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Companys 23, 08010 Barcelona, Spain

Abstract. Multi-scale simulations require parallelization to address
large-scale problems, such as real-sized tumor simulations. BioFVM is
a software package that solves diffusive transport Partial Differential
Equations for 3-D biological simulations successfully applied to tissue and
cancer biology problems. Currently, BioFVM is only shared-memory par-
allelized using OpenMP, greatly limiting the execution of large-scale jobs
in HPC clusters. We present BioFVM-X: an enhanced version of BioFVM
capable of running on multiple nodes. BioFVM-X uses MPI+OpenMP to
parallelize the generic core kernels of BioFVM and shows promising scal-
ability in large 3-D problems with several hundreds diffusible substrates
and ≈0.5 billion voxels. The BioFVM-X source code, examples and doc-
umentation, are available under the BSD 3-Clause license at https://
gitlab.bsc.es/gsaxena/biofvm x.
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MPI · Shared-memory · Distributed-memory · Parallelization

1 Introduction

Advances in understanding complex biological systems such as tumors require
multi-scale simulations that integrate intracellular processes, cellular dynamics,
and their interaction with the environment. Computational biologists use a wide
range of approaches to simulate how single cells affect multi-cellular systems’
dynamics [17,24]. Nevertheless, large-scale multi-scale modeling still needs tools
to accurately simulate the environment in an efficient manner.

BioFVM [8] is a Finite Volume Method (FVM) [20] based simulation soft-
ware for solving Partial Differential Equations (PDEs) [29] that model complex
processes like the uptake, release and diffusion of substrates for multi-cellular
systems such as tissues, tumors or microbial communities. Apart from being
a self-contained callable library that can be used to implement and simulate
biological models, BioFVM forms the core component of PhysiCell [9] - a flexi-
ble, lattice-free, agent-based multi-cellular framework capable of simulating cell
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mechanics, such as cell movement, cell-cell interaction and different cell pheno-
types, as well as the micro-environment consisting of diffusing substrates, signal-
ing factors, drugs, etc. BioFVM is capable of handling multiple substrates and
can simulate chemical and biological processes using both cell and bulk sources.
The following diffusive PDE on a computational domain Ω (and boundary ∂Ω)
is solved for a substrate density vector ρ:

∂ρ

∂t
= ∇ · (D ◦ ∇ρ) − λ ◦ ρ + f , (1)

with the boundary condition (D ◦ ∇ρ) · n = 0 on ∂Ω and the initial condi-
tion ρ(x, t0) = g in Ω. In (1) above, D is the matrix of (constant) diffusion
coefficients, λ is the decay rate, f is the net source term and ◦ is the term-
wise product of vectors [8]. Without loss of generality, the substrate density ρ

can represent any kind of molecule such as a nutrient, a by-product, a signal
molecule or a drug. As a consequence, modeling complex environments requires
simulating many densities, posing a challenging scaling problem. Simulating the
environment requires the numerical solution of the linear system obtained by
a Finite Volume Discretization of the PDE given by Eq. (1), which BioFVM
solves using the Thomas algorithm [31] - a fast, direct solver for tridiagonal
systems. BioFVM’s biggest scalability limitation is that it cannot execute on
multiple nodes of an HPC cluster to solve a single, coherent problem and thus
the problem must fit into the memory of a single node.

We present BioFVM-X1: an enhanced distributed version that uses MPI
(Message-Passing Interface [21]) to parallelize the core kernels of BioFVM -
enabling one to solve very large problems which were not previously solvable
using the shared-memory only version. This contribution represents the first and
the most critical step on the road to a distributed implementation of PhysiCell.

2 Related Work

Different agent-based approaches have been proposed to model and simulate
multi-cellular systems, including on-lattice cellular automata, the Cellular-Potts
model [10] and overlapping spheres, among others [23]. BioFVM [8,9] was created
with the goal of achieving simplicity of usage, flexibility in expressing cell mod-
els, and optimizing execution speed while minimising dependencies on external
libraries but is only shared-memory parallelized using OpenMP [22].

