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ABSTRACT

The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed 
species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of 
farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) 
and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy 
(SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with 
significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic 
activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the 
number of CFUs, ie 1.3–4.2 log

10
 and 0.67–5.32 log

10
, respectively, for single and mixed species 

biofilms. SEM images confirmed these results, showing decreases in the number of cells in all 
biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the 
potential to reduce the formation of pathogenic biofilms.
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Introduction

Dental caries is considered to be the most common disease 

in humans, affecting 80–90% of the population in under-

developed countries (Petersen 2004). This pathology is 

characterized by physical and chemical processes of dem-

ineralization and remineralization on the tooth surface 

(Metwalli et al. 2013; Struzycka 2014) which are related to 

the capacity of bacteria to produce acids (Sookkhee et al. 

2001). However, several factors are involved in the emer-

gence and development of the disease, including microbial 

genetic, immunological, environmental interactions and 

diet among other factors (Struzycka 2014). Streptococcus 

mutans, a Gram-positive bacterium, is known as the prin-

cipal agent of dental caries (Broadbent et al. 2103). This 

microorganism lives in the human oral cavity and sur-

vives in environments with low pH (Metwalli et al. 2013). 

Moreover, acid production is the major virulence factor 

of this species (Metwalli et al. 2013).

Another important type of oral pathology is denture 

stomatitis (DS) which may affect up to 50–70% of complete 

denture wearers (Budtz-Jorgensen et al. 1996; Al-Dwairi 

2008). It is an inflammatory condition of the oral mucosal 

areas covered by dentures and has been associated with 

deficient denture hygiene, trauma, wearing dentures dur-

ing nocturnal sleep, immunosuppression and microbial 

colonization of dentures (Karaagaclioglu et al. 2008). The 

polymorphic fungus Candida albicans is the principal 

pathogen isolated in cases of DS (Sato et al. 1997).

Interestingly, S. mutans and other bacterial species 

may colonize denture surfaces and contribute to the 

development of DS (Karaagaclioglu et al. 2008). In addi-

tion, C. albicans may mediate the progression of carious 

lesions through interspecies interactions (Barbieri et al. 

2007; Jarosz et al. 2009). These microorganisms are found 

together in the oral cavity within biofilms and their asso-

ciation can result in more pathogenic biofilms. Biofilms 

are organized microbial communities adhered to live or 

inert surfaces and surrounded by an extracellular matrix 

produced by the cells (Costerton et al. 1999). Normally, 

these biofilms are resistant to conventional therapies 

(Talbot et al. 2006) and this fact has stimulated the search 

for alternative antimicrobial agents that may prevent bio-

film formation and the diseases associated with them. 

Quorum sensing (QS) molecules, for example, produced 

by Candida species have been used to combat the forma-

tion of pathogenic biofilms (Semighini et al. 2006). QS is a 

form of chemical communication among microorganisms 
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broth medium (Difco), incubated under static condi-

tions at 37°C for 18 h in 5% CO
2
, harvested by centrif-

ugation (8,000 rpm, 5 min) after the incubation period, 

washed twice in PBS and adjusted spectrophotometrically 

(640 nm) to 1 × 108 cells ml−1 in AS.

Preparation of farnesol

Farnesol (trans, trans-farnesol; Sigma-Aldrich) was pre-

pared in 7.5% methanol (v/v), and diluted in RPMI 1640 

(Sigma-Aldrich) medium, BHI broth or AS to achieve 

the desired concentrations for each assay. The minimum 

inhibitory concentration (MIC) for methanol was per-

formed and it was found that 7.5% methanol did not alter 

the growth of the strains tested.

