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Abstract

Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide

nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug

delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron

oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their

cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment

of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence

of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and

concentration of these nanoparticles.
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Introduction

Many physical and chemical methods have been devel-

oped for the fabrication of nanoparticles. However, the

chemicals used in these procedures leave toxic residues

and pollute the environment. Therefore, biogenic syn-

thesis of nanoparticles using fungi, bacteria, actinomy-

cetes, algae, and higher plants have emerged as potential

nanofactories which are cost effective and environment

friendly [1–8]. The metal and metal oxide nanoparticles

are widely used in agriculture, drug delivery, cosmetics,

photonic crystals, analysis, food, coatings, paints, cataly-

sis, and material science [1, 9–12].

At present, the application of iron oxide nanoparticles

in medical and other sectors appears to be increasing

fast [1, 13–17]. Antibacterial activity of Argemone mexi-

cana treated with iron oxide nanoparticles against Pro-

teus mirabilis and Escherichia coli has been reported

[18]. Iron nanoparticles fabricated using five different

plants (Lawsonia inermis, Gardenia jasminoides, Azadir-

achta indica, Camellia sinensis leaf extract, and Cinna-

mon zeylanicum bark extract) were found to be toxic to

many bacterial strains [19].

Table 1 summarizes the physical parameters of iron

and iron oxide nanoparticles. Biogenic fabrication of the

iron and iron oxide nanoparticles using extracts of dif-

ferent parts of a variety of plants such as Euphorbia

milli, Tridax procumbense, Tinospora cordifolia, Datura

innoxia, Calotropis procera, and Cymbopogon citratus

have also been reported [44]. Magnetic iron oxide nano-

particles have great potential as a drug carrier and MRI

agent and in tissue repair and in the treatment of tumor

[45]. They are also used as pigments in paints and cer-

amics and as catalysts for the manufacture of ammonia

by Haber’s process and oxidation of alcohols to alde-

hydes [46–48] and other chemicals. The toxicity of iron

oxide nanoparticles can be employed in inhibiting the

growth of bacteria, fungi, and other pathogens [49].

Fe2(SO4)3, FeSO4·H2O, and FeSO4·7H2O are used as

herbicides, micronutrient for crops, an electrolyte in dry

batteries, a supplement in animal feed, and as a

galvanizer. These salts are also used in the purification

of water, sewage treatment, and in textiles [50]. Iron

nanoparticles, in the absence of air, act as better anti-

microbial agent than in the presence of oxygen. It is be-

cause rusting of iron occurs in the presence of oxygen

and water.
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Although conflicting reports with reference to toxicity

of iron oxide nanoparticles have been received, even

then, they are useful in trace amounts [51–56]. However,

the experimental evidences gathered thus far indicate

that superparamagnetic iron oxide nanoparticles coated

with R–COOH or R–NH2 are less toxic than bare nano-

particles [57, 58]. For maximum performance, nanopar-

ticles must be of uniform size and there should not be

much variation in temperature because the magnetic

moment varies with temperature due to the alignment

of spins of free electrons [59].

The application of magnetic nanoparticles is not re-

stricted to only material science but has expanded its

tentacles in almost all areas of science such as agricul-

ture, biomedical, and engineering [60–62]. The shape

and size of these nanoparticles can be controlled if pH,

temperature, and concentration of all components, in

the presence of a surfactant, are monitored [63–66].

Their properties vary with their dimensions [67, 68].

The nanoparticles should be of different sizes for differ-

ent uses. For instance, in case of biomedical application,

the iron and iron oxide nanoparticles should exhibit

superparamagnetic behavior at ambient temperature

[69–71] but for their use as therapeutic agent and in

diagnosis, they should be uniformly smooth and stable

at physiological pH [72]. Fe2O3 and Fe3O4 are com-

monly employed for biomedical application. The degree

of structural variation depends on the process of synthe-

sis of the nanoparticles. The superparamagnetism of

nanoparticles exists even in the absence of external

magnetic field. Iron and iron oxide nanoparticles are

used in the removal of organic substances in aqueous

medium [73–75].

Although iron and iron oxide nanoparticles are exten-

sively used in MRI, immunoassay, drug delivery system,

catalysis, and magnetic material in biology and medicine,

their application in today’s life is more significant [76].

