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Abstract: Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotox-
icity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc.,
especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties,
it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022
European Green Deal announced by the European Commission, even science and nanotechnology are
moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO
nanoparticles have been extensively studied for their biological applications and environmental re-
mediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules)
play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and
sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on
their bioactive properties and antimicrobial application.

Keywords: zinc oxide; nanoparticles; antimicrobial; antiviral; bioactive; biogenic synthesis; green
synthesis; biosynthesis

1. Introduction

In recent years, various metal oxide nanoparticles (MONPs) revived interest for a
plethora of different applications, specifically when a green experimental approach is
proposed [1]. To meet the increasing demand of such NPs, many different methods have
been established. Amongst MONPs, zinc oxide NPs (ZnONPs) got unique attention
due to their distinctive properties, which make them useful for many different real-life
applications. In particular, the biosynthesis of ZnONPs has been proposed, mostly in
the last 10 years, as a cheap and environment-friendly option to chemical and physical
methods, due to concerns about climate change, water pollution, limited natural resources,
toxicology, and so on [2]. A detailed bibliographic search on the Scopus® database confirms
the constantly growing interest on the topic (Figure 1). Despite the low cost and need for
simple equipment in such processes, long reaction time and the use of nonaqueous media
are considerable disadvantages of common chemical routes [3]. In place of these classical
methods, “green” and “soft” synthesis approaches are constantly needed to develop tunable
ZnO nanomaterials. Ideally, these novel methods should also be cost and time effective in
comparison to other available protocols: from a brief analysis of the retrieved literature,
research is moving towards these principles [4,5].
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Figure 1. Number of papers published about the biosynthesis of ZnONPs in the last years. Data 
analysis performed on Scopus® using “Biosynthesis”, “Zinc oxide” and “Nanoparticles” as 
keywords. 

The USA Food and Drug Administration (FDA) has registered ZnO as a “GRAS” 
(generally recognized as safe) material [6]. This is why ZnONPs already find applications 
in several fields of medicine, industry, food, agriculture, and electronics. Many of them 
have been recently reviewed by Prasad et al. [5]; thanks to their intrinsic biocompatibility, 
biogenic ZnONPs have been extensively studied for their biological applications and 
environmental remediation. The synthesis of NPs, with control over particle size, shape, 
and crystallinity, has been one of the main objectives in materials chemistry. Nature 
provides ways and insight into the synthesis of advanced and eco-friendly nanomaterials. 
About three decades ago, the first reports about biological systems, which could act as 
“bio-laboratories” for the production of metal and metal oxide particles at the nanometer 
scale, was envisaged [7,8]. Looking throughout the literature on biogenic synthesis, 
despite the source of biomolecules that is used, reaction yields are basically never 
explicated. We believe this is mainly due to the intrinsic variability of each biogenic 
reaction mixture, which can deeply influence reaction yields and NP properties [9]. 

Various microorganisms, such as bacteria [10] and fungi [11], along with plant 
extracts [12] have acted as green chemicals towards NPs. Surprisingly, waste from 
agrifood industries of food supply chains have been used as chemicals too; these 
molecules allow for the preparation of NPs without the use of dangerous chemicals and 
ensure the reuse and reduction in wastes in the view of a circular economy. 

During biogenic syntheses, biomolecules generally act both as reducing agents for 
metal precursors, and capping agent for as-prepared NPs. This “layer” of biological 
molecules surrounding NPs, is often proposed as a way to confer the high 
biocompatibility and negligible toxicity in comparison with NPs prepared by classic 
chemical methods [5]. The biocompatibility of biogenic ZnONPs may offer very 
interesting applications in biomedicine and prevention of microbial contamination. It is 
worth pointing out that biogenic procedures may also have some drawbacks. Being, in 
most cases, the exact biochemical composition of the reaction mixture unknown, it is not 
possible to foresee which byproducts and wastes could be developed during the process 
[13]. Additionally, some of these synthetic protocols could need a large amount of solvent 
(water, in most cases) for obtaining phyto-extracts with a non-negligible environmental 
impact [14]. 

Vegetable extracts (from plants, fruits, spices and herbs, flowers), algae and 
seaweeds, and metal-tolerant bacteria are the most used source for reactants exploited in 
recent papers on the topic (Figure 2) [15]. 

Figure 1. Number of papers published about the biosynthesis of ZnONPs in the last years. Data
analysis performed on Scopus® using “Biosynthesis”, “Zinc oxide” and “Nanoparticles” as keywords.

The USA Food and Drug Administration (FDA) has registered ZnO as a “GRAS”
(generally recognized as safe) material [6]. This is why ZnONPs already find applications
in several fields of medicine, industry, food, agriculture, and electronics. Many of them
have been recently reviewed by Prasad et al. [5]; thanks to their intrinsic biocompatibility,
biogenic ZnONPs have been extensively studied for their biological applications and
environmental remediation. The synthesis of NPs, with control over particle size, shape,
and crystallinity, has been one of the main objectives in materials chemistry. Nature
provides ways and insight into the synthesis of advanced and eco-friendly nanomaterials.
About three decades ago, the first reports about biological systems, which could act as
“bio-laboratories” for the production of metal and metal oxide particles at the nanometer
scale, was envisaged [7,8]. Looking throughout the literature on biogenic synthesis, despite
the source of biomolecules that is used, reaction yields are basically never explicated. We
believe this is mainly due to the intrinsic variability of each biogenic reaction mixture,
which can deeply influence reaction yields and NP properties [9].

