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ABSTRACT 

Through a combination of in-stream incubations, incubation of soil cores, and 

mesocosm experiments, this dissertation examines denitrification of woody debris in 

stream settings, and denitrification, soil N transformations and GHG generation of 

beaver pond sediments. 

In the first chapter we examined the effect of instream large wood on 

denitrification capacity in two contrasting, lower order streams – one that drains an 

agricultural watershed with no riparian forest and minimal stores of instream large 

wood and another that drains a forested watershed with an extensive riparian forest 

and abundant instream large wood. We incubated two types of wood substrates (fresh 

wood blocks and extant streambed wood) and an artificial stone substrate for nine 

weeks in each stream. After in situ incubation, we collected the substrates and their 

attached biofilms and established lab‐based mesocosm assays with stream water 

amended with 15N-labeled nitrate-N. Wood substrates at the forested site had 

significantly higher denitrification than wood substrates from the agricultural site and 

artificial stone substrates from either site. Nitrate-N removal rates were markedly 

higher on woody substrates compared to artificial stones at both sites. We found 

nitrate-N removal rates were significantly correlated to biofilm biomass and 

denitrification capacity accounted for only a portion of nitrate-N removal observed 

within the mesocosms in both the wood controls and instream substrates.  N2 

accounted for 99.7% of total denitrification. In terms of management, restoration 

practices that generate large wood in streams should be encouraged for N removal and 

do not appear to generate high risks of instream N2O generation. 



 

 

In the second chapter we used 15N tracer additions in soil core mesocosm 

incubations with a mass-balance approach to address the fate of nitrate in beaver 

ponds and understand the capacity of beaver ponds to serve as long-term watershed N 

sinks. We evaluated and quantified different nitrate transformation pathways, 

including: denitrification, assimilation into soil microbial biomass and organic N, and 

net generation of ammonium N. Denitrification constituted between 52 and 86 percent 

of total N transformations under enriched levels of nitrate; approximately 3 to 5 fold 

higher than the rates ascribed to nitrate assimilation in soil organic N, which 

constituted the next highest mechanism of nitrate transformation. On average, 0.2% of 

denitrification is being released as N2O under low nitrate-N concentrations in the three 

beaver ponds, while under N-enriched conditions, the average was 7%. Our data 

suggest that under enriched conditions beaver ponds have greater N2O production than 

streams, but are similar to wetland soils.  We estimate that beaver pond denitrification 

can remove approximately 50 to 450 kg nitrate-N km-2 of catchment area, assuming 

0.7 beaver ponds per km2 of catchment area. Based on the beaver pond/watershed area 

ratios, and inter-pond variability in denitrification we estimate that beaver ponds in 

southern New England can remove 5-45% of watershed nitrate loading from rural 

watersheds with high N loading (i.e., 1000 kg km-2). Thus, beaver ponds represent a 

proportionally significant sink for watershed N if current beaver populations persist. 

In the third chapter we determined the diffusive flux of greenhouse gases 

(GHGs) — methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) — from 

the air-water interface of three beaver ponds in Rhode Island, USA. We launched five 

floating static gas chambers on each beaver pond during spring, summer, and fall 



 

 

seasons, and sampled at 15-minute intervals over one hour. Emission rates were 

derived for each gas from the linear regression of the change in concentration of the 

gas over time. Fall had significantly higher CO2 emission than other seasons, mean 

9.298 g CO2 m
-2 day-1 versus 3.305g CO2 m

-2 day-1 in spring and 3.188g CO2 m
-2 day-1 

in summer. CH4 and N2O emissions did not show seasonal differences: annual means 

were 174 mg CH4m
-2 day-1 and 1 mg N2Om-2 day-1, respectively. When flux was 

expressed in CO2 global warming equivalents, CH4 emissions comprised the majority 

of the GHG emissions, at 67.5% across all sites and seasons. Significant correlation 

was found between CO2 emission rates and pond water DOC, while CH4 emissions 

were significantly correlated to air or water temperature. Our results show that beaver 

ponds generate high fluxes of CH4 and CO2 emissions per surface area of the pond. 

However, the relatively small areal footprint of beaver ponds at the watershed scale 

greatly diminishes their net effect. Thus, at a catchment scale we estimate that the 

global warming potential of the GHG emissions from the beaver ponds expressed as 

CO2 equivalents range from 3-26 Mg km-2 yr-1.  Assessment of the net effect of beaver 

ponds on the greenhouse gas budget of the Northeast U.S. must consider more than the 

GHG emissions from the ponded areas of the beaver ponds.  Studies are warranted on 

the extent of changes in water tables, and associated changes in GHG emissions, in the 

lands surrounding the ponds and the fate of the organic soils in abandoned beaver 

ponds. 
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PREFACE 

This dissertation is written in manuscript format with three chapters 

corresponding to the format of the journal articles.  

Listed below are the questions (Q) this study will address and specific 

hypotheses (H). 

Q1: What is the effect of fresh inputs of woody debris on denitrification in 

forested and deforested stream channels?  

H1: Fresh wood will be a source of labile carbon, which promotes elevated 

rates of denitrification in a range of stream settings. 

Q2: What is the fate of nitrate in beaver ponds and what is their capacity to 

serve as long-term watershed N sinks?   

H2: Seasonality will play a role in how NO3
-
 is being transformed. An increase 

in labile C in the fall, may lead to increased rates of denitrification and uptake of N by 

microbial biomass. As long as an individual beaver pond remains intact, I predict it 

will serve as a watershed N sink due to sedimentation and denitrification. Larger 

ponds, which can trap more sediment, will have higher rates of N retention and 

transformation.   

Q3:  Are the range and magnitude of beaver pond emission of GHGs, such as 

N2O, CO2, and CH4 affected by seasonal conditions and/or pond attributes?  

H3: The magnitude of emissions from different GHGs will display different 

patterns of seasonal variability.  N2O rates will be highest when denitrification rates 

are highest, which I hypothesize to be in the fall, in response to fresh inputs of labile C 
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from within-pond vegetation senescing as well as upstream leaf fall. CO2 and CH4 

emission rates will be highest in summer when temperatures are most elevated and 

when the rate of CH4 transport from plant roots is most pronounced. Increased 

retention time and depth of organic matter within pond will lead to increases in GHG 

fluxes.  

The first manuscript addresses hypothesis 1, the second manuscript addresses 

hypothesis 2, and the third manuscript addresses hypothesis 3.  

The first manuscript has been accepted for publication by the Journal of 

American Water Resources (JAWRA), featured collection on riparian ecosystems. 

The second manuscript will be submitted to the Journal of Environmental Quality 

(JEQ) after presenting the research at the Soil Science Society of America's annual 

meeting from November 3-6, 2013 in Tampa, Florida. 

