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Abstract: Green nanotechnology has made the synthesis of nanoparticles a possible approach. Nan-
otechnology has a significant impact on several scientific domains and has diverse applications in
different commercial areas. The current study aimed to develop a novel and green approach for the
biosynthesis of silver oxide nanoparticles (Ag2ONPs) utilizing Parieteria alsinaefolia leaves extract as a
reducing, stabilizing and capping agent. The change in color of the reaction mixture from light brown
to reddish black determines the synthesis of Ag2ONPs. Further, different techniques were used to
confirm the synthesis of Ag2ONPs, including UV-Visible spectroscopy, Fourier-transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive
X-ray spectroscopy (EDX), zeta potential and dynamic light scattering (DLS) analyses. The Scherrer
equation determined a mean crystallite size of ~22.23 nm for Ag2ONPs. Additionally, different
in vitro biological activities have been investigated and determined significant therapeutic potentials.
Radical scavenging DPPH assay (79.4%), reducing power assay (62.68 ± 1.77%) and total antioxidant
capacity (87.5 ± 4.8%) were evaluated to assess the antioxidative potential of Ag2ONPs. The disc
diffusion method was adopted to evaluate the antibacterial and antifungal potentials of Ag2ONPs
using different concentrations (125–1000 µg/mL). Moreover, the brine shrimp cytotoxicity assay
was investigated and the LC50 value was calculated as 2.21 µg/mL. The biocompatibility assay
using red blood cells (<200 µg/mL) confirmed the biosafe and biocompatible nature of Ag2ONPs.
Alpha-amylase inhibition assay was performed and reported 66% inhibition. In conclusion, currently
synthesized Ag2ONPs have exhibited strong biological potential and proved as an attractive eco-
friendly candidate. In the future, this preliminary research work will be a helpful source and will open
new avenues in diverse fields, including the pharmaceutical, biomedical and pharmacological sectors.

Keywords: P. alsinaefolia; Ag; SEM; XRD; DLS; zeta; cytotoxic; biocompatibility

1. Introduction

Nanotechnology is becoming a rapidly growing area of science and technology due to
its wide range of applications in different industrial zones [1]. Nanotechnology deals with
the synthesis of nanoparticles having a size range of 1–100 nm at least in one dimension.
Nanoparticles (NPs) have significantly attracted the attention of the scientific community
due to their remarkable features, such as small nanoscale size, a high percentage of surface
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atoms, particle structure, large surface-to-volume ratio, and unique shapes compared to
their bulk counterparts [1–4]. Over the past two decades, several studies have been con-
ducted in the fields of science, engineering, and biotechnology to create nanostructured
materials that are affordable and eco-friendly [5–8]. Design, synthesis, and characteriza-
tion of various metal nanoparticles for the treatment of multiple diseases have recently
attracted the attention of nonscientists to combat various kinds of diseases [9–11]. They are
used in many industrial fields because of their exceptional properties, including chemical,
electrical, biomedical, and automotive industries [12,13]. This improves their ability to
catalyze reactions and their ability to interact with other molecules [14,15]. Thus, different
metal oxide nanoparticles (MNPs) have been synthesized. Among the different MNPs,
silver oxide nanoparticles (Ag2ONPs) are one of the most popular types of metal oxide
nanoparticles and have distinct uses. They have a large surface area despite their small
size [16,17]. These nanoparticles are of great significance because of how their size affects
the physiochemical characteristics of any material [18,19]. The MNPs are notable today in
a variety of industrial applications of applied nanotechnology, widely used in a range of
industries, including textile, food, health, agricultural, and cosmetics [20].

Nanoparticles are often produced via a range of physical and chemical techniques [21].
However, these conventional methods use expensive metal salts, organic solvents, and
poisonous reducing stabilizing and capping agents and require expensive machinery
which makes these synthesis routes very challenging. Further, these methods have sev-
eral negative impacts on both the environment and human life, including cytotoxicity,
carcinogenicity, and genotoxicity, which restricts their use for biomedical purposes [22].
These problems must thus be resolved, and steps must be taken to find a different way to
make safe and biocompatible NPs. Consequently, researchers have created green chemical
approaches. A novel and practical method in green synthesis is the biological production
of nanoparticles. This procedure is highly simple, environmental-friendly, energy-efficient,
non-toxic, and does not need a lot of pressure, heat, and energy. It also does not need any
external chemicals for reducing, stabilizing, or capping metal precursors [23,24]. The type
of plant extracts used, their concentration, and other factors significantly affect the physico-
chemical and biological potentials of eco-friendly nanoparticles [25]. Numerous beneficial
phytochemicals found in natural plant extracts work as potent reducing, stabilizing, and
capping agents in the synthesis of NPs [26,27]. The type of plant extracts used, extract
concentration, metal salt, pH level, and synthesis method all affect how environmentally
friendly nanoparticles are produced [28]. To produce less harmful chemical products and
byproducts, researchers, chemical technologists, and chemists are currently using core
principles of green chemistry as a reference manual for the green synthesis of MNPs across
the globe [29,30]. Green nanotechnology has consequently witnessed significant growth
as an alternative technique to produce safe and stable products using various medicinal
plants [31–33].

