within the broader estuarine system been explored. Given that biofilm represents
a rich, highly available food resource to which Western Sandpiper morphology is adapted [8,
13, 34–36] we expect biofilm feeding to be a strategy used throughout the stopover location.
However, the multiple state-dependant trade-off hypotheses that have been proposed for this
species, and the variation of bird density in the different areas of the stopover location, lead to
the hypothesis that diet composition may vary between areas within the larger Fraser Estuary
—Boundary Bay system.
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Here we investigate the extent to which Western Sandpipers consume biofilm in different
areas within the Fraser Estuary—Boundary Bay estuarine system and the spatial heterogeneity
of their diet composition, to determine whether shorebirds consistently consume biofilm
throughout the stopover location, and whether heterogeneity in diet composition occurs.

Materials and Methods
Our study was conducted in three Wildlife Management Areas [37–39] of the Fraser Estuary—
Boundary Bay system; 1—Boundary Bay (49.07, -122.96), 2—Roberts Bank (49.06, -123.16)
and 3—Sturgeon Bank (49.16, -123.21). A total of eight sites within these three areas were used
as sampling units (Fig 1). Two sites were located in Area 1:Boundary Bay (Site 1:a Mud Bay
and Site 1:b Boundary Bay East), three sites in Area 2:Roberts Bank (Site 2:c Inter-causeway,
Site 2:d Brunswick Point and Site 2:e Westham Island) and three sites were located in Area 3:
Sturgeon Bank (Site 3:f Sturgeon South, Site 3:g Sturgeon North and Site 3:h Sturgeon Iona).
Sites in the Fraser Estuary were separated by plumes of the Fraser River, and/or man-made jet-
ties extending up to 2.5 km from shore, except Sturgeon Bank North and Sturgeon Bank South,
which have different sediment and wave exposure characteristics. Mud Bay was delineated
from Boundary Bay East by the Serpentine River channel; Mud Bay exhibits distinctly different
physical and biological characteristics to Boundary Bay East. For the purposes of this study the
term “stopover location” will refer to the entire Fraser Estuary—Boundary Bay system, the
term “area” will refer to the three Wildlife Management Areas that make up the location (la-
beled 1 to 3) and the term “site” will refer to the eight naturally or anthropogenically delineated
sampling sites that fall within the three Wildlife Management Areas (labeled a through h). This
research was undertaken for the federal-provincial environmental assessment review for a new

Fig 1. Distribution of sampling locations across the Fraser Estuary—Boundary Baymigratory
stopover location, 23 April–7 May 2012.

doi:10.1371/journal.pone.0124164.g001
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aviation fuel facility installation and overseen by the B.C. Environmental Assessment Office
and Port Metro Vancouver. All sites were accessed via public routes, with the exception of
Westham Island, which was accessed with permission from George C. Reifel Migratory Bird
Sanctuary.

Diet Composition
We sampled the diet of Western Sandpipers across the entire stopover location. We followed
the approach used by Kuwae et al. [10], and modeled the isotopic values carbon (δ13C) and ni-
trogen (δ15N) in shorebird droppings and prey items to determine the relative contribution of
each prey type to the overall diet [10, 40]. Droppings were chosen, rather than tissue or blood
samples, as the best indicator of Western Sandpiper diet at the sample sites due to the short
turnover time necessary for isotopic studies during migration stopover [4, 13]. Droppings un-
equivocally reflect the birds’ diets during the preceding hours and do not present the challenges
inherent in interpreting fractionation [13]. The high polysaccharide and organic matter con-
tent in biofilm makes it highly digestible [8, 13, 34–36] and therefore the majority is assimilated
into the body; hence droppings provide a conservative estimate of biofilm contribution to the
overall diet [13]. Prey items were selected based on previous studies of stomach contents and
feeding ecology of Western Sandpipers and were grouped by trophic level for a total of 3 prey
groups including biofilm in the form of surface sediment, small invertebrates (primarily am-
phipods, cumaceans, bivalves and gastropods between approximately 1mm and 10mm in
length) and polychaetes [10, 15, 41–42].