The third manuscript will be submitted to the Journal of Global Biogeochemical 

Cycles. 
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CHAPTER 1 

Instream Large Wood: Denitrification Hotspots with Low N2O Production  

 

 

Julia G. Lazar, Arthur J. Gold, Kelly Addy, Paul M. Mayer, Kenneth J. Forshay, and 

Peter M. Groffman1 
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ABSTRACT 

 

We examined the effect of instream large wood on denitrification capacity in two 

contrasting, lower order streams – one that drains an agricultural watershed with no 

riparian forest and minimal stores of instream large wood and another that drains a 

forested watershed with an extensive riparian forest and abundant instream large 

wood. We incubated two types of wood substrates (fresh wood blocks and extant 

streambed wood) and an artificial stone substrate for nine weeks in each stream. After 

in situ incubation, we collected the substrates and their attached biofilms and 

established lab‐based mesocosm assays with stream water amended with 15N-labeled 

nitrate-N. Wood substrates at the forested site had significantly higher denitrification 

than wood substrates from the agricultural site and artificial stone substrates from 

either site. Nitrate-N removal rates were markedly higher on woody substrates 

compared to artificial stones at both sites. Nitrate-N removal rates were significantly 

correlated to biofilm biomass and denitrification capacity accounted for only a portion 

of nitrate-N removal observed within the mesocosms in both the wood controls and 

instream substrates.  N2 accounted for 99.7% of total denitrification. Restoration 

practices that generate large wood in streams should be encouraged for N removal and 

do not appear to generate high risks of instream N2O generation. 

Key Terms: riparian ecology, aquatic ecology, biogeochemistry, rivers/streams, 
nutrients, nitrous oxide, non-point source pollution, algae, biofilm 
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INTRODUCTION 

 

Restoring riparian forests to reduce waterborne nitrogen (N) pollution has been an 

objective of many watershed management efforts (Schultz et al., 2004; Hassett et al., 

2005; Mitsch et al., 2007). Riparian forests can reduce groundwater N loading to 

streams through denitrification, plant uptake, and microbial immobilization (Gold et 

al., 2001; Mayer et al., 2007; Vidon et al., 2010). Riparian forests also support 

functions that enhance the ecosystems of lower order streams by modulating stream 

temperature through shading, increasing stream width, and habitat complexity through 

geomorphic effects on stream banks (Sweeney et al., 2004), increasing species 

richness, and affecting biogeochemical functions through additions of large wood and 

organic carbon (C) (Welsh, 1991; Naiman and Decamps, 1997; Bilby, 2003). 

Increases in anthropogenic N inputs have led to increased N in riverine 

systems (Howarth et al., 1996; Galloway et al., 2004), accelerating rates of 

eutrophication in coastal areas (Turner and Rabalais, 1994). Much effort has been 

made to understand and manage N loads within aquatic systems in order to improve 

water quality and other ecosystem services (Galloway et al., 2003). Evidence has 

pointed to relationships between riparian forests and increased soil denitrification, an 

anaerobic microbial process that permanently removes nitrate from fluvial systems by 

returning N to the atmosphere (Alexander et al., 2000; Gold et al., 2001; Mulholland 

et al., 2008).  

Higher fluvial denitrification rates have been found to be associated with 

increases in the organic content of benthic sediments, respiration rates, and 

opportunities for contact with the stream bed (e.g., shallow, wide streams, and streams 
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with extensive hyporheic flow) (Hinkle et al., 2001; Mulholland et al., 2008; Hall et 

al., 2009; Mulholland et al., 2009). These conditions can be fostered by large wood 

(e.g., sticks, branches or tree trunks) and debris dams in streams that are derived from 

a riparian forest. Large wood in streams from a riparian forest can be a direct source of 

labile C to streams to fuel microbial processes. Large wood also adds structure to the 

stream channel and creates obstacles that slow the flow of water and extend the 

residence time of surface water in the stream and facilitate accumulation of finer 

organic sediments that support biofilms. Instream large wood has the potential to 

function as microsites or "hotspots" of elevated biogeochemical cycling including 

denitrification (McClain et al., 2003; Groffman et al., 2005; Groffman et al., 2009). 

Downstream declines in nutrient concentrations have also been attributed to biofilms 

(Sabater et al., 1991; Ryhiner et al., 1994 and Mulholland et al., 1995). Biofilm 

structure, composition, and capacity for biogeochemical cycling is influenced by 

substrate composition, light penetration, nutrient concentration, flow rates, seasonality, 

sediment composition, and the community of grazers in the vicinity (Sabater et al., 

1988; Rott et al., 1998; Sabater et al., 2002). Biofilms formed on wood substrates have 

been found to have higher respiration rates and greater N demand than biofilms 

developed on rock substrates (Sabater et al., 1998). 

Here we examine the effect of instream large wood on denitrification capacity 

in two contrasting, lower order streams – one that drains an agricultural watershed 

with no riparian forest and minimal stores of instream large wood and another that 

drains a forested watershed with an extensive riparian forest and abundant instream 

large wood. The agricultural stream was scheduled for extensive riparian restoration 



 

5 
 

that is expected to increase the extent of large wood in the channel.  We incubated two 

types of wood substrates (fresh wood blocks and extant streambed wood) and an 

artificial stone substrate for nine weeks in each stream: After in situ incubation, we 

collected the substrates and their attached biofilms and established lab‐based 

mesocosm assays with stream water amended with 15N-labeled nitrate-N. We 

hypothesized that mesocosms containing wood substrates would have higher 

denitrification capacity rates than other mesocosms as we expected the labile C to 

promote conditions that would enhance denitrification. While the agricultural stream 

had less instream large wood, we hypothesized that the lack of shade and elevated 

nutrients associated with the agricultural stream would yield higher rates of nitrate 

removal on substrates in response to increased autotrophic communities that can form 

under those conditions. This research aims to further our understanding of the effects 

of riparian forests on fluvial denitrification. 

METHODS 

We used a mesocosm approach to examine denitrification and nitrate-N removal rates 

of substrates and associated biofilm that were placed within a specific reach of each 

stream (i.e., the study sites) for nine weeks as well as from bare substrates without 

biofilm development which were never subjected to field conditions as controls.  

Study Sites  

During the summer of 2009, we used two streams that differed markedly in nitrate 

concentration, watershed land use and riparian cover: Big Spring Run, located in 

Lancaster County, Pennsylvania, and Mawney Brook, located in Kent County, Rhode 

Island (Table 1).  The Big Spring Run and Mawney Brook watersheds that drain to the 

study sites are 4.3 and 4.8 km2, respectively. Based on NLCD geospatial data 
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(National Land Cover Dataset, 2006, accessed November 12, 2011; 

http://streamstats09.cr.usgs.gov/), land use in the Big Spring Run watershed is 41% 

agricultural, 4% forest, and 55% developed (Table 1). Agricultural land cover borders 

the Big Spring Run riparian zone adjacent to the study reach. Land use in the Mawney 

Brook watershed is 62% forested, 11% wetlands and 27% developed (Table 1). A 

mature riparian forest borders the entire length of Mawney Brook along the study 

reach and upstream from the study site.  Hereafter, Big Spring Run is referred to as the 

“agricultural” site and Mawney Brook is referred to as the “forested” site. USGS gage 

stations provided all flow data: gage 015765195 and 01116905 for the agricultural and 

forested sites, respectively.  

We computed sinuosity of the 300 m reach upstream of the study sites from 

1:24,000 USGS topography maps (Cushing and Allan, 2001; U.S. Geological Survey, 

Streamstats, accessed November 12, 2011, http://streamstats09.cr.usgs.gov/) as 1.39 

and 1.27 for the agricultural and forested sites, respectively (Table 1). Acidic stratified 

drift deposits and limestone bedrock dominated soils at the forested site and the 

agricultural site, respectively; these surficial geology differences are reflected in the 

hardness levels of the two streams (Table 1). Ambient nitrate concentrations in the 

agricultural stream were more than tenfold higher than in the forested stream (Table 

1).  