The current study aimed to synthesize silver oxide nanoparticles (Ag2ONPs) using
leaves extract of P. alsinaefolia Delile (Urticaceae), a versatile medicinal plant that can be
utilized for a variety of treatments and is used in traditional medicine to treat intestinal
worms, dysentery, diarrhea, and malarial fever [34]. The current work documents the
first green synthesis of Ag2ONPs using leaves extract of P. alsinaefolia without the use of
any surfactant or organic and inorganic solvent. Furthermore, the study was purposed to
investigate numerous biological applications of a synthesized Ag2ONPs.

2. Materials and Methods
2.1. Plant Extract Preparation

The medicinal plant P. alsinaefolia (Urticaceae) was collected from Rumli, Quaid-I-Azam
University Islamabad, Pakistan. The plant sample was taxonomically identified by Dr.
Sayed Afzal Shah, Assistant Professor (NUMS), Islamabad Pakistan, with authorization
number: SAS-557. The leaf material was separated from P. alsinaefolia, carefully washed
with deionized water, and dried in shade for 3 weeks so that the water content was removed
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completely. After that, the plant material was ground into a fine powder and stored in an
air-tight container. Furthermore, 30 g of dried P. alsinaefolia powder was added to 250 mL
of distilled water and heated at 80 ◦C. To obtain pure aqueous leaves extract, the solution
was filtered 3 times using Whatman filter papers after being cooled to room temperature.
The plant extract was then kept at 4 ◦C for future use.

2.2. Biosynthesis of Ag2ONPs

With few modifications, the procedure utilized by Iqbal et al. [35] was used to achieve
the biosynthesis of Ag2ONPs. For this purpose, 3 g of silver nitrate salt (Sigma Aldrich,
Saint Louis, MO, USA) was added to 100 mL of filtered P. alsinaefolia leaves extract and
heated at 75 ◦C for 3 h with continuous stirring. Detail schematic representation of the
study is provided in (Figure 1).

Microorganisms 2023, 11, x FOR PEER REVIEW 4 of 22 
 

 

2. Materials and Methods 
2.1. Plant Extract Preparation 

The medicinal plant P. alsinaefolia (Urticaceae) was collected from Rumli, Quaid-I-
Azam University Islamabad, Pakistan. The plant sample was taxonomically identified by 
Dr. Sayed Afzal Shah, Assistant Professor (NUMS), Islamabad Pakistan, with 
authorization number: SAS-557. The leaf material was separated from P. alsinaefolia, 
carefully washed with deionized water, and dried in shade for 3 weeks so that the water 
content was removed completely. After that, the plant material was ground into a fine 
powder and stored in an air-tight container. Furthermore, 30 g of dried P. alsinaefolia 
powder was added to 250 mL of distilled water and heated at 80 °C. To obtain pure 
aqueous leaves extract, the solution was filtered 3 times using Whatman filter papers after 
being cooled to room temperature. The plant extract was then kept at 4 °C for future use. 

2.2. Biosynthesis of Ag2ONPs 
With few modifications, the procedure utilized by Iqbal et al. [35] was used to achieve 

the biosynthesis of Ag2ONPs. For this purpose, 3 g of silver nitrate salt (Sigma Aldrich, 
Saint Louis, MO, USA) was added to 100 mL of filtered P. alsinaefolia leaves extract and 
heated at 75 °C for 3 h with continuous stirring. Detail schematic representation of the 
study is provided in (Figure 1). 

 
Figure 1. The detailed mechanism of P. alsinaefolia mediated Ag2ONPs synthesis. 

Moreover, the solution was centrifuged for 30 min at 3000 rpm. The resultant 
powder, which was assumed to be Ag2ONPs, was incubated for 5 h at 100 °C. To remove 
any impurities, the powder was gathered and rinsed thrice with distilled water followed 
by calcination to obtain pure-phase crystalline NPs. Furthermore, the NPs were 

Figure 1. The detailed mechanism of P. alsinaefolia mediated Ag2ONPs synthesis.