MIC determination

The broth microdilution method was used to determine 

the minimum inhibitory concentrations (MICs) for farne-

sol, according to the Clinical and Laboratory Standards 

Institute M27-A2 document. Briefly, a stock solution of 

farnesol (300 mM) was geometrically diluted (2 to 1024 

times) in deionized water. Then, each farnesol concen-

tration was diluted (1:5) in RPMI 1640 and BHI broth 

respectively, for C. albicans ATCC 10231 and S. mutans 

ATCC 25175. Inocula of each strain were adjusted to the 

0.5 McFarland standard in 0.85% saline solution (0.5–2.5 

× 103 CFU ml−1 for C. albicans, and 1 × 105 CFU ml−1 

for S. mutans), diluted (1:5) in saline solution, and then 

subsequently diluted (1:20) in RPMI 1640 (for C. albicans 

ATCC 10231) or BHI broth (for S. mutans ATCC 25175). 

One hundred microliters of each microbial suspension 

were added into each well of 96-well microtiter plates 

(Costar, Tewksbury, MA, USA) pre-filled with 100 μl of 

each farnesol concentration and the plates were incubated 

at 37°C in 5% CO
2
. After 48 h, the MICs were visually 

determined. Chlorhexidine gluconate (CHG; Periogard, 

Colgate Palmolive Industrial Ltda, São Paulo, Brazil) was 

also included as a positive control. The MIC assay was 

repeated using three independent assays.

Single and mixed species biofilms formed in the 

presence of farnesol

Single and mixed species biofilms of C. albicans ATCC 

10231 and S. mutans ATCC 25175 were formed in the wells 

of 96-well microtiter plates (Costar). An aliquot of 200 μl 

of the standardized cell suspension (1 × 107 and 1 × 108 

cells ml−1 in AS for C. albicans and S. mutans, respectively) 

was added to the wells for single biofilms or 100 μl of each 

suspension (2 × 107 cells ml−1 of C. albicans plus 2 × 108 cells 

ml−1 of S. mutans) for mixed species biofilms. The plates 

of the same or different species, controlled by different 

chemical signals (Hense et al. 2007) and essential for 

the development of biofilms (Bandara et al. 2012). QS is 

responsible for mediating a wide variety of biofilm fea-

tures such as virulence, maturation, population density 

and antibiotic resistance (Bandara et al. 2012).

The first QS molecule isolated from C. albicans was 

the acyclic alcohol farnesol (Hornby et al. 2001). This 

molecule participates in the control of morphogenesis in 

C. albicans, blocking the transformation of yeast cells to 

hyphae (Ramage et al. 2002). Furthermore, it is mainly 

secreted by C. albicans and C. dubliniensis (Weber et al. 

2008). Although the literature indicates farnesol has a role 

as an anti-biofilm agent, to the authors’ knowledge, its 

effect on mixed species biofilms formed by C. albicans and 

S. mutans remains unclear. Thus, the aim of this study was 

to evaluate the effects of different concentrations of farne-

sol on single and mixed species biofilms of C. albicans and 

S. mutans through quantification of the total biomass and 

cultivable cells, and assessment of the metabolic activity 

of the biofilm cells. The hypothesis tested was that farne-

sol has an inhibitory effect on single and mixed species 

biofilms formed by C. albicans and S. mutans.

Materials and methods

Artificial saliva medium

Artificial saliva (AS) medium used in this study was pre-

pared according to Lamfon et al. (2003). Its composition 

per 1 l of deionized water is: 2 g of yeast extract, 5 g of 

peptone, 2  g of glucose, 1  g of mucin, 0.35  g of NaCl, 

0.2 g of CaCl
2
 and 0.2 g of KCl, all from Sigma-Aldrich (St 

Louis, MO, USA) as described by Monteiro et al. (2011). 

The pH was adjusted with NaOH to 6.8.

