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Biofilms of Campylobacter concisus: a potential survival 
mechanism in the oral cavity 
Taghrid IstivanA,* and Mohsina HuqA,B  

ABSTRACT 

Campylobacter concisus, a member of the human’s oral microflora, is a Gram-negative, fastidious, 
microaerophilic bacterium. However, it is debatable whether it should be recognised as a 
commensal of the human oral cavity, or an opportunistic pathogen as it has been linked to 
oral and gastrointestinal infections. But there is no doubt that its biofilm-forming capacity has 
enhanced its survival mechanism whether as a commensal or a pathogen. Hence, through our 
investigation to assess C. concisus biofilms, we believe that its survival strategy in the oral cavity is 
enhanced by being protected in the biofilm environment with other oral microbes. Our 
hypothesis is supported by the findings that oral isolates of this bacterium possess a significantly 
higher biofilm forming capability than those isolated from the gastrointestinal tract.  

Keywords: biofilm formation, Campylobacter concisus, extracellular polymeric substances, 
hydrogen-requiring campylobacters, luxS gene. 

Association of Campylobacter concisus with the gastrointestinal 
tract 

Campylobacter concisus is a Gram-negative, microaerophilic and hydrogen-requiring 
fastidious bacterium, which is a motile, spiral or curved-shaped rod.1 C. concisus was 
first recognised and named as a member of the microflora of the human oral cavity in the 
early 1980s by Tanner et al.2 Since then, it has been isolated from gingivitis, periodonti-
tis, foot ulcers, gastritis, and from intestinal biopsies of patients with inflammatory bowel 
disease (IBD).3 It is likely that the human gastrointestinal tract is the sole reservoir for 
C. concisus, as it has no known primary animal host. But it is debatable whether it should 
be recognised as commensal of the human oral cavity or an opportunistic pathogen. 
Macuch and Tanner4 suggested that this bacterium colonises the oral cavity and is an 
opportunistic oral pathogen under certain medical conditions. The detection rate of 
C. concisus in permanent teeth was significantly higher than that of indeciduous teeth 
(P < 0.001).5,6 The prevalence of C. concisus in the healthy human oral cavity was also 
confirmed by PCR7,8 and by cultivation and culture-independent molecular methods such 
as 16S rRNA sequencing.9 The association of C. concisus with human periodontal diseases 
was well known since 1981,2,6,10 as antibody levels against C. concisus were found to be 
higher in periodontally diseased subjects compared to the healthy controls.11 Later on, it 
was reported to be associated with gingivitis and periodontal sites12 and was isolated 
from enlarged lesions of gingivitis.13 The association of C. concisus with periodontitis was 
also supported by significantly higher isolation rates when gingival crevicular fluid of 
patients was positive for aspartate aminotransferase (AST) compared to patients negative 
for AST in gingival crevicular fluid.14 

Biofilm formation by Campylobacter spp. 

Different Campylobacter spp., including C. jejuni and C. concisus are known to form 
biofilms,15–17 which are microbial communities enveloped within an extracellular poly-
meric matrix that provides protection from physical, environmental and biological 
stresses, to persist in a diverse range of ecological niches.18 In 2009, 14 Campylobacter 
species, both microaerophilic and hydrogen-requiring microaerophilic were tested on 
different surfaces such as glass, stainless steel, and polystyrene plastic for biofilm-forming 
ability. Of the eight microaerophilic Campylobacter species tested, C. jejuni, C. coli, 
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C. lari, C. upsaliensis, C. sputorum, C. hyointestinalis, 
C. helveticus and C. fetus, only C. jejuni strain 81–176 reli-
ably produced a visible biofilm on multiple surfaces. 
However, all six strains of the hydrogen-requiring micro-
aerophilic Campylobacter species including C. rectus, 
C. showae, C. mucosalis, C. concisus, C. curvus and C. gracilis 
reliably produced visible biofilms on multiple surfaces.17 

Furthermore, Sampathkumar et al.19 studied the transcrip-
tional and translational expression profiles of C. jejuni 
11168 biofilms. The proteomic analysis showed higher lev-
els of expression of proteins involved in the motility com-
plex, including the flagellins (FlaA, FlaB), the filament cap 
(FliD), the basal body (FlgG, FlgG2), and the chemotactic 
protein (CheA). Flagella and quorum-sensing (QS) are 
known to play important roles in biofilm formation. The 
inactivation of flaAB (flagella subunits) and luxS (responsi-
ble for QS) resulted in reduced biofilm formation. Hence, it 
was suggested that both flab and luxS are required for 
biofilm formation in C. jejuni.16 Since then, many research-
ers investigated the role of luxS and demonstrated that this 
gene is involved in a variety of physiologic pathways, motil-
ity, autoagglutination, cytolethal distending toxin (CDT) 
expression, flagellar expression, oxidative stress, and animal 
colonisation in C. jejuni.16,20–22 

