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Cell motility is governed by a complex molecular machinery that converts physico-chemical cues into
whole-cell movement. Understanding the underlying biophysical mechanisms requires the ability

to measure physical quantities inside the cell in a simple, reproducible and preferably non-invasive
manner. To this end, we developed BioFlow, a computational mechano-imaging method and associated
software able to extract intracellular measurements including pressure, forces and velocity everywhere
inside freely moving cells in two and three dimensions with high spatial resolution in a non-invasive
manner. This is achieved by extracting the motion of intracellular material observed using fluorescence
microscopy, while simultaneously inferring the parameters of a given theoretical model of the cell
interior. We illustrate the power of BioFlow in the context of amoeboid cell migration, by modelling

the intracellular actin bulk flow of the parasite Entamoeba histolytica using fluid dynamics, and report
unique experimental measures that complement and extend both theoretical estimations and invasive
experimental measures. Thanks to its flexibility, BioFlow is easily adaptable to other theoretical models
of the cell, and alleviates the need for complex or invasive experimental conditions, thus constituting

a powerful tool-kit for mechano-biology studies. BioFlow is open-source and freely available via the Icy
software.

The ability of cells to define and alter their shape, maintain cell-cell contact, initiate and regulate movement
is central to numerous fundamental biological processes including development, microbial infection, immune
response, and cancer metastasis’. The mechanisms underlying cell shape and motility involve complex molecular
machinery that senses and translates both internal and external signals (mechanical and chemical) into physical
quantities. At the mechanical level, deciphering how cells deform and migrate requires a better understanding
of the biophysical quantities driving intracellular dynamics, including intracellular pressure, stiffness, viscosity
and forces?. Unfortunately, many of these quantities cannot be measured directly with current methodologies,
and are typically estimated using various indirect or invasive experimental approaches’. Many such methods
operate at the extracellular level, and typically involve interacting with the cell surface. This can be done either
actively, e.g. using micro-pipette aspiration®*, Atomic Force Microscopy® and micro-particle insertion®, or pas-
sively, e.g. using Traction Force Microscopy, where the cells freely interact with engineered substrates formed
either of micro-pillars of known properties’ or filled with fluorescent beads®°. At the intracellular level how-
ever, biophysical measurements remain scarce and limited by experimental constraints. Foreign particles can be
inserted inside the cell and tracked through video-microscopy in order to characterise intracellular dynamics
(Particle Tracking Velocimetry'® ). This technique generally requires controlled manipulation of the particles,
which is usually achieved via magnetic'? or optical'® tweezers. Unfortunately, these methods are highly localised
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and do not permit global measurements everywhere inside the cell with high spatial resolution. Moreover, for-
eign particles may compromise cell survival and are not thus suited for long-term experiments. Finally, extend-
ing these techniques to 3D environments poses considerable technical challenges and remains an area of active
investigation'®. A non-invasive alternative to these methods lies in Particle Image Velocimetry (PIV), a method to
extract the visual flow of information from time-lapse imaging data'®. PIV has notably been used to characterise
cytoplasmic streaming in migrating cells observed via live microscopy'®. Unfortunately, PIV is only able to extract
velocity measures, and suffers from an inherently low spatial resolution. Moreover, it is unable to capture the flow
of material leaving or entering the imaging plane in 2D (from above or below), which restricts its applicability.

In addition to experimental techniques, theoretical modelling has also been largely exploited to decipher
cell dynamics at the physical and mechanical levels!”-*°. Theoretical models usually describe a specific physico-
chemical process (or a subset thereof) with high precision, by considering the various constitutive elements of
the cytoskeleton, known molecular pathways, and experimental biophysical measurements (most of which are
obtained via the aforementioned techniques)?°-*2. Unfortunately, such models are usually tailored specifically to
the problem at hand, and are therefore uneasy to adapt or extend to other cell types, or experimental contexts,
where cell dynamics may drastically change?. Furthermore, the inability to measure biophysical quantities at the
intracellular level renders the validation of such models particularly challenging?"*> 2%, Recently, the appearance
of hybrid approaches exploiting image analysis and computational modelling have shown promising potential
in the inference (or validation) of biophysical models using video-microscopy data. For instance, single-cell
segmentation and tracking has been used to fit and validate theoretical models of cortical F-actin distribution
during cell reorientation®. Likewise, cytoplasmic streams estimated using PIV'® have been further exploited to
estimate the spatial distribution of intracellular shear stress and pressure using Monte-Carlo based computer
simulations®. An inherent restriction to these approaches however lies in the dependence of the modelling qual-
ity on the preliminary image analysis step (and potential limitations thereof). Also, as mentioned earlier, these
implementations are tailored specifically to the theoretical model being validated, and cannot easily be applied to
other theoretical models, dimensions or cell types.