In situ incubation and harvesting of substrates 

Treatment substrates of similar size and shape consisted of (1) wood blocks (26 cm x 

4.5 cm x 2.2 cm) made from red maple (Acer rubrum); (2) artificial stone made from 

unglazed clay-fired blocks (25 cm x 5 cm x 1.25 cm); and (3) bundles of sticks (~5 cm 

http://streamstats09.cr.usgs.gov/
http://streamstats09.cr.usgs.gov/
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x 25 cm bundle composed of ~1.5 cm diameter sticks) collected within 25 to 75 m of 

each stream site. Since extant wood at the forested site was widely available, we 

bundled sticks from within 25 m of the site whereas at the agricultural site, we 

compiled sticks from approximately 75 m from the site due to less wood being 

available. In both streams, we placed substrates within a 25 m reach of the stream in 

early summer. We monitored nitrate concentrations for a year at the forested stream 

and used flow and nitrate data collected by the EPA for the agricultural stream. At 

each site, we anchored 16 wood blocks, 10 artificial stone substrates, and 10 extant 

wood bundles to individual bricks via plastic zip ties. The anchors also kept the 

substrates submerged in water. After nine weeks, we collected the substrates, their 

associated biofilms and bricks in 35 cm x 25 cm x 12.8 cm clear plastic bins 

underwater to minimize exposure to air, taking care to avoid disturbance of biofilms 

associated with the substrate structure. Nevertheless, slight turbidity in both the stream 

reach and mesocosm bin was inevitable. These plastic bins containing the extracted 

substrates are hereafter referred to as “mesocosms.” We added ambient stream water 

to the mesocosms until they were full and sealed them with dark lids to limit 

photosynthesis and to minimize exposure of the blocks to air during the 30 minute 

transportation to the lab.  We sampled the ambient stream water, transported samples 

on ice and stored samples at 4° C until analysis. 

Upon arrival at the lab, we removed lids, and sampled a 9 cm2 area (< 3.0% of 

the total surface area of the artificial substrates) of one corner of each wood block and 

artificial stone.  We placed the harvested biofilm into 450 ml of deionized water and 

stored it at 4° C for further analyses. We did not collect biofilm from the extant wood 
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bundles due to difficulties in quickly establishing a firm estimate of substrate area 

before beginning the sealed mesocosm experiment.  

Mesocosm experiments 

Each mesocosm contained one substrate, attached biofilm, brick, and lid fitted with a 

#37 Suba-Seal™ rubber septa placed in a drilled sampling port in the center of the lid. 

We used a 15N tracer technique to estimate denitrification (Nishio et al., 1983; Jenkins 

and Kemp, 1984). We amended the forested mesocosms with KNO3
- and 15N-KNO3

- 

to 20 atom% for a final concentration of 8 mg N l-1 of NO3
-. Average summer nitrate 

concentrations at the agricultural site (Table 1) were much higher, 9.69 mg l-1, and 

therefore, only 99% 15N-KNO3
- was added, for a final concentration of 11 mg N l-1 of 

NO3
- at 20 atom%. These concentrations ensured NO3

- was available in excess 

throughout the incubation. The agricultural site had higher final N concentration than 

the forested site due to elevated background concentrations in ambient stream water.  

The computed rates represent denitrification capacity where nitrate is abundant and 

other factors, such as electron donors or redox conditions control the observed rates 

(Addy et al., 2005).  

Prior to sealing, we collected well-mixed water samples for analysis of initial 

conditions and stored them at 4° C until analysis. A headspace of 1.5 cm remained 

between the top of the water and the lid (total headspace volume per mesocosm ~1800 

ml) to facilitate gas sampling. We steadily bubbled helium (He) gas into half of the 

wood block mesocosms with sparge stones until dissolved oxygen (DO) 

concentrations were below 2 mg l-1 to optimize conditions for denitrification. 

Dissolved oxygen levels in mesocosms without He added averaged 8.5 mg/l. We 
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recorded dissolved oxygen and temperature (C°) before securing the dark mesocosm 

lids. We secured lids onto the bins and sealed with silicone to prevent air from leaving 

or entering the mesocosms. In mesocosms where He was bubbled into the water 

before sealing, we added additional He via needle through the sampling port for 5 

minutes to replace headspace gases with He. During this addition, a second needle 

placed in sampling port vented excess gas.  

After 1 min of shaking to equilibrate headspace, we extracted 20 ml of initial 

headspace samples via syringe and placed these samples into 12 ml pre-evacuated 

Exetainter™ vials (Labco 839W). We repeated 20 ml headspace samples at 1.5, 3, and 

18 hrs. In order to prevent negative pressure, we added 20 ml of He back into each 

mesocosm via the septa after samples were taken.  After the last gas sample was taken, 

we removed lids, measured DO, and collected a final water sample which we stored at 

4° C until analysis. 

“Blank” mesocosms consisted of ambient stream water from each site, with 20 

atom% 15NO3
- as  KNO3

- added to reach a desired concentration of 8 mg and 11 mg 

N/l of  NO3
-, for the forested site and the agricultural site, respectively. Control 

mesocosms consisted of wood blocks or artificial stone substrates, attached to 

individual bricks, which were kept dry in the lab while the other blocks were 

submerged in the stream. Biofilms did not develop on these controls.  Table 2 provides 

definitions of each of the mesocosm incubation types for easy reference. On the day 

when the mesocosms were established, we placed control blocks and attached bricks 

into in mesocosms with fresh stream water. We treated and sampled blanks and 

controls as described above for the instream substrates.  
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Analyses 

We filtered the biofilm samples removed from each wood and artificial stone block 

onto Whatman 42 ashless 90 mm pre-weighed filters, dried the filters and then re-

weighed the filters to quantify biomass.  The University of California Davis Stable 

Isotope Facility analyzed these filters for natural abundance of δ13C and δ15N isotopes 

and bulk C and N composition using a PDZ Europa ANCA-GSL elemental analyzer 

interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK).  

The University of California Davis Stable Isotope Facility analyzed the 

mesocosm headspace samples for concentrations and isotope ratios of N2 and N2O 

using a ThermoFinnigan GasBench + PreCon trace gas concentration system 

interfaced to a ThermoScientific Delta V Plus isotope-ratio mass spectrometer 

(Bremen, Germany). 

We analyzed water samples from the beginning and end of mesocosm 

incubations using the open tubular cadmium reduction method (APHA et al., 1995) on 

an Astoria Pacific Model 303A Segmented Continuous Flow Autoanalyzer (Astoria-

Pacific Inc., Clackamas, OR).  Samples from Mawney Brook were analyzed for 

alkalinity using a Hanna Instruments 902 Color Automatic Potentiometric Titrator 

(Woonsocket, RI). Samples from Big Spring Run were analyzed for alkalinity by 

manual titration (APHA et al., 1999). A LaMotte Total Calcium & Magnesium 

Hardness test kit (Code 4824 DR-LT) was used to determine hardness at Mawney 

Brook, while hardness samples from Big Spring Run were analyzed using the hardness 

by calculation method after mineral analysis was performed (APHA et al., 1999). 
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Dissolved oxygen and temperature were measured using a YSI DO-temperature meter, 

model 55 (YSI, Yellow Springs, Ohio). We measured the length and width of extant 

large wood after the mesocosm experiment was completed in order to calculate 

surface area.  