For realistic, complex simulations, the need is to simulate billions of cells
and dynamic, complex 3-D environments, only achievable by optimal, full scale
utilization of parallel systems [12,14]. Biocellion [14] is a flexible, discrete agent-
based simulation framework that uses MPI for inter-node communication, as well
as other dependencies, such as PNNL Global Arrays [25], CHOMBO [3], the Intel
TBB [11] and the iterative Multigrid solver [2,32]. Nevertheless, Biocellion has
fixed routines to describe system behaviors, is dependent on external libraries

1 Available at: https://gitlab.bsc.es/gsaxena/biofvm x under BSD 3-Clause license.

https://gitlab.bsc.es/gsaxena/biofvm_x


268 G. Saxena et al.

Fig. 1. Key classes in BioFVM, along with their member data and functions. Func-
tions are distinguishable by a leading parenthesis i.e. ( ). Names are arbitrary but
convey semantic information. Solid, thick arrow with an un-shaded triangle represents
inheritance and dashed arrows denote a pointer or class relationship - the class (or its
pointer) being pointed to by the arrow is a data member of the class from which the
arrow originates.

and is closed source, which might deter potential users. Chaste is an open-source,
general purpose simulation package for modeling soft tissues and discrete cell
populations [18] that can be used with MPI using PETSc [1] but which itself
suffers from multiple dependencies. Timothy [4,5] is another open-source, MPI
based tool but with several dependencies, such as Zoltan [6], Hypre [7] and
SPRNG [19].

3 Internal Design and Domain Partitioning

The simplicity, flexibility, minimal dependence on external libraries, execution
speed and openness of BioFVM make it an ideal experimental candidate for dis-
tributed parallelization. In BioFVM, the 3-D simulation domain is divided into
Voxels (Volumetric pixels). The principal classes depicting the internal architec-
ture and their relationship in BioFVM is shown in Fig. 1.

The top-level biological entities along with related classes (see Fig. 1) are: (1)
Biological Environment (Microenvironment and Microenvironment Options),
(2) Physical Domain represented as 2-D/3-D Mesh (General Mesh,
Cartesian Mesh and Voxel), and (3) Cells (Basic Agent and Agent

Container). The data members of some classes are either the objects or the point-
ers of another class type (see dashed arrows in Fig. 1). The Microenvironment

class sets the micro-environment name, the diffusion/decay rates of sub-
strates, defines constants for the Thomas algorithm, contains an object of
Cartesian Mesh, a pointer to the Agent Container class and performs I/O.
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A group of resizing functions that determine the global/local voxels are mem-
bers of the Cartesian Mesh class. The Microenvironment Options class helps
to set oxygen as the first default substrate and the default dimensions of the
domain/voxel. The Cartesian Mesh class is publicly derived from General Mesh

(thick arrow in Fig. 1). The Basic Agent class forms an abstraction of a cell. An
object of the Basic Agent class can either act as a source or sink of/for substrates.
Each agent has a unique ID, a type, and maintains the local/global index of its cur-
rent voxel.

We initialize MPI with the MPI THREAD FUNNELED thread support level and
after domain partitioning [27,28], assign the sub-domains to individual MPI pro-
cesses. Our implementation as of now supports only a 1-D x-decomposition (see
AppendixA). The randomly generated positions of basic agents are mapped to
respective processes (see Appendix B) after which they are created individually
and in parallel on the MPI processes. Each MPI process initializes an object of
the Microenvironment class, maintains the local and global number of voxels,
local (mesh index) and global voxel indices (global mesh index) and the cen-
ter of each local voxel’s global coordinates. A 1-D x-decomposition permits us
to employ the optimal serial Thomas algorithm [30,31] in the undivided y and
z dimensions. This enables all threads within a node to simultaneously act on
elements belonging to different linear systems.

The Thomas algorithm is used to solve a tridiagonal system of linear equa-
tions in serial and consists of two steps, namely, Forward Elimination (FE) step
followed by a Backward Substitution (BS) step. Unfortunately, both the steps
involve serial and dependent operations and thus, the solver is inherently serial
and cannot be fully (trivially) parallelized. Although we decompose data in the
x−direction, the solver still runs serially i.e. MPI process rank i must finish
the FE before this step can begin on MPI process rank i + 1. Thus, the per-
formance of this multi-node but serial Thomas solver is expected to be worse
than a single-node Thomas solver due to the overhead of communication. The
performance penalty is least in the x−direction as the data is contiguous in the
memory as compared to the y and z direction where the data in the voxels’ vector
is non-contiguous. Thus, we decompose data only in the x−direction and avoid
decomposition in the other directions. We expect to replace this non-optimized
implementation by a modified, MPI+OpenMP version of the modified Thomas
algorithm [15] in future versions.