Here we describe BioFlow, a user- and experimenter-friendly mechano-imaging method able to estimate bio-
physical quantities everywhere inside the cell in a non-invasive manner, in two or three dimensions, using live
cell imaging. This is achieved by combining two mathematical techniques in an integrated framework: (i) optical
flow?, an image processing method that extracts motion information from video sequences and overcomes sev-
eral limitations of PIV, and (ii) variational data assimilation, a highly-scalable mathematical framework designed
to infer the parameters of a given theoretical model based on a limited set of observations (also called realisations
of the model)?. In the present work, the theoretical model is chosen as a fluid dynamics model of the cell interior
comprising several quantities of interest (namely velocity, pressure, forces, and out-of-plane flow in 2D), while the
realisations of this model are represented by the motion of intracellular material captured via live microscopy. As
a result, the proposed method extracts motion information (i.e. intracellular velocity) from a video-microscopy
sequence using optical flow, under the constraint of the fluid dynamics model, thus jointly producing estimates
of the pressure, forces and out-of-plane flow (in 2D), everywhere inside the cell up to a single-pixel resolution.
This computational strategy offers a number of advantages over existing methods: 1) BioFlow is non-invasive
and relies exclusively on live microscopy data; 2) BioFlow produces high-resolution measurements everywhere
inside the cell in two or three dimensions; 3) BioFlow is independent of the experimental context and thus easily
adapts to other theoretical models, biological specimens and imaging techniques; 4) BioFlow is open-source and
available as a ready-to-use module for the Icy software?.

We illustrate and validate the efficacy of BioFlow in the context of amoeboid cell migration, by studying the
trophozoite stage of the unicellular parasite Entamoeba histolytica (the causative agent of human amoebiasis®),
characterised by the emission of local bulges or “blebs” at the cell surface, acto-myosin contraction forces, and
cytoplasmic streaming, typical features of amoeboid motility®!. We show that using a crude approximation of the
intracellular material (modelled as a viscous fluid), BioFlow is able to extract intracellular pressure, forces and
velocity everywhere inside cells migrating freely on a conventional substrate, and that these quantities corrobo-
rate and extend both theoretical and experimental reports. The versatility of the underlying framework confers
great potential on this technique for a wide range of biophysical studies, and thus constitutes a powerful addition
to the repertoire of bioimage informatics methods for mechano-imaging studies.

Results

BioFlow: theoretical framework. Optical flow methods are commonly applied to the kinematic analysis
of video sequences?. Their purpose is to estimate a displacement field representing the transport of information
(here pixel values) between consecutive image pairs. In the context of fluorescence microscopy sequences, the
fluorescence emitted by cellular structures is considered as the information that is transported (or advected) by
the cell material. The differences in pixel intensities between consecutive images is assumed to be the result of
only this advective transport (and not of a change in brightness), and the relation between two consecutive frames
can be expressed as

I(xX + WALt + At) = I(x, 1), (1)

where I is the image signal and %’ is the estimated velocity field that propagates the information in I over a small
time interval At. Assuming that the displacements in the scene are small and the imaging speed (or frame rate) is
fast, one can also write

(9[ — o
E'F(”'V)Ifo. 2)
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Furthermore, if the the spatio-temporal variations of the velocity field % are sufficiently small Equation 2 can
be integrated over a time interval At to find a linear relation between the pixel intensities of two consecutive

. . g —
images I, I, and the displacement field dx = u At:
—
VI - dx + (I, - I,) = 0. (3)

Finding dx isa classical inverse problem, and is usually solved within a variational framework, i.e. by finding
the minimum of a so-called cost (or energy) functional of the form

