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Abstract. Spherically expanding flames propagating at constant pressure were employed to 

determine the laminar burning velocity and flammability characteristics of biogas-air mixtures 

in premixed combustion to uncover the fundamental flame propagation characteristics of a new 

alternative and renewable fuel. The results are compared with those from a methane-air flame. 

Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The 

composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon 

dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (ϕ) 

using a photographic technique in a high pressure fan-stirred bomb, the initial condition being 

at room temperature and atmospheric pressure. The flame for methane–air mixtures propagates 

from ϕ=0.6 till ϕ=1.3. The flame at ϕ≥1.4 does not propagate because the combustion reaction 

is quenched by the larger mass of fuel. At ϕ≤0.5,  it does not propagate as well since the heat of 

reaction is insufficient to burn the mixtures. The flame for biogas–air mixtures propagates in a 

narrower range, that is from ϕ=0.6 to ϕ=1.2. Different from the methane flame, the biogas 

flame does not propagate at ϕ≥1.3 because the heat absorbed by inhibitors strengthens the 

quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at ϕ≤0.5 

does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. 

Compared to a methane-air mixture, the flammability characteristic (flammable region) of 

biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the 

presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases 

work more effectively at rich mixtures because the rich biogas-air mixtures have a higher 

fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures. 

1.  Introduction 

Biogas as “Powergas” is an alternative fuel, it is a sustainable and renewable fuel that is produced in 

digestion facilities. It does not contribute to the increase in atmospheric carbon dioxide concentrations 

because it comes from an organic source with a short carbon cycle and is thus a green solution in the 

development of sustainable fuels [1,2]. The digestion facilities can be constructed quickly in a few 

days using unskilled labor [3]. Biogas contains 50–70% methane and 30–50% carbon dioxide, as well 
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as small amounts of other gases and typically has a calorific value of 21–24 MJ/m
3
 [4]. Based on 

chemical analysis, the composition of the biogas produced in East Java, Indonesia is 66.4% methane, 

30.6% carbon dioxide and 3% nitrogen [1,2]. Methane is a flammable gas, whereas, nitrogen and 

carbon dioxide are inhibitors [5]. The Kyoto protocol was intended to reduce greenhouse gas 

emissions, and to further this objective, research into biogas combustion in stoves, engines and gas 

turbines has had good results [4,6-10]. However, the laminar burning velocity and flammability 

characteristic of biogas, being a fundamental characteristic of a fuel, have not been studied yet. Thus, 

the aim of this paper was to investigate its laminar burning and flammability characteristics.  

Demands for replacing fossil fuels to reduce emissions, require an improved fundamental 

understanding of the combustion processes that occur within the internal combustion engine. An 

important characteristic is the burning velocity, which directly affects pressure development and is 

often expressed in terms of laminar burning velocity [1,2,11-16].  

Flammability limits, give the proportion of combustible gases in a mixture, between which limits 

this mixture is flammable. Gas mixtures consisting of combustible, oxidizing, and inert gases are only 

flammable under certain conditions. The lower flammable limit describes the leanest mixture that still 

sustains a flame, i.e. the mixture with the smallest fraction of combustible gas, while the upper 

flammable limit gives the richest flammable mixture. The laminar burning velocity and flammability 

are the most important flame propagation characteristics in spark ignited premixed combustion and as 

the fundamental flame propagation characteristic of biogas require further study; this paper looks into 

this matter with view to a better understanding of a new alternative and renewable fuel. The results are 

compared with those from methane-air flames to emphasize the contrast between the burning velocity 

and flammability characteristics of methane-air mixtures and biogas-air mixtures. 

2.  Experimental Methods 

The laminar burning velocity of biogas premixed combustion was measured in the Mk II high pressure 

fan-stirred combustion vessel at the Leeds University School of Mechanical Engineering as shown in 

Fig. 1. Initially, all the experiments in this paper were performed at room temperature, at atmospheric 

pressure and with mixtures of various equivalence ratios (ϕ= 0.5, 0.6, 0.8, 1.0, 1.2, 1.3). The bomb is a 

spherical stainless steel vessel of 380 mm diameter, with three pairs of orthogonal windows each of 

150 mm diameter and equipped with four electrically driven fans to ensure good mixing [1,2,11-14]. 

