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Abstract: Biofortification through plant breeding is a sustainable approach to improve the nutritional
profile of food crops. The majority of the world’s population depends on staple food crops; however,
most are low in key micronutrients. Biofortification to improve the nutritional profile of pulse crops
has increased importance in many breeding programs in the past decade. The key micronutrients
targeted have been iron, zinc, selenium, iodine, carotenoids, and folates. In recent years, several
biofortified pulse crops including common beans and lentils have been released by HarvestPlus with
global partners in developing countries, which has helped in overcoming micronutrient deficiency in
the target population. This review will focus on recent research advances and future strategies for the
biofortification of pulse crops.
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1. Introduction

Micronutrients, iron (Fe), zinc (Zn), selenium (Se), iodine (I), carotenoids, and folates are essential
nutrients required for human growth and development, as these contribute to various metabolic
functions in human. The majority of the world’s population depends on plant-based foods which
are often low in key micronutrients [1], and do not meet the recommended daily allowances (RDA).
Micronutrient malnutrition is commonly known as “hidden hunger” and affects one in three people
worldwide [2]. Micronutrient deficiencies may lead to serious illnesses such as poor growth, intellectual
impairments, perinatal complications, and increased risk of morbidity and mortality [3]. Further, they
aggravate infectious and chronic diseases including osteoporosis osteomalacia, thyroid deficiency,
colorectal cancer, and cardiovascular diseases and thus greatly impact quality of life [4].

Deficiencies of Fe, Zn, folic acid, and β-carotene are global issues, but they are more predominant
in Asian, African, and Latin American countries and affect more than two billion people [4,5].
Micronutrient deficiency and undernourishment of pregnant mothers affects nearly 50% of the world’s
population, potentially leading to intrauterine growth restriction, low birth weight, protein-energy
malnutrition, and chronic energy deficit [6]. Though rates are higher in Africa and Asia, deficiencies
of the four common micronutrients, Fe, I, Zn, and vitamin A, alone are responsible for about 12% of
deaths globally among children under 5 years of age [6].

Food crops rich in nutrients could address deficiencies of micronutrients and thus provide a
sustainable solution to global health issues [7]. Peas (Pisum sativum L.), chickpeas (Cicer arietinum L.),
lentils (Lens culinaris Medik.), common beans (Phaseolus vulgaris L.), and mungbeans (Vigna radiate L.)
are major pulse crops grown worldwide [8]. They are great sources of dietary proteins, complex
carbohydrates, vitamins, and minerals required for human nutrition [9–15]. Pulse crops are used in
traditional diets of people in many parts of the world since they are rich in proteins and amino acid
and are slowly digestible carbohydrates [8,9,16]. They are easily available to all groups of people
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on a regular basis and provide the least expensive source of proteins and micronutrients [17]. Pulse
consumption has been increasing owing to their health and environmental benefits [18].

Micronutrient malnutrition has received increased attention in recent decades at a global level
and efforts have been made to combat them by various strategies such as increased food production,
supplementation, food fortification, and biofortification. Biofortification, enriching the nutritional
quality of food crop using either conventional plant breeding or modern biotechnology, is a balanced
approach to overcome mineral deficiencies [19–22]. Biofortification through plant breeding to improve
the nutritional profile of pulse crops has gained momentum in the past decade. In this regard, several
studies in pulse crops have identified genetic variation for the key micronutrients in the available gene
pools, with promising breeding lines being used in breeding, and associated genotypic markers for
marker assisted selection [11–13,23–30]. This review will focus on recent research advances for the
improvement of key micronutrients, Fe, Zn, Se, I, carotenoids, and folates in pulse crops. This review
will also discuss challenges and future strategies for the biofortification of pulse crops.

2. Key Micronutrients

2.1. Iron

Iron (Fe) is indispensable for living organisms and vital for various metabolic processes such
as electron transport and deoxyribonucleic acid synthesis [31]. In the human body, Fe is required
for the synthesis of oxygen transport proteins (hemoglobin and myoglobin) and enzymes involved
in electron transfer and oxidation-reductions [32,33]. In hemoglobin, it serves as a transporter of
oxygen from the lungs to the tissues. According to the Food and Nutrition Board of the Institute of
Medicine, National Academy of Sciences, the RDA of Fe is 8 mg/day for adult males and 18 mg/day for
females (https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx). Iron deficiency
is considered the most predominant among various micronutrient deficiencies and the major contributor
of anemia and affects more than two billion individuals globally [34,35]. It can cause loss of energy,
dizziness, and poor pregnancy outcomes such as premature births, low birth weight babies, delayed
growth and development in infants, and poor cognitive skills [3,36,37].

2.2. Zinc

Zn is an another important mineral required by humans and is involved in many biological
functions, such as improving wound healing by its involvement in membrane signaling systems in cell
growth and proliferation [38,39], protecting cells from oxidative damage by quenching reactive oxygen
species [40,41], and reducing risk of various cancers including prostate and pancreatic [42]. The RDA
for Zn is 11 mg/day for adult males and 8 mg/day for adult females (https://ods.od.nih.gov/Health_
Information/Dietary_Reference_Intakes.aspx). Deficiency of Zn has many consequences including a
weak immune system, recurrent infections, mental illness, and retarded growth and fertility [43]. It
plays an important role in cell division; it thus significantly affects pregnant women.

2.3. Selenium

Se, an essential micronutrient, is required for growth and development and protects the human
body against infection, oxidative stress, and progression of cancer [44–47]. The RDI for Se is 55µg/day for
both males and females (https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx).
In humans, Se deficiency is associated with several diseases, such as Keshan, Keshin-Beck, and
myxedematous cretinism [48].

2.4. Iodine

Iodine is a vital constituent of the thyroid hormones, thyroxine (T4), and triiodothyronine
(T3) and essential for normal growth, development, and metabolism. According to the Food and
Nutrition Board, Institute of Medicine, the RDI for I is 150 µg/day for both adult males and females
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(https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx). Deficiency of iodine
causes hypothyroidism, goiter, cretinism, mental retardation, and reduced fertility and is accountable
for increased prenatal death and infant mortality [49–51]. Deficiency during pregnancy can cause
cognitive impairment in the offspring as it is critical for brain development [52,53].

Deficiency of iodine in human populations is different from other micronutrients as it is
predominant in developing as well as developed countries [54–56]. This could be due to the low
concentration of this mineral in agricultural soils and cereal-based foods [55].

2.5. Carotenoids

Carotenoids are natural pigments produced by plants. Plant-derived foods are sources of carotenoids
as humans and animals cannot synthesize carotenoids [57]. Carotenoids act as important antioxidants
in the human body and play a key role in various physiological processes. Overall, more than 600
carotenoids are known. Lutein and zeaxanthin prevent age-related macular degeneration [57,58]. Lutein
reduces the risk of cataracts and is associated with cardiovascular disease prevention [59,60]. Vitamin
A is important for normal vision, bone growth, and cell division in mammals [61]. β-Cryptoxanthin
stimulates osteoblastic bone formation and inhibits osteoclastic bone resorption [62], therefore playing
an important role in bone formation. Carotenoids have strong cancer-fighting properties [63] and
protect cellular organelles from oxidative damage by efficiently scavenging free radicals generated
during various metabolic processes [64,65]. Carotenoids are considered as Fe absorption promoters as
these improve human Fe bioavailability from plant-based foods [7]. For example, improvement of Fe
status was reported in the Venezuelan population after the addition of vitamin A in their food [66,67].