J(dX) = Jyua(dx) + (),
ha( ) = [ (VL d5 + (1, — )Y,

— — 2
() = 7 [ 1V x| d2

4)

where Q) represents the spatial domain where I is defined. It is worth noting that this formalism makes no assump-
tions about the dimensionality of the data and thus holds for both 2D and 3D image data. Jy,, is called a data
attachment term, and describes how well the displacement field matches the intensity changes between the two

consecutive images. This term is however not sufficient to find a unique solution for %), notably in the presence
of experimental (imaging) noise. To obtain uniqueness, a so-called regularisation term J,., (weighted by a
non-negative factor ) is generally added to impose a smoothness constraint on the estimated quantities.

A classical limitation of optical flow is that the smoothness constraint imposed on the estimated velocity field
is purely arbitrary and does not take the underlying transport mechanism into consideration. Here, we adapt and
extend the standard optical flow framework to bioimaging data using the theory of Optimal Control*. The gen-
eral idea is to constrain the estimated displacement by a theoretical model of the observable motion defined by a
number of so-called “state-control” variables ¢, which are estimated concomitantly. Formally, the minimisation
problem becomes the following:

— . — — . —
(¢, dx) = argmin(Jy,,(dx) + ]reg(c, dx)), subjectto A(c, dx) = 0. (5)

In other words, the goal is to match a dynamical observation (the temporally-varying image signal) with a
given theoretical model of the intracellular material, whilst jointly estimating its parameters (the biophysical
quantities of interest). This strategy offers two major improvements over existing image-based approaches. Firstly,
the regularisation term J., can be specifically tailored to the problem at hand, while eliminating the arbitrary
smoothness constraint that may not always hold experimentally. Secondly, solving this problem readily provides
estimates for the biophysical quantities that minimize the cost function, without the need for additional simula-
tions or model-fitting steps. This data assimilation strategy is particularly appealing since it is independent of the
state-control parameters or theoretical model chosen, and can therefore be applied to a wide range of analogous
problems in biology.

The proposed framework, able to extract biophysical parameters using optical flow and data assimilation, is
coined BioFlow, and is straightforward to implement experimentally as it requires only two inputs: 1) time-lapse
imaging data of intracellular dynamics (typically obtained by labelling the intracellular material with fluores-
cence), and 2) a theoretical model of the observable motion. In the remainder of this work we illustrate the use
of BioFlow to study amoeboid motility using a fluid dynamics approach, while we stress that this framework is
sufficiently generic and flexible to easily adapt to virtually any experimental context, given these two inputs.

Case study: modelling amoeboid motility using fluid dynamics. We applied BioFlow to study
amoeboid motility, taking as a model organism the parasite Entamoeba histolytica, the causative agent of human
amoebiasis, a disease still today characterised by substantial mortality and morbidity®. This unicellular parasite
is an appealing model from a biophysical standpoint thanks to its relative simplicity, notably due to the lack
of microtubules outside the nucleus® and apparent lack of intermediate filaments®. The cytoskeleton is there-
fore essentially formed of microfilaments, also known as actin filaments. During its obligatory amoeboid migra-
tion, the cytoplasmic material flows in the direction of motion, a feature common to many primitive cell types*>
36 as well as invasive cancer cells*’. This mode of migration differs from lamelipodium-based motility where
the actin turnover rather exhibits retrograde flow at the leading edge®®. Amoeboid migration is thought to be
driven by self-regulation of intracellular pressure and the emission of blebs at the cell surface®!, as reported using
micro-pipette aspiration experiments* as well as theoretical modelling?"-**%°. Here we ask whether BioFlow can
complement these studies by quantitatively characterising the intracellular velocities, pressure and forces driving
this flow.