The surfaces of nanoparticles used in drug delivery are

generally functionalized with drugs, protein, and genetic

materials [77, 78]. Since these nanoparticles have in-

creased surface area, they reduce the quantity of the

drug to minimum and also reduce the adverse effect of

the drug on normal cells [79–82].

Besides their technological applications, iron and mag-

netic iron oxide nanoparticles are of great fundamental

scientific interest. In recent years, emphasis has been

given to target drug delivery by superparamagnetic iron

oxide nanoparticles [83, 84] and in vivo application such

as detoxification and hyperthermia. In order to reduce

the toxicity of these nanoparticles, they are generally

coated with nontoxic and biocompatible materials.

These nanoparticles can bind with drugs, enzymes, and

antibodies and subsequently directed to a specific organ

or tissue through an external magnetic field [85].

Magnetization of nanoparticle is therefore essential. It is

of prime importance that the nanoparticles should be se-

lected from among the transition metal ions which are

highly magnetic in nature. Nonfunctionalized iron oxide

nanoparticles have been used for labeling leucocytes,

lymphocytes, etc. [86–88]. Cellular uptake of iron oxide

nanoparticles can be increased by coating them with

dendrimers [89]. Magnetic nanoparticle conjugate is

Table 1 Size and morphology of iron and iron oxide

nanoparticles fabricated from plant system

Reference Plant Morphology Size (nm)

[20] Green tea Spherical 70–80

[21] Green tea Spherical 5–15

[22] Tea powder Differs according
to the quantity of
tea extract

–

[23] Green tea Irregular clusters 40–60

[24] Green tea, oolong
tea, and black tea

Irregular spherical 20–40

[25] Oolong tea Spherical 40–50

[26] Sorghum bran Spherical 40–50

[27] Eucalyptus Spherical 50–80

[28] Eucalyptus Cubic 40–60

[29] Eucalyptus Spherical 20–80

[30] Pomegranate – 100–200

[31] Plantain peel Spherical Less than 50

[32] Banana peel – 10–25

[33] Tangerine peel Spherical 50

[34] Dodonaea viscosa Spherical 50–60

[35] Tridax procumbens Irregular spheres 80–100

[36] Grape seed
proanthocyanidin (GSP)

– Around 30

[37] Pomegranate,
mulberry, and
cherry

– 10–30

[38] Vine leaves, black
tea leaves, and
grape marc

– 15–45

[39] Terminalia chebula Chain-like Less than 80

[40] Eucalyptus tereticornis Spherical 40–60

[40] Melaleuca nesophila Spherical 40–60

[40] Rosmarinus officinalis Aggregates like
grapes

–

[19] Lawsonia inermis Distorted hexagonal-
like appearance

21

[19] Gardenia jasminoides Shattered rock-like 32

[41] Amaranthus dubius Spherical 43 to 220

[42] Kappaphycus alvarezii Spherical 14.7

[43] Padina pavonica – 10–19.5

[43] Sargassum acinarium – 21.6–27.4
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made of iron oxide nanoparticles, covalently bind with

methotrexate, and can act both as a contrast agent in

MRI and drug carrier.

An attempt has been made to review the biogenic fab-

rication of magnetic iron and iron oxide nanoparticles

and their application in drug delivery and cancer therapy

and as a sensor for the detection of pesticides.