The fuel-air mixtures in the Mk II combustion bomb were centrally ignited and flame propagation was 

recorded by high speed schlieren cine-photography using a Photosonics Phantom digital camera as 

shown in Fig. 2, operating at a rate of 2500 frames/s with a resolution of 768 x 768. The flame radius 

was calculated as that of a circle encompassing the same area as that enclosed by the schlieren imaged 

flame [1,2,11-14]. 

 

                                                               

             Figure 1. Mk2 Combustion Bomb.           Figure 2. High Speed Schlieren Cine-Photography 

 

     The laminar burning velocity for a spherically expanding flame can be deduced from the schlieren 

photographs, the stretched flame velocity (Sn) can be derived from the flame radius versus time data 

as: Sn = dru/dt, where ru is the flame radius in the Schlieren photographs and t is the elapsed time from 

the spark ignition. The flame stretch rate α is defined as α = d(ln A)/dt = (dA)/(A dt), where A is the 
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area of the flame. In the case of a spherically propagating premixed flame, the flame stretch rate can 

be calculated by α =(2/ru)(dru/dt). A linear relationship between flame speed and the total stretch 

exists, and this is quantified by burned gas of Markstein length, Lb, and is defined at the radius, ru, 

such that: Sn–Ss = Lb α, where Ss is the unstretched flame speed, and is obtained as an intercept value 

of Sn at α = 0 in the plot of Sn against α. The gradient of the best straight line fit to the experimental 

data gives Lb. The unstretched laminar burning velocity, ul, was deduced from Ss using ul = Ss (ρb/ρu), 

where ρb is the density of the burned gas mixtures and ρu is the density of the unburned gas mixtures 

[1,2,11-14]. 

3.  Results and Discussion 

Based on the experimental investigation, the biogas-air mixtures at the intermediate equivalence ratios 

(ϕ=0.6, 0.8, 1.0, 1.2) were observed to produce a propagating flame, whereas at the extreme 

equivalence ratios (ϕ=0.5 and 1.3) no propagating flames were observed. The images resulting from 

the spherical flame propagation within the combustion bomb are shown in Fig. 3. 

 
Figure 3. Flame Propagation Biogas-Air Mixtures at Various Equivalence Ratios. 

 

The radius of the spherical flame propagation in Fig. 3 are presented in Fig. 4 as a function of 

elapsed time. Based on experiment results and the calculations as mentioned in the experimental 

method and previous studies [1,2,13], the laminar burning velocities of  biogas-air mixtures in premixed 

combustion are 0.0743 m/s for lean (ϕ=0.6), 0.2086 m/s for lean (ϕ=0.8), 0.2638 m/s for stoichiometric 

(ϕ=1.0) and 0.1864 m/s for rich (ϕ=1.2) biogas-air mixtures, which are in agreement with previous 

studies [1,2]. 
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Figure 4. Flame Radius vs Elapsed Time of Biogas-Air Mixtures at Various Equivalence Ratios 

 

For comparison, the laminar flame propagation of methane is also presented as shown in Fig. 5. The 

methane-air mixtures equivalence ratio (ϕ=0.6, 0.8, 1.0, 1.2, 1.3) were found to have produced a 

propagating flame, whereas for the extreme equivalence ratio (ϕ=0.5 and 1.4) no propagating flames 

were observed. 

 

 

Figure 5. Flame Propagation Methane-Air Mixtures at Various Equivalence Ratios 
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Based on the experimental results and the same calculations and method for the laminar burning 

velocity of the various equivalence ratios of biogas-air mixtures, the laminar burning velocities of the 

methane-air mixtures were found. The  laminar burning velocities were 0.0948 m/s for lean (ϕ=0.6), 

0.2749 m/s for lean (ϕ=0.8), 0.3527 m/s for  stochiometic (ϕ=1.0), 0.3082 m/s for rich (ϕ=1.2) and 

0.2015 m/s for rich (ϕ=1.3) methane-air mixtures, which were in agreement with previous studies 

[1,2,13]. A summary of the results from biogas and methane are shown in Table 1 and Fig. 6. 