Biofilm formation by hydrogen-requiring 
campylobacters 

In following studies, C. concisus and C. rectus were detected 
in four of seven patients (57%) with Barrett’s oesophagus 
(BO)23 when micro-colonies were detected in the form of 
mucosal biofilm in biopsy samples taken from those patients. 
This study was supported by the research conducted by 
Blackett et al.24, on oesophageal biofilms in patients with 
BO and gastro-oesophageal reflux disease (GORD), where 
C. concisus was the dominant species, therefore the authors 
suggested the emergence of C. concisus as the dominant 
species in the refluxed oesophagus. Moreover, C. concisus 

strains isolated from IBD patients, gastroenteritis and healthy 
individuals were reported to be capable of forming biofilms 
on glass coverslips.25 C. concisus has recently been reported 
to have been isolated from subgingival microbiota of indivi-
duals with HIV26 and from biofilms of the dental plaque.27 

Hence, biofilm formation by this bacterium being a fastidi-
ous oral cavity coloniser, is likely to be an important require-
ment for it to survive in this environment. However, to date, 
there has been no thorough investigation on C. concisus 
biofilm formation. 

Investigation of C. concisus biofilms formed 
by oral and clinical strains 

In the past few years, our research team focussed on the 
evaluation and characterisation of C. concisus biofilms. To 
assess the biofilm forming capability of strains isolated from 
different gastrointestinal tract sections, we tested 19 oral 
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Clinical and oral Campylobacter concisus isolates

Fig. 1. Crystal violet, biofim quantitative assay of 34 C. concisus strains. The oral strains were isolated 
from saliva of healthy persons and the intestinal strains were isolated from patients with gastritis. The 
oral isolates exhibited significant biofilm forming potential than clinical isolates (by Mann–Whitney test; 
P = 0.0354). C. concisus ATCC 51561 and 51562 were used as control strains. The results represent the 
mean values and standard errors of three independent experiments. Each experiment was performed 
three times independently and in biological–technical triplicates.    

Fig. 2. Biofilm complex produced by a C. concisus oral isolate 
observed at 400× magnification by phase contrast microscopy show-
ing the bacterial cells embedded within an extracellular material and 
cells evacuated interior portions of cell clusters, forming void spaces.  
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isolates collected from saliva samples of healthy volunteers at 
RMIT University, Melbourne, in addition to 14 intestinal 
clinical isolates previously collected using the Cape Town 
Protocol28 from children suffering from mild to severe bloody 
diarrhoea at the Royal Children’s Hospital, Melbourne.29 Two 
C. concisus reference strains (ATCC 51561 and ATCC 51562) 
were also characterised in our research. All intestinal and oral 
C. concisus isolates were screened for biofilm formation by 
the modified quantitative crystal violet assay.16 Among the 14 
intestinal isolates, only 11 produced biofilms at low to mod-
erate levels, whereas all tested oral isolates formed higher 
levels of biofilms (Fig. 1), indicating that the oral isolates 
are significantly more prolific biofilm producers than the 
clinical isolates (P < 0.05) including the two reference strains 
that also have a faecal origin. A possible explanation for 
forming more biofilm by the oral isolates could be an advan-
tageous trait within the oral cavity to escape from toxic oxy-
gen and other adverse conditions. In other studies, C. jejuni 
NCTC 11168 has been shown to develop biofilm more rapidly 
under environmental and food-chain-relevant aerobic condi-
tions (20% O2) than under microaerobic conditions (5% O2, 
10% CO2).30 

Microscopic observation of C. concisus 
biofilms 

We also conducted phenotypic characterisation of biofilms 
formed by selected oral and intestinal C. concisus strains, 
which included phase contrast microscopy, and confocal 
laser scanning microscopy (CLSM). Different morphological 
stages of biofilm formation (attachment, maturation and 
dispersion) were observed by phase contrast microscopy. 
Cell clusters were observed to undergo alterations in their 
structure due to the dispersion of bacterial cells from their 
interior within 96 h (Fig. 2). These bacterial cells were 
observed to swim away from the inner portions of the cell 
cluster. The ability of bacteria to swim freely within the void 
spaces as observed by microscopy indicated the absence of 
dense polymers or other gel-like material in the void space. 
Completely developed biofilms were observed by CLSM 
after 96 h, with a mixture of dead and live bacteria within 
the biofilm’s structure (Fig. 3). 

In conclusion, we have shown that the ability of C. con-
cisus to form biofilms is correlated with the source where it 
was collected from. Oral isolates comparatively produced 
higher biofilm levels in vitro than gut isolates, as only a few 
intestinal isolates could form good biofilms. This could be 

considered as a survival mechanism for the oral colonising 
bacterium in its normal habitat. Furthermore, C. concisus 
biofilms were observed to be complex matrices composed of 
live and dead cells embedded in an extracellular polymeric 
substance (EPS). Hence, expression of biofilm related genes 
in these oral and clinical isolates has currently been under-
taken by our research team. Further studies to evaluate the 
environmental effects on biofilm formation and the role of 
chemotaxis related genes in this mechanism are also in 
progress. 
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