Moreover, the solution was centrifuged for 30 min at 3000 rpm. The resultant powder,
which was assumed to be Ag2ONPs, was incubated for 5 h at 100 ◦C. To remove any
impurities, the powder was gathered and rinsed thrice with distilled water followed by
calcination to obtain pure-phase crystalline NPs. Furthermore, the NPs were extensively
characterized using different characterization techniques. In addition, different in vitro
biological activities were investigated for the synthesized NPs.

2.3. Characterization of Ag2ONPs

Using various characterization techniques, the type, structure, physical, chemical, and
optical properties of Ag2ONPs have been investigated. Using an ultraviolet (UV-4000) UV-
Vis spectrophotometer (Germany) with a wavelength range of 250–750 nm, the formation
of Ag2ONPs was examined and validated. Fourier-transform infrared spectroscopy (FTIR)
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spectrometer was used to record the FT-IR spectra (Alpha, Bruker, Ettlingen, Germany). It
was used to investigate the configuration and functional groups involved in the capping and
efficient stabilization of Ag2ONPs. The samples were scanned utilizing a 500–4500 cm−1

spectral range to study the architecture and physical structure of Ag2ONPs. Further,
Energy-dispersive X-ray spectroscopy (EDX) analysis was performed to determine the
elemental composition of Ag2ONPs. The crystal clarity and particle size of Ag2ONPs
were evaluated using a PANalytical Empyrean Diffractometer. The corresponding size of
thermally annealed samples was determined using the Scherrer equation following analysis
with an X-ray diffractometer equipped with a Cu radiation source at 45 kV and 40 mA
current voltage. The sample was made by pouring Ag2ONPs powder onto a glass slide,
air-drying it, and then using it for XRD examination. The dynamic light scattering (DLS)
system explores the feasibility of the polydispersity index (PDI) and the hydrodynamic size
distribution (Malvern Nano Zetasizer).

2.4. Bio-Potentials of Ag2ONPs
2.4.1. Brine Shrimp Cytotoxicity Assay

Brine shrimp cytotoxicity assay was performed by putting the brine shrimp eggs in
seawater, a sizable number of larvae were quickly hatched for experimental usage, making
them the most practical test for toxicity investigations. To achieve this purpose, Artemia
salina eggs were cultivated for 24 h at 27 ◦C in artificial seawater (3.8 g/L) in the presence
of light to obtain mature nauplii. Roundabout 20 nauplii were put into a glass vial with
seawater along with a sample and were analyzed by using a Pasteur pipette. Various
Ag2ONPs dosages ranging from 37.5–1000 µg/mL were employed to determine their
dose-dependent response. Glass vials containing seawater, vincristine sulfate, and mature
nauplii were determined as positive controls, whereas in glass vials containing seawater,
DMSO and mature nauplii were considered negative control. Further, the vials were
incubated at 30 ◦C in an incubator for 24 h, then the number of dead shrimps was precisely
counted in each vial. The LC50 values for Ag2ONPs were measured using GraphPad Prism
version 8.0.0.

2.4.2. Alpha-Amylase (AA) Inhibition Assay

The alpha-amylase inhibition assay was performed to determine the antidiabetic
potential of Ag2ONPs. The reaction mixture was prepared by stepwise addition of using
25 µL of alpha-amylase, 40 µL of starch solution, 15 µL of phosphate-buffer saline (pH 6.8),
and 30 µL of Ag2ONPs [36] into a microplate reader. All the components in the microplate
were incubated for 90 min at 50 ◦C. After incubation, the mixture underwent the addition
of 90 µL of iodine solution and 20 µL of 1 M HCL. Acarbose and Dimethyl sulfoxide
(DMSO) was used as positive and negative control, respectively. A microplate reader
was used to measure the optical density at 540 nm. GraphPad software was employed
to calculate the median lethal concentration (LC50) value, using the formula below to
determine percent inhibition:

% Inhibition = [Sample Absorbance − Absorbance of negative control]/[Absorbance of blank − Absorbance of negative control] × 100

2.4.3. Antibacterial Activity of Ag2ONPs

The antibacterial activity of synthesized P. alsinaefolia Ag2ONPs was determined using
the disc diffusion method using different bacterial strains. To achieve this purpose, strains
of bacteria were subcultured overnight in nutrient broth media and then incubated at 37 ◦C
for 24 h before the activity was performed. An overnight culture of various bacterial strains
was distributed on pre-made agar media to assess the antibacterial potencies of Ag2ONPs.
Filter discs loaded with various concentrations of Ag2ONPs (125–1000 µg/mL) were then
dried and placed on top of the plates. The plates were monitored for ZOI for 24 h while
they were incubated in an incubator at 37 ◦C. The antibiotic oxytetracycline was used as a
positive control and 5% DMSO served as a negative control.
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2.4.4. Antifungal Activity