We focused on spring rather than fall migration in the Fraser Estuary—Boundary Bay system
because the density of Western Sandpipers is higher and the period of migration shorter (two
weeks, compared to two months in fall) [21, 23], presenting the opportunity to investigate the
importance of diet composition and heterogeneity. Samples were collected between April 23
and May 7, 2012, from flocks comprising a minimum of 75%Western Sandpipers. Samples
were collected within three hours following the first high tide of the day. Western Sandpiper
droppings (n = 125) were collected directly from the intertidal mudflat surface from flocks feed-
ing up to 1 km from the shoreline for at least 30 minutes prior to sample collection; no verte-
brates were captured or disturbed during this study and no animal care approval was required.
Western Sandpiper droppings were distinguished from those of Dunlin based on size and diam-
eter [43]. Extreme care was taken that no surface sediments were included in the dropping sam-
ples; droppings that were disturbed or located in standing water were avoided. The top of each
dropping was carefully scraped off while the portion in contact with the mudflat was left behind.
For each sample ten or more droppings from different individuals were collected in a single 2
ml vial from within an area of approximately 50 m2, in order to gather a sufficient amount of
material for isotope analysis. Surface sediment samples (n = 118) were collected from the same
locations, using a toothbrush to scrape off the uppermost 1 mm of surface sediment [13].
Macroinvertebrates were collected by digging to a depth of 5cm and passing the substrate
through a 1 mmmesh sieve, individuals greater than approximately 10 mm in length were dis-
carded as they fell outside the size range expected to be consumed byWestern Sandpipers, all
species of non-polychaete invertebrates collected from each excavated sample were combined as
one sampling unit for isotope analysis (n = 18). Large polychaetes were collected using the same
method, digging to a maximum depth of 45cm (n = 12). Although this depth is outside the
range accessible byWestern Sandpiper these species are vertically mobile and retreat when dis-
turbed, therefore deeper digging was required to capture them. Microphytobenthos samples
(n = 16) were extracted from surface sediments following the methods of Kuwae et al. [10]. Sedi-
ment samples were spread in a tray to a depth of approximately 5 mm and a 60 μmmesh nylon
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screen was placed over the sediment followed by a layer of pre-combusted glass wool (450°C for
2 hours). The glass wool was moistened by spraying with filtered seawater (filtered using 60 μm
mesh) and left overnight at ambient temperature (20°C) in the dark to allow for microphyto-
benthos migration into the glass wool. All samples were frozen at -20°C after collection.

Stable Isotope Analysis. Dropping samples were treated prior to stable isotope analysis to
remove potential metabolites such as urea and ammonium. A 5 mg subsample of each pow-
dered dropping sample was mixed with a 1.4 ml 2:1 chloroform:methanol solution. Particulate
matter was allowed to settle and the solution was removed using a pipette. This procedure was
repeated a minimum of three times per sample followed by oven drying.

Due to the high sediment content in samples collected from the intertidal zone, all samples
were treated to remove non-dietary carbonates prior to isotope analysis using an acid wash
[44]. A few drops of 1 mol/L HCl were added to each sample in a glass vial and samples were
left overnight to allow full decomposition of carbonates. Samples were then placed on a hot-
plate at 50°C to remove any remaining HCl [45].

All samples were weighed into tin capsules and combusted in either a Carlo Erba NC2500
(dropping and invertebrate samples) or a Costech 4010 Elemental Analyzer (sediment and
microphytobenthos samples) and delivered to mass spectrometers via continuous flow systems
(Conflo II or Conflo III) using helium as a carrier gas. Stable-isotope values of carbon (δ13C)
and nitrogen (δ15N), percent carbon content, and percent nitrogen content were measured
using either a Thermo-Finnigan Delta Plus mass spectrometer (droppings and invertebrates)
or a Delta XP isotope-ratio mass spectrometer (sediment and microphytobenthos) interfaced
to an Elemental Analyzer via the Conflo II or Conflo III, respectively. Isotope values are pre-
sented relative to international measurement standards Vienna Peedee Belemnite (VPDB) and
atmospheric nitrogen for δ13C and δ15N, respectively. Stable-isotope values are expressed in
δ notation as deviation from the appropriate international measurement standard in parts per
thousand (‰).

A variety of secondary isotopic reference materials (SIRMs) were used to ensure that values
used in calibration spanned the range of expected values, and composition of unknowns. These
showed that instrument precision was 0.2 for δ13C, and 0.2 for δ15N (S1 Table). In addition,
31/308, or 10% of samples were run in duplicate yielding a mean SD of 0.1–0.2‰ for δ13C and
δ15N depending on sample type.