2.6. Folates

Folates are B9 vitamins and act as cofactors in various metabolic functions such as nucleotide
biosynthesis and amino acid metabolism in the human body [68,69], and are therefore required for
human growth and development. In plants, folates are important for biosynthesis of biomolecules
including lignin, alkaloids, and chlorophyll [70]. Humans are dependent on plant and/or animal-based
food sources as they cannot synthesize folates [69,71]. Deficiency of folates has been associated
with greater risk of various chronic diseases, such as neural tube defects [72], impaired cognitive
function [73], Alzheimer’s disease [74], cardiovascular diseases [75], and certain types of cancers [76].
Folate-rich diets are highly recommended during pregnancy as these effectively reduce the risk of
neural tube defects in newborns [77]. Insufficient folate intake during pregnancy increases the risk
of pre-term delivery and fetal growth retardation [78]. Wallock et al. [79] observed a correlation
between seminal plasma folate with blood plasma folate; hence, folates are also important for human
reproductive health [80].

3. Approaches for Improvement of Nutritional Profile

Dietary diversification, food supplements, food fortification, and biofortification are different
approaches used for improvement of the nutritional profile of crops to tackle micronutrient deficiency.

3.1. Dietary Diversification

Dietary diversification is a food-based strategy that involves consuming a wide range of different
foods, especially different plant based foods such as vegetables, fruits, and whole grains. Dietary
diversification also uses strategies at the household level, such as preparation of food that involves
soaking, fermentation, and germination, as these enhance micronutrient content and bioavailability [81].
Fruits and vegetables rich in promoter substances (ascorbate and β-carotene) that increase mineral
absorption should be taken along with a reduced intake of foods rich in anti-nutrients (phytic acid and
polyphenols), which inhibit mineral absorption. For example, for iron improvement, foods rich in
ascorbic acid (Fe absorption promoter) should be consumed [82,83]. Germination and fermentation can
improve iron bioavailability, as these methods increase the activity of phytase enzymes that hydrolyze
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phytic acid in whole grain cereals and legumes [84]. Levels of folates in diets can be improved by the
consumption of naturally folate-rich foods [85] or sprouted seed [86].

3.2. Food Supplements

Food supplements are micronutrients consumed in the form of pills, powders, and solutions
when diets alone cannot provide an adequate amount of nutrition. Supplementation can be used as a
short-term method to improve nutritional health and may be unsustainable for large populations. For
example, improvement of folate levels in diets was achieved by the use of folic acid supplements [85,87].
Further, this method had some success with vitamin A and zinc supplementation [88]. Folic acid, iron,
and zinc supplements have been helpful for children and pregnant women; however, this method is not
cost-effective, especially for low-income consumers [3,89]. Supplementation is a relatively cost-effective
method, but may not solve the root cause of micronutrient deficiencies. Supplements for folic acid,
zinc, and iron could show different physiological responses and absorption than consuming them in
food [3]. Supplementation requires access to medical centers, adequate educational programs, and
management of supplies vs. demand, with adequate storage facilities [3,90]. These are manageable in
developed countries, but not in rural populations and/or those of developing countries who have little
access to these facilities.

3.3. Food Fortification

Fortification is the addition of essential micronutrients including vitamins and minerals to foods to
improve their nutritional quality. Several food assistance programs by the World Food Program (WFP)
are in place using partially pre-cooked and milled cereals and pulses fortified with micronutrients to
overcome nutritional deficiencies and provide health benefits with nominal risk. For food fortification
with iron, ferrous sulfate, ferrous fumarate, ferric pyrophosphate, and electrolytic iron powder
compounds are commonly used [91]. Similarly, food can be fortified with folic acid to improve levels
of folates in diets [85,87]. Salt iodization (fortification with iodine) was successfully achieved to reduce
the incidence of goiter [92].

3.4. Biofortification

Biofortification is a process of improvement of nutritional profile of plant-based foods through
agronomic interventions, genetic engineering, and conventional plant breeding (Figure 1).

Figure 1. Different approaches of biofortification for improvement of nutritional profile.
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3.4.1. Agronomic Approaches

Biofortification through agronomic approaches can be achieved by applying mineral fertilizers to
the soil, foliar fertilization [93], and soil inoculation with beneficial microorganisms (http://www.fao.
org/agriculture/crops/).

Mineral Fertilizer

Mineral fertilizers are inorganic substances containing essential minerals and can be applied to the
soil to improve the micronutrient status of soil and thus plant quality. The phytoavailability of minerals
in the soil is often low; thus, to improve the concentration of minerals in the edible plant tissues, the
application of mineral fertilizers with improved solubility and mobility of the minerals is required [93].
This method can be used to fortify plants with mineral elements, but not organic nutrients, such as
vitamins, which are synthesized by the plant itself. This method was successfully implemented for Se,
I, and Zn, as these elements had good mobility in the soil as well as in the plant [93–96]. For example,
supplementation of inorganic fertilizers with sodium selenate significantly increased Se concentration
in various food items, fruits, vegetables, cereals, meat, dairy products, eggs, and fish in Finland [97,98].
Thus, supplementation of fertilizers with sodium selenate proved to be an effective way to increase Se
intake in the human population [99]. Similarly, plants were successfully enriched with I and Zn in
China and Thailand using inorganic fertilizers, respectively [100]. However, Fe fertilization was not
successful due to a low mobility of Fe in soil [101]. The concentration of Zn was increased in field pea
grains by either soil application of Zn fertilizer alone or combined with foliar treatments; thus, these
methods could be potentially used for the biofortification of field peas [102].

The fertilization strategy for biofortification typically requires regular applications, which could
become harmful for environmental health and may limit the availability of other minerals [93,100,103].
Further, soil composition in the specific geographical location, differences in mineral mobility, and the
potential of antinutrient compounds limiting mineral bioavailability are also constraints for successful
application of this strategy [104,105].

Foliar Fertilization

Foliar fertilization is the application of fertilizers directly to the leaves. It could be successful
when mineral elements are not available immediately in the soil or not readily translocated to edible
tissues [93,106]. Pulse crops were biofortified with micronutrients, Fe, Zn, and Se, through foliar
application in various studies that resulted in increased levels of these micronutrients in the harvested
grain. Márquez-Quiroz et al. [107] reported increased concentration of Fe (29–32%) in seeds of cowpeas.
Ali et al. [108] reported increased Fe concentration (46%) in mungbeans upon foliar application of Fe.
Similarly, foliar application of Fe and Zn significantly increased the concentration of these minerals
along with protein in seeds of cowpeas [109] and chickpeas [110].

Shivay et al. [111] observed a correlation between Zn uptake and the grain yield of chickpeas
following foliar application of Zn, and reported that this approach was better than soil application.
Similarly, Hidoto et al. [112] evaluated the effects of three Zn fertilization strategies on five varieties of
chickpeas and observed that foliar application was an effective method for Zn biofortification with a
greater accumulation of Zn in grain compared to soil application and seed priming. Foliar application
of Zn fertilizer for Zn biofortification was also reported in common beans [113–115] and field peas [102].

Increased concentration of Se was reported in seeds of peas [116], chickpeas [117], common
beans [118], and lentils [119] upon foliar application of Se fertilizers. Further, increased concentration
of I was observed in various crops by foliar application, and this could prevent I deficiency in human
populations with low dietary I intake [55].

http://www.fao.org/agriculture/crops/
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Plant Growth Promoting Microorganisms

Rhizobia, mycorrhizal fungi, actinomycetes, and diazotrophic bacteria are beneficial soil
microorganisms associated with plant roots by symbiotic association, and these protect plants by
various methods such as promotion of nutrient mineralization and availability and production of
plant growth hormones [120]. Though these are naturally present in the soil, their populations can be
enhanced by inoculation or agricultural management practices. Various plant growth-promoting (PGP)
soil microorganisms including Enterobacter, Bacillus, and Pseudomonas can be exploited to increase the
phytoavailability of micronutrients. These are used mostly as seed inoculants and enhance plant growth
through the production of growth hormones, antibiotics, chitinases, and siderophores and the induction
of systemic resistance and mineralization [121]. PGP microorganisms chelate iron via the production
of siderophore compounds, solubilize phosphorus, and inhibit growth of pathogens [122,123], thus
playing a significant role in soil fertility and iron fortification. PGP microbes are usually present in soil,
compost, and decomposing organic materials and provide an economical and harmless method for
increasing crop production and improve environmental and soil health [124].