Biogenic Fabrication of Magnetic Nanoparticles

Fabrication of iron oxide nanoparticles at room

temperature, using tea (C. sinensis) polyphenols has been

reported [21]. These nanoparticles showed highest rate

of bromothymol blue degradation in comparison to

Fe-ethylenediaminetetraacetic acid (Fe-EDTA) and

Fe-ethylenediamine-disuccinic acid (Fe-EDDS). In an-

other study, Muthukumar and Matheswaran [90] ob-

tained iron oxide nanoparticles using Amaranthus

spinosus leaf aqueous extracts. These nanoparticles were

spherical with rhombohedral phase structure, smaller in

size with large surface, and less aggregation than those

produced with sodium borohydride. In this, the photo-

catalytic and antioxidant activities of the leaf extract as

well as the sodium borohydride-mediated iron oxide

nanoparticles were also studied. A. spinosus leaf extract-

mediated iron oxide nanoparticles exhibited better

photocatalytic and antioxidant activities than those pro-

duced by sodium borohydride. Iron nanoparticles

synthesized using green tea extracts have been shown to

act as Fenton-like catalysts for the degradation of cat-

ionic dyes such as methylene blue and anionic dyes like

methyl orange [23]. It has been found that iron nanopar-

ticles synthesized from green tea extract removed almost

100 % of methylene blue and methyl orange at an initial

dye concentration of 10 and 100 mg L−1. However, when

iron nanoparticles were synthesized using the conven-

tional borohydride reduction method, the efficiency was

somewhat less for methylene blue (96.3 % for 10 mg L−1

and 86.6 % for 100 mg L−1) and significantly less in the

case of methyl orange (61.6 % for 10 mg L−1 and 47.1 %

for 100 mg L−1). Fe3O4 nanoparticles were synthesized

by hydrothermal method using aloe vera plant extract

[91]. Authors have reported that with increase in the

reaction temperature and time resulted in magnetite

nanoparticles with increased crystallinity and saturated

magnetization. Herrera-Becerra et al. [92] have synthe-

sized iron oxide nanoparticles by exposing pretreated

and milled powder of Medicago sativa to the salt solu-

tion of ferrous ammonium sulfate. For this fabrication,

48 h was given. At pH 10, smaller particles with greater

proportion of Fe2O3 were produced whereas larger

nanoparticles were produced at lower pH (pH 5).

Lunge et al. [93] have synthesized magnetic iron oxide

nanoparticles of 2–25 nm with cuboid/pyramid structure

using tea waste template. They exhibited high adsorption

capacity for arsenic. It showed very low cost (Rs. 136 per

kg). These nanoparticles may be reused up to 5 cycles

and regenerated using NaOH. The estimated cost of

As(III) removal from water was estimated to be negli-

gible. Leaf extracts of 26 plants were used for the pro-

duction of nanoscale zero-valent iron particles [37]. The

optimum temperature (80 °C) was noted; however, for

the extraction time and leaf mass, solvent volume ratio

was varied according to the leaf type. Thakur and Karak

[32] used banana peel ash extract to synthesize iron

oxide nanoparticles; and aqueous extract of Colocasia

esculenta leaves was used to reduce graphene oxide. Iron

oxide formation was validated by XRD (peaks at 30.15,

36.2, 43.32, 53.89, and 29) and FTIR (stretching Fe–O)

(Fig. 1a, b). In this study, the nanohybrids exhibited a

good reusability with insignificant decrease in efficiency

even after the third cycle [32].

Au–Fe3O4 composite with magnetic core was primarily

produced by co-precipitation of Fe2+ and Fe3+. Further,

Eucalyptus camaldulensis was used for the reduction of

Au+3 on the surface of magnetite nanoparticles and for

the functionalization of the Au–Fe3O4 nanocomposite

Fig. 1 a XRD patterns of (i) iron oxide nanoparticles and (ii) iron oxide/reduced graphene oxide nanohybrid and b FTIR spectra of (i) reduced

graphene oxide nanohybrid [94] and (ii) iron oxide/reduced graphene oxide nanohybrid [32]
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particles [95]. UV–vis spectra showed a redshift due to

the surface plasmon resonance of Au. The highest absorb-

ance was observed for gold nanoparticles at 530 nm (solid

line curve) whereas Au– composite nanoparticles showed

a peak at 608 nm (dotted line) which agreed with previ-

ous reports (Fig. 2) [96–99]. It has also been observed

by many other researchers [96–98, 100].

Senthil and Ramesh [35] synthesized iron oxide nano-

particles by the reduction of ferric chloride solution

using Tridax procumbens leaf extract containing carbo-

hydrates with an aldehyde group as a reducing agent.

Further, these nanoparticles exhibited antibacterial activ-

ity against Pseudomonas aeruginosa.

Recently, Ehrampoush et al. [33] have reported that

the size of iron oxide nanoparticles synthesized from

tangerine peel is dependent on its concentration. The

size of nanoparticles decreases with increasing concen-

tration of tangerine peel extract from 2 to 6 %. In

addition, they have reported that these nanoparticles can

be a good adsorbent for the removal of cadmium from

wastewater.

Biomedical Application of Magnetic Nanoparticles

Therapeutic Applications

Hyperthermia is a simple technique used to destroy

tumor cells by raising their temperature to 41–45 °C.