4 Experiments

We used the MareNostrum 4 (MN4) supercomputer at the Barcelona Supercom-
puting Center (BSC) for all our experiments. Each node has two 24-core Intel
Xeon Platinum 8160 processors and a total memory of 96 GB. BioFVM-X only
requires a C++ compiler and an MPI implementation for compilation. We used
GCC 8.1 and OpenMPI 3.1.1 running atop the SUSE Linux Enterprise Server
12 SP2 OS. The parallel file system is the IBM General Parallel File System
and the compute nodes are interconnected with the Intel Omni-Path technology
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with a bandwidth of 100 Gbits/s. We pinned the threads to individual cores and
bind each MPI process to a single processor (socket). We set the OpenMP envi-
ronment variables OMP PROC BIND=spread, OMP PLACES=threads [26] and used
the --map-by ppr:1:socket:pe=24 notation to allocate resources (see https://
gitlab.bsc.es/gsaxena/biofvm x).

We used a cubic physical domain and cubic voxels for all our tests. Our imple-
mentation assumed that the total number of voxels in the BioFVM’s x-direction
are completely divisible by the total number of MPI processes. The example
that we used to demonstrate the benefits of Hybrid parallelism is tutorial1 in
the BioFVM/examples directory. This example: (1) Initializes and resizes the
micro-environment (µ-environment, MC kernel) (2) Creates a Gaussian profile
(GPG kernel) of the substrate concentration (3) Writes the initial and final
concentrations to a .mat file (I/O kernel) (4) Creates Basic Agents (Sources
and Sinks, BAG kernel) and (5) Simulates Sources/Sinks and Diffusion (Solver
kernel).

Figure 2 presents timing results for the MC, GPG, BAG, I/O and Solver
kernels on physical domains of sizes 10003, 19203 and 38403. Cubic voxels had
a volume of 103 with 5 × 102 sources and 5 × 102 sinks in this example. We
denote the Hybrid implementation as “Hyb (n = a)”, where “a” denotes the total
number of nodes. For example, with Hyb (n = 2), we obtain a total of 2 (nodes) ×

2 (MPI processes) × 24 (OpenMP threads) = 96 OpenMP threads, as we always
run 2 MPI processes per node and 24 OpenMP threads per MPI process. Instead
of 8 MPI processes for the domain of size 10003, we used 10 MPI processes due
to a divisibility problem. Figure 3 shows the initial and final concentration of the
diffusing substrate (oxygen) for a domain of size 10003. The simulation plots were
obtained with Hyb (n = 1) by executing the cross section surface.m Matlab
script bundled with BioFVM.

In summary for Hyb (n = 1), both MC and BAG kernels took advantage
of the multiple MPI processes as initialization of the Microenvironment and
Basic Agent class objects were simultaneously carried out on separate processes
in BioFVM-X as opposed to a single thread in BioFVM. The (MPI) I/O ker-
nel showed significant performance gains over serial I/O for the tests considered
(Fig. 2). Nevertheless, the Solver kernel execution run-times did not reflect a sig-
nificant gain in the Hybrid version. An extended analysis of these results can be
found in AppendixC. Note that it is generally very difficult for an MPI+OpenMP
implementation to outperform the pure OpenMP implementation on a single
node, as is the case of Fig. 2, due to the additional memory footprint of MPI
and the cost of message-passing/synchronization. Our aim in the current work
was to tackle very large problems that cannot fit into the memory a single node
and to reduce their time to solution in a multi-node scenario.

After testing with increased voxels and basic agents, we run a performance
test to evaluate the scalability in the number of substrates. We found that the
pure OpenMP BioFVM version is incapable of executing a simulation of 400
substrates on a domain of 15003 due to memory limitations. Nonetheless, we
successfully run a Hybrid simulation using 400, and even 800 substrates, on a
domain of 15003 by distributing the computation between 2 nodes.

https://gitlab.bsc.es/gsaxena/biofvm_x
https://gitlab.bsc.es/gsaxena/biofvm_x
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Fig. 2. Pure OpenMP Vs Hybrid MPI execution times for increasing problem sizes.
Hyb (n =1) represents the time when a single node with 2 MPI processes and 24 threads
is used. The Best Hybrid represents the least time for that kernel for any number of
experimental nodes considered.
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Fig. 3. 3-D concentration density of oxygen simulated using Hyb (n =1) for a domain
of size 10003 and 1000 Basic Agents.