Various microorganisms, such as bacteria [10] and fungi [11], along with plant ex-
tracts [12] have acted as green chemicals towards NPs. Surprisingly, waste from agrifood
industries of food supply chains have been used as chemicals too; these molecules allow
for the preparation of NPs without the use of dangerous chemicals and ensure the reuse
and reduction in wastes in the view of a circular economy.

During biogenic syntheses, biomolecules generally act both as reducing agents for
metal precursors, and capping agent for as-prepared NPs. This “layer” of biological
molecules surrounding NPs, is often proposed as a way to confer the high biocompati-
bility and negligible toxicity in comparison with NPs prepared by classic chemical meth-
ods [5]. The biocompatibility of biogenic ZnONPs may offer very interesting applications
in biomedicine and prevention of microbial contamination. It is worth pointing out that
biogenic procedures may also have some drawbacks. Being, in most cases, the exact bio-
chemical composition of the reaction mixture unknown, it is not possible to foresee which
byproducts and wastes could be developed during the process [13]. Additionally, some of
these synthetic protocols could need a large amount of solvent (water, in most cases) for
obtaining phyto-extracts with a non-negligible environmental impact [14].

Vegetable extracts (from plants, fruits, spices and herbs, flowers), algae and seaweeds,
and metal-tolerant bacteria are the most used source for reactants exploited in recent papers
on the topic (Figure 2) [15].
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Figure 2. Most used source for reactants exploited in the biogenic synthesis of ZnONPs. 

The aim of this review is not a comprehensive listing of all the existing literature 
about the biosynthesis of ZnONPs, but a critical discussion of the most recent papers, with 
specific attention towards the use of these NPs as antimicrobial and/or antiviral agents. 
This review article will not cover heteroatom-doped ZnO nanomaterials. Each reactant 
source will be discussed in a dedicated paragraph; main results on the bioactive properties 
of ZnO will be examined as well, lining out the importance of this material during the 
coronavirus pandemic. A list of recent review papers (2021–2022) on this topic is reported 
in Table 1. 

2. Phyto-Mediated Synthesis: Plants and Flowers 
Among green biosynthesis routes, plant-mediated ones got expanding consideration; 

many plant extracts contain a large amount of phytochemicals, which can act both as 
reducing agents and capping/stabilizing molecules [16]. Since the 1990s, the use of plants 
and plant-derived substances, in the ZnONPs synthesis, was proposed to lessen 
remarkably the requirement of expensive chemicals with limited availability, and 
hazardous experimental protocols [17]. ZnONP production from plant extracts is easily 
scalable and then highly appealing for industrial and technological use. Furthermore, this 
approach is extremely straightforward. Briefly, a zinc salt (mainly zinc nitrate, chloride, 
or acetate) is added to a plant extract; after a proper reaction time (catalyzed, when 
appropriate, by sunlight or other energy sources), the produced suspension is washed and 
subjected to thermal treatments to have stoichiometric ZnO nano- or micro-powders [18]. 
Preparation of the plant extract is pivotal for a synthesis with sufficient yield. The leaves 
(or any further plant part) first go through pretreatment processes. The latter are the most 
important means for the extraction of phytochemicals to deliver the phyto-mediated 
synthesis. During this step, vegetable cells are disrupted to allow for the release of active 
molecules. A number of steps are typically necessary [15]: 

i. Plant parts are rinsed with water. 
ii. Plant parts are then sliced into smaller parts and then grinded in a mortar or ball-

milled (the choice depends on the nature of the plant part). The obtained material can 
either be used itself or subjected to solid–liquid extraction (boiling, soxhlet, etc.). 

iii. Mixture is filtered to remove the solid component. 
iv-vi Plant extract can then be used for NP synthesis (sometimes a pre-concentration step 

is necessary). 
Figure 3 reports a detailed scheme of the process. 
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The aim of this review is not a comprehensive listing of all the existing literature
about the biosynthesis of ZnONPs, but a critical discussion of the most recent papers, with
specific attention towards the use of these NPs as antimicrobial and/or antiviral agents.
This review article will not cover heteroatom-doped ZnO nanomaterials. Each reactant
source will be discussed in a dedicated paragraph; main results on the bioactive properties
of ZnO will be examined as well, lining out the importance of this material during the
coronavirus pandemic. A list of recent review papers (2021–2022) on this topic is reported
in Table 1.