 

Table 1. Laminar Burning Velocities of Methane and Biogas 

 Methane Laminar burning 

velocity (m/s) 

Biogas Laminar burning 

velocity (m/s) 

0.5 No propagation No propagation 

0.6 0.0948 0.0743 

0.8 0.2749  0.2086 

1.0 0.3527 0.2638 

1.2 0.3082 0.1864 

1.3 0.2015 No propagation 

1.4 No propagation No propagation 

 

 

 
 

Figure 6. Laminar Burning Velocities of Methane-Air Mixtures and Biogas-Air Mixtures 

 

From Table 1 and Fig. 6, it can be seen that laminar burning velocities of stoichiometric (ϕ=1) 

biogas-air mixtures and methane-air mixtures are higher than the lean and rich mixtures because the 

stoichiometric mixtures have just enough air for complete combustion of the available fuel [1,2]. As 

expected, because of  the presence of carbon dioxide and nitrogen in the biogas, at the same 

equivalence ratio, the laminar burning velocity of  biogas-air mixtures were lower than the laminar 

burning velocitiy of the methane-air mixtures. The carbon dioxide and nitrogen in the biogas are 

inhibitors that tended to decrease the laminar burning velocities [1,2,5,17]. 

     The flames for the methane–air mixtures propagated from ϕ=0.6 till ϕ=1.3. But at ϕ≥1.4 the flame 

did not propagate because the combustion reaction was quenched by the larger mass of fuel. At ϕ≤0.5, 

the flame did not propagate either since reaction heat was insufficient to burn the mixtures. Flames for 

biogas–air mixtures propagated at narrower range, i.e. ϕ=0.6 to ϕ=1.2. In contrast, the biogas flame did 
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not propagate at ϕ≥1.3. This was due to the fact that the inhibitors in the fuel absorbed some of the 

heat from the combustion reaction. Therefore, the quenching effect in the larger mass of fuel was 

stronger. At ϕ≤0.5, the same as in methane flame, the biogas flame did not propagate. This shows that 

the effect of inhibitors was very small at extreme lean mixtures. Compared to a methane-air mixture, 

the flammable region of biogas became narrower in the presence of inhibitors (carbon dioxide and 

nitrogen) and the presence of inhibitors caused a reduction in the laminar burning velocity for two 

reasons. Firstly, the dilution effect lead to a lower concentration of reactive species in the fuel-air 

mixture for a given equivalence ratio, which lead to a lower overall chemical reaction rate of 

bimolecular reactions in the fuel oxidation reaction process. Secondly, the presence of these inhibitor 

gases absorbed some of the heat generated, thus lowering the flame temperature which in turn will tend 

to reduce the overall rate of many of the chemical reactions within the fuel oxidation process. The 

inhibitor gases were more effective in rich mixtures because the rich biogas-air mixtures had a higher 

fraction of carbon dioxide and nitrogen components compared to lean biogas-air mixtures. 

4.  Conclusion 

The flames for the methane–air mixtures from ϕ=0.6 till ϕ=1.3 propagated, whereas, the flames in 

mixtures of ϕ≥1.4 did not propagate because the combustion reaction was quenched by the larger mass 

of fuel. The methane flame at equivalence ratio of ϕ≤0.5 did not propagate either. This was due to the 

fact that the reaction heat was insufficient to burn the mixtures. The flames for biogas–air mixtures 

were propagated at narrower ranges, that is from ϕ=0.6 to ϕ=1.2. The biogas flame did not propagate 

for ϕ≥1.3 because the inhibitors in the mixture absorbed some of the heat from the combustion 

reaction so that the quenching effect in the larger mass of fuel was stronger. As for the methane flame, 

biogas flame at ϕ≤0.5 did not propagate which shows that the inhibitor effect was small in the lean 

mixtures. The laminar burning velocities of the biogas-air mixtures in the premix combustion were 

0.0743 m/s for ϕ=0.6, 0.2086 m/s for ϕ=0.8, 0.2638 m/s for ϕ=1.0 and 0.1864 m/s for ϕ=1.2 biogas-air 

mixtures respectively. The inhibitor gases were more effective at rich mixtures because the rich 

biogas-air mixture had a higher fraction of the carbon dioxide and nitrogen components compared to 

the lean biogas-air mixtures. The flammability characteristic (flammable region) of biogas became 

narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of the inhibitors 

caused a reduction in the laminar burning velocity 

Acknowledgments 

Many Thanks to Direktorat Jendral Pendidikan Tinggi Kementrian Pendidikan Nasional Republik 

Indonesia, Universitas Brawijaya, Petra Christian University, Leeds University, Prof. M. 

Pourkashanian (Leeds University), Professor Derek Bradley (Leeds University), Professor Mike 

Pilling (Leeds University), and Bambang Pudjianto (BBA Gas) for their support during this research. 