To examine the antifungal potential of Ag2ONPs, several strains of fungi were used
by using autoclaved Sabouraud dextrose liquid media (SDA) [37]. Spores of fungi were
subcultured in SDA and stored in an incubator for 24 h at 37 ◦C prior to the fungicidal assay.
Various fungal strains liquid cultures had their optical density (OD) set to 0.5. Broth cultures
were spread on an SDA medium using autoclaved cotton swabs. Different Ag2ONPs doses
were used, ranging from 125 to 1000 µg/mL. Different doses of Ag2ONPs were used to
examine their antifungal potentials. The Petri plates containing different fungal strains
were incubated at 37 ◦C for 72 h to achieve this purpose. After 48–50 h mycelial growth
was observed at various concentrations and hence ZOI was calculated. Amp-B was used as
a positive control while DMSO was used as a negative control.

2.4.5. Hemocompatibility Experiment Using Ag2ONPs

The hemocompatibility experiment was performed to find that Ag2ONPs are safe with
human red blood cells (RBCs) to accomplish the biocompatibility experiment. To achieve
this purpose, 90 µL of freshly acquired human RBC was put in an (EDTA) tube and spun at
10,000 rpm for 15 min. The pallet was then washed 2–3 times with PBS (phosphate buffer
saline) (pH 7.4). Erythrocyte suspensions were made by combining 200 µL erythrocytes
with 9.8 mL buffer (PBS), 100 µL of erythrocyte suspension was added to various Ag2ONPs
concentrations and were incubated for 1–2 h at 37 ◦C and centrifuged at 12,000 rpm/15 min.
Furthermore, the supernatant was transferred to a 96-well plate and hemoglobin release
was measured at 540 nm using a microplate reader. The positive control used was Triton
X-100, whereas the negative control was DMSO. The results are expressed as a percentage
of hemolysis caused by various concentrations of Ag2ONPs and are determined using the
formula below:

% Hemolysis = [Sample ABC − Negative Control]/[Negative control] × 100

2.4.6. Antioxidant Capabilities of Ag2ONPs

The approach of spectrophotometry was employed to assess the ability of silver
oxide nanoparticles to scavenge free radicals. As a free radical, 2.4 mg 2,2-diphenyl-1-
picrylhydrazyl (DPPH) was added to 25 mL methanol and appropriately vortexed. In
the next step, we examined the free radical scavenging potential of Ag2ONPs at various
concentrations ranging from 37.5–1000 µg/mL. Ascorbic acid (AA) was treated as a positive
control while DMSO was used as a negative control. In addition, 20 µL of Ag2ONPs and
180 µL of reagent solution were added into a 96-well plate and incubated in dark for 1 h.
The measurements were taken at 517 nm with a microplate reader. The DPPH scavenging
percentage was calculated using the formula below:

% DPPH Scavenging = 1 − [Absorbance of the sample]/[absorbance of control] × 100

Furthermore, the total reducing power (TRP) of the test sample (Ag2ONPs) was
analyzed using the earlier published Potassium-ferricyanide process [38–40]. The Ascorbic
acid (AA) was taken as positive control while the DMSO served as a negative control. The
optical density was measured at 630 nm using a microplate reader. The power reduction
is shown in terms of gram ascorbic acid equivalent per mg (g AA/mg) of nanoparticles.
The total antioxidant capacity (TAC) was also determined using the phosphomollybdenum
standard technique [41]. The optical density was measured at 695 nm using a microplate
reader. To compare the overall antioxidant potentials of Ag2ONPs, ascorbic acid was used
as a positive control and DMSO as a negative control. The results are given in terms of
ascorbic acid equivalents in micrograms per milligrams of the sample, or g AAE/mg.
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3. Results and Discussion
3.1. Synthesis of Ag2ONPs

In the current study, P. alsinaefolia leaves extract was employed to quickly synthesize
Ag2ONPs, acting as a bio-reductant and stabilizing agent. Ag2ONPs production has been
optimized using P. alsinaefolia extract via the green method. It is a very significant medicinal
plant with well-known therapeutic potential. Green synthesis is the most effective way
when compared to physical and chemical methods [42]. Both synthesis processes, despite
their efficiency, have some shortcomings, for example, high costs, high energy needs,
and the creation of toxic hazardous waste materials [43]. Moreover, it is mentioned in
previous work that some dangerous compounds might adhere to nanoparticles made by
chemical methods, making them undesirable for diverse biological applications [44,45].
Consequently, the synthesis of Ag2ONPs using the green approach is favored because it
has several features due to its ease of use, low cost, and non-use of toxic chemicals and
solvents. Ag2ONPs formation was confirmed by a change in color from light brown to
brownish black color shifts. This color change results from optical properties specifically,
due to vibrations in surface plasmon. The biocompatible AgO nanoparticles were further
studied using a wide range of characterization techniques, including UV, DLS, EDX, FT-IR,
XRD, SEM, and ZETA.