To further showcase BioFVM-X capabilities, we run a parallelized version of
the model of tumor growth in a heterogeneous micro-environment from BioFVM
[8]. We verified that the BioFVM-X distributed-memory 3-D tumor example
yielded the exact same results as the shared-memory one (see Appendix D and
Fig. 8). This is further proof that BioFVM-X correctly distributes the original
BioFVM models with a boost in performance due to the load distribution and the
potential of scaling simulations to a cluster of nodes, thus enabling researchers
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Table 1. Time (in seconds) of execution for the pure OpenMP and the Hybrid version
for a problem of size 7680 × 7680 × 7680 (≈0.5 billion voxels). The pure OpenMP
version terminates while throwing Out Of Memory error.

7680 × 7680 × 7680 OpenMP Hyb (n =4) Hyb (n=8)

Build µ-environment - 141.98 67.81

Gaussian profile - 0.916 0.448

Initial file write - 2.56 4.1

Agent generation - 0.1060 0.0023

Source/sink/diffusion - 1109.69 1210.41

Final file write - 4.83 3.32

Total time - 1260 1286.1

to address bigger, more complex problems. In addition, with a problem of size
76803, the memory consumption of the pure OpenMP version reaches ≈97% of
the total memory of the node (96 GB) and the simulation terminates with a bus
error. For the same problem size, the Hybrid code on 4 (with 192 threads) and
8 nodes (with 384 threads) executes successfully (Table 1).

5 Conclusion and Future Work

Multi-scale modeling has already proven its usefulness in a diversity of large-
scale biological projects [9,16,24], but these efforts have been hampered by
a scarcity of parallelization examples [4,12,14]. We present BioFVM-X - an
enhanced MPI+OpenMP Hybrid parallel version of BioFVM capable of run-
ning on multiple nodes of an HPC cluster. We demonstrate that BioFVM-X
solves very large problems that are infeasible using BioFVM as the latter’s exe-
cution is limited to a single node. This allows BioFVM-X to simulate bigger,
more realistic in-silico experiments. Further, despite the fact that our solver is
only partially parallelized, we see performance gains in multiple execution ker-
nels. In the future, we aim to replace the solver in the x-direction with a parallel
modified Thomas algorithm [15].

BioFVM-X is open source under the BSD 3-Clause license and freely available
at https://gitlab.bsc.es/gsaxena/biofvm x. Even though it can be used to easily
implement and simulate biological models in a self-contained manner, BioFVM-
X also forms the lower layer of our ongoing efforts to have a parallel large-scale
and multi-scale modeling framework termed PhysiCell-X, based on PhysiCell [9]
- a framework that is under active development and has multiple stable releases.

Acknowledgements. The research leading to these results has received funding from
EU H2020 Programme under the PerMedCoE project, grant agreement number 951773
and the INFORE project, grant agreement number 825070. The authors would like to
thank Paul Macklin and Randy Heiland from Indiana University for their constant
support and advice regarding BioFVM.
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Appendix A 1-D Pure x-Domain Decomposition

Figure 4 shows a 1-D x-direction domain partition of a 3-D domain (x-direction
is the unit-stride dimension).

ZY

X

Fig. 4. A 3-D domain of dimensions 4 × 4 × 4 visualized as four 2-D plates (shaded
gray) of dimension 4 × 4 arranged one after the other. A 1-D domain partition (shown
with blue, red and green planes) of 4 MPI processes in the x-direction divides the
voxels numbered 1 to 64 into 4 parts. Rank 0, Rank 1, Rank 2, and Rank 3 processes
contain voxel IDs numbered 4n + 1, 4n + 2, 4n + 3, and 4n + 4 respectively, where
n = 0, 1, 2, . . . , 15. Data is contiguous in the x-direction and the distance between 2
consecutive elements in the y and z directions is 4 and 16, respectively. (Color figure
online)