Microphytobenthos. Kuwae et al. [10] estimated that microphytobenthos comprised
7–11% of surface sediments but was consumed by Western Sandpipers at a minimum propor-
tion of 65%, suggesting Western Sandpipers may mechanically filter sediments to extract
microphytobenthos when feeding. In contrast, studies of bill and tongue morphology and
stomach content analysis suggest biofilm grazing may be unfiltered [15, 42]. Due to this uncer-
tainty, we chose to use the isotopic values of surface sediments without adjustment for selective
feeding on microphytobenthos, as a conservative estimate of biofilm contribution to Western
Sandpiper diet. To ensure our models provided conservative estimates, microphytobenthos iso-
tope values were plotted alongside those of droppings, small invertebrates, large polychaetes
and surface sediments. Based on visual inspection, the δ13C and δ 15N values of surface sedi-
ments and microphytobenthos were similar in both magnitude and direction from dropping
samples (Fig 2). This ensured that models run using isotopic values of surface sediments, re-
gardless of the proportion of microphytobenthos selectively extracted, provided a conservative
estimate of biofilm feeding in relation to other prey sources.

Stable Isotope Mixing Models. We used the Bayesian mixing model SIAR [46] in R 2.15.2
[47], to estimate the proportion of biofilm in Western Sandpiper droppings at each site. We as-
sumed diet-tissue isotopic discrimination between prey and droppings to be negligible [10].
Each model was run for 2 million iterations, with an initial discard of 50,000 iterations, and the
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remaining thinned by 15, resulting in 130,000 posterior draws to estimate the median and 95%
credibility intervals of each prey type’s contribution to Western Sandpipers’ diet. We ran sepa-
rate models for each of the eight sampling sites. Due to the high variance in polychaete C and
N isotopic values, we chose to pool our polychaete samples across all sampling sites to prevent
biases due to sites with low polychaete sample sizes (S2 Table). When the pooled values from
our study (n = 12, δ13C = -15.20 ± 2.95, δ15N = 12.51 ± 2.23) were compared to those of Kuwae
et al. [13] (n = 63, δ13C = -15.43 ± 1.57, δ15N = 12.01 ± 1.07) we found a difference of only 0.23
δ13C and 0.5 δ15N, less than 4%; suggesting that polychaete sample size did not significantly
impact the interpretation of our results. Variation in small invertebrate isotopic values was
comparatively low among sites and sample sizes were higher. We therefore pooled inverte-
brates within the three naturally delineated Wildlife Management Areas 1: Boundary Bay, 2:
Roberts Bank and 3: Sturgeon Bank.

To measure the similarity of the estimates of biofilm consumption by Western Sandpipers
between sites, we used the approach of Bond and Diamond [48], and calculated Bhattachar-
yya’s Coefficient (BC) for each pairwise comparison between sites. Mixing models produce re-
sults in a Dirichlet distribution (one whose components sum to 1), which can be compared
using Bhattacharyya’s Coefficient [49–51]. We used the 130,000 draws from SIAR to calculate
the median BC for each pair of sites. Like traditional measures of dietary overlap, such as Mori-
sita’s Index [52–53], BC values range from 0 (no overlap) to 1 (complete overlap), and values
of BC>0.60 are considered to represent significant overlap in diet [54–55].

Sandpiper Counts
During daily sample collection for isotope analysis, numbers of Western Sandpiper and Dunlin
in each site were estimated within three hours of the high tide. Experienced observers estimated
the size of flocks, by tallying the number of groups of 100 or 500 birds within each flock. This
method has an estimated error of approximately 20% [21]. The species composition of each
flock was estimated by tallying the number of individuals of Western Sandpiper and Dunlin
along visual transect lines through each flock, and multiplying the mean proportion of each
species by the total flock size.

Fig 2. Mean isotope values of δ13C and δ15N (± standard deviation) for microphytobenthos, small
invertebrates, large polychaetes, surface sediments (biofilm) andWestern Sandpiper droppings.
Samples were collected at eight study sites within the Fraser Estuary—Boundary Bay migratory stopover
location, 23 April–7 May 2012. 1:a Mud Bay, 1:b Boundary Bay East, 2:c Roberts Bank Inter-causeway, 2:d
Roberts Bank Brunswick Point, 2:e Roberts BankWestham Island, 3:f Sturgeon Bank South, 3:g Sturgeon
Bank North, and 3:h Sturgeon Bank Iona.

doi:10.1371/journal.pone.0124164.g002
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Results
The proportion of biofilm in Western Sandpiper diet varied spatially with the highest propor-
tions observed in Site 1:a Mud Bay, and Site 2:e Westham Island, and lowest proportions in
Area 3: Sturgeon Bank (Table 1, Fig 3). Variation in diet constituents was relatively low for
Area 1: Boundary Bay, Area 2: Roberts Bank and Site 3:f Sturgeon South (Table 1, Fig 3),
and higher at Sites 3:g Sturgeon North and 3:h Sturgeon Iona where sample sizes were limited
(S2 Table).