2. Phyto-Mediated Synthesis: Plants and Flowers

Among green biosynthesis routes, plant-mediated ones got expanding consideration;
many plant extracts contain a large amount of phytochemicals, which can act both as reduc-
ing agents and capping/stabilizing molecules [16]. Since the 1990s, the use of plants and
plant-derived substances, in the ZnONPs synthesis, was proposed to lessen remarkably the
requirement of expensive chemicals with limited availability, and hazardous experimental
protocols [17]. ZnONP production from plant extracts is easily scalable and then highly
appealing for industrial and technological use. Furthermore, this approach is extremely
straightforward. Briefly, a zinc salt (mainly zinc nitrate, chloride, or acetate) is added to
a plant extract; after a proper reaction time (catalyzed, when appropriate, by sunlight
or other energy sources), the produced suspension is washed and subjected to thermal
treatments to have stoichiometric ZnO nano- or micro-powders [18]. Preparation of the
plant extract is pivotal for a synthesis with sufficient yield. The leaves (or any further plant
part) first go through pretreatment processes. The latter are the most important means for
the extraction of phytochemicals to deliver the phyto-mediated synthesis. During this step,
vegetable cells are disrupted to allow for the release of active molecules. A number of steps
are typically necessary [15]:

i. Plant parts are rinsed with water.
ii. Plant parts are then sliced into smaller parts and then grinded in a mortar or ball-

milled (the choice depends on the nature of the plant part). The obtained material
can either be used itself or subjected to solid–liquid extraction (boiling, soxhlet,
etc.).

iii. Mixture is filtered to remove the solid component.
iv.-vi. Plant extract can then be used for NP synthesis (sometimes a pre-concentration

step is necessary).

Figure 3 reports a detailed scheme of the process.
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Figure 3. Schematic explanation of the phyto-mediated synthesis of ZnONPs. (1) washing, (2) 
grinding-milling, (3) filtration, (4) pre-concentration (facultative), (5,6) addition of zinc precursor 
and ZnONPs production. Wiley material reproduced from [15] with permission from John Wiley & 
Sons Inc, the Wiley Companies®. 

A fascinating review was published in 2021 on phytogenic ZnONPs, synthesized 
using various molecules as reductants of organic and inorganic Zn salts, as well as their 
production, characterization and biocompatibility, which explains their present request 
for dermo-pharmaceutical and cosmetic products [19]. 
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Plant extracts 2021 Biomedical [36] 

Biopolymers, plant parts 2021 Drug delivery [37] 

One of the most remarkable cases of ZnONPs made for this aim concerns the use of 
Salvia Officinalis [38,39]. It is crucial to state that this is a medicinal plant that grows in 
most of the continents, and its pharmacologic benefits have been extensively recognized 
[40]. The major phytochemical composition of S. officinalis comprehends glycosidic 
derivatives (such as flavonoid glycosides, cardiac glycosides, coumarins, tannins, and 
saponins), steroids, terpenes/terpenoids (including sesquiterpenoids, monoterpenoids, 
diterpenoids, and triterpenoids), mostly found in leaves and flowers [41]. The synergic 
antimicrobial effect of ZnONPs prepared from salvia extracts has been recently 
demonstrated [39]. 

Still talking about dermo-pharmaceutical and cosmetic interest towards ZnONPs, 
Aloe vera leaf extracts have been used as reducing and capping agents too. Recently, Batool 
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A fascinating review was published in 2021 on phytogenic ZnONPs, synthesized
using various molecules as reductants of organic and inorganic Zn salts, as well as their
production, characterization and biocompatibility, which explains their present request for
dermo-pharmaceutical and cosmetic products [19].

Table 1. Main reviews on biogenic synthesis of ZnONPs published in 2021–2022.

Source of Biological Reactants Year Applications Ref.

Microbes/bacteria 2022 Biomedical, agricultural,
environmental [20]

Plant extracts 2022 Antimicrobial [21]
Microorganisms, plant extracts, algae 2022 Gas Sensing [22]

Microorganisms, plant extracts 2022 Fertilizers [23]
Plant extracts 2022 Biomedical [24]

Microorganisms, plant extracts 2022 Biomedical, (bio)sensing, imaging [25]
Natural extracts 2022 Pharmacotherapeutics [26]

Fruit peel 2022 Nutraceutical, biomedical, active
coatings, sorbents [27]

Plant extracts 2022 Anticancer agents [28]
Microorganisms, plant extracts 2022 Photocatalysis [29]

Microorganisms, plant extracts, algae 2021 Pollutant removal [30]
Plant parts 2021 Antimicrobial, anticancer [31]

Marine organisms 2021 Drug delivery, antimicrobial,
(bio)sensing, fertilizers [32]

Microorganisms, plant extracts, algae 2021 Antibacterial, antioxidant, antidiabetic
and tissue regeneration [33]

Biopolymers, plant parts 2021 Nanocomposite production [34]
Plant extracts 2021 Environmental [35]
Plant extracts 2021 Biomedical [36]

Biopolymers, plant parts 2021 Drug delivery [37]

One of the most remarkable cases of ZnONPs made for this aim concerns the use of
Salvia Officinalis [38,39]. It is crucial to state that this is a medicinal plant that grows in most
of the continents, and its pharmacologic benefits have been extensively recognized [40].
The major phytochemical composition of S. officinalis comprehends glycosidic derivatives
(such as flavonoid glycosides, cardiac glycosides, coumarins, tannins, and saponins),
steroids, terpenes/terpenoids (including sesquiterpenoids, monoterpenoids, diterpenoids,
and triterpenoids), mostly found in leaves and flowers [41]. The synergic antimicrobial
effect of ZnONPs prepared from salvia extracts has been recently demonstrated [39].