Since the living cells can undergo repair, they are

rejuvenated while damage of the tumor cells is an

irreversible process [101–103]. This magnetic hyper-

thermia is more effective when the iron oxide nano-

particles (IONP) are small and uniform. Their surface

is generally made biocompatible by coating them with

organic polymers or bioactive molecules for their slow

release.

Cellular Labeling and Cell Separation

In vivo cell separation can be done by cell labeled with

ferro paramagnetic substances [104] as the labeled cells

can be detected by MRI [105]. They can be labeled by

one of the two techniques: (a) attaching magnetic parti-

cles to the cell surface [106] or (b) internalizing biocom-

patible magnetic particles by fluid phase endocytosis

[107]. The most appropriate technique for cell labeling

is to modify the nanoparticle surface with a suitable

ligand such as transferrin, lactoferrin, albumin, and insu-

lin which are generally biocompatible. Such receptors

have been shown [108] to internalize without disturbing

the nanoparticles. Gupta and Gupta [66] have demon-

strated that supramagnetic nanoparticles derivatized

with proteins like lactoferrin, transferrin, and ceruloplas-

min have strong affinity for receptors on the human

fibroblasts surface, which inhibit the phagocytosis. These

nanoparticles of less than 20 nm size have high

magnetization value. Their influence on dermal fibro-

blast has been assessed in terms of adhesion viability

and morphology by SEM and TEM images.

The interaction of the protein-coated nanoparticle is

size dependent since different particles respond differ-

ently. Although there is a significantly visible difference

in the interaction between fibroblast cell and coated/un-

coated supramagnetic nanoparticle, no attempt has been

made to realize the magnetic moment value of iron

oxide nanoparticles, which changes as a consequence of

its binding with proteins and other biomolecules. Iron in

the trivalent state in Fe2O3 is in high spin state with five

unpaired electrons in its d orbital but the moment it is

coated with proteins, it goes to low spin state with a

consequent change in the repulsion and magnetic

moment value from 5.91 BM to 1.73 BM corresponding

to one unpaired electron. It is due to the complex for-

mation of Fe3+ with protein which being a strong ligand

forces the electrons to be paired up. As a result, the Fe3+

is reduced in size but surface area increases due to com-

plexation with the protein. The magnetic moment and

reduction in size of Fe2O3 nanoparticle seems to be the

key factor in the process of internalization and phagocyt-

osis. It has been suggested that tissue repair can be done

either by welding or soldering when polymer-coated

nanoparticles are placed between two tissue surfaces.

Temperature greater than 50 °C is produced by denatur-

ation of tissue and also by absorption of light by coated

nanoparticle [109].

Tissue Repair

The above method suggested for tissue repair is not

convincing as the same temperature is produced to des-

troy the tumor cell which is supposed to join the two

damaged normal cells [66]. The hypothesis first shows

denaturation and then connecting the cells through

Fig. 2 Absorbance spectra of gold nanoparticles (solid line) and

magnetite-gold composite nanoparticles (dotted line) [95]
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other proteins. It appears as if the denaturation has two-

fold purposes; some proteins are disintegrated from the

cell at 50 °C and some proteins remain unaffected which

subsequently join the cells together. When gold/silica-

coated Fe2O3 nanoparticles are coated on the tissues,

they may prevent further damage but it seems unlikely

that two unit cells are joined together. However, the self-

repairing of the damaged tissue is a natural process that

does not require raising the temperature of the tissues.

Treatment of Cancer

Wu et al. [109] have shown that gold-coated iron nano-

particles suppress cancer cell growth in oral and colorec-

tal cancer cells in vivo and in vitro [110]. Although the

healthy cells are equally exposed to iron nanoparticle,

they are not much affected and the replication of cancer

cells is inhibited. The cytotoxicity is due to the magnetic

properties of the elemental iron nanoparticle; the oxida-

tion of which is delayed by coating them with gold. As

the oxidation of iron nanoparticles begins, the cytotox-

icity decreases towards cancer cells. In fact, the gold

coating slowly dissolves to release the iron nanoparticle.

The reactive oxygen species (ROS) is generated which

triggers the process of cytotoxicity. It has also been

observed that the addition of ROS scavenger does not

protect the cancer cells from the nanoparticles with an

iron core and gold shell (Fe@Au)-induced cytotoxicity.