Figure 5 shows the algorithm for domain partitioning where voxels are
assigned to each MPI process. First, the domain dimensions (e.g. xmin, xmax)
and the voxel dimensions (∆x) are used to decide the total number of global
voxels (g x nodes). Given the total number of MPI processes (P ), the voxels
per MPI process (l x nodes) in the x-direction are computed next. This is fol-
lowed by the computation of the global coordinates for the centers of voxels (for
brevity, lines 1–6 in Fig. 5 show this for the x−direction only, with the treatment
of remaining directions being analogous to the x−direction). Further, since each
MPI process must maintain the local and corresponding global voxel index, the
global mesh index of the first voxel (l strt g index) is computed on each pro-
cess - used subsequently to assign the global mesh index to each voxel on that
process (see the triply nested loop in Fig. 5). In addition to the assignment of
a local/global voxel index on each process, a list of the immediate directional-
neighbours of each voxel is also maintained (not shown in Fig. 5). In parallel,
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Require: xmin, xmax, d[] (Topology Dimensions), c[] (Process Coordinates), Δx
(Voxel x-length)

1: g x nodes ← (xmax−xmin)
∆x

⊲ y and z analogous

2: l x nodes ← g x nodes

d[1]

3: l x start ← xmin + (c[1] × l x nodes × Δx)
4: i ← 0
5: while i++ ≤ l x nodes − 1 do

6: x c[i] ← l x start + (i + 0.5) ∗ Δx

7: zl ← c[2] × g x nodes × g y nodes × l z nodes
8: yl ← (d[0] − c[0] − 1) × g x nodes × l y nodes
9: xl ← c[1] × l x nodes

10: l strt g index ← xl + yl + zl

11: n, i, j, k ← 0
12: while k++ < l z nodes do

13: zk ← k × g x nodes × g y nodes
14: while j++ < l y nodes do

15: yj ← j × g x nodes
16: while i++ < l x nodes do

17: vxl[n].cntr[0] ← x c[i]
18: vxl[n].cntr[1] ← y c[j]
19: vxl[n].cntr[2] ← z c[k]
20: vxl[n].g indx ← l strt g index + zk + yj + i
21: n ← n + 1

Fig. 5. Assignment of voxels to MPI processes in 1-D x-Domain Decomposition. Only
partitioning of x-dimension is shown (same for y and z-directions). Prefixes l and g
stand for “local” and “global”, respectively. Array d[] contains the topology dimensions
and array c[] contains MPI process coordinates [21]. The triply nested loop sets the
global voxel (vxl) centers (cntr) and the global voxel index (indx).

such a scheme must accommodate for the cases when there is no local x, y or z

neighbour but a global neighbour exists on the neighbouring process or when the
process is aligned to the physical boundary of the domain. In BioFVM, a list for
the Moore neighbourhood is also built for each voxel. The Moore neighbourhood
equates to a 9-pt stencil in 2-D and a 27-pt stencil in 3-D [13].

Appendix B Mapping Basic Agents to a Voxel

A mapping that relates the position coordinates of the Basic Agent to the local
index of a process-specific voxel is illustrated with the help of an algorithm in
Fig. 6. Given the positions vector (denoted by p[] in Fig. 6) of a Basic Agent, first
the MPI Cartesian coordinates of the MPI process that contains the Basic Agent
are computed (denoted by xp, yp and zp). This is followed by the computation
of the global x, y and z index (denoted by firstx, firsty and firstz) of the first
voxel of the MPI process that contains the Basic Agent. After calculating the
directional i.e. x, y and z global indices of the voxel (denoted by voxx, voxy and
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Require: xmin, ymin, zmin, d[] (Topology Dimensions), d[] (MPI Cartesian
dimensions),p[] (Agent position coordinates), Δx, Δy, Δz (Voxel x/y/z-length)

1: xp ← d[0] − 1 − ⌊(p[1] − ymin)/(l y nodes ∗ Δy)⌋
2: yp ← (p[0] − xmin)/(l x nodes ∗ Δx)
3: zp ← (p[2] − zmin)/(l z nodes ∗ Δz)
4: firstx ← yp ∗ l x nodes
5: firsty ← (d[0] − 1 − xp) ∗ l y nodes
6: firstz ← zp ∗ l z nodes
7: voxx ← ⌊(p[0] − xmin)/Δx⌋
8: voxy ← ⌊(p[1] − ymin)/Δy⌋
9: voxz ← ⌊(p[2] − zmin)/Δz⌋