3.2. UV-Vis Spectrophotometry

A color shift that indicates a successful reduction process was seen as the aqueous
extracts were added to the precursor solution. A color change from light brown to darker
brown shows an increase in bioreduction. Further, a UV-Vis spectrophotometer was used to
scan the reaction mixture in ranges between 200 and 750 nm wavelength and the synthesis
of AgO nanoparticles was confirmed. At 430–433, the absorbance of AgO was observed
and these absorbance peaks fall inside the SPR range for Ag2ONPs. Because absorbance is
inversely proportional to particle concentration, the reduction in absorbance indicates that
the particles have settled. However, as no blue/red shift was seen at the peak point, we can
attribute that NPs exhibit steady SPR behavior. Silver nanoparticles could be produced at
concentrations as low as 1 mM AgNO3, but at higher concentrations the biosynthesis was
negligible. To conduct more optimization trials, the concentration of 1 mM was processed.
At 60 ◦C or above temperature, Ag nanoparticle production was noticed. Figure 2 indicates
the biosynthesis peaked after three hours. The findings of our research utilizing UV-Vis
spectroscopy are in accordance with those of an earlier study that used a variety of plant
extracts [46–48].
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3.3. X-ray Diffraction Spectroscopy (XRD)

The crystalline nature of silver nanoparticles was assessed by X-ray diffraction spec-
troscopy (XRD) analysis. The XRD pattern of Ag2ONPs produced during biosynthesis
is shown in Figure 3. The acquired Bragg peaks were observed to be in accordance with
crystallographic reflections from the JCPDS pattern 00-076-1393 at angles of 100 (27.43◦),
110 (31.98◦), 111 (46.89◦), 200 (48.11◦), 211 (54.3◦), 211 (57.04◦), 220 (68.72◦), 310 (72.84◦),
and 311 (78.14◦) (Table 1). Using Debye Scherrer’s equation (D = k/12 cos), the average size
of Ag2ONPs was determined to be around 22.11 nm. These findings are consistent with
earlier findings reported by [49–51]. Figure 3 illustrates the results of an X-ray diffraction
investigation performed for annealed biogenic Ag2ONPs incubated at 100 ◦C. The single
and pure phase of AgO was found to be in accordance with the observed Bragg peaks
(JCPD card no: 079–1741). The absence of Bragg peaks for other closely similar substances
demonstrates the pure crystalline nature of biogenic Ag2ONPs. The Ag2ONPs XRD pattern
agrees with earlier reports.
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Table 1. (2 thetas) value and Bragg peak of P. alsinaefolia Ag2ONPs.

S.No 2 Theta Value Bragg Peak

1 27.43 100
2 31.98 110
3 46.89 111
4 48.11 200
5 54.3 211
6 57.04 211
7 68.72 220
8 72.84 310
9 78.14 311

3.4. Fourier Transform Infrared Spectroscopy (FTIR)

The FT-IR study for AgONPs is shown in Figure 4. The evaluation of molecular
vibrations and the presence of functional groups/ biomolecules essential to the efficient
production and stabilization of AgONPs are determined using FT-IR spectra. CH3, C-C
rocking and stretching bonds were stretched by the bands that appeared at 958.74/cm,
mC-O-C bands at 1164.72 /cm and C(=O)-O stretching were stretched by the bands at
1228.56/cm. C-O stretches, vibrations of the aromatic ring, C-H stretches and O-H/C-
H/N-H stretching of amines and amides are all visible in the bands at 1384.97, 1505.47,
and 2924.41/cm, respectively. Further, the peak at 3369.31/cm indicates the stretching
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vibrations of amines and amides O-H/C-H/N-H. The Ag–O bond vibration was related to
the bands that were observed at 521.64, 621.66, and 675.80/cm (Table 2).
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3.5. Zeta Potential

The size and charge of Ag2ONPs mediated by P. alsinaefolia were evaluated using
DLS and zeta potential. The Ag2ONPs displayed negative charge zeta potential, possibly
because of the intense phytochemical adsorption on the synthesized NPs. They also
increased their stability and prevent particles from aggregating. The polydispersity index
was 0.522 (Figure 5A), and low PDI values suggested high-quality, polydisperse particles.
These NPs were perfect for their biological activities due to the parameters. To be regarded
as stable, NPs’ zeta potential values typically need to fall between +30 mV and −30 mV.
The Zeta value for Ag2ONPs was found to be −18.5 mV (Figure 5B). An earlier study of
Ag2ONPs utilizing Ocimum basilicum is in line with our results obtained [52].