Imaging data. We labelled actin with fluorescent Cytochalasin D (in conditions where the drug concentration
does not modify the motility of the cells, see Methods) and performed live 2D and 3D fluorescence microscopy
experiments (see Fig. 1 and Supplementary Movie S4). Cytochalasin D binds to the free barbed-end of actin
filaments*, and yields the appearance of short fluorescent filaments in suspension within the cytoplasm. The
observable motion of this actin bulk well describes that of the cytoplasm everywhere inside the cell during its
movement, and thus constitutes a good input for the algorithm.
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Figure 1. Overview of BioFlow. (a—c) BioFlow in 2D. (a) Two consecutive frames of a 2D time-lapse
microscopy sequence (see Supplementary Movie M1 for the full movie); scale bar: 10 um. (b) Cell contours
extracted from the first (black) and second (grey) frames, and streamlines of the extracted velocity field
(integrated using a Runge-Kutta 4-5 algorithm). (c) From left to right, estimated 2D intracellular pressure p
(Pa), out-of-plane flow r (s71), forces f (nN/um?) and velocity u (um/s). (d-f) BioFlow in 3D. (d) Axio-lateral
slices of two consecutive frames of a 3D time-lapse microscopy sequence. (e) Top row: 3D volume rendering of
(d); grid spacing 2 jum); Bottom row: Cell contours extracted from the first (black wireframe) and second (solid
mesh) frames. (f) From left to right, sliced view of the estimated 3D intracellular pressure, forces and velocity
(the velocity field is displayed as streamlines for better visualisation).

Theoretical model. 'We modelled the observable intracellular material as a single-phase homogeneous fluid,
neglecting for now the influence of organelles such as the nucleus and intracellular vesicles, following previous
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work'?. The dynamics of a single-phase fluid is governed by the Navier-Stokes equations. Two important figures
define the regime of solutions for these equations: the Reynolds number Re = pVL/p (p: density; V: velocity; L:
characteristic distance; p: viscosity) and the Mach number M = ¢/¢, (c: characteristic speed; c,: speed of sound).
The Reynolds number is very small in cells (of the order of 107°), implying that the flow is laminar and that both
the time-dependent and advection terms in the Navier-Stokes equations can be neglected. In other words, inertia
plays no role at the cell scale*!. The Mach number is small enough such that the fluid can be considered incom-
pressible. Finally, while the cytoplasm is generally considered visco-elastic rather than purely viscous, the elastic-
ity component essentially affects deformations at short (milisecond) time-scales, and therefore has a negligible
impact on whole-cell movements at longer (0.1 second) time-scales*2. Given these assumptions, the cell medium
can be considered as a Newtonian fluid governed by the Stokes equations:

Vp— uVPT =f inQ

V-u=0 in Q
W=y onI’ (6)

where ? are the local forces (per unit volume) acting on the cell medium and g’ is the boundary velocity at the
cell membrane. The first equation expresses the balance of all the forces acting on the fluid: the first term corre-
sponds to viscous drag (the laplacian acts as a neighbourhood averaging operator on the velocity, i.e. the fluid
elements drag each other), the second term is the pressure gradient (propagating local forces throughout the
fluid), and the third term accounts for the sum of all other forces, be they internal (e.g. contractility due to myosin
activity) or external (e.g. gravity). The second equation indicates that the flow is not divergent, or equivalently that
the fluid is incompressible and the mass is conserved. The third equation corresponds to the boundary condition
(Dirichlet conditions in the present case). This set of partial differential equations (PDEs) defines the candidate
model A in Equation 5. It is worth stressing that the model presented here simplifies the numerical complexity of
the problem, yet the proposed methodology is highly generic, and is easily adaptable to any fluid dynamics model
of the intracellular material.

BioFlow in 3D: general case. Given 3D imaging data and the aforementioned fluid dynamics model, BioFlow
is now able to recover the intracellular velocity, pressure and forces from the observable motion of intracellular
material by solving the following problem:

N
w, p,?, ? = argmin(]data(ﬁ)At) + ]reg(Y), ?)), subject to A(U), pfs ?) =0 (7

where

Vp— uVPT — f inQ

=
A, p.fL8) =1v. @ in Q
- =
u — g onl, (8)
and the regularisation term rewrites to
AN — 2 2
hol7 €)= [ IF 12 + 7 IVig I T, ©)

where o and v are non-negative empirical weights. In optical control terms, the velocity %" and pressure p describe

£
the state of the system, and are controlled by the force f and boundary condition g’ via A = 0. Solving this prob-
lem numerically (see Material & Methods) therefore produces estimates for these quantities simultaneously in the
entire intracellular domain. Again, we stress that this theoretical formulation can accommodate virtually any

model for the cellular material, by adjusting the constraint model A and the regularisation ]reg(T> , )