Numerous studies have shown increased concentrations of Fe, Se, and Zn using microorganism
inoculants via mycorrhizal associations [125–127]. Further, enhancement of nitrogen fixation, plant
growth, and grain yield have been reported in legumes including chickpeas, soybeans and peas by
colonization of Pseudomonas sp., Brevibacterium sp., Bacillus sp., Enterobacter sp., and Acinetobacter sp. in
their roots and nodules [128–132].

In chickpeas, inoculation of PGP actinobacteria increased the concentration of seed minerals
including Fe (10–38%) and Zn (13–30%) compared to control (uninoculated) plants [133]. Similarly,
arbuscular mycorrhizal fungi field inoculation improved the nutritional profile of chickpea grains
by increasing Fe and Zn concentration along with yield and protein content [134]. Khalid et al. [135]
reported that application of PGP rhizobacteria with Fe compound (FeSO4) in soil increased
iron concentration (up to 81%) in chickpeas compared to a control, and suggested a potential
role of microorganisms in the additional uptake of Fe from soil upon supplementation with Fe.
Gopalakrishnan et al. [124] inoculated the seeds before sowing and the field plots of chickpeas and
pigeonpeas every 15 days until the flowering stage with seven strains of bacteria, P. plecoglossicida

(SRI-156), B. antiquum (SRI-158), B. altitudinis (SRI-178), E. ludwigii (SRI-211), E. ludwigii (SRI-229),
A. tandoii (SRI-305), and P. monteilii (SRI-360), and observed that these bacterial strains significantly
improved several growth parameters including nodule, pod number, and grain yield compared
to un-inoculated control plots. The harvested grains showed increased concentration of minerals
including Fe and Zn. Iron concentration was increased up to 18 and 12%, whereas the concentration of
Zn was increased up to 23 and 5% in chickpeas and pigeonpeas, respectively.

3.4.2. Genetic Engineering

Biofortification through genetic engineering is an alternative approach when variation in the
desired traits is not available naturally in the available germplasm, a specific micronutrient does not
naturally exist in crops, and/or modifications cannot be achieved by conventional breeding [136,137].
This approach was supported by the availability of fully sequenced genomes in various crops in
recent years. Along with increasing the concentration of micronutrients, this approach can also be
targeted simultaneously for removal of antinutrients or inclusion of promoters that can enhance the
bioavailability of micronutrients [93,106,138]. This approach had not only utilized genes associated with
various metabolic pathways operated in plants, but also from bacteria and other organisms [139,140].
Development of transgenic crops requires a substantial investment during the initial stage, but this
could be a sustainable approach that has the potential to target large populations, especially in
developing countries [96,103,141].

Several crops have been successfully modified using a transgenic approach to overcome a
micronutrient deficiency. For example, enhanced accumulation (3 to 4 times) of Fe was noted in
rice via expression of the iron-storage protein, ferritin [142,143]. In rice, the national levels for Fe
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and Zn biofortification nutrition targets were attained under field settings in the Philippines and
Colombia [144]. The genetically engineered rice (golden rice) was developed to produce β-carotene
(pro-vitamin A) to fight against vitamin A deficiency [145]. Recently, transgenic multivitamin corn was
produced by the simultaneous modification of three distinct metabolic pathways to increase the levels
of three vitamins, i.e., β-carotene (169-fold), ascorbate (6-fold), and folate (2-fold), in the endosperm,
and this could pave the way to develop nutritionally complete cereals [146]. Using metabolic
engineering, the folate concentration was increased in tomato and rice [85,147]. Storozhenko et al. [148]
reported more than 100-fold increase in folate concentration in rice by overexpression of Arabidopsis

thaliana pterin and para-aminobenzoate genes, precursors of the folate biosynthesis pathway, whereas
Hossain et al. [149] reported a two- to four-fold increase in Arabidopsis by overexpression of the gene
involved in pterin biosynthesis.

To the best of our knowledge, there are no examples of biofortified pulse crops developed through
a transgenic approach for Fe, Zn, Se, I, carotenoids, or folates in the available literature. However,
a genetic engineering approach has been applied in pulse crops for improvement of other nutritional
profile. For example, the concentration of the essential amino acid methionine was significantly
increased in transgenic common bean plants (up to 23%) by expression of a methionine-rich storage
albumin from the Brazil nut [150], and in the concentration of methionine in transgenic lupins (up to
94%) by expressing a sunflower seed albumin gene [151].

In recent years, targeted gene editing technologies using artificial nucleases, zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system (CRISPR/Cas9) have
given rise to the possibility to precisely modify genes of interest, and thus have potential application
for crop improvement [152,153]. These technologies have been used in various crops including
rice [154,155], wheat [156], and tomatoes [157]. Recently, CRISPR/Cas9 and TALENs technologies were
used to generate mutant lines for genes involved in small RNA processing of Glycine max and Medicago

truncatula [158]. Similarly, CRISPR/Cas9-mediated genome editing technology was used in cowpeas to
successfully disrupt symbiotic nitrogen fixation (SNF) gene activation [159]. These findings pave the
way for applicability of use of gene editing technologies for various traits of interest in legumes.

3.4.3. Plant Breeding

Limitations in the long-term effectiveness and sustainability of fertilizer approaches necessitates
the development of economical and longstanding strategies for increasing micronutrient density in
plants. Genetic engineering technology to produce genetically modified plants with desirable traits has
been used in corn, rice, wheat, and soybeans. This can be an effective approach for crop improvement;
however, political opposition to GMOs in many countries, a complex legal framework for the acceptance
and commercialization of transgenic crops, along with expensive and time-consuming regulatory
processes are the major limitations of this method [100,160,161]. For example, golden rice has been
available since the early 2000s and has the potential to deliver more than 50% of the estimated average
requirement for vitamin A, but unfortunately it has not been commercially introduced in any country
to date due to risk factors involved in the regulatory approval processes [162,163]. In developed and
developing countries, several groups endorse the arguments made by Greenpeace that approval of
golden rice will allow multinational corporations to control developing countries’ food supplies and
pose risks to human health and the environment (https://gmo.geneticliteracyproject.org/).

Restrictions on the use of genetically modified crops in many countries prompted HarvestPlus to
take the initiative to address micronutrient deficiencies through conventional plant breeding [20,22].
Biofortification through plant breeding is a cost-effective and sustainable approach that can improve
the health status of low-income people globally [19,21,147]. This approach has been used to control
deficiencies of micronutrients including carotenoids, Fe, and Zn [96,164].

HarvestPlus was started in 2003 by the initiative of the Consultative Group on International
Agricultural Research (CGIAR) to target several major food crops, including rice, common beans,

https://gmo.geneticliteracyproject.org/
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cassava, maize, sweet potatoes, pearl millet, and wheat in Asia and Africa, to enrich them with
three major nutrients, Fe, Zn, and vitamin A through an interdisciplinary and global alliance of
scientific institutions and implementing agencies [165,166]. HarvestPlus is part of the CGIAR Research
Program on Agriculture for Nutrition and Health (A4NH). The HarvestPlus program is administered
by joint venture of the International Center for Tropical Agriculture and the International Food Policy
Research Institute and provides global leadership on biofortification evidence and technology. The UK
Government, the Bill and Melinda Gates Foundation, the US Government’s Feed the Future initiative,
the EU Commission, and donors to A4NH are principal investors [163] https://www.harvestplus.org.