3.6. Scanning Electron Microscopy (SEM)

The morphological makeup of the nanoparticles was determined using SEM exami-
nation. A small amount of the material was placed on a copper grid coated with carbon
before being dried with a hand dryer to eliminate any extra particles. Using a scanning
electron microscope, this produced grid was utilized to measure the size and form silver
nanoparticles. Figure 6 shows SEM pictures of P. alsinaefolia-mediated Ag2ONPs and shows
that synthesized NPs are spherical in shape with a mean crystal diameter of 22.11 nm,
which was validated by the SEM investigation.
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3.7. Energy-Dispersive X-ray Spectroscopy (EDX)

In addition to SEM, the EDX was employed to analyze the elemental composition of
Ag2ONPs. EDX spectroscopy analysis was used to assess the elemental composition of
silver nanoparticles. Analysis conducted using EDX has confirmed the existence of silver
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and oxygen. Figure 7 depicts the strong signals for oxygen and silver in the absence of any
other signal, showing that synthesized Ag2ONPs are free of any other impurities. Strong
indications for silver and oxygen were observed at 0.3, 3, and 3.1 KeV, and only the major
elements “Ag” and “O”, which are related to the single-phase purity of the NPs have been
identified in the EDX spectrum. When silver nitrate was in contact with P. Alsinaefolia leaf
extract, the precursor silver nitrate basic was commonly reduced. In the leaves extract
of P. alsinaefolia, many flavonoid chemicals have been discovered, including quercetin,
Kaempferol-7-O methyl ether, emodin, gluside, Physicon 8 B-D gluside, and others [53–55].
These substances attach to the surface of metal ions and have a vital role in stabilizing NPs.
They are present in the aqueous extract of P. alsinaefolia.
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3.7.1. Brine-Shrimp Cytotoxicity Test

To determine the cytotoxic capability of green Ag2ONPs against freshly hatched A.
salina, the brine shrimp lethality assay (BSLA) was performed. The BLSA is the best assess-
ment test to evaluate the cytotoxicity potential of any naturally occurring compound [56].
Ag2ONPs cytotoxic efficacy was investigated at various dosages between 37.5 and 1000
µg/mL. AgO nanoparticle concentrations of 1000 and 37.5 µg/mL, exhibited mortality
rates of 100% and 20%, respectively. Our findings on silver-mediated particles are in
line with earlier research on Ag2ONPs employing Sargassum ilicifolium, Ocimum bacilicum,
Sageretia thea, and Rhamnus virgata [51,52,57,58]. Ag2ONPs capacity to cause cytotoxicity
was investigated in a concentration-dependent manner and a dose-dependent response
was observed, while their LC50 value (2.21 µg/mL) was measured. The cytotoxic potential
increases as NP concentration increases (Figure 8). These findings supported Ag2ONPs
capability to cause cytotoxicity. However, none of the Ag2ONPs doses assessed provided a
higher percentage of inhibition than vincristine sulfate with LC50 (1.976 µg/mL) used as a
(positive control).

3.7.2. Alpha-Amylase Inhibition (AA) Assay

Diabetes mellitus is a condition where insulin, a hormone that is responsible for ad-
vancing fasting and postprandial blood glucose levels, is unable to appropriately regulate
the homeostasis of lipid and carbohydrate metabolism [57]. Currently, the potential for AA
inhibition of P. alsinaefolia mediated Ag2ONPs was investigated. The findings have exam-
ined how effective Ag2ONPs are at inhibiting AA. The considerable inhibitory potential of
the Ag2ONPs ranges from 37.5 to 1000 µg/mL. As Ag2ONPs concentrations decrease, the
rate of inhibition gradually slows down. At 1000 µg/mL, maximum inhibition of 66% was
observed. Decreased results were seen with 37.9% at 500 µg/mL and 20.83% at 250 µg/mL,
respectively. However, none of the Ag2ONPs doses that were examined provided an inhi-
bition percentage greater than (surfactin), which is a positive control. Since the AA enzyme
acts by converting carbohydrates into glucose [58], inhibiting its activity might lower blood
sugar levels, which is a significant subject of inquiry in diabetes [59]. Figure 9 indicates the
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AA inhibition potency of Ag2ONPs. Our results of green Ag2ONPs substantiate through
the S. thea, R. virgata, Calendula officinalis, and mediated Ag2ONPs [52,58,60].
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3.7.3. Antibacterial Activity