Strains and culture conditions

Two reference strains from the American Type Culture 

Collection (ATCC) were used in this study: C. albicans 

ATCC 10231 and S. mutans ATCC 25175. C. albicans 

ATCC 10231 was grown under agitation (120  rpm) at 

37°C for 18 (± 2) h in 10 ml of Sabouraud dextrose broth 

(SDB; Difco, Le Pont de Claix, France). Candida colo-

nies were then subcultured on Sabouraud dextrose agar 

medium (SDA; Difco) for 24  h. Next, yeast cells were 

harvested by centrifugation (8,000 rpm, 5 min), washed 

twice in phosphate buffered saline (PBS; pH 7, 0.1 M) and 

the cell concentration was adjusted to 1 × 107 cells ml−1 

in AS using an improved Neubauer chamber. S. mutans 

ATCC 25175 was subcultured on Brain Heart Infusion 

agar medium (BHI; Difco) at 37°C for 24 h in 5% CO
2
. 

Then, the bacterial cells were inoculated in 10 ml of BHI 
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were statically incubated in 5% CO
2
 at 37°C for 2 h to pro-

mote cell adhesion. Then, the AS medium was aspirated, 

and each well was washed once with 200 μl of PBS to remove 

non-adherent cells. Farnesol was diluted in AS to obtain 

final concentrations of 1.56, 3.12, 6.25, 12.5, 25, 50, 70, 150 

and 300 mM. These concentrations were based on the MIC 

value of S. mutans (1/4 MIC, 1/2 MIC, MIC, 2 × MIC, 4 × 

MIC and 8 × MIC, corresponding to 1.56, 3.12, 6.25, 12.5, 

25 and 50 mM respectively) and on the MIC value of C. 

albicans (~ 1/2 MIC, MIC and 2 × MIC, corresponding to 

70, 150 and 300 mM, respectively). Then, 200 μl of each 

dilution were inoculated into the wells and the plates were 

incubated for 48 h at 37°C in 5% CO
2
. The AS medium 

was renewed after 24 h. After the biofilm formation period 

(48 h), the medium was removed and the wells were rinsed 

once with 200 μl of PBS to remove the planktonic cells. 

CHG at 0.37 mM (50 × the MIC of Candida) was used as a 

positive control whilst the wells inoculated with AS devoid 

of farnesol were used as negative controls. All assays were 

performed independently and in triplicate.

Quantification of total biofilm biomass

The total biomass of single and mixed species biofilms 

exposed to farnesol was analyzed using the crystal violet 

(CV) staining method (Monteiro et al. 2011). The result-

ing biofilms were fixed with 200  μl of 99% methanol 

(Sigma-Aldrich). After contact for 15 min, the methanol 

was removed, the wells were dried at room temperature 

and then 200 μl of CV stain (1%, v/v) (Sigma-Aldrich) 

were added to the wells which were then incubated for 

5 min. The CV was withdrawn and the wells were washed 

once with 200  μl of deionized water. Lastly, 200  μl of 

acetic acid (33%, v/v) (Sigma-Aldrich) were added to 

each well to solubilize the stain. Absorbance was read at 

570 nm using a microtiter plate reader (Eon Microplate 

Spectrophotometer; Bio Tek, Winooski, VT, USA) and 

standardized in relation to the area of the wells (Abs cm−2).

Quantification of cultivable biofilm cells

The wells containing biofilms were scraped with PBS and 

vigorously vortexed for 1 min to disaggregate biofilm cells. 

Each biofilm cell suspension was serially diluted in PBS and 

plated on SDA (for the single species biofilm of C. albicans 

ATCC 10231) and BHI agar (for the single species biofilm 

of S. mutans ATCC 25175). For mixed species biofilms, 

the serial dilutions were plated on CHROMagar Candida 

(Difco) and BHI agar supplemented with 7  μg  ml−1 of 

amphotericin B (Sigma-Aldrich). After incubation at 37°C 

for 24–48  h, the total number of colony-forming units 

(CFUs) per unit area (log
10

 CFU cm−2) of each well was 

quantified.