Still talking about dermo-pharmaceutical and cosmetic interest towards ZnONPs, Aloe
vera leaf extracts have been used as reducing and capping agents too. Recently, Batool
et al. [42] reported about that Aloe leaves contain a gelatinous material (commonly used as
balm and humectant) which holds vitamins A and C, folic acid, β-carotene antioxidants,
and some trace elements, such as Ca, Cu, Mg, K [43]. All these substances, along with
chemicals, such as salicylic acid and anthraquinones, make this extract very attractive
for cosmetic and pharmaceutical formulations, guaranteeing a potent reducing power
as well [44].

Regarding the specific case of flowers, acetonic extracts are generally used, i.e., extracts
made using acetone as solvent. Most of the important chemicals coming from flower petals
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are, indeed, much more soluble in this solvent rather than in aqueous solutions [45,46].
Flowers have a very high amount of flavonoids (>4%w/w), which are crucial in NPs synthesis
and have good stabilizing/capping properties [47]. Many flowers have been exploited in
2021 and 2022 for the preparation of ZnONPs: Geranium robertianum [47], Camelia sinensis
and Datura Stramonium [48], Lantana camara [49], Rhaponticum repens [50], Tagetes erecta [51],
Gardenia thailandica [52], Malva Parviflora [53], Parthenium histerophorus [54], just to cite a few.

Recently, tree bark was also used for the preparation of ZnONPs; in a paper from
Parveen et al. [55], ZnO was exploited as nano-fertilizer for the cultivation of different
rice varieties.

An enormously wide plethora of flowers, plants, and extracts have been suggested to
accomplish the green synthesis of ZnONPs [56]. A comprehensive list of these procedures
goes beyond the aim of this review. However, it is worth stating that the ultimate preference
of a specific phyto-extract is mostly determined by the local vegetation, i.e., from accessibil-
ity of some vegetable types in certain areas. Based on the singular chemical composition of
every plant extract, several shapes on ZnO-based nanostructures were achieved, varying
from spheroidal particles (which are most common), to rod-like and flower-like ones [57].
Physicochemical properties of the obtained particles are a function of the phyto-extract
as well [58].

The exact mechanism of plant-mediated synthesis tightly depends of the (peculiar)
chemical nature of each extract and is still unanswered in most cases.

3. Algae and Seaweeds

Although less common, seaweeds and cellular algae have been employed for the green
synthesis of metal oxide NPs [59] as well. Algae are sea microorganisms that have been
reported not only to uptake heavy metals from the environment, but also to synthesize
metal NPs [60]. Many seaweed species possess similar properties [61]. These sources are
environmentally amenable and are the proficient biological sources for the preparation
of ZnONPs [62]. Seaweeds are characterized by a higher amount of polysaccharides [63],
as compared to plant extracts; the presence of these compounds ensures a very high
capping and/or chelating capacity on produced NPs [64]. Polysaccharides are thought to
be involved in the conversion of −OH (alcoholic groups) into –CHO (aldehydic groups)
through oxidation, which results in the reduction of precursor zinc ions into elemental
oxidation state. Spontaneous oxidation of the as-prepared NPs brings the final chemical
state to ZnO (Figure 4) [62]. The powdered extract of Gracilaria edulis was proficiently
applied for the preparation of ZnO nanorods (NRs). Quinine, highly present in the aqueous
extract of this seaweed, is regarded as the main reducing agent in the production of ZnONPs.
Quinines are biomolecules with a very high redox potential, successfully used as reducing
agents for metal ions in various papers [65]. In 2021, Alsaggaf et al. proposed the synthesis
of ZnONPs using a green phenol-rich extract from Ulvaceae, a widely available macroalga
in the Mediterranean Sea; these ZnONPs were successfully used as active layers for the
preservation of seafoods [66]. A similar approach was also followed by Anjali et al. [67]
and Thirumoorthy et al. [68] for antibacterial, antifungal, and anticancer purposes [69].
Algae-mediated synthesis of ZnONPs was also described by Subramanian et al. [70]; brown
seaweed Sargassum muticum was collected at a marine biodiversity hotspot area along the
Gulf of Mannar coastline, in the eastern coastal region of Tamil Nadu, India. ZnONPs
were used here for both the photo-degradation of methylene blue dye under different
light conditions, and as wide-spectrum antimicrobial agents against multidrug-resistant
bacteria [71]. Another brown alga named Dictyota dichotoma was analogously exploited to
prepare antimicrobial ZnONPs [72].
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Figure 4. Synthesis route and characterization of algae-based metal and metal oxide NPs. Reprinted
from [62] with permission from Elsevier.

To the best of our knowledge, one of the few systematic studies on the effect of
synthetic parameters and provenance of seaweed extracts on the final physicochemical
properties of ZnONPs is that from Nagarajan et al., published in 2013 [73]. They rationalized
the effect of seaweed extract concentration, temperature, pH, and reaction time. The
composition of extracts coming from three different species were compared, e.g., green
Caulerpa peltata, red Hypnea valencia, and brown Sargassum myriocystum.