Data Analyses 

We used a 15N tracer technique to estimate denitrification capacity (Nishio et al., 1983; 

Jenkins and Kemp, 1984). Denitrification masses of N2O and N2 gases (µmol) in 

headspace samples were extrapolated to the whole mesocosm scale using Bunsen 

coefficients from Tiedje (1982) and equation constants from Mosier and Klemedtsson 

(1994) following the formulas used in Kellogg et al. (2005). The total masses of N2O-

N and N2 generated during the incubation period were calculated by dividing the 

masses of 15N2O-N and 15N2 by the dosed NO3
--N atom%. The mass of 15N2O-N and 

15N2 generated was divided by the number of hours that have passed since the last 

sample time. Samples were taken at time 0, 1.5, 3, and 18. The average denitrification 

rate from those three time periods is recorded. Gas production rates (N2O-N and N2) 

were expressed as µg N m-2 of substrate hr-1.  

We use the term nitrate-N removal to reflect reduction in total nitrate per unit 

time within each mesocosm, calculated by subtracting the post-incubation nitrate 

concentration from the pre-incubation nitrate concentration. Because the mesocosms 

were sealed throughout the incubation period, we did not obtain estimates of uptake 

kinetics. The data from “blank” mesocosms estimated denitrification and nitrate-N 

removal in the stream water itself. We subtracted the rates of the blanks in all substrate 
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rates given in the results to highlight the rates associated with the addition of 

substrates. 

Statistical Analyses 

Unless otherwise noted, instream mesocosm results are based on the following n 

values for the forested site: 13 wood blocks, 8 extant wood bundles, and 5 artificial 

stone blocks.  For the agricultural site there were 9 wood blocks, 4 extant wood 

bundles, and 5 artificial stone blocks. The numbers differ by site because some 

substrates were lost, presumably during high flows. We also employed the same 

mesocosm setup to evaluate denitrification capacity and nitrate-N removal on 5 

forested control wood blocks, 4 agricultural control wood blocks, 4 control artificial 

stone blocks, and 5 blanks (mesocosms without substrates). 

We tested for differences in biofilm dry mass, denitrification and nitrate-N 

removal rates, and biomass N and C between substrates and sites.  Aside from biomass 

C, data were normally distributed. We pooled data within a site if they were not 

significantly different. For biofilm dry mass, denitrification rates, and nitrate-N 

removal rates from the agricultural site, we used Student’s t-tests to test for differences 

between substrates within each site. Nitrate-N removal rates from the two woody 

substrates at the forested site could not be pooled and analysis of variance (ANOVA) 

was used to test for differences between the three substrates. For pairwise comparisons 

of denitrification and nitrate-N removal rates between substrates and across sites we 

used ANOVA with a Tukey’s post hoc test. Biomass C data for the forested site and 

all biomass δ13C and δ15N data were not normal so we used the Kruskal –Wallis test to 

determine significant differences between sites and substrates.  
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To test for differences between substrates and sites of the percent of nitrate-N 

removal that can be ascribed to denitrification we used ANOVA with a Tukey’s post-

hoc test. We evaluated correlation between denitrification rates, nitrate-N removal 

rates, and biofilm mass using Pearson product-moment correlation coefficients, after 

log transforming the data. Stream sites were treated separately and only pooled for 

correlation statistics. Statistical significance was set at α <0.05 for all analyses.  All 

statistical analyses were performed with Analyse-it version 2.26. 

RESULTS 

Ambient Water Quality 

The agricultural site had an average summer nitrate concentration of 9.69 mg l-1, 

several orders of magnitude greater than concentrations in the forested site, with mean 

summer nitrate of 0.05 mg l-1 (Table 1).  Average stream DO concentration during that 

same time period was 9.0 and 8.0 mg l-1 for agricultural and forested sites, 

respectively. Median flow from June-Oct was 0.013 (n=4) and 0.015 (n=131) m3 sec-1 

km-2 for the agricultural and the forested sites respectively. The agricultural site had an 

average summer temperature of 16.7⁰C.  Stream temperature data were not obtained at 

the forested site, but summer stream temperatures at the gaging station at the Beaver 

River, a neighboring (within 10 km) forested watershed with similar physiography had 

an average summer (June-August) temperature of 17.5⁰C. 

Quality and Quantity of Biofilm  

Artificial stone substrates at the forested site had significantly less (p≤0.05) biofilm 

mass than wood blocks (Table 3a), while the biofilm masses were not significantly 

different between the artificial stone and wood block substrates at the agricultural site 

(Table 3b). Biomass was not measured on extant wood at either site. 
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Within each site, the appearance of the biofilms was similar across the artificial 

stone and wood block substrates; however, between sites, the biofilms were visibly 

different.  Green biofilms developed on substrates at the agricultural site, which was 

without shade, while the substrates at the forested site developed darker biofilms 

(Table 3). Biofilm C and N did not differ between wood and artificial stone substrates 

within each site, so the data were pooled for statistical comparison. The mean C:N 

ratio of the biofilms at the forested site was 16.2 (SD: 5.9) and significantly greater (p 

≤ 0.05) than at the agricultural site (mean:8.0; SD: 1.6). The mean biomass N cm-2 was 

not significantly different between the two sites, but the mean biomass C cm-2 at the 

forested site was significantly higher (p ≤0.05) than the agricultural site, 531 µg C cm-

2 (SD: 410) and 213 µg C cm-2 (SD: 84), respectively.  

Biofilms at the agricultural site had significantly more enriched δ13C values (p 

≤0.05) than at the forested site. There were no significant differences in biofilm δ15N 

between sites or substrates.  

Mesocosm Denitrification Capacity 

Control wood block substrates generated significantly (p ≤0.05) higher denitrification 

rates than the control artificial stone substrates (Figure 1). No significant differences in 

denitrification rates were found between sites for each type of control and blanks, and 

results were pooled for statistical tests.  

Instream artificial stones at the agricultural site had significantly higher 

denitrification rates than the control artificial stones that were not incubated in the 

stream. In contrast, at the forested site, the denitrification capacity rates of instream 
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artificial stones were much lower and did not significantly differ from the control 

artificial stones. 

Within each site, denitrification rates from instream extant wood bundles were 

not significantly different from instream wood block substrates. The denitrification 

rates from both wood sources were therefore combined within each site for further 

statistical comparisons; hereafter referred to as “instream wood substrates.” The 

instream wood substrates at the forested site had significantly higher denitrification 

rates (p ≤0.05) than those at the agricultural site (Figure 2).  At the forested site, 

mesocosms of instream wood substrates had significantly higher denitrification rates 

than instream artificial stones (Figure 2).  However, at the agricultural site, 

denitrification rates from instream wood and artificial stones were not significantly 

different (p > 0.05), Figure 2).  

Wood blocks subject to hypoxic and oxic mesocosms were not significantly 

different. Hypoxic mesocosms generally remained below 2.2 mg l-1of DO for the 

mesocosm assays. Oxic mesocosms which started with DO over 7.0 mg l-1, ended 

below 3 mg l-1. Although it is expected that the oxygen levels decreased overtime, the 

N2 and N2O production rates did not significantly differ between sampling times. 

Low levels of nitrous oxide were generated through denitrification. Rates of 

N2O-N were consistently <0.02 ug N m-2 hr-1. N2:N2O ratios were >99.7 in all 

measurements. 