10: dx ← voxx − firstx

11: dy ← voxy − firsty

12: dz ← voxz − firstz

13: l index ← (dz ∗ l y nodes + dy) ∗ l x nodes + dx

Fig. 6. Mapping the position of a Basic Agent (in array p[]) to the process-local index
(l index) of a voxel that contains p[]. Prefix l stands for “local”. Array d[] contains the
MPI Cartesian topology dimensions. l x/y/z nodes give the number of process local
voxels and ∆x, ∆y, ∆z denote voxel dimensions (generally ∆x = ∆y = ∆z).

voxz) that contains the Basic Agent, indices of the “first” voxel of the MPI pro-
cess computed above is subtracted from the directional indices to obtain a local
offset (denoted by dx, dy and dz) of voxel indices in each direction. Subsequently,
to obtain the local index of the process-specific voxel (l index), the directional
local offsets are appropriately multiplied by the number of process-local voxels.

Appendix C Extended Results

For an 8x increase in the number of voxels, the OpenMP MC, GPG, BAG and
I/O kernels show a 7.86 − 8.67x, 3.29 − 7.05x, 1.15 − 1.3x and 6.78 − 8.51x
increase, respectively (Fig. 2). The increase in the corresponding kernels for the
best overall Hybrid version are: 8.7−9.4x, 3−7.78x, 0.77−1.14x and 3.14−6.68x,
respectively (Fig. 2). Both MC and BAG kernels can take advantage of the mul-
tiple MPI processes as initialization of the Microenvironment and Basic Agent

class objects are simultaneously carried out on separate processes in BioFVM-X
as opposed to a single thread in BioFVM. The (MPI) I/O kernel shows sig-
nificant performance gains over serial I/O for the tests considered. For an 8x
increase in the mesh resolution, the 6.78 − 8.11x increase for Hybrid version in
the Solver kernel looks promising as compared to the 9.24−15.93x pure OpenMP
increase, but the Hybrid version’s absolute execution run-times do not reflect a
significant gain. To help solve this, future versions of BioFVM-X will use the
parallel modified Thomas solver [15] in the x-direction.
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Appendix D Correctness Checking

To verify the correctness of the simulation, we run a simulation on a domain
of size 10003 but increase the number of Basic Agents to 2 × 106 (Fig. 7 and
Table 2).

(a) OpenMP (48 threads) (b) Hybrid(n=1)

Fig. 7. 2-D cross-section of the final concentration density of a given substrate with
2 × 106 agents on a domain of size 10003 using (a) Pure OpenMP (b) Hybrid MPI +
OpenMP

Table 2. Time (in seconds) of execution of simulation for the OpenMP version and
the Hybrid version in a domain of size 1000 × 1000 × 1000 with 2 × 106 Basic Agents.

1000 × 1000 × 1000 OpenMP Hyb (n=1)

Build µ-environment 1.14 1.03

Gaussian profile 0.0157 0.0117

Initial file write 0.219 0.084

Agent generation 2.46 1.45

Source/sink/diffusion 7.48 5.88

Final file write 0.22 0.063

Total time 11.56 8.54

To further underline the correctness of BioFVM-X, we compared the results
of a tumor growth model in a heterogeneous environment from BioFVM [8]
available at this link. In this model a 2-D tumor growth is driven by a substrate
supplied by a continuum vascular system and cells die when it is insufficient.
Additionally, the tumor cells have motility and can degrade the vascular system.
We first expanded this example to a 3-D example (instead of the original 2-D)
and specified the domain as 80× 80× 80 voxels for a total of 512 000 voxels. We
choose two different configurations:

http://www.mathcancer.org/blog/biofvm-warmup-2d-continuum-simulation-of-tumor-growth/
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– a shared-memory configuration (OpenMP) of 48 threads
– a hybrid shared and distributed-memory configuration (MPI+OpenMP) of 2

MPI processes running 24 threads each on a single node.

The comparison of the shared-memory and distributed-memory simulations
yields identical results as shown in Fig. 8, further confirming that BioFVM-
X provides the same results as BioFVM. The code to reproduce the figure is
available on the BioFVM-X code repository.

(a) Initial densities at z=2.025 (b) Final densities at z=2.025

Fig. 8. 2-D cross-section of the (a) initial and (b) final concentration densities of three
substrates from the 3-D tumor growth model on a domain of size 80 × 80 × 80 vox-
els using shared-memory (OpenMP d*) and distributed-memory with MPI+OpenMP
(Hybrid d*).
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