Decrease in mitochondrial membrane potential in can-

cerous cells occurs when treated with Fe@Au, although

it is not clearly known as to how it interferes with the

normal function of the mitochondria. Since the mito-

chondria are redox sensitive, they are targeted by

Fe@Au. Iron is slowly oxidized, due to which, perhaps

the mitochondrial membrane potential decreases. The

cytotoxicity of Fe@Au towards cancer cells is an irre-

versible process, while the healthy cells are also affected

but they recover within 24 h. The oxidation of iron

nanoparticles and generation of ROS are simultaneous

processes (Fig. 3).

Fe0@Au þ mitochondria→ Fenþ@AuO
þ mitochondria

Fe@Au caused a shock to the mitochondria within

4 h, but the cancer cells could not recover from the

damage caused by them. Further, it caused a sequential

autophagy and inhibited the cancer cell growth.

Drug Delivery

Mahmoudi et al. [58] have studied the application of

supraparamagnetic iron oxide nanoparticle (SPION) in

drug delivery. The drugs are bound on SPION surface or

encapsulated in magnetic liposomes and microspheres.

SPIONs can deliver peptides, DNA, chemotherapeutics,

and radioactive and hyperthermic drugs. They are

designed such that the drug or ligand is bound to its sur-

face and guided with an external magnetic field to the

Fig. 3 Fe@Au induced a cancer cell-specific cytotoxicity through the mitochondria-mediated autophagy [109]
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desired site. The nanoparticles enter the target cells and

deliver the drug there (Fig. 4).

When the drug is dissolved inside the target cell, the

SPIONs are exposed to other cells. This process can

reduce the quantity of drug, absorption time, and inter-

action of drug with nontarget cells. However, it is essen-

tial that iron nanoparticles should be magnetic and

smaller than the target cells so that they can easily

diffuse into them. Since large quantity of SPIONs cause

agglomeration, their high concentration may be avoided.

From in vivo experiments, it has been shown that in

most cases, the drug is immediately delivered due to the

bursting of the nanobubbles carrying the drug, as a con-

sequence of which insufficient quantity of the drug

reaches the target cells.

Mahmoudi et al. [111] synthesized cross-linked poly-

ethylene glycol co-fumarate-coated iron oxide nanoparti-

cles and loaded them with tamoxifen to see if it can

reduce the burst time. Interestingly, it was found to

reduce the burst time by 21 %. In a similar experiment,

Guo et al. [112] loaded monodispersed SPION having a

mesoporous structure, with doxorubicin, and observed

that it had very high drug loading capacity and slow re-

lease. The drug release can be controlled by permeabil-

ity, temperature, sensitivity, pH, surface functionality,

and biodegradability of nanoparticles [113].

Colloidal magnetic nanoparticles are used in drug

delivery at a desired target without interacting with

other living cells. In the case of breast cancer (BT 20

cells), polyethylene glycol (PEG)-coated nanoparticles

ranging between 10 and 100 nm were found to pene-

trate into the cells [114]. It is believed that since PEG

is appreciably soluble in both polar and nonpolar sol-

vents, it releases the magnetic nanoparticles at the

tumor cells. Gupta and Gupta [66] have shown that

the efficacy of magnetic microspheres in the targeted

delivery of the incorporated drug is mainly due to

magnetic effects. However, it is true for magnetic

nanoparticle only, but innocuous and biocompatible

nanoparticles of other metals such as gold and silver

of smaller size [115] are known to be more effective

than the larger particles of the same metal as drug

carrier [116]. This technique is cost effective and re-

duces the quantum of drug to be transported to the

site of use. Also, it protects the normal healthy cells

from adverse effects of the drug.

Since the magnetic iron oxide nanoparticles are an ex-

cellent drug carrier, they are used in chemotherapy.

However, iron oxide nanoparticles do not influence the

human fibroblasts cells (IMR-90). It means that they are

selective towards cancer cells. Khan et al. [117] demon-

strated that when both the cancer cells (A549) and nor-

mal cells are exposed to iron oxide nanoparticles in a

concentration range of 10–100 μg/ml for 24–48 h, ne-

crosis of cancer cells occurs leading to their death. Loss

of mitochondrial membrane potential and depletion of

ATP suggest that necrosis is the major cause of cytotox-

icity of cancer cells rather than apoptosis. ROS gener-

ation has been evidenced in A549 cells which are

concentration and time dependent.