Diet composition of Western Sandpipers varied significantly between Areas 1: Boundary
Bay, 2: Roberts Bank and 3: Sturgeon Bank, but not between sites within each of these three
areas (Table 2). Diet composition in Site 1:a Mud Bay was significantly different from all three
Area 2: Roberts Bank sites but not from all three Area 3: Sturgeon Bank sites (Table 2). Diet

Table 1. Estimated contributions of surface sediments (biofilm), small invertebrates and large polychaetes in Western Sandpiper droppings
across the Fraser Estuary—Boundary Bay migratory stopover location, 23 April—1 May 2012.

Site Biofilm Small Invertebrates Polychaetes

Median 95% Cr.I. Median 95% Cr.I. Median 95% Cr.I.

1:a Mud Bay 51.7% 40.2–60.0% 40.7% 29.0–49.1% 6.7% 0.3–26.2%

1:b Boundary Bay East 46.1% 35.2–57.2% 19.7% 4.6–36.2% 34.2% 16.5–50.2%

2:c Roberts Bank Inter-causeway 36.4% 10.0–54.7% 15.0% 1.0–40.0% 48.1% 37.9–60.0%

2:d Roberts Bank Brunswick Point 37.7% 24.8–47.6% 13.7% 1.0–35.6% 48.2% 36.2–57.5%

2:e Roberts Bank Westham Island 50.2% 39.9–57.3% 8.6% 0.4–27.6% 40.6% 30.3–47.6%

3:f Sturgeon Bank South 22.8% 13.2–36.0% 74.4% 52.1–85.5% 2.8% 0.1–13.2%

3:g Sturgeon Bank North 35.9% 2.4–63.6% 55.9% 20.4–93.9% 6.4% 0.3–35.9%

3:h Sturgeon Bank Iona 27.9% 14.3–49.7% 63.7% 25.4–82.9% 7.8% 0.3–33.6%

Data are presented as the median of 130,000 posterior draws and 95% credibility intervals (Cr.I.), the Bayesian equivalent of confidence intervals

doi:10.1371/journal.pone.0124164.t001

Fig 3. Proportion of large polychaetes, small invertebrates and surface sediment (biofilm) in Western
Sandpiper diet based on dropping and prey samples collected during springmigration (23 April–7
May 2012). A three source mixing model of δ13C and δ15N was used for eight study sites within the Fraser
Estuary—Boundary Bay migratory stopover location: 1:a Mud Bay, 1:b Boundary Bay East, 2:c Roberts Ban:
Inter-causeway, 2:d Roberts Bank Brunswick Point, 2:e Roberts BankWestham Island, 3:f Sturgeon Bank
South, 3:g Sturgeon Bank North, and 3:h Sturgeon Bank Iona.

doi:10.1371/journal.pone.0124164.g003
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composition in Site 1:b Boundary Bay East was significantly different from all three Area 3:
Sturgeon Bank sites but did not differ significantly from the three Area 2: Roberts Bank sites
(Table 2). Diet composition at all three Area 3: Sturgeon Bank sites was significantly different
from all three Area 2: Roberts Bank sites (Table 2). The spatial variation in diet composition
(Table 1, Fig 3) suggests that Western Sandpipers in Site 1:a Mud Bay fed chiefly on biofilm
and, to a lesser extent, on small invertebrates, whereas Western Sandpipers in Sites 1:b Bound-
ary Bay East and Area 2 Roberts Bank fed chiefly on biofilm and large polychaetes, and those
in Area 3: Sturgeon Bank fed chiefly on small invertebrates and a smaller amount of biofilm.

Western Sandpiper and Dunlin were widely distributed in large numbers across the Fraser
Estuary and Boundary Bay during the study period. The highest counts were recorded at Site 2:
d Brunswick Point (Table 3), where 55% of all the Western Sandpipers detected were recorded;
17% were recorded in Area 3: Sturgeon Bank and 28% in Site 2:b Boundary Bay East. The pro-
portion of Western Sandpiper to Dunlin at Area 2: Roberts Bank sites (0.82) was consistently
higher than at Area 3: Sturgeon Bank sites (0.56) and Site 1:b Boundary Bay East (0.42). Site 1:a
Mud Bay had the highest proportion of Western Sandpiper (0.97; Fig 4). In all areas, Western
Sandpipers were observed using epifaunal feeding actions associated with biofilm consumption
[10, 13] and regular movements of shorebirds between and within the eight study sites and the
three larger areas were observed.