BioFlow in 2D: handling out-of-plane flow. While BioFlow was designed for the general case of 3D imaging data,
we recognise that live cell imaging in 3D may raise technical limitations, either by compromising cell viability due
to photo-toxicity, or by not fulfilling the requirement that the effective intracellular motion is small with respect
to the observation (imaging) speed. In case 2D imaging is preferred, conservation of mass between consecutive
images is no longer a valid assumption, due to the appearance and disappearance of intracellular material above
or below the imaging plane of focus. We therefore amended our model in 2D to compensate for this artefact. This
is achieved by introducing an additional term r that estimates the divergence of the observed flow. Under this
condition, the general problem to solve is

w, p,?, ?, r= argmin(]data(U)At) + ]reg(?, ?, 1)), subject to A(7, p,?, ?, r)=20 (10)

where the candidate model A becomes
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Figure 2. Temporal profile of intracellular quantities during amoeboid migration. Maximum (red line),
minimum (blue line) and average (green line) magnitude of the intracellular velocity, pressure and forces
measured over the whole cell (cf. Supplementary Movie S4). The black line represents the velocity of the cell
centroid, calculated via automated cell tracking. The dotted line (t=3.2s) corresponds to Fig. 1(a). The black
rectangle isolates a portion of the sequence surrounding a protrusion event (dashed line at t=9.6s), and is
further analysed in Fig. 3.

Vp— uVPT — f inQ

N
A(W,P,f,?>r): V~7*1’ in Q
7—? onl, (11)

while the functional needs to be regularised accordingly, i.e.:

— _ — 2 .2 2
Jeo €)= [ IF 172 + 7 § IS+ [ 1971 e, 1)

where 7) is a non-negative empirical weight. Note that || Vr|* could also be replaced by 72, should r be assumed to
be small. This new 2D problem is then numerically solved in the same way as the general 3D case (see Methods).
It is worth noticing that r is a measure of out-of-plane motion. Given that the fluid is considered incompressible,
and assuming that fluorescence does not degrade between consecutive images, the 2D motion cannot diverge
(Ou,/0x + Ou,/dy = 0) and thus r = —Ju,/Oz reflects the flow in the z-direction. In fact, the volume of fluid
leaving the imaging plane between two images is At f u, dQ), while the change in cell area is At fQ rdS). From a
Dynamical Systems perspective, the fact that this model does not heavily enforce the conservation of mass per-
mits the creation of velocity sinks and sources, instead of relying exclusively on saddle points. The out-of-plane
reformulation of the problem is illustrated in Figure S1 and Supplementary Movie S10.

Biophysical measurements inside the cell.  Figure 1 depicts the biophysical quantities (here veloci-
ties, pressure, forces, and out-of-plane flow in 2D) estimated from two consecutive images in 2D and 3D (cf.
Supplementary Movies S6 and S7). All quantities are estimated in each node of the underlying Finite Element
mesh (see Methods), which can be defined up to a single-pixel resolution (cf. Figure S2). By repeating this anal-
ysis over time (cf. Figs 2 and 6(b)), BioFlow enables a rich quantitative analysis of the intracellular dynamics in
both space and time. In the remainder of this work we illustrate the results in 2D for easier visualisation, not-
ing that measures obtained on both 2D and 3D datasets were found in good agreement both qualitatively and
quantitatively.
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Figure 3. Intracellular velocity, pressure and forces during cell protrusion. (a) Top row: snapshots of a 2D
video-microscopy sequence (see Supplementary Movie S4); Bottom: estimated intracellular velocity u (um/s),
pressure p (Pa) and force f (nN/um?) before (t=7.6), during (¢ =9.6s) and after (t=11.65s) protrusion,
respectively. (b—e) Velocity analysis during protrusion (t=9.65). (b) Magnitude of the vorticity v (s_!). The long
and short white dashed lines indicate cuts along the direction of protrusion and across the bleb, respectively. (c)
Vorticity profile (black: v; red: |v|) across the bleb. (d) Magnitude of the velocity u and its streamlines (white).
(e) Velocity profile across the bleb (black) and a second-degree polynomial fit (red). (f) Pressure values (Y-axis)
at several time points along the direction of protrusion (represented on the X-axis from cell rear to cell front);
the black line indicates the cell front before blebbing. (g) Pressure profiles along the direction of protrusion,
obtained on 2 different cells (colour separated) for 4 different protrusion events. (h) Sigmoid collapse of the
curves in (g). (i) PCA analysis and k-means clustering of the sigmoid parameters (4, b, ¢, d) (as defined in text)
obtained from (h). PC1 (X-axis) is a linear combination of mainly a and d, whereas PC2 (Y-axis) is a linear
combination of mainly b and c.