A variety of bimetallic nanoparticles of the type

MFe2O4 (where M = divalent Mg, Fe, Co, Ni, Cu, and

Zn) containing two metal ions has been reported for

biomedical applications. Their magnetic properties are

dependent on the number of unpaired electrons in the d

orbital of transition metal ions. Multifunctional magnetic

nanoparticles (MNPs) can be prepared by coating them

with gold, silica, zinc oxide, polymer, liposome, etc. They

can be further functionalized to make MNPs stable and

multifunctional [118]. Xu and Sun [119] have attempted

to deliver cisplatin to solid tumor through Fe3O4

HMNPs.

They have produced small pores in the polycrystal-

line nanoparticles by heating in oleic acid which al-

lows the drug to be diffused easily in these pores. It

has been shown schematically that the drug is deliv-

ered via ligand exchange. However, it is known that

cisplatin is labile in aqueous medium and can react

with water as shown below followed by exchange with

surfactant.

Fig. 4 Drug delivery through nanoparticles on the target cells
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Magnetic targeting of diseased cells by SPION has

been done in some cases [120]. In order to increase the

target yield, SPIONs are generally coated with polymers

and functionalized by attaching carboxyl groups, biotin,

avidin, carbodiimide, or any other biomolecule [121–123].

When the drug is carried at the target cell (tumor cell), it

has to be released either by external force or by changes

in pH, osmotic pressure, or temperature [124]. The drug

is then picked up by tumor cells and penetrates via diffu-

sion [125]. For such application, it is essential for the

SPIONs to be stable at neutral pH and physiological con-

ditions. The stability of the colloidal solution is dependent

on the dimension of the nanoparticle and their aggrega-

tion may be prevented by coating them with an appropri-

ate substance [126]. Larger particles (larger than 10 nm)

cannot penetrate the endothelium [127] under normal

conditions, but they can easily penetrate the tumor cells

and inflamed cells [128]. When the coated nanoparticles

enter the tumor cells, the coating is dissolved in the bio-

logical fluid and they are exposed to other cellular compo-

nents [111, 129].

However, if the concentration is increased, aggregation

of nanoparticles may occur leading to greater magnetic

interaction. It is also believed that agglomeration of

nanoparticles in the capillaries may block their passage

[130]. Since the biological pH and the isoelectric point

of SPION at pH 7 are the same [131, 132], they influ-

ence the colloidal stability of the SPIONs [133, 134].

It is essential that the drug-carrying spherical particles

must always be smaller than the RBC and the blood

capillaries where the drug is injected. The nanoparti-

cles after drug delivery are exposed to normal cells,

and therefore, it is essential that they should be non-

toxic to them.

Effect of Internalization of Nanoparticles

Calero and others [135] have studied the effect of intern-

alization of magnetic iron oxide nanoparticle on HeLa

cells in vitro. They also assessed the damage of normal

healthy cells and production of ROS. The internalization

was found to be dependent on the type of coating of

MNPs and their concentration. It was, however, noticed

that besides the increasing concentration of MNPs (0.05,

0.1, and 0.5 mg ml−1), the uptake of APS-coated iron

oxide nanoparticles by cells was higher than those

coated with AF or dimercaptosuccinic acid (DMSA)

[136]. The charge and surface of MNPs are important

since positively charged particle surface is attracted to-

wards negatively charged surface by default. Calero et al.

[135] have observed that APS-coated positively charged

nanoparticles are capable of penetrating easily into the

HeLa cell than the DMSA- and AD-coated MNPs. It can

be understood that positively charged MNPs are smaller

than the negatively charged species, and therefore, being

smaller in size, they can easily diffuse into the cells

which has also been demonstrated by Kenzaoui et al.

[137] in a separate experiment. The entrance of MNPs

follows endocytosis [138, 139]. Although substantial

number of MNPs accumulates in the cytoplasm and

does not reach the nucleus, genotoxic damage of iron

oxide MNPs due to the production of ROS occurs, irre-

spective of the cell type, coating, or their concentration.

Such nanosized magnetic materials may therefore be

used in medical diagnosis, especially in the identification

of cancer cells, MRI, and carrier for drug delivery.

Tumor Treatment

It was observed from a study of cancer cells exposed to

iron oxide nanoparticles that the cell death occurs by

necrosis rather than apoptosis. Interestingly, it was also

found that when normal human fibroblasts cells were

exposed to iron oxide nanoparticles, insignificant cell

death occurred. It demonstrates that these nanoparticles

can be safely used in the treatment of tumors without

damaging the healthy cells.