Table 2. Bhattacharyya’s Coefficient (BC) for pairwise comparisons of estimated diet of Western Sandpipers at study sites within the Fraser Estu-
ary—Boundary Baymigratory stopover location.

1:b 2:c 2:d 2:e 3:f 3:g 3:h Sturgeon Bank Iona

1:a Mud Bay 0.65 0.48 0.49 0.46 0.75 0.72 0.79

1:b Boundary Bay East – 0.88 0.91 0.89 0.36 0.52 0.59

2:c Roberts Bank Inter-causeway – 0.91 0.86 0.27 0.39 0.45

2:d Roberts Bank Brunswick Point – 0.89 0.27 0.39 0.45

2:e Roberts Bank Westham Island – 0.23 0.34 0.39

3:f Sturgeon Bank South – 0.72 0.78

3:g Sturgeon Bank North – 0.74

Higher BC indicates greater similarity in estimated diet, and BC >0.60 indicates significant similarity. Data are presented as the median BC of

130,000 iterations.

doi:10.1371/journal.pone.0124164.t002

Table 3. Average total counts, and average estimated proportions of Western Sandpiper (WESA) and Dunlin (DUNL) from ratios in sample flocks
within study sites in the Fraser Estuary—Boundary Baymigratory stopover location, 23 April–1 May 2012.

n Area WESA and DUNL Combined WESA DUNL UNID

4 1:b Boundary Bay East 62125 15436 24414 22275

3 1:b Boundary Bay East (partial count) 11133 5167 5967 0

1 1:a Mud Bay 11300 11000 300 0

7 2:d Roberts Bank Brunswick Point 102100 73741 19502 8857

1 2:c Roberts Bank Inter-causeway 33000 30000 3000 0

1 2:e Roberts Bank Westham Island 5000 4500 500 0

1 3:h Sturgeon Bank Iona 7000 3900 3100 0

5 3:g Sturgeon Bank North 5300 4410 4590 1700

3 3:f Sturgeon Bank South 29300 0 0 29300

Counts where species ratios were not taken are reported as undifferentiated Western Sandpiper and Dunlin (UNDI) not identified to species (optical

equipment, flocking behaviour or distance from observer precluded making species-specific estimate)

doi:10.1371/journal.pone.0124164.t003
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Discussion
Biofilm was estimated to comprise 22.8% (95% credibility interval 13.2–36.0%) to 53% (95%
credibility intervals 39.9–57.3%) of Western Sandpiper droppings, suggesting that it is an im-
portant dietary component throughout the stopover location. Given that droppings provide a
conservative estimate of biofilm grazing [10] and that we assumed grazing was unfiltered, the
values presented here likely under represent the true proportion of biofilm in Western Sand-
piper diet. Our study followed an established protocol for Western Sandpiper dropping collec-
tion [10], and care was taken in collecting dropping samples, however we feel a study of the
difference between droppings collected using this method and droppings collected directly
from birds is warranted to test the assumption that droppings are not influenced when collect-
ed from mud- and sandflat surfaces.

Regular movements of Western Sandpiper and Dunlin between sites and areas suggest that
birds have knowledge of food and habitat variation and make site selection decisions accord-
ingly. The proportion of biofilm, small invertebrates and polychaete worms in the diet differed
significantly between Site 1:a Mud Bay, Site 1:b Boundary Bay East, Area 2: Roberts Bank and
Area 3: Sturgeon Bank. Two non-mutually exclusive hypotheses exist that may explain this diet
heterogeneity: i) the diet composition in areas supporting the highest numbers of Western
Sandpipers is optimal and the population is operating under an ideal free distribution [56], and
ii) there are heterogeneous diet, behavioural or habitat requirements within sub-groups of the
species and birds are selecting sites that meet their individual needs.