Nitrate-N Removal 

Blanks displayed no evidence of nitrate-N removal (limit of detection on 

instrument is 0.02 mg N l-1). Nitrate-N removal trends at the agricultural site followed 
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the denitrification results; extant wood and wood blocks had similar rates and were 

significantly higher (p ≤0.05) in nitrate-N removal than instream artificial stones 

(Figure 3). Ending nitrate-N concentration for the wood blocks and extant wood at the 

agricultural site was 10.80 mg l-1, a reduction of 1.40 mg l-1. At the forested site, wood 

blocks had significantly higher (p ≤0.05) nitrate-N removal than instream extant wood. 

The wood blocks at the forested site had an average ending nitrate concentration of 

8.28 mg l-1, a reduction of 1.75 mg l-1. Combined extant wood and wood blocks at the 

agricultural site had significantly (p ≤0.05) higher nitrate-N removal rates than extant 

wood from the forested site. Wood blocks from the forested site had significantly (p 

≤0.05) higher nitrate-N removal than instream artificial stones (p ≤0.05), which had no 

nitrate-N removal.  Denitrification rates of wood blocks with biofilm were 

significantly correlated to nitrate-N removal rates (r = 0.57, p≤0.01). Nitrate-N 

removal rates were also significantly correlated to biofilm mass (r=0.69, p≤0.01); 

however, no significant correlation was found between biofilm mass and 

denitrification rates. 

DISCUSSION 

Wood substrates were found to promote denitrification and nitrate removal in 

starkly contrasting sites with different levels of riparian forest cover, ambient nutrient 

enrichment, alkalinity and hardness (Figure 2). This evidence follows other studies, 

which have shown that organic substrates such as riparian forests, organic debris 

dams, and carbon bioreactors can be hotspots of denitrification (Reisinger et al., 2013; 

Schipper et al., 2010; Hall et al., 2009; Groffman et al., 2005).  Most of the mesocoms 

with woody substrates displayed high N transformation rates. This study supports the 
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importance of instream large wood for promoting conditions that stimulate N cycling 

within streams. 

The significantly higher denitrification generated by the control wood block 

mesocosms (not subjected to instream incubation) compared to the artificial stone 

substrate controls was expected as wood substrates have been found to generate labile 

C, promote denitrification, and are used in denitrifying carbon bioreactors – where a 

carbon substrate is added to the flow path of nitrate enriched water to stimulate 

denitrification in groundwater and agricultural runoff (Bernhardt and Likens, 2002; 

Robertson, 2010; Schipper et al., 2010). 

Instream wood blocks and extant large wood substrates generated comparable 

denitrification at both sites implying that the wood blocks created for this mesocosm 

experiment are comparable to the wood that is already found at these two stream sites. 

The significantly higher denitrification rates of the instream wood substrates than the 

wood block controls, suggest the importance of biofilm development for instream 

cycling of N.  Although no significant correlation was found between biofilm mass 

and denitrification rates of instream substrates, there was a significant correlation 

between biomass and nitrate-N removal capacity. The lowest biomass was found on 

the forest artificial stone, which corresponded with lower nitrate-N removal rates. The 

forest wood blocks had significantly higher biofilm mass than the forest artificial 

stones, corresponding with the highest nitrate-N removal rates.  In contrast, the biofilm 

masses at the agricultural site were quite similar between wood and stones, potentially 

obscuring substrate differences in denitrification rates. The biofilm at the agricultural 

site without a riparian forest received more sunlight and may thus have been more 
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productive and had higher N turnover rates due to intense sunlight and nutrient 

availability. 

Although we did not identify the type and extent of algal vs. bacterial biomass, 

we note that the appearance and color of the biofilms contrasted sharply between sites 

and that the composition of biofilms has been found to alter N cycling (Romani & 

Sabater, 2000).  Measures of δ13C and C:N ratios also show that the biofilm 

compositions differed by site. Published C:N ratios for epilithon match the C:N ratios 

found at the forested site and published ratios for filamentous green algae coincide 

with biofilm results at the agricultural site (Kemp and Dodds, 2002).   

The high denitrification capacity of the forested wood blocks compared to the 

agricultural wood blocks is noteworthy given the high nitrate concentrations in the 

agricultural stream. Peterson et al. (2011) compared biofilm growth in two streams 

that differed in nitrate concentrations by an order of magnitude and suggest that in un-

enriched nitrate conditions algae influence the denitrifying community due to their 

dependence on dissolved organics, while in enriched conditions this relationship is 

disconnected. A clear separation between the two biofilm communities was noted, and 

the low nitrate stream had increased species diversity, which they suggest leads to 

increased denitrification rates (Peterson et al., 2011). Similar to our study, Peterson et 

al., 2011 found no difference in biofilm mass between the enriched and un-enriched 

biofilm communities. The biofilm at the forested site may have had a more robust 

denitrifying community leading to higher denitrification rates. Another possibility is 

that oxygen generated by photosynthesizing algae at the agricultural site could create 

conditions that limited the extent of denitrifiers in the biofilm. 
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The high nitrate levels in the agricultural stream are reflected in higher biofilm 

N content compared to the forested biofilm. The low levels of biomass carbon in the 

agricultural biofilm may be due to macroinvertebrate grazing (Hillebrand and Kahlert, 

2001) or to enhanced rates of microbial degradation. In contrast to our results, Romani 

et al. (2004) found that C:N molar ratios of biofilms at enriched and non-enriched 

stream sites were not different.  Biofilm δ13C values seen at both study sites fall in the 

normal range for C3 plants, which ranges from -32 to -22 (Rounick and Winterbourn, 

1986).  In sites with greater periphyton productivity and less canopy cover δ13C tends 

to be enriched relative to those with more canopy (Ishikawa et al. 2012). Our 

agricultural site is exposed to more sunlight and likely supports greater algal standing 

stock than the shaded forest site and the enriched biofilm δ13C observed in our study. 

This agrees with a phenomenon observed in Canada where periphyton grown in high 

light conditions had more enriched δ13C values than in low light (MacLeod and Barton 

1998) and in New Zealand where algae in unshaded pasture streams (especially 

filamentous green algae), were more enriched than algae (diatoms) in shaded forest 

streams (Hicks 1997).    

Although significantly correlated, denitrification capacity accounted for only a 

portion of nitrate-N removal observed within the mesocosms in both the wood 

controls and instream substrates. Assimilation, both autotrophic and heterotrophic, 

generally accounts for a higher proportion of N removal than denitrification (Peterson 

et al., 2001; Mulholland et al., 2008). 

The oxic and hypoxic mesocosms did not have significantly different 

denitrification rates. However, both oxic and hypoxic mesocosms were hypoxic at the 
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end of the 18 hr incubation. Mesocosms were covered with dark lids in an effort to 

limit photosynthesis, thereby decreasing oxygen production. One drawback of this 

mesocosm technique is that by creating a dark environment we may have increased net 

respiration rates, decreasing oxygen, and increasing denitrification rates. Microbial 

respiration was likely responsible for decreasing O2 concentrations.  

N2 gas accounted for 99.7% of the total denitrification indicating complete 

denitrification.  Therefore, wood in these two stream ecosystems are not a substantial 

source for N2O generation. Similarly, in a large study comparing denitrification rates 

of 49 streams across varying landscapes median N2 production rate was 99.4% of the 

sum of N2 and N2O (Mulholland et al., 2009), and Mosier et al. (1998) suggested 

comparable results.  