Therapeutic approaches frequently provide the option of antibiotic treatment for bac-
terial infections; however, medications accompany downsides, such as antibiotic resistance.
The scientific community is putting a lot of effort into creating novel methods to prevent
antibiotic resistance and decrease the spread of these deadly diseases [61–63]. Promising
new techniques in nanotechnology are available to design and produce novel materials
with unique antibacterial characteristics [64]. The focus has shifted to finding new ways
to solve these issues, resulting in the design of green synthesized nanoparticles (NPs).
Silver nanoparticles can release silver ions that can pass through the cell membrane of
microorganisms [65]. As a result, organelles functioning may be disturbed due to lysis of
cytoplasmic membrane and cell lysis may even follow.

Currently, silver nanoparticles were evaluated for antibacterial activity. The antibac-
terial potential of biogenic Ag2ONPs, together with various bacterial strains at different
dosages (1000–125 µg/mL), was assessed and their results are shown in Figure 10 Staphylo-
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coccus aureus (ATCC 23235), Lactobacillus acidophilus (ATCC 4356), and Bacillus subtilis (ATCC
23857) were used as gram-positive bacteria strains, whereas Pseudomonas aeruginosa (ATCC
15442), and Escherichia coli (ATCC BAA-2471) were used as gram-negative bacteria strains.
Our silver-mediated particles showed dose-dependent responses against selected bacterial
strains. Most studied microorganisms were found to be sensitive to AgO2NPs in this study.
Our investigation revealed that the S. aureus bacterial strain was more vulnerable to silver-
mediated particles at a concentration of 1000 µg/mL with 23.25 mm ZOI and at 125 µg/mL
with 6.5 mm ZOI, respectively. Similarly, L. acidophilus shows 23 mm ZOI at 1000 µg/mL
and 7 mm at 125 µg/mL. In the case of E. coli at 1000 µg/mL, ZOI was 22.25 mm and at
125 µg/mL, it was 8.5 mm. Moreover, Pseudomonas aeruginosa gives 22.75 mm of ZOI at
1000 µg/mL, and 6.85 mm at 125 µg/mL, respectively. Furthermore, the Bacillus subtilus
is somehow susceptible to Ag2ONPs and its ZOI at 1000 µg/mL was 22.5 mm, while it
shows 7 mm at 125 µg/mL. Table 3 lists the ZOI values, with oxytetracycline (10mg) as
a positive control. The oxytetracycline was revealed to be more effective than any single
test sample concentration. Overall, the ZOI of various strains is presented in Figure 11.
Generally, we reported probable biogenic Ag2ONPs antibacterial activity that is in line
with prior research [58,64,66]. The bioactive functional groups associated with NPs may be
the cause of their potential antibacterial activities. Comparably, our research found that an
increase in the concentration of P. alsinaefolia-mediated Ag2ONPs was correlated with an
enhancement in antibacterial potential. In addition to ROS production, other variables, such
as membrane damage from NPs adhering to the surface, might harm cells. The antibacterial
potential of NPs can also be described by surface imperfections in the symmetry, which
can harm cells [67]. We also consider the importance of bioactive functional groups that
are connected to P. alsinaefolia leaves in the aqueous extract, which is employed to cap and
stabilize Ag2ONPs and have significant antibacterial activity.
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3.7.4. Antifungal Assay

The antifungal activity of P. alsinaefolia-mediated Ag2ONPs was evaluated against
various fungal strains at different doses, i.e., (1000–125 µg/mL). The fungal strains assessed
against Ag2ONPs were Mucor racemosus (FCBP 0300), Aspergillus flavus (FCBP: 0064), As-
pergillus niger (FCBP: 0918), Candida albicans (FCBP: 478), and Fusarium solani (FCBP: 0291).
Ag2ONPs against certain fungal strains have been the subject of extensive research. The
present study marks the first to describe the antifungal activity of Ag2ONPs inspired by
P. alsinaefolia.

In the recent study, the susceptibility of the chosen strains was calculated by measuring
the mycelial growth on SDA media at various Ag2ONPs concentrations (1000–125 µg/mL).
Following the work, Aspergillus flavus was identified with a ZOI of 27.5 ± 0.71 mm at
1000 µg/mL and 9.5 ± 1.4 mm at 125 µg/mL. Likewise, at 1000 µg/mL, Aspergillus niger
exhibits a ZOI of 29.5 ± 0.71 mm, Candida albicans are constrained to a 29 ± 1.41 mm region,
while M. racemosus strain exhibits a 30.5 ± 0.71 mm ZOI, respectively (Figure 12). However,
none of the test samples demonstrated% inhibition greater than Amp-B. According to earlier
research, Ag2ONPs interact with fungal hype and spores, which inhibits fungal growth
in addition to generating ROS [68]. Previous investigations [69] demonstrated significant
dose-dependent antifungal activity that is compatible with the present findings. Figure 13
presents the overall ZOI studied fungal strains. Comparably, our study found that an
increase in the concentration of P. alsinaefolia-mediated Ag2ONPs was associated with a
boost in antifungal potential.
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3.7.5. Antihemolytic Potential of P.A-Mediated Ag2ONPs on Human RBCs