The rich biodiversity and easy availability of algae and seaweeds, which do not require
any direct “plant care” from humans, has not been exploited exhaustively for nanomaterials
synthesis yet, and we believe that this approach will flourish in the near future.

4. Foods and Herbs

Another class of bio-mediated syntheses regards the use of food wastes and herbs.
Most wastes contain phenolic compounds, low-molecular-weight secondary metabolites,
which act as protective agents from oxidative damage and possess antimicrobial properties.
These phenolic compounds include anthocyanins, flavonoids, tannins, alkaloids, gallic acid,
ferulic acid, chlorogenic acid, catechin, epicatechin, saponins, and their content in waste de-
pends on the type and profile of the (agri-)waste itself [74]. More specifically, fruits peel and
pulp generally contain reducing sugars [75], which can effectively reduce metal precursors.
Similarly, edible vegetables and nuts contain terpenoids, polysaccharides, and aromas with
both reducing and stabilizing properties [76]. Lignin is another polyphenolic compound
(present in high amount in grape stalks, as an example) which has been successfully used
for the production of metal oxide NPs [74].

The active components can be extracted by the use of aqueous, organic or mixed
solvents. The solvent is added to the food waste, and batch extraction is performed at a
low temperature (generally about 50 ◦C, with some molecules being thermolabile). The
liquid-solid suspension is generally made by a 20:1 ratio between solvent and solid waste
and is stirred at fixed temperature for about 1–2 h. The solution is then filtered, centrifuged,
and the extract is then ready for NPs synthesis. The extract can also be stored for future use
at a temperature of about 0–4 ◦C [77].
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Only during 2021 and 2022, many different examples can be found in the literature,
ranging from fruit peels, such as papaya [78], pomegranate [79], myrica [80], coconut [81],
dates [82], mulberry [83], orange [84,85], and banana [86], to olives [87], grounded cof-
fee [79], turnip and raphanus discards [88,89], spinach [90], nut shells and leaves [91,92],
and so on.

A wide variety of herbs has been used to the same aim. In this case, odorous molecules
can play the role of reductants and stabilizing agents to ZnONPs. These MONPs are
widely used as food-preserving packaging to extend the shelf life of perishable foods; some
examples have been recently published about guava fruit [93] and ichthyic products [94],
exploiting nettle leaf extracts [95]. Lemongrass leaves were successfully used for the
production of active ZnONPs against human ticks with slight toxicity for people [96].
Thanks to its semiconducting properties, ZnO can be also applied for sunlight protection
in both cosmetics and industrial fields. An interesting piece of research from Asmat-
Campos et al. reported on the biosynthesis of ZnONPs with coriander as a reducing
agent with high biosafety [97]. Biomedical applications can be found for food-derived
ZnO nanostructures with thymus [98] and onion [99]; curcumin-stabilized NPs were used
for sensing applications [100] and mint-produced ones for energy storage [101] as well.
S. Vijayakumar used paprika extracts for rod-shaped ZnONPs with strong antimicrobial
activity [102]. El Golli et al. [103] prepared wurtzite ZnONPs using garlic bulb extracts, with
a good morphological control (Figure 5) for photocatalytic applications. Mbenga et al. [104]
prepared ZnONPs from garlic extracts as well, which displayed a high cytotoxicity on
human liver cells.
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Recently, onions were used for the preparation of small ZnONPs [105]; they were
revealed to be extremely toxic for the aqueous environment, with massive bioaccumulation
in carp gills and alteration of antioxidants gene expression, in addition to a 100% mor-
tality recorded at the maximum tested concentrations of 10 mg/L at 96 h. This example
demonstrates how “biogenic” is not necessarily equivalent to “safe”.

The valorization of food waste, e.g., through conversion into useful chemicals for
NPs synthesis, is a beneficial option in terms of economics, sustainability, and social and
environmental impacts. This important contest requires methodical and complex biochem-
ical process design and optimization, to ensure that the extraction methods are energy
efficient, economically viable, and with a negligible environmental impact. This requires an
interdisciplinary approach, involving experts in food science, chemists, materials scientists,
etc., to find a suitable design with minimum cost and maximum benefit [106].

5. Bacteria and Microorganisms

The bacteria-mediated synthesis of ZnONPs is much less common. In this case, a
metal precursor should be added to a bacterial culture in planktonic state. Enzymes and
proteins exert the reducing action [57]. Recently, studies demonstrated the spotlight role
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of extracellular enzymes in biogenic synthesis, recognized specifically in nicotinamide
adenine dinucleotide (NADH) and its reduced form of nicotinamide adenine dinucleotide
phosphate (NADPH). These enzymes are fundamental for electron transfer between cofac-
tor NADH to NADH-dependent enzyme (in the reduction process), thus acting as electron
carriers (Figure 6) [107]. Elemental Zn0, produced by the reduction of salt precursors is
then spontaneously oxidized again to form water-insoluble ZnO, by dissolved oxygen.
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Due to a certain antimicrobial action exerted by metal/metal oxide NPs, it is necessary
to use metal-tolerant [108] and thermophilic [109] bacterial strains. In order to respect
the non-harmful principle of green chemistry, bacterial strains should be non-pathogenic,
too. For example, in the last year, ZnONPs were prepared through Pseudochrobactrum sp.
suspension for the degradation of organic dyes in the textile industry [110]. A similar
approach was also used for the preparation of ZnONPs against parasites of rice cultures
with Bacillus cereus [111] and cyanobacteria, such as spirulina (i.e., Arthrospira platensis) [112].