Controlling nitrogen loads from watersheds is a huge problem that will likely 

require multiple activities, including management of both sources and sinks (Kellogg 

et al., 2010; Groffman et al., 2011).  Planting woody species in riparian buffers next to 

agricultural lands can be an important component of nitrogen management. Riparian 

forests have been shown to increase hydrological connectivity, increasing 

denitrification in groundwater before it enters the stream (Gold et al., 2001). This 

study further emphasizes the value of restoring mature riparian forests for N 

management since wood substrates, regardless of the extent of biofilm development, 

tend to generate higher denitrification than stone substrates.  
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TABLE 1. Land use, sinuosity, soil parent material, and ambient stream characteristics 
for the study sites.  
 Agricultural Forested 

Stream Name Big Spring Run Mawney Brook 
Location Lancaster, PA East Greenwich, RI 

Latitude, Longitude 

39°59'35.75"N, 
76°15'41.73"W 

41°38'37.93"N, 
71°31'16.73"W 

% Wetland 0 10.6 
% Agriculture 41 0.2 
% Forest 4.1 62.0 
% Developed 54.7 27.1 
Sinuosity 1.39 1.27 

Dominant Soil Parent Material 

carbonate 
limestone acidic stratified drift 

Average Summer NO3
-
-N (mg l

-1
) 9.69 0.05 

Channel Depth (m) 1.7 0.9 
pH 7.56 6.23 
Hardness* 343 13 
Average Alkalinity (ppm) 223.84 6.89 
Median Flow June-Oct (m

3
 sec

-1
 

km
-2

)
+
 0.013 0.015 

*single data point 
+ Flow rates of Mawney Brook were estimated from the USGS gage (01116905) 
located at Fry Brook that was down gradient of the study site. Flow rates were 
adjusted based on the ratio of the  watershed area of the study reach to the watershed 
area of USGS gage. 
 
 
TABLE 2. Mesocosm terminology defined. 

Mesocosm Terminology Definition 

Blank streamwater only, no substrates 

Control Wood 
streamwater + wood block that has not been 
incubated in stream 

Control Stone 
streamwater + artificial stone that has not been 
incubated in stream 

Extant Wood 

streamwater + bundle of sticks found in the 
stream site attached to bricks and incubated in 
stream 

Wood Blocks 
streamwater + fresh Red Maple wood blocks 
attached to bricks and incubated in stream 

Artificial Stones 
streamwater + clay-fired blocks attached to 
bricks and incubated in stream 
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TABLE 3. Biofilm biomass and characteristics on substrates at the forested (a) and 
agricultural (b) study reaches. At the forested site wood blocks had significantly 
higher biofilm masses than artificial stones blocks, whereas the agricultural site had 
similar biofilm masses on both substrates. Biofilm was only measured on wood blocks 
and artificial stones, not on extant large wood. Significant differences within a site are 
noted by superscripts, p ≤0.05 using a Student’s t-test. 
 

Site 

Substrate 

Mean 

Biofilm 

Mass (g) 

Standard 

Deviation 

n 

value Color Description 

Forest 

wood 
block 0.530a 0.32 8 

dark 
brown matted 

artificial 
stone 0.068b 0.05 5 

dark 
brown matted 

       

Agric 

wood 
block 0.304 0.20 8 

bright 
green filamentous 

artificial 
stone 0.132 0.17 5 

bright 
green filamentous 

 

*Note: The n-values for the wood block biofilm mass do not match the n-values for 
denitrification rates. This is because 6 blocks from the site were inadvertently not 
sampled for biofilm mass.  

 

 

 

 

 

 

 

 

 

 

a 

b 
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FIGURE 1. Denitrification capacity of wood block and artificial stone substrates 
without biofilms (controls) pooled across sites. Different letters above bars indicate 
significant differences, p ≤0.05 using a Student’s t-test. 
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FIGURE 2. Denitrification rates of in-stream wood and artificial stone substrates in 
the two study sites. Treatments with different letters above bars are significantly 
different at p ≤0.05 using an ANOVA, Tukey’s post hoc comparison test.  
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FIGURE 3. Net rate of nitrate-N removal (represented by the value equivalent to the 
total height of each vertical bar) and the denitrification rate for each mesocosm type. 
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ABSTRACT 

We used 15N tracer additions in soil core mesocosm incubations with a mass-

balance approach to address the fate of nitrate in beaver ponds and understand the 

capacity of beaver ponds to serve as long-term watershed N sinks. We evaluated and 

quantified different nitrate transformation pathways: denitrification, assimilation into 

soil microbial biomass and organic N, and net generation of ammonium N. 

Denitrification constituted between 52 and 86 percent of total N transformations under 

enriched levels of nitrate; approximately 3 to 5 fold higher than the rates ascribed to 

nitrate assimilation in soil organic N, which constituted the next highest mechanism of 

nitrate transformation. On average, 0.2% of the nitrogen gases from  denitrification 

was released as N2O under low nitrate-N concentrations in the three beaver ponds, 

while under N-enriched conditions, the average was 7%. Our data suggest that under 

enriched conditions beaver ponds have greater N2O production than streams, but are 

similar to wetland soils.  Assuming a density of 0.7 beaver ponds per km2 of 

catchment area we estimate that beaver pond denitrification can remove approximately 

50 to 450 kg nitrate-N km-2 of catchment area. We estimate that beaver ponds in 

southern New England can remove 5-45% of watershed nitrate loading from rural 

watersheds with high N loading (i.e., 1000 kg km-2). Thus, beaver ponds represent a 

proportionally significant sink for watershed N if current beaver populations persist. 

INTRODUCTION 

Anthropogenic nitrogen (N) inputs into watersheds have increased N in 

riverine systems (Howarth et al., 1996; Galloway et al., 2004) thereby accelerating 

rates of eutrophication in coastal waters (Turner and Rabalais, 1994). Much effort has 
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been made to understand and manage N loads to these aquatic systems in order to 

improve water quality and reduce habitat degradation (Galloway et al., 2003). These 

efforts involve a wide range of approaches including controlling and reducing N 

sources such as fertilizer and sewage and preserving, managing and restoring “N 

sinks” driven by plant, soil and microbial processes (Davidson et al. 2012). 

Recent research has demonstrated that ponds, lakes and reservoirs can function 

as significant N sinks in watersheds (David et al. 2006, Harrison et al. 2009). These 

water bodies can support reducing conditions that alter the oxidation state of 

constituents, such as nitrate (NO3
-) and carbon dioxide (CO2), influencing nutrient 

transformations throughout the fluvial network (McClain et al., 2003; Groffman et al., 

2005). Reduced conditions are favorable for the removal of water-borne NO3
−- N 

through denitrification, the microbial transformation of  NO3
- to N gases that is 

perhaps the most important NO3
- removal mechanism (Galloway, et al., 2003; 

Seitzinger et al., 2006, Burgin and Hamilton 2007).  Similar to other studies, in this 

paper, denitrification is considered a “sink” for watershed N, even though the nitrate is 

transformed rather than trapped within the soil or plant biomass (Brezonik & Lee, G. 