SCIENTIFICREPORTS|7:9178 | DOI:10.1038/541598-017-09240-y 7


http://S4

www.nature.com/scientificreports/

Pressure (Pa)
Speed (um/s)
Force (1072nN/um?)

15 20 25 30
Time (s)
@
°
@ |
S
o | @
S 24
© |
S
3 ol
< |
S
T o £ =
£° 23 £
S
o) | |
S || o ‘
i i |
o “
o
3 o |
) “I ‘”
)
« 7]
T o
31
2 1 o0 1 2 2 1 o0 1 2 2 1 0 1 2
Lag (s) Lag (s) Lag (s)
(b)
< E
S :
~ 1
R
=
= _
[
-
o
S
o
S 4
T
T T T
CCF(u,p) CCF(u,u) CCF(u,f)
©

Figure 4. Relative timing of intracellular force, pressure and velocity. (a) Estimated range (difference between
maximum and minimum across the cell) of the intracellular velocity (red), pressure (green) and force
magnitude (blue) for a single cell during a protrusion event. (b) Temporal cross-correlation diagrams between
u, p (left), u, u (middle), and u, f (right), representing the lag between quantities (given by the shift of the
maximum peak away from 0). (¢) Cumulated analysis of the cross-correlation shift over # =10 cells.

The pressure field p (Fig. 1(c)) exhibits a global gradient in the direction of migration, with higher pressure at
the rear of the cell and lower pressure at the cell front. Assuming a constant viscosity of 1 Pa s, the pressure values
are of the order of 1 to 10 Pascals, which is consistent with both theoretical simulations® and in agreement with
Darcy’s law (see Discussion).
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Figure 5. Periodicity in amoeboid migration. (a) Velocity range extracted from a single cell over time (red
line), and its partial Fourier decomposition (blue line), formed of the average speed (dashed line) and the two
most relevant frequency components (black lines). (b) Histogram of the associated periods extracted from 10
cells, and the associated sum of Gaussians fit (blue curves) obtained by nonlinear least-squares fitting. (c) Time-
aligned acceleration profiles along the direction of protrusion for two blebs of a same cell.

The divergence field r (Fig. 1(c)) represents out-of-plane flow. On the depicted image pair (see Supplementary
Movies S6 for better visualisation), r captures material leaving the plane of focus near the cell rear (blue area,
Ty = — 0.01 s~1), as well as material entering the plane of focus towards the cell front (red area, fe = 0.05 s,
A Fermi order estimation suggests that approximately 0.2 um’ of material leaves the focal plane at the cell rear,
and 0.5 pum?® flows into the focal plane at the cell front. It is worth noting that the integral of r over the entire cell is
positive (5 um?s~!), indicating that the visible cell area increases roughly 1 um?, although this does not imply a
change in overall cell volume.

The force field ? (Fig. 1(c)) is represented as an arrow-field indicating the magnitude and the direction of
intracellular forces. The sum of all intracellular forces (with the exception of the viscous drag and the pressure
gradient) has a magnitude in the order of the 0.1 to 1 nN/pm? and is therefore non-negligible when describing the
flow (as a reference, the cell depicted here has an area of 240 um?). While such intracellular force measurements
are unique and cannot be directly validated using experimental techniques, the estimated values fall well in range
with that obtained using traction-based approaches*~%°.