The ROS generation in this system was examined by

the probe when cancer cells A549 were treated with iron

oxide nanoparticles. The maximum ROS was generated

after 24 h at a rate of 100 μg/ml iron oxide nanoparticles

which subsequently induced autophagy [117].

Antibacterial Activity

Effect of iron nanoparticles on the deactivation of

Escherichia coli has been studied by Lee et al. [140]

under aerobic and anaerobic conditions. It was observed

that in the absence of oxygen, the inactivation of E. coli

was at maximum when exposed to 9 mg L−1 of iron

nanoparticles for 10 min.

In air-saturated solution containing as high as 90 mg L−1,

iron nanoparticles in E. coli solution exposed for

90 min had negligible inactivation of the bacteria.

This is particularly due to the presence of oxygen

which oxidizes the Fe0→Fe2+ and also the absence of

hydroxyl radical. The iron nanoparticles are oxidized

to FeO and Fe2O3 which form a film on the surface

of the nanoparticles preventing the lower layer from

further corrosion [141].
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Fe0 → FeO→ F2O3

However, when a chelating agent such as PO4
3− ion is

added in an air saturated system, the biocidal activity of

iron nanoparticle is reduced because Fe(III) forms an in-

soluble metal chelate with PO4
3− ion. On the contrary,

when oxalate ion, C2O4
2−, is added, the bactericidal activ-

ity is enhanced because it forms a soluble complex with

the iron ion. This is also evidenced and monitored from

a change in color from black to yellow.

Fe0 nanoparticles blackð Þ → Fe3þ yellowð Þ

Since Fe(II) is highly susceptible to oxidation by air, it

does not stay stable unless stabilized by an acid.

Superparamagnetic iron oxide nanoparticles are

frequently used as magnetic drug targeting, MRI, tis-

sue repair, etc. [142–146]. They are useful in drug

delivery. Since they can be guided by external electric

field to the desired target, they can stay there when

the magnetic field is cut off. Fe3O4 can be synthesized

by a variety of procedures. Their size and shape may

be controlled by monitoring the pH, temperature, and

concentration of the reacting components. Coating

with a suitable substance can prevent their agglomer-

ation. SPIONs (800 nm) were introduced to the fibro-

blast cells (Fig. 5) to examine the changes in their

morphology [147].

It was found that the toxicity increases with the shape

of SPIONs such as nanobeads, nanowires, and nano-

spheres. The deformation of the cell increases with the

concentration of SPIONs. The TEM images of fibroblast

cells exposed to SPION showed that smaller nanoparti-

cles penetrate into the cell (Fig. 6) while larger ones have

not been traced into them. The size is, therefore, of

Fig. 5 SEM results for a control L929 cells and the cells interacted with b nanobeads, c nanoworms, and d nanospheres. Panels e and f illustrate

the higher-magnification image of the surface of control L929 and the one interacted with nanospheres, respectively [156]
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prime importance in such cases, although the coating

also influences the size of the nanoparticles.

Although efforts are being made to produce SPION

coated with organic molecules for use in human system,

only dextran-coated SPIONs have so far been approved

by Food and Drug Administration (FDA) [135].

Mahmoudi et al. [49] have evaluated the toxicity of

bare SPION and those coated with –COOH and –NH2

against human cell lines HCM (heart), BE-2C (brain),

and 293T (kidney). The toxicity of bare SPION was

found to be higher than those coated with organic mole-

cules due to their greater affinity to absorb proteins, vi-

tamins, amino acids, and ions causing change in pH of

the medicine [148–150]. Since the human cell contains

proteins, vitamins, and amino acids, they have affinity to

bind with SPION whereas the SPIONs already coated

with these groups do not have vacant space for chelation

with them. The toxicity of the coated SPIONs is, there-

fore, less than those of uncoated ones. The low toxicity

of coated SPION is useful in the detection of cancer cells

because they do not damage the normal cells. One type

of SPION is toxic to certain types of cells while the other

types produce insignificant effect. For instance, Mah-

moudi and others [49] have reported that negative

SPIONs did not produce significant changes on the cyto-

skeleton of heart cells compared to high toxic effect on

the cytoskeleton of both kidney and brain cells.