The sites with the highest proportion of biofilm in the diet, Area 2: Roberts Bank and Site 1:
a Mud Bay either supported the greatest numbers of Western Sandpipers, or exhibited the

Fig 4. Average proportions of Western Sandpiper and Dunlin in all flocks of birds differentiated to
species, in study sites or areas that exhibited significant differences in diet composition. Site 1a: Mud
Bay (n = 1), Site 1b: Boundary Bay East (n = 6), Area 2: Roberts Bank (n = 8), and Area 3: Sturgeon Bank
(n = 3).

doi:10.1371/journal.pone.0124164.g004
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highest proportions of Western Sandpipers to Dunlin, suggesting that site use was related to
biofilm consumption. Analysis of bird density in comparison to biofilm abundance was not
possible here, as density per unit area does not necessarily correlate to density per unit biofilm.
The extent and density of biofilm varies spatially and temporally [14] yet efficient preliminary
methods to quantify biofilm abundance in the Fraser Estuary, using infrared photography
combined with sediment sampling, were only developed after the completion of our study [14].
When applied to Site 2:b Brunswick Point, these methods found that only 30% of the exposed
intertidal area supported a rich microphytobenthos community [14]. Because biofilm acts as a
major food source for the invertebrate communities on which shorebirds also prey [57], site se-
lection will be influenced both by the presence of biofilm and by the invertebrate communities
(meiofauna and macroinvertebrates) it supports. We collected samples from within 1 km of
the high tide line/salt marsh edge during the falling tide. If birds move to areas further from
shore during low tide periods of the tidal cycle, or in response to predation pressure, then diet
constituents may differ. Physical substrate properties throughout the stopover site may also dif-
ferentially impact the availability of prey resources [58] and therefore diet composition. These
are important factors when considering potential development options, since hydrological
changes may impact substrate composition, density or hardness.

Ideal free distribution theory assumes that all individuals have the same foraging prefer-
ences. Given that fattening rates of Western Sandpipers neither correlate to feeding strategy,
nor vary within stopover sites [59] and Western Sandpipers exhibit a progressive downward
shift in trophic position during northward migration, despite abundance of macrofaunal prey
[6–7, 60], an ideal diet composition may not exist for this species as a whole, and optimal
diet composition may be state-dependant [24–26]. A variety of factors may give rise to state-
dependant foraging habits. Migrating shorebirds must balance body condition with predation
risk: leaner birds utilize food-rich, but dangerous, habitats and heavier birds use safer areas
with lower food availability [24, 28, 43]. Age and migratory stage differences in digestive physi-
ology have been demonstrated for this species [61–63] and because of their large non-breeding
range [17], some Western Sandpipers undertake longer migratory journeys then others. West-
ern Sandpipers may also employ sex-specific feeding strategies [6, 26, 33, 64], leading to hetero-
geneous site use [65–67]. Female bills average 13% longer than males’ and male Western
Sandpipers use epifaunal (surface) feeding associated with biofilm grazing more often than fe-
males, who use infaunal (probing) feeding, despite equivalent prey abundance [29]. Latitudinal
separation in sex and size distribution across the non-breeding range [68–70] and site-based
sex bias between habitat types within the same latitudinal band [71] are established strategies
for this species. All these factors may lead to different utilization of food resources if different
sites or areas are optimal for the feeding strategies of different sub-groups based on migratory
distances, physiology, body condition, age and sex [7, 61].

Although we focused on spring migration, similar studies during the extended fall migratory
period are needed in order to understand the implications of diet heterogeneity and biofilm
feeding throughout the full life cycle of this species. Shorebirds have a generally high flexibility
of invertebrate prey species choice, and previous management regimes have focused on main-
taining wetland habitats and diverse invertebrate populations [72]. However, if shorebirds feed
extensively on biofilm during northward migration, or throughout the entire migratory cycle,
management strategies that maintain biofilm and invertebrate diversity may be required. Intra-
guild competition for biofilm resources [13] betweenWestern Sandpipers and the invertebrates
on which they feed, and interactions between the spatial organizations of invertebrates, bio-
films and shorebirds reinforce the need for this approach.

Biofilm feeding by vertebrates is a relatively recent discovery [10, 13]. Our results demon-
strated the widespread use of multiple areas within a stopover site by Western Sandpipers, and
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confirmed that substantial biofilm consumption occurs in each of these areas. Our finding that
Western Sandpiper diet composition varied significantly between sites concurs with a study of
Semipalmated Sandpipers (Calidris pusilla) in the Bay of Fundy [16] and has potential conser-
vation implications. Understanding whether heterogeneity in resource availability is necessary
to support all sub-groups of a population during migratory stopover, and whether shorebirds
demonstrate a preference for areas of high biofilm abundance and/or quality are important re-
search priorities [26]. The potential consequences of habitat change, both within the Fraser
Estuary—Boundary Bay system and at other major migratory stopover locations under similar
development pressures, warrant a comprehensive study of the factors influencing shorebird
site use to assess the relative importance of sites, to identify the potential impacts of infrastruc-
ture projects, and help guide responsible coastal development.
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