Recently, Faisal et al., reported on the bio-mediated synthesis of ZnONPs using a
novel bacterial strain named Paraclostridium sp. [113]. They demonstrated the efficacy
of the produced NPs in a wide plethora of in vivo biomedical applications: Helicobacter
eradication, anti-inflammatory, anti-diabetic, anti-arthritic, and anti-diabetic efficacy.

An up-to-date, comprehensive listing of all the microorganisms used for ZnONP syn-
thesis has been recently published in a specific review paper on microorganism-mediated
NPs syntheses [114].

From the aforementioned papers, it is clear that only few microorganisms have the
ability to synthesize ZnONPs [115]. Hence, there is a demand to discover more prospective
biogenic substrates for the synthesis of these nanomaterials. Biological synthesis using
bacteria/yeasts offers an advantage over plants, fruits, etc., since microbes are easily
reproduced. Nonetheless, there are many drawbacks pertaining to the isolation and
screening of potential microbes. The main disadvantage however resides in the fact that the
process is time consuming and involves the use of expensive chemicals for microorganisms
growth medium. The presence of various enzymes, proteins, and other biomolecules from
microbes plays a crucial role in NP production process. These multiple organic components,
secreted in the suspension or growth medium, are responsible for the formation of NPs with
multiple sizes and shapes. Moreover, some proteins produced from microbes could behave
as capping agents, thus increasing the stability of ZnONPs [116]. The specific mechanism
of nanoparticle formation by microbial extracts is the most critical unanswered issue in
the biosynthesis approach. It is striking that identifying specific biomolecules present
in microbes, responsible for NPs formation, may support improvements to the synthetic
method [117]. Large scale production with lower reaction times and reduced solvents
amount is researchers’ final goal. However, most of the papers available in the literature
show that NPs are produced thanks to the synergistic co-action of several biomolecules or
metabolites present in the microbial extracts or growth medium [118].



Reactions 2022, 3 431

The biological synthesis of ZnONPs needs more time to reach pre-commercialization
steps and then coming to the market. Pilot scale demonstrators are pivotal in transforming
the results of the (nano)biotechnological research into competitive manufacturing. Hence,
as biogenic nanotechnology is at its nascent stage, there are understandably still few
investors taking the risk in early stage innovation [119].

6. Application of ZnONPs as Antimicrobial and Antiviral Agents

Thanks to the presence of natural compounds, ZnONPs synthesized by biogenic
methods are generally considered highly biocompatible; this evidence lays beyond the
large use of these NPs as antimicrobial agents with negligible cytotoxicity [120–129]. For
the same reasons, they have been widely investigated in recent years as new-generation
anti-cancer and antioxidants drugs [130] with very promising results and much less side
effects in respect to other metal-based medications [131–138]. A detailed study confirming
the high antimicrobial and antifungal activity of these NPs against food pathogens, with
limited cytotoxicity, was recently published, exploiting food derivatives for their biogenic
synthesis [139]. It is worth underlining that not all biogenic ZnONPs show antimicrobial
activity; a peculiar case was shown by Dey et al., who prepared ZnONPs with leaf extracts
and tested them against both gram-positive and negative bacteria with no success [140].

Some other papers reported on the technological application of biosynthesized ZnONPs,
such as photocatalytic wastewater treatment [141,142], gas [143], and electrochemical [49]
sensors, catalysis [144], etc. This kind of application is less diffuse because it generally requires
a good morphological control and a well-known chemical composition; these conditions are
quite complex to be achieved with biogenic-mediated synthetic routes.