Environmental Application of Magnetic Nanoparticles

Removal of Dyes

The iron nanoparticles produced from green tea leaf ex-

tract have been shown to contain iron oxide and oxo-

hydroxide [23]. They have been used as a Fenton-like

catalyst for the removal of organic dyes such as methy-

lene blue and methyl orange in aqueous medium. It has

been shown that they are highly effective in the removal

of cationic and anionic dyes over a wide range of con-

centrations (10–200 mg L−1). Also, the iron nanoparti-

cles synthesized from green tea leaf extract are more

effective than those produced from borohydride

reduction. Shahwan et al. [23] have reported that the

iron nanoparticles were washed with ethyl alcohol to re-

move NaCl from the sample. Since NaCl is an ionic salt,

it is soluble only in water and cannot be removed by

washing with ethyl alcohol. It was also noted that the

pH of methylene blue and that of methyl orange con-

taining iron nanoparticles was around 8.30. However,

the pH started declining immediately after the addition

of H2O2 until it became constant at 3.11 after about 6 h

when the dye was completely removed.

Pesticide Detection Sensor

Because of their application in agriculture, pesticides

have become one of the major environmental pollutants.

Iron oxide nanoparticle (Fe3O4) being chemically and

biologically neutral have been coated with catalysts, en-

zymes, or even antibodies to be used as biosensors

[151]. In a recently published paper, Chauhan et al. [152]

have modified Fe3O4 nanoparticle using poly(indole-5-

carboxylicacid) by preparing nanobiocomposite for its

use as a sensor for the determination of pesticides such

as malathion and chlorpyrifos in a wide range of concen-

trations (0.1–70 nm).

Iron nanoparticles in the elemental state have also

been used in the purification of ground water. It has

been tested against reductive dehalogenation of organo-

chlorine pesticides and insecticides [153–155] and sev-

eral other toxic substances such as chromium [156] and

arsenic [157]. Since agglomeration of iron nanoparticle

occurs, it was modified using surfactants. This not only

reduces the organochlorine pesticides but also prevents

corrosion. Mukherjee et al. [158] have shown that after

accepting H+, the hepatochlor pH increases which is

true but the term reduction used by them is incorrect as

the acceptance of proton, by definition, is oxidation.

Pesticides used in agriculture are sometime harmful to

other animals and plants. Their reduction to innocuous

chemicals by iron nanoparticle is a simple strategy to

make them useful. Polyhalogenated and nitroaromatic

compounds are generally reduced by metal

Fig. 6 TEM images of L929 cells for a control and b cells exposed to SPION with vesicle-containing SPION nanospheres [156]
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nanoparticles, metal sulfides, quinine, and vitamin B12.

Metal nanoparticles can also be used for the reduction

of nonhalogenated pesticides and azo dyes. The findings

made by Keum and Li [159] suggest remediation, but it

is too expensive to be used in the field. Also, it leaves

toxic residues in the environment.

Conclusions

Iron and iron oxide magnetic nanoparticles can be fabri-

cated by plant extracts or microbes such as fungi and

microalgae. They can be coated with water soluble poly-

mers for greater solubility. For instance, polyvinyl alcohol-

coated nanoparticles are prevented from aggregation;

therefore, they can easily diffuse through the semi-

permeable membrane in a living system. Their shape and

size may be controlled by maintaining the temperature,

pH, and concentration of the reacting components. Their

cytotoxicity varies with shape such as spherical, beads,

and rods. The hydrodynamic size and the paramagnetic/

diamagnetic nature of iron oxide nanoparticles make them

specific for specific application. For example, nanoparti-

cles with larger hydrodynamic size have lower cytotoxicity.

Superparamagnetic iron oxide nanoparticles have great

potential for use in instruments and medical devices, as

drug carrier, and in the treatment of many diseases. Mi-

crobes and plant extracts containing alkaloids, flavonoids,

saponins, ketones, aldehydes and phenols, or reducing

acids like citric acid and ascorbic acids can be used for

nanoparticle synthesis. Iron oxide nanoparticles can be

used as an inexpensive material for the removal of dyes

from textile industries and tanneries and in the treatment

of contamination in wastewater and purification of ground

water. Since the properties of iron oxide nanoparticles

solely depend on the number of unpaired electrons and

particle size in the presence and absence of magnetic field,

it can be altered by coating them with polymers and by

applying external magnetic field. These nanoparticles can

be selectively used for the separation of magnetic mate-

rials from a huge deposit of nonmagnetic substances.
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