Conventional plant breeding approaches can benefit not only large populations but also people
living in relatively remote rural areas who have limited access to commercially marketed fortified
foods [19,21,22,167]. This approach requires a one-time investment in plant breeding and can be grown
and multiplied across years by farmers at virtually zero marginal cost. Recurrent costs are low, and
germplasms can be available internationally without any adverse effect on productivity and health;
thus, biofortification has widespread public acceptance [20,21,100,168].

Genetic diversity is required in the gene pool to achieve success in biofortification through the
plant breeding approach. Several studies have shown substantial variation in the concentration
of minerals and vitamins in various crops [93,106]. Parental genotypes with high micronutrient
concentration can be identified by screening a wide range of germplasms, and these can be utilized in
making crosses, genetic studies, and the development of molecular markers to facilitate marker-assisted
selection in breeding. Promising lines can be tested at multiple locations to determine the genotype X
environment interaction (G X E) [163]. These can be submitted to national government agencies for
testing for agronomic performance and release after robust regional testing across multiple locations
over multiple seasons [163]. Using the above-mentioned strategy, various studies in pulse crops have
identified substantial variation in the available gene pools and recombinant inbred line populations
developed from promising parental genotypes. These were utilized for identifying genomic regions
and associated markers for their use in marker-assisted selection. Recent research advances in pulse
crops for improvement of key micronutrients, including Fe, Zn, Se, I, carotenoids, and folates, through
conventional plant breeding approaches, will be discussed in the following section.

4. Recent Research Advances for Biofortification of Pulse Crops

4.1. Iron

In several studies, a wide range of variation in Fe concentration has been observed in peas,
chickpeas, common beans, mungbeans, and lentils (Table 1). Significant genetic variability in
Fe concentration was observed in the core collection of common beans [169,170], common bean
populations [171–173], and a large collection of lentil accessions [174,175]. Cultivars of lentils (18),
peas (17), common beans (10), and chickpeas (8) grown at several locations in Southern Saskatchewan
(2005–2006) had Fe concentration of 75.6–100 mg kg−1, 47.7–58.1 mg kg−1, 57.7–80.7 mg kg−1, and
48.6–55.6 mg kg−1, respectively [11]. A 100 g serving of any of these pulse crops provided over 50% of
the RDA for Fe. A substantial variation in concentration of Fe was observed in 94 diverse accessions
each of chickpeas [12] and peas [13]. Further, Diapari et al. [12] identified several chickpea accessions
with high Fe concentration (52–60 mg kg−1) that could be utilized for the development of cultivars
with high Fe concentration. Significant variation was observed in Fe concentration (35–87 mg kg−1) in
mungbean lines commonly grown in South Asia [176]. In a recent study, Dissanayaka [29] reported
significant variation in a pea genome wide association study (GWAS) panel of 177 accessions evaluated
at Saskatoon and Rosthern Saskatchewan, Canada, and Fargo, North Dakota, USA.

The environment significantly affected the concentration of minerals in field peas, chickpeas,
common beans, and lentils grown at different locations in Saskatchewan, Canada [11]. Diapari et al. [13]
and Dissanayaka [29] reported a significant effect of genotypes, year, and location with higher Fe
concentration at Rosthern compared with Saskatoon in peas.

https://www.harvestplus.org
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Effect of genotypes was also significant in lentils [25,28] and chickpea [12,28]. Along with environment,
Fe concentration was also affected by varieties and locations. For example, Ariza-Nieto et al. [177] in
common beans and DellaValle et al. [178] in lentils observed differences in Fe concentration at the same
location due to varieties, whereas Moraghan et al. [179] reported higher Fe concentration in seeds
harvested from acid soil compared to calcareous soil. Diapari et al. [13] reported that the genetic factor
was responsible for substantial variation in Fe concentration in pea seeds grown at different locations
in Saskatchewan.

Table 1. Genetic variation and identified genomic regions and/or markers for the seed concentration of
various micronutrients in pulse crops.

Micronutrient Pulse Crop Plant Material
Concentration

Range (mg kg−1)

Genomic
Region/Marker

Reference

Iron Common bean Genotype 34–89 7 QTLs [169]
Common bean Genotype 35–92 [170]
Common bean DOR364 X G19833 40–85 13 QTLs [171]
Common bean G14519 X G4825 36–97 5 QTLs [172]
Common bean G21242 X G21078 28–95 6 QTLs [173]
Common bean Genotype 30–110 [175]

Lentil Genotype 41–109 [174]
Lentil ILL 8006 X CDC Milestone 37–176 21 QTLs [24]
Lentil Genotype 41–102 9 SNPs [25]

Lentil Genotype 69–86 [28]
Chickpea Genotype 48–57 [28]

Lentil Genotype 76–100 [11]
Pea Genotype 48–58 [11]

Common bean Genotype 58–81 [11]
Chickpea Genotype 49–56 [11]

Chickpea Genotype 36–86 4 SNPs [12]
Chickpea ICC 4958 X ICC 8261 40–67 6 QTLs [23]
Chickpea Genotype 40–91 10 SNPs [23]

Mungbean Genotype 35–87 [176]

Pea Genotype 26–94 9 SNPs [13]
Pea PI 648006 X PI 357292 37–62 5 QTLs [26]
Pea Orb X CDC Striker 26–49 4 QTLs [27]
Pea Carerra X CDC Striker 34–67 6 QTLs [27]
Pea Genotype 29–91 3 SNPs [29]

Zinc Common bean Genotype 21–54 11 QTLs [169]
Common bean Genotype 21–60 [170]
Common bean DOR364 X G19833 18–42 13 QTLs [171]
Common bean G14519 X G4825 17–49 8 QTLs [172]
Common bean G21242 X G21078 17–57 3 QTLs [173]
Common bean Genotype 25–60 [175]

Lentil Genotype 22–77 [174]
Lentil Genotype 23–54 12 SNPs [25]

Lentil Genotype 46–55 [28]
Chickpea 35–43 [28]

Lentil Genotype 37–51 [11]
Pea Genotype 27–34 [11]

Common bean Genotype 25–33 [11]
Chickpea Genotype 21–28 [11]

Chickpea Genotype 19–62 5 SNPs [12]
Chickpea ICC 4958 X ICC 8261 28–48 5 QTLs [23]
Chickpea Genotype 27–62 10 SNPs [23]

Mungbean Genotype 21–62 [176]

Pea Genotype 14–93 2 SNPs [13]
Pea PI 648006 X PI 357292 31–62 5 QTLs [26]
Pea Orb X CDC Striker 25–34 4 QTLs [27]
Pea Carerra X CDC Striker 17–41 6 QTLs [27]
Pea Genotype 13–51 7 SNP [29]
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Table 1. Cont.