An antihemolytic assay was carried out using human RBCs to confirm the biosafety of
the substance. Human RBCs were used to evaluate the biocompatibility and toxicological
impact of silver oxide nanoparticles. A biological substance is considered hemolytic if it has
an activity level of at least 5%, slightly hemolytic if it is between 2–5%, and non-hemolytic if
it is less than 2% [70]. If a particular nanoparticle is hemolytic, it will shatter red blood cells
and release hemoglobin. Currently, the RBCs were subjected to Ag2ONPs in concentrations
ranging from 1000 to 75 µg/mL. The data collected showed that the synthesized NPs were
non-hemolytic at lower concentrations (17, 35, and 71 µg/mL), somewhat hemolytic at
75–125 µg/mL, and hemolytic at concentrations of >125 µg/mL These findings support
the earlier studies of Cichorium intybus and Annona muricata mediated Ag2ONPs [71,72].
Our study provided evidence that the biosynthesized Ag2ONPs are non-hemolytic and
regarded as biocompatible at low concentrations. Figure 14 summarizes the results of
Ag2ONPs biocompatibility assays.
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3.7.6. Antioxidant Activities

A cell under stress may produce ROS because of oxidative chain reactions. One or
more unpaired electrons make up free radicals which are separate chemical compounds
that are extremely unstable for the reason they break down neighboring molecules by
removing electrons to become stable [73]. To quench these free radicals and assist the
cells in regaining normal function, antioxidants play a crucial role. Various green oxide
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metal nanoparticles have shown significant antioxidant results. Currently, the antioxidant
activities of Ag2ONPs (TAC, TRP, and DPPH free radical scavenging) are being investigated
(Figure 15). An aqueous extract of P. alsinaefolia leaves was employed as a capping, reducing,
and oxidizing agent. Several phenolic compounds are inferred to scavenge the ROS which
is also coupled to the Ag2ONPs. The range of dilution concentrations was 75–1000 µg/mL
for the antioxidant analyses. The highest result for total antioxidants was determined to be
51.4% for 200 µg/mL of Ag2ONPs in terms of AA equivalents per mg. The lowest value
for TAC activity was 6.4 ± 4.7, while the highest value was 87.5 ± 4.8 at a concentration of
1000 µg/mL. TAC (Figure 15A) shows the scavenging potential of the tested compounds
toward ROS species.
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Total reducing power (TRP) was studied to further examine the presence of antioxidant
species adsorbed to Ag2ONPs. This technique was carried out to look at reductones that
contribute H-atoms to the antioxidant potential which may cause chain damage from free
radicals. Biogenic Ag2ONPs have demonstrated significant antioxidant capacity. As the
concentration of Ag2ONPs decreased, the reducing power also lowered. At 60 µg/mL, the
greatest reducing value was determined to be 62.68 ± 1.77%, while the lowest value was
13.88 ± 1.36% at 5 µg/mL (Figure 15B). Additionally, at 200 µg/mL, Ag2ONPs showed
a significant DPPH radical scavenging capacity (79.4%). According to the findings in
Figure 15C, it is possible that several antioxidant substances contribute to the decrease and
stability of Ag2ONPs by P. alsinaefolia leaves extract. Our findings agree with previous
investigations of biogenic Ag2ONPs utilizing Citrus limon, and Cassia Auriculata [74,75].
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4. Conclusions

Currently available biogenic Ag2ONPs were produced using P. alsinaefolia leaf ex-
tract and were thoroughly examined using XRD, FTIR, EDS, SEM, DLS, and zeta poten-
tial. Biogenic Ag2ONPs have also demonstrated diverse in vitro biological activity. The
antibacterial and antifungal properties of the biogenic Ag2ONPs have been intriguing.
Additionally, assessments for enzyme inhibition and modest antioxidant activity have been
observed. We studied into Ag2ONPs biosafety in relation to RBCs in more depth. Green
synthesis is the route to go for producing NPs that might be utilized for the detection and
treatment of many diseases while avoiding the usage of hazardous chemicals. In addition,
the application of green Ag2ONPs in biomedicine is a vast field that needs in-depth study.
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