During the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic, nanomaterials, and ZnONPs specifically, were revealed to be powerful allies
in the prevention of viral infections [145]. Beside the novel SARS-CoV-2, there are other
viruses responsible for respiratory diseases, such as other coronaviruses, syncytial virus,
rhinovirus, and influenza virus, whose contagion capacity have caused former pandemic
outbreaks, as well as viral seasonal outbreaks where prophylaxis and prevention play a
determining role [146]. In this scenario, the search for wide-spectrum antiviral agents, with
restrained side effects for humans, becomes fundamental. Since the size of these viruses
falls in the nanoscale, nanotechnology and materials science possess an enormous potential
to interact with viruses lifecycle [147]. Additionally, they can deliver new chances in the
development of safer personal protective equipment (PPE) and new effective therapeutic so-
lutions [148]. Besides, in antiviral strategies aimed at preventing viral infection (disinfecting
or anti-contamination materials, blocking viral docking to host cells, self-cleaning common
touch surfaces, etc.), NPs, which are generally able to carry proteins, drug molecules, and a
variety of other chemical compounds, are also used for drug delivery and diagnostic or
therapeutic tools [149]. This pandemic revealed the need to keep surfaces clean and uncon-
taminated. Due to the inability of many viruses to spread outside the body (e.g., human
immunodeficiency virus, HIV), viral transmission through surfaces have attracted little
attention in the past. However, SARS-CoV-2 can remain viable on surfaces for days [150],
and this poses a great risk for transmission via surface route, highlighting the critical need
for efficient solutions that avoid the survival of viruses on surfaces [151]. Anti-infective
surfaces can have different mechanisms of action, which are direct disinfection, indirect
disinfection, and receptor inactivation [152]. Zn-based nanomaterials were proven to be
efficient antimicrobials that offer various significant photocatalytic, surface, and morpho-
logical properties to inhibit and deactivate viruses at all the aforementioned levels. In other
words, ZnONPs exhibit tunable antibacterial, antifungal, and antiviral capacities. Although
the mechanism of action of ZnONPs as an antibacterial and antifungal agent has been
determined [153,154], the antiviral one is still under study. A recent report hypothesized
virus inactivation by Zn2+ release and ROS formation (Figure 7).
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host cell receptors. (b) Internalization of ZnO nanostructures for the inhibition of early stages of the
viral replication cycle. (c) Ion release as a surface attack mechanism to disrupt the plasmid and RNA
virus integrity. (d) Photocatalytic generation of reactive oxygen species for the possible degradation
of the lipid, protein, and nucleic structure of SARS-CoV-2. Reproduced from [155]; article distributed
under the terms of the Creative Commons CC-BY license.

The authors pointed out that the same mechanisms for antibacterial activity are
also responsible for damaging the lipid membrane and RNA, thereby inactivating the
virus [155]. These same pathways were hypothesized for ZnONPs prepared by Plumbago
indica alcoholic leaf extract, against Herpes Simplex Virus Type 1 (HSV-1). Plumbago indica
leaf extract is considered a valuable source for various types of active compound, such as
alkaloids, phenolics, and saponins [156].

The effectiveness of ZnONPs was firstly predicated by in-silico models in early 2021;
specifically, the effect of hesperidin (from food wastes) in combination with ZnONPs was
demonstrated theoretically, with a significant synergistic effect (e.g., hesperidin-mediated
ZnONPs exhibited higher antiviral activity than hesperidin itself) [157]. Hamdi et al. [158]
performed a detailed computational analysis of the possible interaction between ZnONPs
and SARS-CoV-2 targets, including the ACE2 receptor, RNA-dependent RNA polymerase,
and main proteases. ZnONPs cellular internalization in human lung fibroblasts was also
assessed. The highest antiviral activity was predicted for hexagonal and spherical ZnO
nanostructures with a crystallite size of around 11 nm and positive z-potential. Interestingly,
successful binding between ZnONPs and viral molecular targets, via hydrogen bond
formation, was detected. Based on this evidence, ZnONPs have been extensively used for
the production of face masks or (respiratory) filters for the inactivation of virions before
their entry in human cells.

ZnONPs were immobilized in polyethylene oxide (PEO) matrix, for the modification
of common touch surfaces, with exceptional results of virus inactivation; in [159] we
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demonstrated that ZnO nano-powders were effective in lowering the quantification of
nucleocapsid (N) protein in virus samples from nasopharyngeal swabs.

Composites, based on polyacrylonitrile (PAN) nanofibers modified with ZnONPs,
were used to remove air pollutants and microbes (bacteria and respiratory viruses) with
application in masks, cleanrooms, and indoor air purification [148]. ZnONPs were also
grown directly within textile and face mask materials, including polypropylene (PP) and
nylon–cotton. This novel filtering material achieved a ≥99.9% reduction in SARS-CoV-2
titer within a contact time of 10 min, by disintegrating the viral envelope. Additionally, the
new ZnO-modified textile could retain its antiviral properties even after 100 laundry cycles,
and was dermatologically tested as non-irritant and hypoallergenic [160]. Analogously,
surface modification of both touching surfaces and air filters was performed by Merkl et al.
with significant limitation of airborne viral transmission from aerosols [161].

We believe it is worth describing the paper by El-Megharbel and co-workers [162],
which despite the synthesis of ZnONPs cannot be considered specifically green. They
reported on the production of ZnO-based nano-sprays for surfaces disinfection against
SARS-CoV-2, with negligible cytotoxicity.

Berberine-capped ZnONPs were successfully prepared by Ghareeb et al. [163]. Berber-
ine is a quaternary ammonium salt found in the roots of some plants, such as barberry or
turmeric, which possesses pharmacological properties, including antioxidant and antimi-
crobial ones. In the above mentioned work, berberine-capped ZnONPs were found to be
effective in the treatment of bacterial nosocomial infections associated with SARS-CoV-2.
Still talking about pharmacological applications, a vaccine against SARS-CoV-2 based on
the antiviral properties of Zn2+ ions was recently proposed by Ishida [164].

Safety worries related to shopping in supermarkets during the SARS-CoV-2 pandemic
has headed to a predilection for fresh-food packaged in plastic containers by consumers
and sellers, as well as the usage of disposable food packaging and plastic bags to carry
groceries. In order to address these concerns, active packaging with antiviral properties was
proposed. ZnONP-modified packaging material was described in 2021 [165]; specifically,
NPs surfaces were here functionalized with geraniol and carvacrol thus obtaining an
antimicrobial material with synergistic action against common food pathogens and SARS-
CoV-2, simultaneously.