The velocity field U is represented as streamlines (Fig. 1(b)) and as an arrow field (Fig. 1(c)) indicating the
magnitude and direction of movement between the two consecutive frames. The streamline representation offers
a good indication of the direction of the flow (Fig. 1(b)), and well depicts cytoplasmic streaming in the direction
of migration, as expected for amoeboid migration. The flow also describes a global rotational movement stem-
ming from the rear (where the cell displays a slightly concentric motion, indicating contraction) and ending at the
front, where the fastest displacements take place. The instant velocity inside the cell has a magnitude in the order
of 1 to 10 um/s, and faithfully captures the observed movement of intracellular material. This was confirmed by
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Figure 6. Effect of Latranculin B on cell protrusion. (a) Two consecutive frames of a 2D time-lapse microscopy
sequence before (left, t1 and t2) and after (right, t3 and t4) addition of Latranculin B. (b) Estimated range
(difference between maximum and minimum across the cell) of the intracellular velocity, pressure and force
magnitude for the treated cell (LatB, black line) and 3 non-treated cells (W', coloured lines). Protrusion events
are marked by segments of the corresponding colour above the graph.

verifying that the average velocity over the cell (o fﬂ |%||dQ) was similar to that of the cell centroid

(s ]

Figure 2 presents the temporal evolution of the minimum (blue), maximum (red) and average (green) val-
ues for each quantity within a cell over time (cf. Supplementary Movie S5). A statistical analysis on 20 cells
yielded a maximum velocity, pressure range and force magnitude of 9.2 £ 3.8 um/s (mean, s.d.), 21.8 £ 6.3 Pa, and
0.52+0.70 nN/ um?, respectively. The maximum intracellular velocity is up to one order of magnitude larger than
the instant speed of the cell centroid (cf. Fig. 2, black curve), which is typical of cytoplasmic streaming.

, as illustrated in Fig. 2.

Single protrusion analysis. During amoeboid motility, the process driving bleb nucleation and subsequent cell
protrusion is thought to be powered by myosin, which is assumed to regulate hydrostatic pressure within the cell
by exerting contractile forces on the actin cortex lying beneath the plasma membrane® *.. Here we asked whether
the extracted quantities can give more insight into the underlying mechanism, by studying their spatio-temporal
profiles during natural (non-induced) protrusion events.

Figure 3(a) depicts the biophysical quantities extracted inside the cell before, during, and after protrusion
(cf. Fig. 2-black box and Supplementary Movie S5). Before bleb initiation (t=7.6s) the cell appears stable: the
pressure builds up while the velocity and forces remain small. At t=9.6s, a pressure gradient across the cell drives
the intracellular material inside the expanding bleb, which is reflected by the increase in velocity at the cell front.
After stabilisation of the flow (t = 11.6s), the pressure begins to equilibrate, while the cell body moves forward
with the help of an increased force.
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A detailed analysis of the velocity field during protrusion (Fig. 3(d)) reveals areas where the intracellular
material flows from rear to front in a rotating fashion. A vorticity analysis of the velocity field (3(b)) highlights
two vortices, one on each side of the bleb, where directions of rotation are opposite. The velocity profile across the
bleb (Fig. 3(b), short white line) is smooth and well describes a Poiseuille flow (typical of a viscous fluid flowing
through two static plates). This observation was validated by noticing that Poiseuille’s planar equation was able to
accurately recover the bleb width (data not shown). This evidence implies that the underlying cortex imposes a
no-slip boundary condition to the flow.

Figure 3(f) presents a time-diagram of the intracellular pressure profile measured along the direction of pro-
trusion (Fig. 3(d), long white line). It can be seen that the pressure first builds up from a steady-state, then sud-
denly drops (suggesting cortex breakage) and creates a decreasing gradient towards the cell front causing
intracellular material to flow forward, and stabilises again as the flow stops. Figure 3(g) depicts 4 consecutive
pressure profiles extracted over time from 2 different cells. The curves resemble a sigmoid-like shape, which is a
characteristic pattern of contraction*. Fitting a sigmoid to each curve yields an equation of the form
p=d+a(l+ e_h(s_c)), where s is the normalised arc length and (a, b, ¢, d) are the sigmoid parameters. By
transforming the sigmoid into a linear model, i.e.c — In(a/(p — d) — 1)/b, all curves can be collapsed into the
same unitary line (Fig. 3(h)), thereby verifying the sigmoid hypothesis. Strikingly, the parameter space (a, b, ¢, d)
is able to capture both inter-cellular and intracellular variations (Fig. 3(i)). The 2 cells can be distinguished using
(a, d). These parameters describe the amplitude range and the height of the sigmoid and thus reflect the ability of
each cell to generate pressure. Conversely, (b, c) are able to distinguish different protrusion events of the same cell.
These parameters characterise the spatial geometry of the sigmoid (its slope and position) and therefore reflect
the length and position of the protrusion.