F. 1968; Seitzinger, 1988; Mitch et al., 2001).  

North American beavers (Castor canadensis), were functionally extinct from 

the Northeast U.S. in 1900 due to primarily to trapping, but in the latter half of the 20th 

century they rebounded at remarkable rates due to trapping regulations, lack of 

predators, and an abundance of forage (Naiman et al., 1988). Subsequently, beaver-

created ponds and dams are reshaping headwater stream networks from extensive, 

free-flowing reaches to complexes of ponds, wetlands, and connecting streams.  These 
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networks slow the flow of stream water and may increase the amount of N retained at 

the watershed scale (Jansson et al., 1996; Saunders and Kalff, 2001, Kellogg et al., 

2010).  The mechanisms responsible for this N retention include plant uptake, 

sedimentation, and the creation of reducing conditions that may promote 

denitrification (Devito and Dillon 1993; Naiman et al., 1994; Hill and Duval, 2009). 

Beaver ponds raise local water tables, increasing interaction of groundwater with near-

surface soils, thus promoting higher rates of plant uptake of N and denitrification 

(Hammerson, 1994; Gold et al. 2001, Hill and Duvall, 2009). Beaver ponds also create 

patches of open water with minimal shade that encourages aquatic plant growth and 

nutrient uptake and increases the flow of labile organic matter which serves as fuel to 

denitrifying bacteria in soils (Hammerson, 1994). Published sedimentation rates in 

beaver ponds range from less than one to 40 cm per year (Butler and Malanson, 2005). 

The soil in beaver ponds contains higher carbon (C) and N content, ameliorates stream 

acidity, and fosters increased anaerobic biogeochemical cycling, compared to adjacent 

fluvial systems (Hammerson, 1994).  

  In the Northeast U.S. beavers are moving into mixed-use watersheds with 

elevated nitrate-N levels due to inputs from un-sewered residential developments and 

agriculture (Gold et al., 1990).  The density of beaver ponds in Northeast is not likely 

to approach historic levels.  The dams and ponds are often considered a nuisance and 

beaver are trapped or moved. Therefore, the establishment of long-term ponds is often 

found in conservation lands, as beaver ponds on private lands are likely to occur for 

briefer periods before the beavers are trapped and the dams destroyed.  Even long-

term ponds tend to be abandoned within several decades, and N trapped in organic soil 
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materials can be released back to the fluvial network where it can be transformed and 

transported to coastal waters. Thus, quantifying the extent of N removal due to 

denitrification versus storage in soil in these beaver ponds provides insight into the 

long-term fate of N in this relatively recent watershed feature.  

We quantified a number of different nitrate transformation pathways, including 

denitrification, assimilation into soil microbial biomass and organic N, and net 

generation of ammonium N.  Due to increased residence times, organic matter 

deposition, and anaerobic biogeochemical cycles in beaver ponds, we hypothesized 

that 1) beaver pond soil would be a significant sink for NO3
- and 2) that denitrification 

would be the dominant N sink process in these soils.  The use of 15N mesocosms also 

allowed us to assess the production of nitrous oxide, a denitrification intermediate that 

is a potent greenhouse gas. 

METHODS 

Study Sites 

We selected three beaver ponds for study based on accessibility and our desire for a 

range in pond sizes (0.05-8.00 ha; Table 1).  All sites were located in Washington 

County, Rhode Island, USA: two were located on the Chipuxet River (Ponds A and B) 

and one was located on Roaring Brook (Pond C).  Aerial photos taken every 4 years 

from 1976 to 2012 (RIGIS, 2009) showed that the dams and their associated ponds 

were first constructed in 1988, 1992 and 2008 at ponds C, A, and B, respectively. 

Sample Collection 

 
We collected subaqueous (below the water) soil cores from each pond with a 

soil corer from a canoe during Fall 2011, Spring 2012, and Summer 2012. Each season 
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we collected 16 cores (6 cm diameter and 13 cm depth) at random locations within 

each of the three beaver ponds.  We stored six cores at 4° C until analysis of “initial” 

soil conditions.  The remaining ten cores were stored in a climate chamber at ambient 

stream temperature with mesocosm incubations beginning the next day.  

Thickness of organic matter was evaluated at a minimum of 7 locations at each 

pond using a 3 m tile probe, and reported as an average of depth to mineral soil 

throughout the pond. The entire thickness of the organic soils is not necessarily a 

result of the beaver ponds.  Portions of the ponds may have flooded marshes or 

swamps; however, the upper 15 cm of the subaqueous soils in the ponds displayed 

similar characteristics that suggest recent deposition. Dissolved oxygen (DO) and 

temperature of the pond water were measured at each pond when samples were taken. 

Additionally, we collected 7 L of pond water on each coring date which was stored in 

the ambient climate chamber for use in the mesocosm incubations.  We filtered a small 

subsample of pond water from each site and stored it at 4° C until analysis of 

dissolved inorganic nitrogen (DIN), pH, and dissolved organic carbon (DOC). 

Mesocosm Methods 

 
Our mesocosm chambers, similar to those used in experiments by Seitzinger et 

al. (1980) and Nowicki (1994), were constructed of two sections of glass-walled pipe 

(height=23.5 cm, i.d.=7.6 cm) joined at the center with an O-ring seal and a metal 

clamp (Figure 1). Three glass stopcocks in the upper half of the mesocosms served as 

ports – one to add or sample mesocosm water and two to add or sample mesocosm 

headspace gases. We placed cores, sized to fit the mesocosm chambers, into the lower 

half of the chambers. Immediately after placing the cores in the lower half of the glass 
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mesocosms, we added 100 ml of ambient stream water to each mesocosm to ensure 

saturation and filling of any void space between the core and mesocosm container.   

Each season we assayed a total of 11 mesocosms per pond: nine with soil cores 

amended with 15N-nitrate (15N cores), one with a soil core without amendments 

(control), and one without a soil core that contained only 15N-nitrate enriched stream 

water (blank).  During a 48 hour incubation period we subjected each mesocosm to a 

two-step amendment sequence: near-ambient N condition and enriched N condition. 

Percent 15N enrichments ranged from 33-49% depending on background nitrate 

concentrations in the soil and water column.  

Near-ambient N condition mesocosm amendment 

 We added a 5 ml solution to containing 0.05 mg 15N-Nitrate-N (99 atom %) to 

350 ml of stream water to the top of the nine 15N cores.  For the blank mesocosms, 

which were filled with approximately 600 ml of stream water, we added a 10 ml 

solution containing 0.1 mg 15N-Nitrate-N (99 atom %) to yield a similar near ambient 

N concentration. All mesocosms remained uncapped overnight to allow degassing and 

for the 15N to disperse into the soil. Approximately 12 hours later, we clamped the 

caps onto the mesocosms. Using a peristaltic pump, we added an additional 350 ml of 

ambient stream water through a chamber stopcock to fill the mesocosm leaving only a 

2 cm headspace at the top of the chamber, to be accessed by the top sampling port to 

sample headspace gases. To obtain initial NO3
--N and NH4

+-N (ammonium) 

concentrations, 15 ml of water was removed from each mesocosm via the sampling 

port.  At this point, all glass stopcocks were closed marking the start of the mesocosm 

incubation experiment. At this initial time, the headspace volume was 90 ml within 
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each mesocosm. At the beginning of the incubation period, 15 ml of headspace gas 

was extracted from each mesocosm.  We replaced this headspace with a mix of 80% 

helium and 20% oxygen via a Tedlar bag that was attached to the opposite port. 

Fifteen ml of this headspace sample was injected into a 12 ml pre-evacuated Exetainer 

for later analysis of 15N-N2 and 15N-N2O.  