Nanotechnology-based tools play a key role in improving infections treatment and pre-
vention. These materials can effectively help in the current global public health challenge,
by delivering exactly the type of wide-ranging, easily scalable, low-harmful, combined tac-
tics that are indispensable to manage and control the SARS-CoV-2 plague. Nanotechnology
can offer appropriate and more efficient approaches to dealing with SARS-CoV-2, or other
emerging viral or bacterial pandemics, which could occur in the future.

7. Conclusions

This review outlines how the biogenic and green synthesis of (ZnO) nanomaterials is
becoming more and more important in an industrial and scientific context. Our purpose
was not to provide a comprehensive enumeration of all available studies on this topic;
we meant, instead, to describe selected and extremely recent examples, elucidating which
synthetic route could be more suitable for a precise application, or to address a specific
problem. We focused purposely quite exclusively on papers published during the last two
years, in order to provide a point of view in steps with the times.

We believe that the research field reviewed here will certainly undergo further growth
in the next years, and we hope the readers will find the information provided useful.
Among the reviewed approaches to the biogenic production of ZnO nanocolloids, the
syntheses based on renewable and waste-reuse sources might receive massive attention
in the coming years, due to their scalability to industrial processes and the invaluable
advantages in reducing energy consumption and environmental impact related to organic
solvents and harmful reagents.
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Thanks to scientific research, and to a strong collaboration between industries and
academia, it will be possible to deepen the knowledge about green synthetic routes for
the preparation of helpful nanomaterials, such as ZnO, with reduced risks for humans
and environments.
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Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp (Cyprinus carpio) Skin Mucus. Int. J.
Mol. Sci. 2021, 22, 3270. [CrossRef] [PubMed]

99. Iqbal, A.; Zakir, M.; Ali, M.M.; Irshad, S.; Javid, A.; Khan, M.; Ara, C.; Asmatullah. Effects of Allium cepa-Mediated Zinc Oxide
Nanoparticles on Male Reproductive Tissue and Sperm Abnormalities of Albino Mice (Mus musculus). Appl. Nanosci. 2021,
11, 807–815. [CrossRef]

100. Arab, C.; El Kurdi, R.; Patra, D. Chitosan Coated Zinc Curcumin Oxide Nanoparticles for the Determination of Ascorbic Acid. J.
Mol. Liq. 2021, 328, 115504. [CrossRef]

101. Manjula, R.; Prasad, B.D.; Vidya, Y.S.; Nagabhushana, H.; Anantharaju, K.S. Mentha Arvensis Mediated Synthesis and Characteri-
zation of Zinc Oxide Nanoparticles for Energy Applications. Mater. Today Proc. 2021, 46, 6051–6055. [CrossRef]

102. Vijayakumar, S.; González-Sánchez, Z.I.; Malaikozhundan, B.; Saravanakumar, K.; Divya, M.; Vaseeharan, B.; Durán-Lara, E.F.;
Wang, M.-H. Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. Var. Grossum (L.)
Sendt) and Their in Vitro Evaluation. J. Clust. Sci. 2021, 32, 1129–1139. [CrossRef]

103. El Golli, A.; Fendrich, M.; Bazzanella, N.; Dridi, C.; Miotello, A.; Orlandi, M. Wastewater Remediation with ZnO Photocatalysts:
Green Synthesis and Solar Concentration as an Economically and Environmentally Viable Route to Application. J. Environ. Manag.
2021, 286, 112226. [CrossRef]

104. Mbenga, Y.; Mthiyane, M.N.; Botha, T.L.; Horn, S.; Pieters, R.; Wepener, V.; Onwudiwe, D.C. Nanoarchitectonics of ZnO
Nanoparticles Mediated by Extract of Tulbaghia Violacea and Their Cytotoxicity Evaluation. J. Inorg. Organomet. Polym. 2022,
1–11. [CrossRef]

105. Rajkumar, K.S.; Sivagaami, P.; Ramkumar, A.; Murugadas, A.; Srinivasan, V.; Arun, S.; Senthil Kumar, P.; Thirumurugan, R.
Bio-Functionalized Zinc Oxide Nanoparticles: Potential Toxicity Impact on Freshwater Fish Cyprinus Carpio. Chemosphere 2022,
290, 133220. [CrossRef]

106. Isah, S.; Ozbay, G. Valorization of Food Loss and Wastes: Feedstocks for Biofuels and Valuable Chemicals. Front. Sustain. Food
Syst. 2020, 4, 82. [CrossRef]

107. Ahmad, J.; Ovais, M.; Qasim, M. Chapter 4—Microbial Enzymes–Mediated Biosynthesis of Metal Nanoparticles. In Biogenic
Nanoparticles for Cancer Theranostics; Patra, C., Ahmad, I., Ayaz, M., Khalil, A.T., Mukherjee, S., Ovais, M., Eds.; Micro and Nano
Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–100. ISBN 978-0-12-821467-1.
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