References 

[1] Anggono. W., Wardana. I.N.G., Pourkashanian. M., Hughes. K.J., Lawes. M.,Wahyudi. S., 

Hamidi. N., and Hayakawa. A., 2012. Experimental and Numerical Simulation on Boigas 

Flame Propagation Characteristic in Spark Ignition Premixed Combustion, Proceeding 

The3rd International Conference on Engineering and ICT (ICEI2012) Melaka-Malaysia, 

Vol. 2, pp. 290-294. 

[2] Anggono. W., Wardana. I.N.G., Lawes. M., Hughes. K.J., Wahyudi. S., Hamidi. N., 2012. 

Laminar Burning Characteristics of Biogas-Air Mixtures in Spark Ignited Premix 

Combustion. Journal of Applied Sciences Research. 

[3] Lichtman. R., et. al.,  1996. The Improved Biogas Systems Project: results and future work, 

Energy for Sustainable Development, Volume 3, Issue 4, pp. 28–42. 

[4] Bond. T., and Templeton. M.R., 2011. History and future of domestic biogas plants in the 

developing world., International Journal Energy for Sustainable Development Volume 15, 

Issue 4, pp. 347–354. 

ScieTech 2013 IOP Publishing
Journal of Physics: Conference Series 423 (2013) 012015 doi:10.1088/1742-6596/423/1/012015

6



 

 

 

 

 

 

[5] Ilminnafik. N., Hamidi. N., and Wardana. I.N.G.,  2011, Behavior of flame propagation in LPG 

premixed combustion with carbon dioxide inhibitor, International Journal of academic 

research. Vol. 3. No. 2. March, 2011, Part III, pp. 705-708. 

[6] Alwis. A.D., 2002. Biogas-A review of Sri Lanka's performance with a renewable energy 

technology, Energy for Sustainable Development, Volume 6, Issue 1, March 2002, Pp. 30–

37. 

[7] Lafay. Y., Taupin .B., Martins .G., Cabot .G., Renou .B., and  Boukhalfa, 2007. Experiment 

study of biogas combustion using a gas turbine configuration. Experiments in Fluids: 

Springer 43, pp. 395-410. 

[8] Nathan. S.S.,Mallikarjuna. J.M., and Ramesh. A., 2010.  An experimental study of the biogas–

diesel HCCI mode of engine operation, Energy Conversion and Management 51, pp. 1347–

1353. 

[9] Porpatham. E.,Ramesh. A., and Nagalingam. B., 2008. Investigation on the effect of 

concentration of methane in biogas when used as a fuel for a spark ignition engine, Fuel 87, 

pp.1651-1659. 

[10] Sridhar G., Paul P.J. and Mukunda H.S. 2001. Biomass Derived Producer Gas as a 

Reciprocating Engine Fuel – An Experimental Analysis, Biomass & Bioenergy, Vol. 21, pp. 

61-72. 

[11] Bradley. D., Hicks. R.A., Lawes. M., Sheppard. C.G.W. and Wooley, R, 1998. The 

measurement of laminar burning velocities and Markstein numbers for isooctane-air and iso-

octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb, 

Combustion and Flame 115, pp. 126-144. 

[12] Gillespie. L., Lawes. M., Sheppard. C.G.W., and Woolley. R., 2000. Aspects of laminar and 

turbulent burning velocity relevant to SI engines. SAE Paper Series 2000-01-0192. 

[13] Gu. X.J., Haq. M.Z., Lawes. M., and Wooley. R., 2000. Laminar burning velocity and 

Markstein lengths of methane-air mixtures, Combustion and Flame 121, pp. 41-58. 

[14] Serrano. C., Hernandez. J.J., Mandilas. C., Sheppard. C.G.W., and Woolley. R., 2008. Laminar 

burning behaviour of biomass gasification-derived producer gas, International Journal of 

Hydrogen Energy 33, pp. 851 – 862. 

[15] Hermanns. R.T.E., 2007. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures, 

Doctoral Thesis Technische Universiteit Eindhoven, The Netherlands. 

[16] Marshall. S.P., Taylor. S., Stone. C.R., Davies. T.J., and Cracknell. R.F., 2011. Laminar burning 

velocity measurements of liquid fuels at elevated pressures and temperatures with 

combustion residuals, Combustion and Flame 158, pp. 1920–1932. 

[17] Ronney, P. D., 2001. Premixed-Gas Flames in Microgravity Combustion: Fires inFree Fall (H. 

Ross, Ed.), Academic Press, London, U.K.,pp. 35-82. 

 

ScieTech 2013 IOP Publishing
Journal of Physics: Conference Series 423 (2013) 012015 doi:10.1088/1742-6596/423/1/012015

7