Micronutrient Pulse Crop Plant Material
Concentration

Range (mg kg−1)

Genomic
Region/Marker

Reference

Selenium Lentil Genotype 0.3–2.6 [180]
Lentil Genotype 0.01–0.3 [181]

Lentil Genotype 0.4–0.5 [28]
Chickpea Genotype 0.3–0.4 [28]

Lentil Genotype 0.9–1.6 [11]
Pea Genotype 0.4–0.5 [11]

Common bean Genotype 0.4–0.5 [11]
Chickpea Genotype 0.6–0.9 [11]

Mungbean Genotype 0.2–0.9 [176]

Pea Genotype 0.03–1.8 [182]
Pea Genotype 0.08–5.5 [13]
Pea Orb X CDC Striker 0.3–2.2 3 QTLs [27]
Pea Carerra X CDC Striker 0.1–6.8 6 QTLs [27]
Pea Genotype 0.1– 8.7 44 SNPs [29]

Carotenoids Chickpea Not available 5 QTLs [183]
Chickpea Genotype 311–880 [184]
Chickpea Genotype 11–19 [185]
Chickpea Genotype 9–31 [186]
Chickpea Genotype 22–44 [187]
Chickpea CDC Jade X CDC Frontier 15–58 8 QTLs [188]
Chickpea Cory X CDC Jade 2–78 5 QTLs [188]
Chickpea ICC4475 X CDC Jade 22–84 5 QTLs [188]

Pea Genotype 7–23 [185]
Pea Genotype 6–27 [186]

Folates Pea Genotype 0.6 [189]

Pea Genotype 0.3–0.7 [190]
Common bean Genotype 1.4–1.6 [190]

Lentil Genotype 1.5–2.0 [190]

Pea Genotype 0.5 [87]
Lentil Genotype 0.7 [87]

Faba bean Genotype 1.0 [87]
Chickpea Genotype 1.5 [87]

Chickpea Genotype 2.7 [191]
Common bean Genotype 1.1–1.6 [191]

Lentil Genotype 1.1–1.5 [191]
Pea Genotype 0.1–0.2 [191]

Pea Genotype 0.4–2.0 [192]
Chickpea Genotype 0.4–1.2 [192]

Lentil Genotype 2.2–2.9 [192]

Chickpea Genotype 3.5–5.9 [15]
Common bean Genotype 1.6–2.3 [15]

Lentil Genotype 1.4–1.8 [15]
Pea Genotype 0.2–0.3 [15]

Chickpea Genotype 4.0–4.3 [193]
Common bean Genotype 2.4–3.0 [193]

Lentil Genotype 1.2–1.6 [193]
Pea Genotype 0.1–0.2 [193]

Lentil Genotype 1.7–5.0 [194]

Pea Genotype 0.1–0.6 31 SNPs [30]

Several SNP markers associated with Fe concentration were identified in peas [13,26,27,29],
chickpeas [12,23], and lentils [24,25] that can be used in marker-assisted selection (Table 1). In peas,
Diapari et al. [13] reported an association of nine SNPs with Fe concentration in 94 diverse accessions,
whereas Dissanayaka [29] reported significant association of three SNP markers with Fe concentration
in a pea GWAS panel of 177 accessions. Ma et al. [26] identified five QTLs for Fe concentration in a pea
population developed from “Aragorn” (PI 648006) and “Kiflica” (PI 357292). Similarly, Gali et al. [27]
observed several QTLs for seed iron concentration on four LGs of pea population PR-02 (Orb X CDC
Striker) and six LGs of PR-07 (Carerra X CDC Striker).
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In chickpeas, Diapari et al. [12] identified two SNPs on Chromosome (chr) 4 and one each on chr1
and chr6 in 94 diverse accessions, whereas Upadhyaya et al. [23] observed associations of six QTLs for
Fe concentration on Chromosomes 1, 3, 4, 5, and 7 in a population developed from a cross between
ICC 4958 and ICC 8261. In lentils, Aldemir et al. [24] identified 21 QTLs for Fe concentration on several
linkage groups (three each on LG1, LGII, and LGVII, six QTLs on LGIV, four QTLs on LGV, and two
QTLs on LGVI), whereas Khazaei et al. [25] reported nine QTLs in a panel of 138 accessions, and two
of them were tightly linked to Fe concentration in Chromosomes 5 and 6. Similarly, several QTLs
were identified for Fe concentration in common bean populations, DOR364 X G19833 [171], G14519 X
G4825 [172], and G21242 X G21078 [173].

4.2. Zinc

Like Fe, a wide range of variation in Zn concentration was observed in peas, chickpeas, common
beans, and lentils (Table 1). A significant variation in Zn concentration was noted in 94 diverse chickpea
accessions evaluated under field conditions in Saskatchewan, Canada [12]. This study identified three
kabuli type accessions, CDC Verano, ILC 2555, and FLIP85-1C (43–48 mg kg−1), and two desi type
accessions, FLIP97-677C and FLIP84-48C (42 and 41 mg kg−1), with the greatest Zn concentrations.

A substantial variation in Zn concentration was observed in common beans (24.8–33.3 mg kg−1),
peas (27.4–34 mg kg−1), chickpeas (21.1–28.3 mg kg−1), and lentils (36.7–50.6 mg kg−1) grown in two
years (2005–2006) at various locations in Saskatchewan [11], and each of these provided over 50% of the
RDA in 100 g of dry pulses. Significant variation for Zn was observed in the core collection of common
beans (>2400) [169,170], three common bean populations [171–173], lentil accessions (>1600) [174,175],
20 mungbean lines [176], a panel of 94 pea accessions [13], a panel of 177 pea accessions [29], and two
pea populations, PR-02 and PR-07 [27].

In various studies, the effect of genotypes, year, and/or location was significant for Zn concentration
in peas [13,29], chickpeas [12,28], and lentils [25,28]. Further, Zn concentration was often positively
correlated with Fe concentration [12,13,25,26,29].

Several QTLs and/or SNP markers were identified for Zn concentration in common beans,
chickpeas, lentils, and peas (Table 1). For example, QTLs were identified for Zn concentration in three
common bean populations [171–173]. Five SNPs were identified for Zn concentration in chickpeas,
and these were located on Chromosomes 1, 4, and 7 [12]. Further, in chickpeas, Upadhyaya et al. [23]
observed an association of eight genomic loci for Zn concentration. In lentils, Khazaei et al. [25]
reported twelve SNP markers for Zn concentration in a panel of 138 accessions grown at two locations
in Saskatchewan, Canada in 2013–2014.

Using a GWAS, Diapari et al. [13] found two SNPs for Zn on LG III in 94 pea accessions.
Ma et al. [26] identified five QTLs for Zn concentration on LGs II, III, V, and VII in a pea population
developed from Aragorn X Kiflica. Similarly, Gali et al. [27] identified one QTL each on LG1a and
LG3b, two QTLs on LG6 in PR-02, and numerous QTLs on various LGs (1a, 1b, 2b, 3b, 4, and 7a) in
the PR-07 pea population. In a recent study, Dissanayaka [29] reported a significant association of
seven SNP markers with Zn concentration in a pea GWAS panel of 177 accessions. Further, the SNP
marker Sc1512_36017 was co-localized with Sc11336_48840 on LG IIIb in PR-07. In a previous study,
Sc11336_48840 was identified as the flanking marker of a QTL for seed Zn concentration [27].

4.3. Selenium

Soil and weather conditions play important roles in Se concentration in harvested pulse crop
seeds. Among soil factors, aeration, water availability, pH, and texture are important, as these affect
the availability of Se [195]. Diapari et al. [13] observed that variation in Se concentration in peas was
mainly due to environment, whereas the effect of genotype was minimal (only 2.7% of the total). Se
concentration was higher at the Saskatoon location than Rosthern, and differences in Se concentration
were not significant across the 94 genotypes.
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Soils of Saskatchewan are generally rich in Se, so pulses grown in this region provide a natural
dietary source of this element [180,182,196]. Lentils grown in the Dark Brown and Brown soil zones of
Western Canada had a high concentration of Se (425–672 µg kg−1) [180] (Table 1). In comparison, lentils
grown in six major lentil-producing countries, Nepal (180 µg kg−1), Southern Australia (148 µg kg−1),
Turkey (47 µg kg−1), Morocco (28 µg kg−1), Northwestern USA (26 µg kg−1), and Syria (22 µg kg−1),
had a substantially lower Se concentration [181]. A wide range of variation was observed for Se
concentration in common beans (381–500µg kg−1), peas (405–554µg kg−1), chickpeas (629–864 µg kg−1),
and lentils (990–1637 µg kg−1) grown at several locations in Saskatchewan [11]. A 100 g dry weight of
any of these pulses could provide 100% of the RDA. Nair et al. [176] observed significant variation for Se
concentration (210–910 µg kg−1) in mungbean lines grown in two environments near Hyderabad, India.