Quantification of biofilm metabolic activity

The XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phe-

nylamino) carbonyl]-2H-tetrazolium hydroxide) (Sigma-

Aldrich) reduction assay (Hawser 1996, 1998) was used 

to determine the metabolic activity of single and mixed 

species biofilms of C. albicans ATCC 10231 and S. mutans 

ATCC 25175. After the biofilm formation period, the wells 

were washed once with PBS and incubated with 200 μl 

of a solution containing 150 mg XTT l−1 and 10 mg of 

phenazine methosulphate l−1 (Sigma-Aldrich) for 3 h in 

the dark, at 37°C under agitation (120 rpm). Absorbance 

values of XTT-formazan were measured at 490 nm and 

standardized per unit area of each well (absorbance cm−2). 

Wells containing AS without biofilms were used as blanks 

to measure background levels.

Structural analysis of biofilms

SEM was performed to visualize changes in the structure 

of biofilms exposed to farnesol. Single and mixed species 

biofilms of C. albicans ATCC 10231 and S. mutans ATCC 

25175 were formed in the wells of 24-well plates, initially 

adjusted to the cell concentration described above. After the 

cell adhesion period (2 h), farnesol was added to the wells at 

concentrations of 3.12 and 12.5 mM. In general, significant 

reductions in the number of CFUs were noted for biofilms 

exposed to 3.12 mM farnesol. Further, 12.5 mM farnesol 

behaved similarly to CHG. After biofilm formation (48 h), 

the wells were gently washed with PBS and the biofilms were 

dehydrated using an ethanol concentration series (70% for 

10 min, 95% for 10 min and 100% for 20 min), followed 

by air drying for 20 min (Silva et al. 2013). The bottom 

of the each well containing a biofilm was then cut with a 

flame sterilized scalpel blade (number 11, Solidor, Lamedid 

Commercial and Services Ltda, Barueri, Brazil). The bio-

films were then coated with gold and SEM analysis was 

performed (S-360 microscope, Leo, Cambridge, MA, USA).

Statistical analyses

SigmaPlot 12.0 software (Systat Software Inc., San Jose, 

CA, USA) was used for statistical analysis with a con-

fidence level of 95%. Assays passed on normality test 

(Shapiro–Wilk) and then parametric statistical analyses 

were conducted using one-way ANOVA followed by the 

post hoc Holm–Sidak test.

Results

MIC determination

Table 1 shows the values of MIC and MFC/MBC for the 

tested strains. S. mutans ATCC 25175 (MIC = 6.25 mM; 
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similarly to CHG, and the highest reduction (5.32 log
10

; 

p  <  0.001) was noted for the treatment using 70  mM 

farnesol. There was no growth for the group treated with 

farnesol at 300 mM.

Quantification of biofilm metabolic activity

The results of the evaluation of metabolic activity are 

shown in Figure 3. For single C. albicans ATCC 10231 bio-

films, farnesol in concentrations equal to or greater than 

1.56 mM significantly reduced (64–96%; p < 0.001) the 

metabolic activity of biofilm cells when compared to the 

negative control group. Interestingly, there were no dif-

ferences among the groups exposed to farnesol at concen-

trations equal to or greater than 6.25 mM. Furthermore, 

the greatest decrease (99.20%) in metabolic activity was 

observed for the group treated with CHG. Similar results 

were found for the mixed species biofilms. Exposure to 

farnesol at 1.56, 3.12, 6.25, 12.5, 25 and 50 mM resulted in 

significant decreases in metabolic activity of 80.15, 92.06, 

91.26, 94.4, 93.65 and 94.4%, respectively. Farnesol had 

no effect on S. mutans metabolic activity in single species 

biofilms.

Structural analysis of biofilms

Figure 4 shows that both farnesol at 12.5 mM and CHG 

changed the cell morphology of C. albicans ATCC 10231 

and reduced the number of cells for both microorganisms 

in single and mixed species biofilms. The micrographs 

suggest that the quantity of C. albicans ATCC 10231 cells 

was higher when in the presence of S. mutans ATCC 

25175, regardless of the farnesol concentration tested. It 

was also noted that there were fewer hyphae in the mixed 

species biofilms treated with farnesol compared to the 

negative control.

Discussion

C. albicans and S. mutans are important oral pathogens 

able to form biofilms on different surfaces which may 

favor the development of diseases such as caries and DS 

(Falsetta et al. 2014). Considering the resistance of these 

biofilms to conventional agents, anti-biofilm therapies 

based on QS molecules are being examined. In this con-

text, the major question in this study was whether the QS 

MBC = 6.25 mM) was more susceptible to farnesol than C. 

albicans ATCC 10231 (MIC = 150 mM; MFC = 300 mM). 

Moreover, the MIC and MFC/MBC values for CHG were 

about 800–20,000 times lower than those for farnesol.

Quantification of total biofilm biomass

The results of total biomass quantification of single and 

mixed species biofilms are shown in Figure 1. For single 

species biofilms of C. albicans ATCC 10231, farnesol at 

concentrations equal to or greater than 3.12 mM produced 

significant reductions in the total biomass, ranging from 

58.03 to 66.41%, compared to the negative controls. For 

S. mutans ATCC 25175 biofilms, all treatments resulted 

in significant reductions in total biomass compared to 

the negative controls, ranging from 80.48 to 90.24%. For 

the mixed species biofilms, treatment with farnesol at 

1.56, 3.12, 6.25, 12.5, 25 and 50 mM resulted in signif-

icant reductions in total biomass of 37.90, 76.47, 85.62, 

85.62, 83.33 and 80.76%, respectively. The treatments with 

farnesol at 6.25, 12.5 and 25 mM were more effective in 

decreasing total biomass than the treatment with CHG.

Quantification of biofilm cultivable cells

Treatment of C. albicans ATCC 10231 biofilms with farne-

sol at 6.25 mM or above significantly reduced (1.98–4.2 

log
10

) the number of CFUs, compared with the negative 

control (Figure 2). Treatment with concentrations of 

farnesol equal to or higher than 12.5 mM were similar 

to CHG. However, for C. albicans ATCC 10231 in mixed 

species biofilms, the effect of farnesol in the reduction of 

CFUs was dose-dependent, with the greatest decrease at 

150 mM farnesol (5.27 log
10

; p < 0.001) compared to the 

positive controls. Interestingly, 150 mM farnesol was more 

effective against C. albicans in mixed species biofilms than 

in single species biofilms.

Treatment of S. mutans ATCC 25175 biofilms with 

farnesol at 3.12, 6.25 and 12.5 resulted in significant reduc-

tions in the number of CFUs of 2.69 log
10

 (p < 0.001), 3.33 

log
10

 (p < 0.001) and 3.84 log
10

 (p < 0.001), respectively, 

compared to the negative control group. There was no 

growth with farnesol treatment at 25 mM or above. For 

S. mutans in mixed species biofilms, all farnesol con-

centrations significantly reduced the number of CFUs. 

Concentrations equal to or greater than 12.5 mM behaved 

Table 1. Minimum inhibitory concentrations (MiC), minimum fungicidal concentrations (MfC) and minimum bactericidal concentrations 
(MBC) of farnesol and chlorhexidine gluconate (CHg) against C. albicans and S. mutans.

Farnesol (mM) CHG (mM)

Species Strain MIC MFC/MBC MIC MFC/ MBC

C. albicans ATCC 10231 150 300 0.0074 0.0296

S. mutans ATCC 25175 6.25 6.25 0.0018 0.0074
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Figure 1. Average absorbances per cm2 obtained with the CV assay for total biomass of single and mixed C. albicans ATCC 10231 and S. 

mutans ATCC 25175 biofilms (48 h) developed in the presence of farnesol at 1.56, 3.12, 6.25, 12.5, 25 and 50 mM. nC = negative control 
(C. albicans and S. mutans biofilms without farnesol). PC = positive control (chlorhexidine gluconate at 0.37 mM). Error bars display SDs 
of the means. Different capital letters denote significant differences (p < 0.05; one-way AnoVA followed by the post hoc Holm–Sidak test) 
among the treatments for each isolated biofilm.

Figure 2. Mean values of the logarithm of colony forming units per cm2 (log
10

 Cfu cm−2) for single and mixed C. albicans ATCC 10231 
and S. mutans ATCC 25175 biofilms (48 h) developed in the presence of farnesol at 1.56, 3.12, 6.25, 12.5, 25, 50, 70, 150 and 300 mM. 
nC = negative control (C. albicans and S. mutans biofilms without farnesol). PC = positive control (chlorhexidine gluconate at 0.37 mM). 
Error bars display SDs of the means. Different capital letters denote significant differences (p < 0.05; one-way AnoVA followed by the post 

hoc Holm–Sidak test) among the treatments for each isolated biofilm.
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Figure 3. Average absorbances per cm2 obtained with the XTT reduction assay for single and mixed C. albicans ATCC 10231 and S. mutans 
ATCC 25175 biofilms (48 h) developed in the presence of farnesol at 1.56, 3.12, 6.25, 12.5, 25 and 50 mM. nC = negative control (C. 

albicans and S. mutans biofilms without farnesol). PC = positive control (chlorhexidine gluconate at 0.37 mM). Error bars display SDs of 
the means. Different capital letters denote significant differences (p < 0.05; one-way AnoVA followed by the post hoc Holm–Sidak test) 
among the treatments for each isolated biofilm.

Figure 4. SEM images of single and mixed C. albicans ATCC 10231 and S. mutans ATCC 25175 biofilms (48 h) developed in the presence 
of farnesol at 3.12 mM, nC = negative control (biofilms without farnesol). PC = positive control (chlorhexidine gluconate at 0.37 mM). 
Magnification: × 2,500 and × 5,000. Bars, 5 μm and 10 μm.
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mutans ATCC 25175 single species biofilms. Depending 

on the strain, XTT may not be absorbed and/or metab-

olized and, consequently, the stains are not detected by 

a spectrophotometer. This might have happened with S. 

mutans biofilms since, in single species culture, the values 

were very low and almost at the limit of detection Also, in 

mixed species biofilms, the values were almost the same 

as those for C. albicans, indicating that S. mutans cells 

may not have absorbed and/or metabolized XTT (Kuhn et 

al. 2003; Gobor et al. 2011), making comparison of these 

results difficult.

It is well known that farnesol blocks the conversion of 

yeast cells to hyphae in C. albicans (Langford et al. 2013; 

Piispanen et al. 2013), prevents cell adhesion and pro-

motes detachment of biofilms from some surfaces (Cerca 

et al. 2012; Nagy et al. 2014). These effects may explain 

the significant reductions in biomass found for C. albi-

cans ATCC 10231 in single and mixed species biofilms. As 

hyphae are larger structures which absorb greater amount 

of CV than yeast cells, the treatments with farnesol might 

have resulted in biofilms with lower numbers of hyphae 

than the untreated biofilms, therefore resulting in lower 

absorbance values (Figure 1). This was confirmed using 

SEM analysis (Figure 4). Moreover, these findings are con-

sistent with those found for XTT reduction (Figure 3), 

suggesting that the decreases in cell metabolism might 

have contributed to reducing the production of extracel-

lular matrix material. It is reported in the literature that for 

C. albicans, farnesol treatment may induce apoptosis and 

disordered mitochondria due to the presence of reactive 

oxygen species (Zhu et al. 2011) (Langford et al. 2009), 

change cell development (Uppuluri et al. 2007) and result 

in necrosis (Dumitru et al. 2007). These mechanisms of 

action might justify the significant reductions observed in 

the number of viable cells (Figure 2) and metabolic activ-

ity (Figure 3) for Candida biofilms treated with farnesol 

in this study.

SEM images also indicated that the treatments with 

farnesol (mainly at 12.5 mM) reduced biofilm formation 

in both species in single and mixed species cultures. SEM 

images of single species biofilms of S. mutans showed a 

reduction in the number of cells when treated with farne-

sol, while for mixed species biofilms this reduction is not 

as apparent, suggesting a decreased susceptibility to farne-

sol when C. albicans ATCC 10231 and S. mutans ATCC 

25175 are grown together.

For S. mutans ATCC 25175 in single and mixed species 

biofilms, in general, all treatments with farnesol promoted 

significant reductions in total biomass (Figure 1) and the 

number of viable cells (Figure 2). Although there was 

no significant reduction in metabolic activity (Figure 3), 

farnesol may have increased cell permeability in S. mutans 

and acted directly on the enzyme F-ATPase, reducing the 

molecule farnesol would be able to reduce both single 

and mixed species biofilm formation by C. albicans and 

S. mutans. The study hypothesis was partially confirmed 

because treatment with farnesol resulted in an inhibitory 

effect on single and mixed species biofilm formation, 

except for the metabolic activity of S. mutans in single 

species culture (Figure 3).

The MIC results (Table 1) showed that S. mutans 

ATCC 25175 was more susceptible to farnesol than C. 

albicans ATCC 10231. This finding is probably related to 

differences in the cell structure of the microorganisms 

tested. The presence of a thicker cell wall in C. albicans 

ATCC 10231 may have hindered the action of farnesol. 

Furthermore, the MIC values for farnesol in the current 

study are higher than those found in previous studies. 

Cordeiro et al. (2013) found values ranging from 18.75 

to 150 μM for C. albicans, while in the study of Koo et al. 

(2002) the MIC value for S. mutans was 125 μM. These 

differences may be due to the different dilution protocols 

used. In the studies of Cordeiro et al. (2013) and Koo 

et al. (2002), farnesol was diluted in dimethyl sulfoxide 

(DMSO)-ethanol and 30% DMSO, respectively. The effect 

of farnesol diluted in these compounds could have been 

enhanced against the microorganisms tested by these 

authors. Also, physiological differences between the tested 

strains may help explain the discrepancies between the 

MIC values found in the various studies.

On the other hand, the main objective of the present 

study was to assess the effect of farnesol on single and 

mixed species biofilm formation by C. albicans and S. 

mutans using assays for the quantification of total bio-

mass, the number of cultivable cells and metabolic activ-

ity. These methods are considered complementary, with 

specific advantages and disadvantages for each one. The 

CV assay comprises a simple and effective method to 

quantify the total biomass (cells and extracellular matrix). 

However, its limitation is that besides staining the extra-

cellular matrix, the CV assay also stains both living and 

dead cells (Monteiro et al. 2015). So, it cannot be used 

alone as a susceptibility test of the response of biofilm 

cells to antimicrobials. Although CFU quantification is 

an easy and inexpensive method, some viable cells are 

not culturable in agar medium (Monteiro et al. 2015). In 

turn, the XTT reduction assay is a sensitive method that 

eliminates the use of radioactive materials. However, the 

results from this assay do not always show correspondence 

with cell death (Monteiro et al. 2015).

The results of biofilm quantification indicated that, 

in general, farnesol concentrations equal to or greater 

than 1.56  mM produced significant reductions in total 

biomass (Figure 1), the number of viable cells (Figure 

2) and metabolic activity (Figure 3) in single and mixed 

species biofilms, except for the metabolic activity of S. 
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using farnesol with fluoride on dental caries (Falsetta et al. 

2012). Thus, the results of the present study should stim-

ulate the development of new antimicrobials or biomate-

rials containing farnesol in order to prevent oral diseases 

associated with biofilm formation such as candidiasis and 

tooth decay.
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