Strikingly, the estimated force field f (Fig. 3(a)) seems to have a low overall magnitude during pressure
build-up and cytoplasmic streaming, and only increases during the retraction phase, where it localises mostly at
the rear of the cell. These observations suggests that the pressure gradient alone is sufficient to initiate cytoplas-
mic streaming, while cell retraction is not due to the pressure gradient per se, but rather hints at a myosin-based
mechanism. We further investigated the timing and potential causality between pressure, velocity and forces
during protrusion, by performing a correlative analysis over time (Fig. 4). We first plotted the difference between
maximum and minimum values (i.e. range) for pressure, velocity and forces over the course of a video sequence,
and applied a low-pass Butterworth filter*” to eliminate spurious small scale fluctuations while preserving the
magnitude of the original curve (Fig. 4(a)). We then calculated the pairwise cross-correlation function (CCF)
between quantities (Fig. 4(b)) and measured the time lag where the correlation is highest. This analysis was
repeated on n =10 cells (Fig. 4(c)) and shows that pressure precedes velocity by 1.1 & 1.7s (mean +s.d.) and that
velocity precedes force by 0.9 & 1.2s, thus further supporting the hypothesis that pressure drives cell expansion
while myosin forces drive cell retraction.

Periodicity in amoeboid migration. A visually striking feature of Entamoeba histolytica migration is the appar-
ent periodicity of protrusions (see Figs 2 and 4(a) and Supplementary Movie S4). Previous experiments using
micro-pipette aspiration pointed to a periodicity of 8 seconds between protrusion events?, but such a measure
could not be confirmed in a non-invasive setting. We therefore asked whether BioFlow could allow recovering
such a periodicity based on the temporal profiles (Fig. 5). To do so, we analysed the Fourier spectrum of the
range of the velocity curve (Fig. 5(a)). Note that a similar analysis could be obtained with the pressure or force
profiles, given that all curves are coherent). In this example, the two major cosine functions (in black) that form
the experimental measure (in red) have a period of 8.1s and 3.6s respectively. The blue curve represents the sum
of these functions (added to the mean of the original signal), and faithfully reproduces the general patterns of
the original signal. We then calculated the density distribution of the two periods by repeating this analysis for
n=10 cells (Fig. 5(b)), and obtained two distinct periods of 4.6 £ 1.1s (mean £ s.d.) and 7.9 & 0.4s (Non-linear
least-squares fitting residual error: 0.03). It is worth pointing out that the longest peak well matches the periodic-
ity obtained using invasive techniques, although it is only visually perceptible in few of the analysed videos (e.g.
visible in Supplementary Movie S4, but not in Supplementary Movie S8), thereby demonstrating the robustness
of the method.

Most interestingly, the shorter period of 4.6s, which is not visually perceptible, describes a more subtle pro-
cess underlying amoeboid migration. To further highlight this period, we first calculated the average velocity
over time across the bleb (i.e. along the line joining the two surrounding vortices, cf. Fig. 3(b)-short white line)
and then calculated the corresponding acceleration (i.e. the difference in average velocity between frames). We
repeated this analysis on two different protrusion events and superimposed the curves in Fig. 5(c). It can be seen
that the intracellular material first accelerates as the pressure gradient establishes, then decelerates as this gradient
fades. This cycle takes 3 to 5 seconds, which is well captured by the periodicity analysis, and seems to describe
the characteristic time of the cytoplasmic streaming. The higher variance measured for the shorter period may
indicate a dependence on protrusion size, which would take longer to fill with cytoplasmic material, given that the
streaming velocity is globally homogeneous across cells.

Importance of actin dynamics on intracellular flow. We challenged the experimental model by adding 100 nM of
Latranculin B in the medium to halt actin polymerisation, and measured the biophysical quantities immediately
a