Total Se concentration varied from 373 to 519 µg kg−1 in 17 field pea cultivars grown at six locations
for 2 years in Saskatchewan [182], and this provided 68–94% of the RDA upon the serving of 100 g peas.
Evaluation of 80 pea breeding lines obtained from Australia, Czech Republic, Serbia, and the United
States had relatively low concentration of Se; however, these lines showed greater concentration of
Se when planted in Saskatoon [182]. Similarly, Gali et al. [27] observed a considerable variation in Se
concentration in pea populations, PR-02 and PR-07, with a greater range in variation among RILs at
the Saskatoon location compared with Rosthern. Compared to Fe and Zn, Dissanayaka [29] observed a
substantially different pattern for Se at different locations, with a high coefficient of variation, and the
concentration varied from 0.06 to 8.75 ppm. The effects of genotype, genotype × year, and genotype ×
location were not significant, with the exception of the genotype effect at the trial grown in 2014 at
Fargo, North Dakota.

Several QTLs were identified for Se concentration in the PR-02 pea population on LGs 4a, 5a
and 7, and in the PR-07 pea population on LG4 and 5b [27] (Table 1). Using a pea GWAS panel of
177 accessions, 44 significant SNP markers were identified for Se concentration, but the majority of
the markers were not common among the location-years [29], and this could be due to substantial
variation in Se concentration and high coefficient of variation at different locations.

4.4. Iodine

Several studies have reported various methods such as foliar fertilization and application of salt
in soil and/or irrigation water for biofortification of crops with iodine; however, little information is
available on within-species variation. The consumption of cereal-based foods with low I concentration
is the major cause of I deficiency in humans [55,56,197]. Compared to grain, biofortification of leaves
and leafy vegetables could be easily achieved due to translocation of the majority of I to xylem tissues,
thus the majority of research is focused on I biofortification of vegetables instead of grains [56,198–200].

4.5. Carotenoids

Several studies have reported a carotenoid profile in pulse crops [183,185,186,201–204] (Table 1).
Lutein, zeaxanthin, and β-cryptoxanthin were reported in chickpeas [183,202], whereas violaxanthin,
lutein, and β-carotene were reported in field peas [201,203]. Thavarajah and Thavarajah [184] reported
a high concentration of carotenoids, beta-carotene (166–431 µg/100 g), canthoxanthine (21–68 mg/100 g),
and xanthophyll (9–20 mg/100 g) in 10 chickpea genotypes grown in Minot, North Dakota.

Ashokkumar et al. [185] evaluated carotenoids profile in 12 pea and 8 chickpea cultivars grown
at multiple locations in Saskatchewan, Canada, using high performance liquid chromatography
with a diode array detector. This method is sensitive, reliable, and accurate for the separation and
quantification of putative carotenoids. In peas, the concentration of carotenoids was greatest in
cotyledon, followed by embryo axis and seed coat. Green cotyledon cultivars (16–21 µg g−1) had
generally higher concentrations compared to yellow cotyledon cultivars (7–12 µg g−1). Lutein was the
major component (11.45 µg g−1) followed by violaxanthin (0.52 µg g−1), β-carotene (0.47 µg g−1), and
zeaxanthin (0.16 µg g−1). In kabuli type chickpea cultivars, carotenoid concentration was highest in the
cotyledon, followed by the embryo axis and seed coat, whereas in the desi type, the seed coat, followed
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by the cotyledon and embryo axis, had the highest carotenoid concentration. Lutein (7.70 µg g−1) was
the major component followed by zeaxanthin (5.76 µg g−1), β-carotene (0.40 µg g−1), and violaxanthin
(0.05 µg g−1).

In subsequent work, Ashokkumar et al. [186] observed a wide range of variation in concentration
of carotenoids in genetically diverse pea (94) and chickpea (121) accessions grown at multiple locations
in Saskatchewan, Canada. In the peas, the concentration of lutein was highest (11.2 µg g−1) followed
by β-carotene (0.5 µg g−1), zeaxanthin (0.3 µg g−1), and violaxanthin (0.3 µg g−1), whereas in the
chickpeas, the concentration of lutein (8.2 µg g−1) was highest followed by zeaxanthin (6.2 µg g−1),
b-carotene (0.5 µg g−1), β -cryptoxanthin (0.1 µg g−1), and violaxanthin (0.1 µg g−1). Green cotyledon
peas and desi chickpeas had a greater carotenoid concentration than yellow cotyledon peas and kabuli
chickpeas, respectively. Pea and chickpea accessions with high carotenoid concentration that can be
utilized in future breeding were identified. In five chickpea cultivars with different cotyledon colors,
total carotenoid concentration varied from 22 µg g−1 (yellow cotyledon kabuli) to 44 µg g−1 (green
cotyledon desi), with lutein and zeaxanthin as major components [187]. In a recent study, a wide range
of total carotenoid concentration was observed in three F2 populations developed by crossing cultivars
with different cotyledon and seed coat colors, CDC Jade X CDC Frontier (14.9–58.1 µg g−1), CDC Cory
X CDC Jade (1.9–77.6 µg g−1), and ICC4475 X CDC Jade (21.6–83.7 µg g−1) [188].

Total carotenoids (5.8–26.9 µg g−1) and β-carotene (2.6 µg g−1) were greater in peas [186] compared
with potato accessions (1.4–14.3 µg g−1) [205] and golden rice endosperm (1.6 µg g−1) [206]. Similarly,
in 121 chickpea accessions, the concentration of total carotenoids (15.0 µg g−1) was three times
greater than in 42 banana accessions (4.7 µg g−1) [207] and 37 potato accessions (4.4 µg g−1) [208].
Of all carotenoids identified, lutein was the major compound in chickpeas [183,185,186,202] and
peas [185,186,201,203,204]. Further, lutein has positive correlations with chlorophyll concentration in
peas [203] and zeaxanthin concentration in chickpeas [183].

Previously, four QTLs for beta-carotene concentration and a single QTL for lutein concentration
were detected in chickpeas [183] (Table 1). Using a GWAS, Rezaei et al. [187] identified 32 candidate
genes involved in isoprenoid and carotenoid pathways across all eight chromosomes of chickpeas. They
observed positive correlation between the expression of genes of carotenoid biosynthesis with various
carotenoid components. In a subsequent study, several QTLs were identified for total carotenoids and
individual components in three F2 populations, CDC Jade × CDC Frontier (8 QTLs on LGs 1, 5, and 8),
CDC Cory × CDC Jade (5 QTLs on LG 8), and ICC4475 × CDC Jade (5 QTLs on LGs 3 and 8) [188].
Further, several candidate genes associated with carotenoid components were observed with a major
gene for cotyledon color on LG 8 in each population.

4.6. Folates

A wide exploration of available genetic resources is necessary to identify the rich source of folates
for their potential use for the biofortification of pulse crops. Various methods have been employed
to quantify folates from different food sources including pulse crops, and these methods include
microbiological assays [209–211], liquid chromatography (LC) coupled with fluorescence detection
(FD) [87,192], and mass spectrometry (MS) detection [15,30,191,193,194,212–214].

Previously, researchers have identified a wide range of variation in folates quantified from pulse
crops (Table 1). For example, using a microbiological assay, Han and Tyler [190] reported 24.9–64.8 µg/
100 g folates in green cotyledon peas and 23.7–55.6 µg/100 g in yellow cotyledon peas grown at multiple
locations in Saskatchewan, Canada. Vahteristo et al. [189] and Hefni et al. [87] observed the folate
concentration of 59 and 52 µg/100 g using LC-MS in vegetable peas consumed in Finland and dry
green peas consumed in Egypt, respectively. Rychlik et al. [191] reported variable folate concentration
in different pulse crops—275 µg/100 g (chickpeas), 106–164 µg/100 g (white beans), 110–154 µg/ 100 g
(green lentils), and 10–20 µg/100 g (peas) using an LC-MS method, whereas Sen Gupta et al. [192]
reported a higher total folate concentration in field peas (41–202 µg/100 g) grown in the USA compared
to chickpeas (42–125 µg/100 g) using LC-FD.
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Using ultra-performance LC (UPLC), six folate monoglutamates were quantified in four pulse
crops, and the total folate concentration was the highest in chickpeas (351–589 µg/100 g), followed
by common beans (165–232 µg/100 g), lentils (136–182 µg/100 g), and pea (23–30 µg/100 g) [15]. This
method provided high accuracy in quantification of specific folates with the use of isotopically labeled
internal standards. Zhang et al. [193] identified eight folate monoglutamates using an optimized
one-step extraction approach in peas, chickpeas, beans, and lentils using UPLC-MS. They also observed
the highest folate concentration in chickpeas and the lowest concentration in peas. Zhang et al. [194]
quantified eight folate monoglutamates in six wild lentil species and one cultivated species using
UPLC-MS. They observed that wild lentil species (195–497 µg/100 g) had generally higher folate
concentration than cultivated genotypes (174–361 µg/100 g). Most recently, Jha et al. [30] quantified
five folate monoglutamates in 85 diverse pea accessions originating from worldwide sources using
UPLC-MS, and the results indicated a wide range of variation in the concentration of the sum of folates
(14–55 µg/100 g dry seed weight).

Tetrahydrofolate (THF), 5-methyltetrahydrofolate (5-MTHF), and 5-formyltetrahydrofolate
(5-FTHF) were the most abundant in common beans, lentils, chickpeas, and peas [15,30,208]. Further,
5-MTHF represented 56% of the total folate concentration in peas [15,30], whereas 5-MTHF and
5-FTHF represented 35–39% and 33–51% of the total folates in common beans, lentils, and chickpeas,
respectively [15]. Other studies also reported 5-MTHF as the predominant form of folate in common
beans [87,215], lentils [87,191], and chickpeas [87]. 5-MTHF was also the major folate in cereals,
vegetables, fruit, bread, milk, and meat products [87,216], and in humans [217]. Scaglione and
Panzavolta [218] reported various advantages to using naturally occurring 5-MTHF over synthetic
folic acid. For example, it helps in the prevention of the potential negative effects of unconverted folic
acid in peripheral circulation. Thus, 5-MTHF may be the most important folate that could be targeted
for improvement by breeders. Jha et al. [30] identified several pea accessions with greater folate
concentration including MPG87 (42 µg/100 g), Kahuna-NIAB (40 µg/100 g), and OZP0902 (50 µg/100 g).

Using a GWAS, five SNP markers were associated with the sum of folates, and fifteen, eight,
and three SNP markers were associated with major individual folates 5-MTHF, 5-FTHF, and THF,
respectively [30] (Table 1). Further, SNP markers Sc_6992_86348 and Sc_3060_11265 were validated
in an additional 24 accessions, and these markers have potential for marker-assisted selection in
pea breeding.

5. Status of Biofortification

In recent years, several crops with increased micronutrient concentration have been introduced
in several developing countries, and this has helped in overcoming nutrient deficiency in the target
population. For example, the introduction of the orange sweet potato biofortified with β-carotene
increased vitamin A intake among children and women in Mozambique [219] and Uganda [220], and
maize biofortified with provitamin A increased the concentration of vitamin A in 5–7-year-old children
in Zambia who consumed it for three months [221]. Similarly, serum ferritin and total body iron
were improved in iron-deficient adolescent boys and girls from Maharashtra, India, who consumed
Fe-biofortified pearl millet flat bread for four months [222]. Regarding pulse crops, the consumption of
Fe biofortified beans for 4.5 months improved the hemoglobin and total body iron in iron-depleted
university women in Rwanda [223].

By the end of 2016, more than 150 biofortified varieties of 10 crops had been released in
30 countries, and these are consumed by more than 20 million people in developing countries [163].
To date, HarvestPlus has released or tested more than 290 varieties of 12 staple food crops including
vitamin A orange sweet potato, iron beans, iron pearl millet, vitamin A yellow cassava, vitamin A
orange maize, zinc rice, and zinc wheat in 60 countries (www.harvestplus.org). Iron beans are delivered
in Rwanda and Democratic Republic of Congo, zinc rice is in Bangladesh, and zinc wheat is in India
and Pakistan.

www.harvestplus.org
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Among pulse crops, HarvestPlus has released 10 Fe-biofortified bean varieties each in Rwanda
(RWR 2245, RWR 2154, MAC 42, MAC 44, CAB 2, RWV 1129, RWV 3006, RWV 3316, RWV 3317,
and RWV 2887) and the Democratic Republic of Congo (COD MLB 001, COD MLB 032, HM 21-7,
RWR 2245, PVA 1438, COD MLV 059, VCB 81013, Nain de Kyondo, Cuarentino, and Namulenga)
(www.harvestplus.org). Similarly, several varieties of lentils with high iron and zinc have been released
by HarvestPlus and The International Center for Agricultural Research in the Dry Areas (ICARDA)
in various countries: seven in Nepal (ILL 7723, Khajurah-1, Khajurah-2, Shital, Sisir Shekhar, Simal),
five in Bangladesh (Barimasur-4, Barimasur-5, Barimasur-6, Barimasur-7, and Barimasur-8), two each
in India (L4704, Pusa Vaibhav) and Syria (Idlib-2, Idlib-3), and one in Ethiopia (Alemaya). For the
effective delivery and production of these crops, HarvestPlus works closely with various public and
private organizations [163]. For example, in Rwanda, HarvestPlus with the help of Rwanda Agriculture
Board (RAB) facilitated the production of bean seeds through contracted farmers and cooperatives and
acquired about 80% of certified seeds during 2011–2015.

Biofortification to enrich nutrient profile of pulse crops is one of the major goals in the pulse crop
breeding program at the Crop Development Centre (CDC), University of Saskatchewan, which was
established in 1971 with the objectives to improve existing crops and develop new crops (https://agbio.
usask.ca/research/centres-and-facilities/crop-development-centre.php#MoreAbouttheCDC). In recent
years, several projects have been undertaken to evaluate pulse crops for the profiling of folates,
carotenoids, polyphenols, Fe, Zn, and Se.

6. Challenges and Future Strategies for Biofortification

A greater micronutrient density and a high yield are prerequisites for effective biofortification,
and these crops must be adopted by farmers and consumed by the target population [21]. Bouis and
Saltzman [163] outlined three important challenges for HarvestPlus to reach one billion people by 2030,
i.e., building consumer demand, mainstreaming biofortified traits into public and private breeding
programs, and integrating biofortification into public and private policies.

Various factors such as genetic diversity in the gene pool, the reduction of antinutrients (especially
phytate and polyphenols), and increasing the concentration of promoter substances including certain
amino acids (cysteine, lysine, and methionine) and ascorbic acid (vitamin C), which enhance
the absorption of essential minerals, and/or high yield, are key for the success of biofortification
strategies [93,167].

Narrow genetic variation in the plant gene pool, a long-development time for generating cultivars
with a desired trait, and the dependence on the phytoavailability of the mineral nutrients in the soil are
limitations for conventional breeding approach [138].

The issue of narrow genetic variation for micronutrient concentration might be overcome by
the use of wild germplasm and land races, which may contain a high variation in micronutrient
concentration [93,106,138].

For efficient biofortification, the focus should be on increasing the bioavailability of micronutrients
simultaneously with increase in their concentration. This can be achieved by increasing the concentration
of promoters that stimulate the absorption of minerals and by reducing the concentrations of
antinutrients that interfere with absorption [93].

Vitamin E, vitamin D, vitamin C, choline, niacine, and provitamin A are considered promoter
substances and stimulate the absorption of Se, Ca P, Fe, Zn, methionine, and tryptophan [224].
In contrast, certain antinutrients including phytate and certain polyphenols reduce the bioavailability
of micronutrients in crops [93]. Phytate, a form of phosphorus stored in seed, is not digested by humans
or monogastric animals [225]. During digestion, it can bind to iron and zinc and thus restrict their
absorption [226]. The concentration of phytate can be controlled by identifying low phytate lines by
germplasm screening [227], manipulating the biosynthesis of phytate via mutation of a myo-inositol
kinase (MIK) gene [228], and overexpressing phytase, a phytate degrading enzyme [229].

www.harvestplus.org
https://agbio.usask.ca/research/centres-and-facilities/crop-development-centre.php#MoreAbouttheCDC
https://agbio.usask.ca/research/centres-and-facilities/crop-development-centre.php#MoreAbouttheCDC
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In the recent past, low-phytate lines in pulse crops have been developed and characterized to reduce
the concentration of phytate and thus improve mineral absorption [225,230–233]. Warkentin et al. [225]
developed low-phytate pea lines, 1-150-81 and 1-2347-144, using chemical mutagenesis of cultivar CDC
Bronco, a high-performing pea variety. They observed an approximately 60% reduction in phytate
phosphorus in low-phytate lines with an increase in inorganic phosphorus. However, these lines
had a slightly lower seed weight and a lower yield compared to CDC Bronco. Nevertheless, these
lines are being used to breed for improvement of phosphorus and micronutrient bioavailability, along
with high grain yield. Subsequently, Liu et al. [226] evaluated the effects of phytate and seed coat
polyphenols on the bioavailability of iron using low-phytate pea lines (1-150-81 and 1-2347-144). The
iron bioavailability (FEBIO) was 1.4–1.9 times greater in low-phytate lines compared to normal phytate
varieties. Further, pigmented seed coat pea showed a seven times lower FEBIO than non-pigmented
seed coats; however, the removal of seeds coats increased the FEBIO up to six times. To understand
the genetic basis of the low phytic acid (lpa) mutation in the pea, Shunmugam et al. [232] amplified
a 1530 bp open reading frame of myo-inositol phosphate synthase (MIPS), the rate-limiting step in
the phytic acid biosynthesis pathway, from CDC Bronco and two lpa pea genotypes, 1-150-81 and
1-2347-144. They did not observe any difference in coding sequence in MIPS between CDC Bronco and
lpa genotypes and noticed that mutation in MIPS did not cause the lpa trait in pea lines.

Various studies in common beans suggested that lpa lines can improve iron bioavailability by
reducing the phytic acid level up to 90% [230,234]. Homozygous lpa mutant line (lpa-280-10) was
isolated in common beans from a mutagenized population, and this mutant had 90% less phytic acid
and higher free Fe in the seeds compared to the wild type [230]. Further, at the molecular level, it
was observed that a recessive mutation was responsible for the lpa character. Panzeri et al. [231]
mapped the lpa1(280-10) mutation and identified and sequenced a candidate gene in common beans
for comparison with the soybean genome. They observed that the lpa1(280-10) mutation co-segregated
with the mutated multidrug resistance-associated protein (MRP) type ATP-binding cassette transporter
gene (Pvmrp1), which is orthologous to the lpa genes of Arabidopsis AtMRP5 and maize ZmMRP4.
They further observed that a defective Mrp1 gene caused an lpa1 mutation in common beans that
downregulates the phytic acid pathway at the transcriptional level and thus reduced seed myo-inositol.
Recently, a new lpa line influencing the PvMRP1 phytic acid transporter was identified in common
beans using ethyl methane sulfonate mutagenesis [233]. Further, PvMRP promoters were characterized
in Arabidopsis thaliana and Medicago truncatula transgenic plants.

Polyphenols are secondary metabolites including flavonoids and proanthocyanidins [235] and
provide protection against various fungal pathogens [236]. They are natural sources of antioxidants
in the human diet and are present in fruits, vegetables, cereals, and legumes [237,238]. Previously,
all polyphenols were considered as inhibitors of Fe bioavailability in humans. A recent study by
Hart et al. [239] reported that four polyphenols inhibited Fe uptake, whereas four other polyphenols
promoted Fe uptake upon evaluating the effect of polyphenols present in black bean seed coats on Fe
uptake using Caco-2 cells (human cell line). They further concluded that specific polyphenols (promoter
of Fe uptake) can be targeted in future breeding for improved Fe bioavailability. Jha et al. [240] detected
30 polyphenols in a recombinant inbred line population developed from crossing pea cultivars
CDC Amarillo (white flower) and CDC Dakota (purple flower). Among 30 polyphenols, catechin,
3,4-dihydroxybenzoic acid, and kaempferol 3-glucoside were present in all pea lines, and these were
considered promoters of Fe uptake by Hart et al. [239]. Thus, promising accessions having Fe promoter
polyphenols can be identified via a wide exploration of germplasms for developing cultivars with
additional health benefits.

Postharvest processing can also play an important role in efficient utilization of biofortified
crops, as a substantial amount of minerals from the diet can be lost by milling or polishing [241] and
cooking. Therefore, efforts should be made to retain the micronutrient concentration in edible seeds,
and their absorption by the consumer after processing and cooking [242]. Retention of zinc content
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after cooking in biofortified rice varieties produced either through traditional breeding or genetic
engineering approaches has been discussed in detail by Tsakirpaloglou et al. [243].

Iodization of salt was not enough to overcome I deficiency due to several factors such as the
unavailability of iodized salt for all households, the volatilization of I during cooking, and insufficient
consumption due to health issues [55,93,200,244]. Hence, for successful biofortification, further research
was needed to identify traits that control uptake, mobilization, and retention of I in the plant, and these
can be manipulated in plant breeding or using a genetic engineering approach [56].

In pulse crops, growth and productivity are affected by various abiotic and biotic stresses, which
can result in significant reduction of grain yield [245–250]. These stresses can significantly alter the
nutritional profile of the harvested seeds. As mentioned previously, the targeted micronutrients are
either antioxidants or part of enzymes involved in various metabolic processes including electron
transfer and oxidation reductions; thus, they protect cells from oxidative damage by quenching reactive
oxygen species generated under environmental stresses [32,33,40,41,46,68,69]. Biofortified crops with
a greater concentration of micronutrients can better withstand adverse environmental conditions and
demonstrate improved adaptation under these conditions.

7. Conclusions

Micronutrients are essential for human growth and development, and their deficiency is a major
concern that affects one in three people worldwide. Among various strategies, biofortification through
plant breeding is considered the most economical and sustainable approach to tackle micronutrient
deficiencies. This approach is universally accepted and has the potential to reach people living in
relatively remote rural areas that have limited access to commercially marketed fortified foods. Further,
it requires a one-time investment, and seeds can be multiplied across years by farmers at virtually zero
marginal cost. In recent years, significant progress has been made with the release of several biofortified
crop varieties that are helping to overcome micronutrient deficiencies in the target populations. Pulse
crops are an important source of protein and energy, so improvement in their nutritional profile will
significantly increase their consumption. Biofortification to improve the nutritional profile of pulse
crops has gained momentum in the past decade. However, there are several challenges ahead that
need to be addressed if the use of biofortified foods is to be successfully maximized.
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