During the duration of the four hour incubation, the climate chamber remained 

darkened. We stirred each mesocosm hourly with a magnetic stir-bar located at the top 

of the mesocosm chamber.  The stir bar was at the interface between the water surface 

and headspace; stirring prevented a stagnant boundary layer at the soil-water interface 

and facilitated equilibration of gases at this interface (Seitzinger et al., 1980). The 

stirrers were rotated by air-driven magnets mounted on top of each mesocosm 

(Nowicki, 1994).  Both the control and blank mesocosms were stirred and sampled 

exactly as the 15N core mesocosms.  At the end of the incubation, we collected final 

water and headspace samples from each mesocosm, as described above.   

Enriched N mesocosm amendment 

At the completion of the near-ambient N mesocosm phase of the experiment, 

we opened the mesocosms to the air and drained water from the top half of each 

mesocosm. We added a second amendment of a 15 ml solution containing 1.5 mg 15N-

Nitrate-N (50 atom %) to the top of each of the nine 15N near-ambient soil core 

mesocosms; this amendment was intended to create an approximate solution of 3 mg 

NO3
--N/L after the full volume of stream water was added to the soil cores before 

incubation; the blank was treated to yield a similar elevated N concentration.  Ambient 

stream water was added to the lower chamber of each mesocosm to maintain 
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saturation.  Mesocosms were left in the dark environmental chamber overnight at 

ambient stream temperatures.  In the morning, 350 ml of ambient stream water was 

added to each mesocosm and all mesocosms were prepared, sampled, incubated for 

four hours, and sampled as described above for the near ambient N mesocosm 

amendments. 

Soil Sample Processing 

 
Percent soil moisture was determined on "initial" condition soil core samples 

within 2 hours of field collection. Percent soil moisture was determined by comparing 

the wet mass of a soil sample with its dry mass after 72 hours in a 60°C drying oven. 

Dry bulk density was determined using standard methods (Blake and Hartge, 1986). 

The post-incubation mesocosm soil 15N cores and the spare six “initial” soil 

cores were processed for: soil organic matter, soil microbial biomass, and 

exchangeable dissolved inorganic N (NO3
--N and NH4

+-N; DIN) in porewater within 

48 hours of the completed mesocosm incubation or initial collection. Each individual 

soil core was broken apart to remove rocks and coarse wood. The remaining soil was 

mixed to homogenize the sample. The soil was partitioned into subsamples for 

analysis of: 1) total C and N, 2) exchangeable inorganic N (NO3
--N and NH4

+-N; 

DIN), and 3) microbial biomass C and N. The mean porewater nitrate-N concentration 

of the spare cores (those not subjected to the mesocosm incubations) was used as the 

initial nitrate-N to calculate the component of pore-water nitrate-N recovered from the 

mesocosms (post incubation pore-water nitrate-N minus pre-incubation pore-water 

nitrate-N concentration). 
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For analysis of organic soil C and N, soil was dried and ground through a size 

10 sieve with material not passing through the sieve being discarded. A small 

subsample (5-8 mg) of each initial and post-mesocosm 15N core was weighed into a tin 

capsule and stored in a desiccator until analysis. Exchangeable inorganic N in the 

porewater was extracted with 0.5 mol/L K2SO4 (Keeney and Nelson, 1982). After 

samples were shaken and settled, the supernatant liquid from each replicate was 

filtered through Whatman filter paper into clean Nalgene bottles. Liquid samples were 

frozen until analysis for NO3
--N and NH4

+-N concentration or diffused onto acidified 

filter disks in preparation for 15N determination, as described below.   

Soil microbial biomass was determined using a rapid chloroform-fumigation 

extraction technique (Witt et al., 2000).  Microbial C and N were calculated as the 

difference in extractable fractions between the fumigated and unfumigated soil (Witt 

et al., 2000). The N extracts were frozen until analysis for NO3
--N and NH4

+-N or 

diffusion onto acidified filter discs for N isotope ratio determination via mass 

spectrometry. Soil and microbial-biomass N extracts were prepared for 15N analysis 

using the six-day polytetrafluorethlyene (PTFE) tape diffusion method as described by 

Stark and Hart (1996) where NH4
+ in the supernatant liquid is converted to NH3 gas 

which diffuses onto the filter traps between two pieces of PTFE Teflon tape. 

Following the 6 day NH4
+ diffusion, Devarda’s alloy was added to each diffusion 

container and incubated for another 6 days to convert NO3
- to NH4

+ which was then 

converted to NH3 gas. This method allowed us to identify 15N in both the NO3
- and 

NH4
+ pools separately.  Following diffusion, filters were dried in a desiccator, 

wrapped in tin capsules, and stored in a desiccator until analysis of N isotope ratios.  
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Denitrification Rates 

 
Denitrification rates were determined through the comparison of initial versus 

final headspace samples that quantified the amount of 15N2  and 15N-N2O generated 

over the four hour incubation time in both near-ambient and enriched N mesocosm 

conditions.  Denitrification masses of 15N2O-N and 15N2 gases (µmol) in headspace 

samples were calculated using the headspace equilibration method (Tiedje, 1982) and 

then divided by the respective 15N sample enrichment.  The mass of 15N2O-N or 15N2 

generated during the incubation period was calculated as the mass present in the final 

samples minus the mass present in the initial samples. The total masses of N2O-N and 

N2-N produced were calculated by dividing the masses of 15N2O-N and 15N2 by the 

15N isotope enrichment of the mesocosm. The mass of N2O-N and N2 generated was 

dividing by the surface area of the mesocosm and the four hour incubation period to 

yield gas production rates (N2O-N and N2) of mg N m-2 of soil surface hr-1. The 

computed rates represent denitrification capacity where nitrate is abundant and other 

factors, such as electron donors or redox conditions control the observed rates (Addy 

et al., 2005). 

We use the phrase “net ammonium-N generation” to refer to the pool of 15NH4-

N that was created during the incubation period based on the 15N enrichment method. 

The mass of nitrate-N that was assimilated into organic soil materials was calculated 

by multiplying the total N mass found in core by the % 15N found, based on δ15N 

values, after subtracting out background levels of 15N. We then divide by % 15N 

enrichment.  
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Nitrate-N Recoveries 

Although we measured the nitrate-N concentrations and volumes of the 

overlying water that was poured off from the mesocosms, we did not measure the 15N 

enrichment of that poured-off water.  So, we report the % of nitrate recovered using 

two approaches -- by summing up the mass of nitrate-N in the poured off overlying 

water (which was a large mass) and using the 15N method to obtain the "nitrate-N 

mass" that was converted or remained in other sources of nitrate -- such as in the 

porewater, denitrification gases, and in the soil. Total recoveries of applied nitrate-N 

were computed by dividing the sum of the mass of i) nitrate-N that was transformed 

(via denitrification, assimilation into soil organic N, and 15NH4-N methods), ii) nitrate 

that remained in the pore water, and iii) nitrate that was poured off with the overlying 

water during the incubation period by the initial mass of nitrate-N at the start of the 

incubation period, including the nitrate-N that we added.  The initial mass of nitrate-N 

was computed from pore-water nitrate-N, plus the total mass of nitrate-N additions, 

plus the ambient nitrate-N in the two additions of stream water.   

Analytical Methods 

The University of California Davis Stable Isotope Facility analyzed the 

mesocosm headspace samples for concentrations and isotope ratios of N2 and N2O 

using a ThermoFinnigan GasBench + PreCon trace gas concentration system 

interfaced to a ThermoScientific Delta V Plus isotope-ratio mass spectrometer 

(Bremen, