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Abstract Recent studies suggest both normal and can-

cerous cells secrete vesicles into the extracellular space.

These extracellular vesicles (EVs) contain materials that

mirror the genetic and proteomic content of the secreting

cell. The identification of cancer-specific material in EVs

isolated from the biofluids (e.g., serum, cerebrospinal fluid,

urine) of cancer patients suggests EVs as an attractive

platform for biomarker development. It is important to

recognize that the EVs derived from clinical samples are

likely highly heterogeneous in make-up and arose from

diverse sets of biologic processes. This article aims to

review the biologic processes that give rise to various types

of EVs, including exosomes, microvesicles, retrovirus like

particles, and apoptotic bodies. Clinical pertinence of these

EVs to neuro-oncology will also be discussed.

Keywords Biomarkers � Intracellular trafficking �
Membrane budding � Tetraspanin � Multi-vesicular bodies
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Abbreviations

Exosomes 30–100 nm secreted vesicles that

originate from the endosomal

network

Microvesicles 50–2,000 nm vesicles that arise

through direct outward budding

and fission of the plasma mem-

brane

Retrovirus-like particles 90–100 nm non-infectious vesicles

that resemble retroviral vesicles

and contain a subset of retroviral

proteins

Apoptotic bodies 50–5,000 nm vesicles produced

from cell undergoing cell death

by apoptosis

EV Extracellular vesicle

RLP Retrovirus like particle

ILV Intraluminal vesicle

MVB Multivesicular body

TEM Tetraspanin enriched microdo-

main

ESCRT Endosomal sorting complex required

for transport

Introduction

A platform that has emerged as a promising avenue for

biomarker development involves the isolation of extracel-

lular vesicles (EVs) [1]. These vesicles are secreted by both

normal cells and cancerous cells as a means of cell-to-cell

communication [2–5]. Signals are transmitted by either

direct interaction between the vesicle membrane protein

and the recipient membrane protein [2, 6] or by internali-

zation of the vesicle content by the recipient cell [7–9].
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Recent studies suggest that the rate of vesicle release is

enhanced by oncogenic processes [10, 11] and that the

contents of the vesicles released mirror aspects of the

secreting cell. [1]. For instance, mRNA transcripts of a

glioblastoma specific variant of the epidermal growth fac-

tor receptor (EGFR variant III) can be detected in vesicles

isolated from the blood of patients harboring such tumors

[1]. The encapsulation of the tumor specific mRNAs within

the EVs appears to protect them from the degradative

enzymes that are replete within the serum.

While these EVs constitute a promising platform for

biomarker development, the terminology used to describe

these vesicles has not been standardized. When EVs are

isolated from biofluids such as blood, cerebrospinal fluid, or

urine, one convention adopted is to name the vesicles based

on the source of isolation rather than the mechanism of

biogenesis. In this way, terms including epididimosomes,

argosomes, exosome-like vesicles, microvesicles, promini-

nosomes, prostasomes, dexosomes, texosomes, archaeo-

somes, and oncosomes have all been used [12]. Other

terminology reflects both varying methods of isolation and

differing mechanisms of biogenesis. For instance, vesicles

isolated from biofluids using the same methods can be

referred to as exosomes by some [9, 10], microvesicles by

others [1, 13], and still others blur the difference with

the term ‘‘exosomes/microvesicles’’ [14]. The underlying

source of confusion is that ‘‘exosome’’ and ‘‘microvesicle’’

are terms defined by cell biologists to denote EVs that arise

through specific biological mechanisms [15, 16]. However,

when considering the use of EVs as biomarkers, it is

important to recognize and understand that multiple types of

EV may be present in a given biofluid. The goal of this

article is to review the various types of EVs that have been

reported in clinical samples as well as to describe the

potential mechanisms of their biogenesis. The EVs reviewed

here will include: exosomes, microvesicles, retrovirus like

particles (RLPs), and apoptotic bodies (Fig. 1). Potential

cell surface markers for these EVs will be reviewed.

Isolation of extracellular vesicles

EVs have been isolated from a variety of biofluids

including blood, urine, cerebrospinal fluid, lymphatics,

tears, saliva and nasal secretions, ascites, and semen. There

is no general consensus as to the best method for isolation.

Described methods for isolation include step-wise centri-

fugation to remove large cellular debris followed by

ultracentrifugation (at 100,0009g) to pellet the nano-sized

vesicles [2]. Purification by density gradient using sucrose

gradients has also been reported [17]. Other methods of

isolation include: (1) the use of serial filtration [18], and (2)

immune-isolation employing magnetic beads conjugated

with anti-bodies directed specifically at proteins that are

overrepresented on EVs [19, 20]. In general, the isolated

particles are too small to be visualized by light microscopy.

The purity of the preparation is typically confirmed using

electron microscopy [19] or laser scatter tracking [21].

Western blotting of proteins overrepresented in EVs is

frequently performed to ensure the integrity of the particle

proteins [22, 23].

Exosomes

The recognition of exosomes as an entity emerged during

the golden era of electron microscopy (EM). The term

exosome was coined by Dr. Rose Johnstone in a quest to

understanding the biologic process that underlies the trans-

formation from a reticulocyte to a mature erythrocyte [24].

Dr. Johnstone observed that maturing reticulocytes con-

tained large sacs filled with small membrane enclosed ves-

icles of nearly uniform size (30–100 nm) within their

cytoplasms. She subsequently identified transferrin as an

abundant membrane protein on these sacs [25]. Immunogold

labeling with a monoclonal antibody against transferrin

receptor revealed that the larger sacs eventually fuse with

the cell’s plasma membrane, releasing the small membrane

Apoptosis

Apoptotic bodies

Retroviral 
productionNucleus

Retrovirus-like particles

Nucleus

Exosomes

Late endosome/
MVB

Microvesicles

Fig. 1 Biogenesis of the various types of extracellular vesicles exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies
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enclosed structures (Fig. 2). Subsequent studies confirmed

the secretion of these vesicles as the mechanism by which

membranes and proteins (such as transferrin) are removed

during reticulocyte maturation. Because the process of

vesicular secretion was akin to ‘‘reverse endocytosis’’, the

small extruded vesicles were termed ‘‘exosomes’’. It should

be noted that, in another context, the term ‘‘exosome’’ is also

used to denote a multi-subunit RNA degrading complex

[26].

Since their initial discovery, much has been learned

about the biogenesis of exosomes. Exosomes are formed

within the endosomal network, a membranous compart-

ment that sorts the various intraluminal vesicles and directs

them to their appropriate destinations, including lysosomes

and cell surface membranes. In doing so, endosomes target

some proteins/lipids for lysosomal degradation while tar-

geting others for recycling or exocytosis.

Endosomes can be further sub-divided into three distinct

compartments: early endosomes, late endosomes, and recy-

cling endosomes (Fig. 3). Early endosomes fuse with

endocytic vesicles and incorporate their content into those

destined for recycling, degradation, or exocytosis. The

contents destined for recycling are sorted into recycling

endosomes. The remainder of the early endosomes then

undergo a series of transformations to become late endo-

somes. During this transformation, contents fated to be

degraded or exported are preferentially sorted into

30–100 nm vesicles that bud into the lumen of late endo-

somes. Given the presence of multiple small vesicles (the

small vesicles are sometimes referred to as intraluminal

vesicles or ILVs) in these late endosomes, they are also

known as multi-vesicular bodies (MVBs) [27]. The late

endosomes are targeted to either fuse with lysosomes or

the plasma membrane. Fusion with a lysosome will result in

destruction of the content of the late endosome. On the other

hand, fusion with the plasma membrane results in the

secretion of the 30–100 nm vesicles into the extra-cellular

space. These excreted vesicles are exosomes.

Here, a brief discussion of the predominant process by

which the ILVs are formed is needed since many of the

involved proteins have been proposed as markers that define

exosomes. Work in yeast [28–31] and other tissue culture

models [32–34] suggests that ILV formation requires two

distinct processes. The first involves the organization of the

endosome membrane into specialized units highly enriched

for a class of membrane proteins called tetraspanins [35].

These specialized regions of membrane proteins are termed

tetraspanin enriched microdomains or TEMs. Tetraspanins

are so termed because they consist of four transmembrane

domains that form a stereotypical tertiary structure [36].

The sequences that connect the four transmembrane

domains are variable and define specific protein–protein

interactions. The TEMs are thought to cluster proteins

required for ILV formation through these protein–protein

interactions. Two tetraspanins that are thought to be play

roles in exosome formation include CD9 and CD63. CD9

and CD63 serve as the most commonly used identifiers of

exosomes and have been targeted for selective isolation

[37, 38].

The second step in ILV/exosome formation involves a

series of complexes called endosomal sorting complex

required for transport, or ESCRTs for short. There are four

multi-protein complexes required for ILV formation and

they are termed ESCRT 0, I, II, and III [39–41]. The

membranes of early endosomes are marked by an abun-

dance of phosphatidylinositol 3-phosphate (PIP3). The

presence of PIP3, ubiquitinated cargos, and the curved

membrane topology induces the recruitment of ESCRT-I

and ESCRT-II [42]. In vitro reconstitution experiments

suggest that recruitment of ESCRT-I and II drive membrane

Fig. 2 Electron micrograph of exosomes in maturing sheep reticu-

locytes. a Immunogold labeling with a monoclonal antibody against

transferrin receptor. After 18 h of incubation, the gold label is found

in the MVB but associated with the surface of the internal exosomes.

The black arrow shows a sac beginning to fuse with the plasma

membrane. b After 36 h of incubation, fusion is complete, and

exosomes are released. Reprinted with permission from Blood Cells,

Molecules, and Diseases [125]
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budding and that ESCRT-III is required for completion of

budding. ESCRT-III is recruited to the site of ESCRT-I and

II via Alix, a protein that simultaneously binds to the

TSG101 component of the ESCRT-I complex and CHMP4

[43–45], a component of ESCRT-III. TSG101 and Alix are

two other proteins sometimes used as exosome markers

[38, 46, 47].

Available data suggest that both TSG101 and Alix, in

addition to CD63 and CD9, are highly enriched in vesicle

preparations thought to be related to exosomes. However,

there has not been a careful assessment in terms of the

specificity or sensitivity by which these biomarkers define

exosomes. It is unlikely that any surface marker will

single-handedly define EVs as exosomes. For example,

ESCRT independent mechanisms of exosome formation

have been reported in some experimental systems [48, 49].

Exosomes formed outside of the ESCRT pathway would

presumably be absent Alix and TSG101. And while CD63

is thought to serve as a reliable membrane marker for

exosomes, it is also prevalent in many other processes [50]

including neutrophils undergoing apoptosis [51], platelets

[52], vascular endothelium Weibel–palade bodies [53],

and lysosome-related vesicles of leukocytes including the

granules of megakaryocytes [54], T lymphocytes [55],

eosinophils [56], mast cells [57], and basophils [58]. Future

testing is warranted to validate existing exosomal markers

for their sensitivity and specificity for exosomes and also

for the discovery of new markers.

Microvesicles

The mode of biogenesis of exosomes is distinct from

vesicles that arise through direct outward budding and

fission of the plasma membrane (Fig. 4). To distinguish

these vesicles by their mode of biogenesis, the latter class

of vesicles is frequently referred to as microvesicles [59].

The term ‘‘ectosomes’’ has also been coined to describe

these vesicles [60, 61]. Microvesicles tend to be larger in

size (50–2,000 nm) relative to exosomes, though the size

ranges overlap between these two types of vesicles. It is

important to note that the mechanism of biogenesis remains

the primary distinction between them.

Microvesicular formation is the result of dynamic inter-

play between phospholipid redistribution and cytoskeletal

protein contraction. The protein and phospholipid distribu-

tion within the plasma membrane is far from uniform and

forms micro-domains. The asymmetric distribution is tightly

regulated by aminophospholipid translocases [62–64], pro-

teins that transfer phospholipids from one leaflet of the

plasma membrane to the other. Flippases are translocases

that transfer phospholipids from the outer leaflet to the inner

leaflet while floppases transfer phospholipids from the inner

leaflet to the outer leaflet. Membrane budding/vesicle for-

mation is induced by translocation of phosphatidylserine to

the outer-membrane leaflet [62, 65]. The budding process is

completed through contraction of cytoskeletal structures by

actin–myosin interactions [66, 67].

Early endosome

Late endosome/
MVB

Endocytosis

Fusion with plasma 
membrane

Exosome
release

Tetraspanin
(CD63/CD9)

ESCRT I TSG101 Alix ESCRT III

Recycling
endosome

Lysosome

a b

Fig. 3 Biogenesis and release of exosomes. a Exosomes are formed

within the endosomal network. Early endosomes fuse with endocytic

vesicles and incorporate their content into those destined for

recycling, degradation, or exocytosis. Late endosomes, or multi-

vesicular bodies (MVBs), develop from early endosomes, and are

characterized by the presence of multiple small interluminal vesicles

(ILVs). Exosomes are released from late endosomal compartments

through the fusion of MVBs to the plasma membrane. b A key step in

ILV formation is the reorganization of endosomal membrane proteins

such as CD9 and CD63 into tetraspanin enriched microdomains. Next,

a series of endosomal sorting complex required for transport, or

ESCRTs are recruited to the site of budding. ESCRTI and II drive

membrane budding and ESCRT III is required for completion of

budding. ESCRTIII is recruited to the site of ESCRTI and II via Alix
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In a melanoma model, overexpression of a rho family

member, GTP-binding protein ADP-ribosylation factor 6

(ARF6), results in increased microvesicle secretion. The

activated form of ARF6 initiates a signaling cascade that

starts with the activation of phospholipase D and termi-

nates in the phosphorylation and activation of the myosin

light chain, culminating in microvesicle release. Interest-

ingly, this signaling cascade does not significantly alter the

secretion of vesicles in the size range classically associated

with exosomes (50–70 nm vesicles) [66]. These observa-

tions provide further support that the biogenesis of micr-

ovesicles and exosomes are distinct.

Like exosomes, the content of microvesicles appears

highly enriched for a subset of proteins. For instance,

microvesicles derived from melanoma cells are enriched

for B1 integrin receptors and other membrane associated

proteins, such as vesicle-associated membrane protein 3

(VAMP3) [66]. On the other hand, transferrin receptors,

highly enriched in exosomes, appear notably to be missing

in microvesicles [68].

Retrovirus-like particles (RLPs)

Retrovirus-like particles (RLPs) are those that resemble

retroviral vesicles on EM but are non-infectious because

they do not contain the full complement of genes required

for cellular entry or viral propagation. These vesicles are

typically defined by their size (90–100 nm) and the pres-

ence of a subset of retroviral proteins [69–72].

The origins of RLPs remain an active area of investi-

gation. There are some speculations that RLPs arise from

transcription of human endogenous retrovirus sequences

(or HERV). Approximately 8 % of the human genome is

made up of endogenous retroviral sequences. The HERVs

are grouped into families annotated by letters (i.e., HERV-

A, B, C���). Of these, the HERV-K family is the only one

that contains open reading frames for functional retroviral

proteins, gag, env, rec, and pol [73, 74]. Though the

expression of the HERV-K genes is generally repressed

[75–77], de-repression occurs during cellular stress,

including radiation, chemical treatment, cytokine/hormone

stimulation, or oncogenic transformation [78–82].

RLPs arise by directly budding from the plasma mem-

brane [83] (Fig. 5). However, the mechanism of biogenesis

is thought to be distinct from the plasma membrane

dynamics related to microvesicle or exosome formation.

The most widely accepted mechanism for RLP formation

involves interaction of retroviral proteins, such as Gag,

with components of the plasma membrane [84] and cyto-

skeletal proteins [85]. As such, the Gag protein may serve a

marker for RLPs.

RLPs have been isolated from the media of melanoma

cell lines [86, 87], breast cancer cell lines [88], the serum of

psoriatic patients [89], and monocytes from breast cancer

patients [90]. Additionally, HERV-K sequences have been
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Fig. 4 Microvesicle arises through outward budding and fission of

plasma membrane and is the result of dynamic interplay between

phospholipid redistribution and cytoskeletal protein contraction.

Membrane budding/vesicle formation is induced by translocation of

phosphatidylserine to the outer-membrane leaflet through the activity

of aminophospholipid translocases. To enable microvesicle budding,

ADP-ribosylation factor 6 (ARF6) initiates a signaling cascade that

starts with the activation of phospholipase D (PLD), which recruits

the extracellular signal-regulated kinase (ERK) to the plasma

membrane. ERK phosphorylates and activates myosin light-chain

kinase (MLCK). Phosphorylation and activation of the myosin light

chain by MLCK triggers the release of microvesicles
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detected in EVs isolated from glioblastoma primary cell

lines [13] and the plasma of lymphoma patients [91]. These

results suggest that RLPs may be a constituent of the EVs

isolated from patient biofluids. The size overlap between

RLPs and exosomes renders it difficult to define their rel-

ative contribution to the EVs. Importantly, peptides of Gag

proteins have been identified in preparations of EVs that

some investigators have referred to as exosomes or micro-

vesicles [23, 92], suggesting the presence of RLPs in these

preparations.

Apoptotic bodies

Apoptosis is a major mechanism of cell death for both

normal and cancerous cells [93, 94]. A cell dying by

apoptosis progresses through several stages, initiating with

condensation of the nuclear chromatin, followed by

membrane blebbing, progressing to disintegration of the

cellular content into distinct membrane enclosed vesicles

termed apoptotic bodies or apoptosomes [93]. Whereas

exosomes, microvesicles, and RLPs are secreted during

normal cellular processes, apoptotic bodies are formed only

during programmed cell death. While apoptotic bodies are

generally larger in size (500–4,000 nm) [95, 96], and are

characterized by the presence of organelles within the

vesicles [94, 97], smaller vesicles (50–500 nm) are also

released during this process [98]. It remains unclear whe-

ther these smaller vesicles resulted from membrane bleb-

bing that occurs during apoptosis. The available data

suggest that membrane blebbing is, in part, mediated, by

actin-myosin interaction [99, 100] (Fig. 6).

During normal development, most apoptotic bodies

are phagocytosed by macrophages [94, 97, 101] and are

cleared locally. This clearance is mediated by specific

interactions between recognition receptors on the phago-

cytes and the specific changes in the composition of the

apoptotic cell’s membrane [102–105]. Among these

changes, the best characterized involves the translocation

of phosphatidylserine to the outer leaflet of the lipid layer.

These translocated phosphatidylserines bind to Annexin V,

which is recognized by phagocytes [106]. Another well-

characterized membrane alteration involves oxidation of

surface molecules. These changes create sites for binding

of thrombospondin [107, 108] or the complement protein

C3b [102]. Thrombospondin and C3b are, in turn, recog-

nized by phagocyte receptors [101, 109, 110]. Annexin V,

thrombospondin, and C3b thus, serve as three well-accep-

ted markers of apoptotic bodies [111].

The discovery that exosomes and microvesicles may

mediate intercellular communication via the delivery of

genetic materials from one cell to another served as an

impetus for renewed interest in extracellular vesicles as

potential cancer biomarkers [1, 112]. But the ability to

transfer genetic content intercellularly does not appear to be

unique to one class of extracellular vesicles. In mice bearing

tumor xenografts, apoptotic bodies can also be detected in

the blood of the organism [113]. Importantly, uptake of

apoptosomes derived from H-rasV12- or human c-myc-

transfected cells by murine fibroblasts resulted in loss of

contact inhibition in vitro and a tumorigenic phenotype

in vivo [114]. These results suggest that genetic information

can also be transferred by uptake of apoptotic bodies.

Potential surface markers for defining clinically isolated

EVs

While each of the four types of EVs presented here arose

from distinct mechanisms, it should be noted that certain

Fig. 5 Electron micrograph of retrovirus-like particles budding from teratocarcinoma cell lines, GH (a) and Tera-1 (b, c). Scale bar = 250 nm.

Reprinted with permission from Journal of General Virology [83]
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aspects of these mechanisms overlap. For instance, actin-

myosin interactions appear critical to the formation of all

four types of EVs [66, 85, 100, 115]. The available data

suggest that vesicle formation occurs through mechanisms

similar to those observed during cytokinesis. In this regard,

it is not surprising that certain proteins involved in EV

formation also participate in cytokinesis [40]. As another

example, the translocation of phosphatidylserine to the

outer membrane appeared a common feature during the

formation of both apoptotic bodies and microvesicles [65,

106]. Such translocation may also occur during exosome

formation [116]. In this context, Annexin V binding alone

may not be sufficient as a distinguishing marker. Certain

combinations of markers are generally used for defining

exosomes, microvesicles, and apoptotic bodies (Table 1).

CD63 and CD9 are potential markers of exosomes [22,

117]. Markers of microvesicles are less well established

though ARF6 and VCAMP3 are recently proposed [66].

TSP and C3b are generally accepted markers of apoptotic

bodies. The RLPs are less well studied though Gag protein

may be a marker for this group of EVs (Table 1).

It is important to recognize that these markers are

established using non-neoplastic cell lines. To what extent

these processes are altered in neoplastic cells remains an

open question. It is not unusual to observe processes that

are clearly defined in normal development which become

dysregulated or dysfunctional in cancer cells. Another

caveat is that, even in the more normal cells, the cellular

processes leading to the formation of the various types of

vesicles remain incompletely understood. For instance, an

ESCRT independent mechanism for exosome formation

has been described [48, 49]. Such exosomes may be devoid

of biomarkers associated with the ESCRT complex, such as

CD63 or CD9. In this context, careful deliberation and

judicious interpretation is required in terms of adapting the

schema proposed in this article.

Clinical applications

The ability of EVs to shelter proteins and genomic material

from the harsh destructive environment of the extracellular

space makes them a promising source of potential bio-

markers. Their varied contents make them amenable to

several fields of biomarker testing including protein typing

assays, microarray assays, and DNA sequencing studies.

Several of these assays have already reached the threshold

of potential clinical utility. For example, mRNA profiling

of serum derived EV contents can discriminate between

healthy and glioblastoma bearing patients [118]. Isocitrate

dehydrogenase 1 (IDH-1) transcripts have been detected

from EVs isolated from the blood of glioblastoma bearing

patients using microfluidic immunoisolations of EVs tar-

geting CD63 [119]. Genetic mutations of mRNA such as

EGFRvIII has been detected by nested PCR of EVs iso-

lated from the serum of glioblastoma patients [1], and

c-myc amplification has been effectively identified in the

serum of medulloblastoma xenograft bearing mice [13].

A full discussion of these and other recent advances in EV

based biomarker discovery can be found in a review by

Gonda et al. [120].

Of the recent EV biomarker discovery reports, one study

stood out in terms of potential for clinical translation in the

immediate future. In this study, Shao et al. [121] report the

fabrication of a microfluidic chip that quantifies the presence

Nucleus
Apoptosis

Apoptotic bodies

PhagocyteC3b

Tsp

Fig. 6 Formation of apoptotic bodies during apoptosis. A cell dying

by apoptosis progress through several stages, initiating with conden-

sation of the nuclear chromatin, followed by membrane blebbing,

progressing to disintegration of the cellular content into distinct

membrane enclosed vesicles termed apoptotic bodies or apoptosomes.

The clearance of apoptotic bodies by macrophages via phagocytosis is

mediated by specific interactions between recognition receptors on

the phagocytes and the specific changes in the composition of the

apoptotic cell membrane. Theses changes include the oxidation of

surface molecules, which create sites for binding of Thrombospondin

(Tsp) or the complement protein C3b

Table 1 Potential surface

markers for the various EVs
EV type Cell surface

markers

Exosomes CD63, CD9

Microvesicles ARF6, VCAMP3

RLPs Gag

Apoptotic

bodies

TSP, C3b
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of glioblastoma specific proteins, including EGFR,

EGFRvIII, podoplanin (PDPN), and IDH1 R132H by micro-

nuclear magnetic resonance (lNMR). This technology

allows detection of EVs harboring glioblastoma-specific

proteins with a sensitivity that is orders of magnitude above

existing proteomic methods including, Western blotting and

enzyme-linked immunosorbent assays (ELISA). Impor-

tantly, using this lNMR device, the authors were able to

differentiate EVs collected from the serum of glioblastoma

patients from those in the serum of non-tumor donors.

Furthermore, changes in EV protein profiles in serial serum

sampling of glioblastoma patients appeared to closely track

eventual clinical responses [121]. Validation of these results

may yield a platform for diagnostic, prognostic, and pre-

dictive tracking.

Therapeutic strategies for EVs are also being investigated.

One therapeutic strategy is to use EVs as delivery vehicles

for targeted drug or gene delivery. For instance, EVs derived

from dendritic cells engineered to express rabies viral gly-

coprotein have been successfully used to deliver siRNA

across the blood brain barrier in murine models providing

proof-of-principle of their delivery potential for drugs and

genes [122]. Drugs targeting EV secretion have been shown

to increase chemotherapeutic sensitivities of tumors [123,

124]. Strategies involving inhibition of EV production as a

means to disrupt chemotherapeutic escape mechanisms are

also currently under testing.

Though EVs hold tremendous promise as a platform for

new therapeutic strategies and biomarker development, a

number of challenges persist. Serum and plasma samples

contain EVs of platelet, neutrophil and macrophage origin

whose release likely is influenced by age, infection, and

inflammation. Relative to this population, EVs derived

from tumors remain a small minority of total EVs isolated

in a given biofluid sample [118]. Thus, the sensitivity of

detection remains a major challenge in tumor-specific

biomarker development. Current isolation methods rely

largely on size and density variations of vesicles and/or

markers such as CD63 [119] which may or may not be

specific to a single type of EV. Understanding exactly

which EVs are being isolated and targeting specific EV

populations may improve our ability to achieve desired

diagnostic or therapeutic goals.

Concluding remarks

While tumor specific genetic and proteomic materials have

been described in EVs derived from clinical biofluids, the

biogenesis and constitution of these vesicles remain poorly

understood. Current understanding of EVs suggests that the

vesicles are a mixed population of exosomes, microvesicles,

RLPs, and apoptotic bodies. Each of these populations likely

harbor distinct vesicular contents. There remains a critical

need to identify the vesicle compartment most enriched for

tumor specific material of interest.
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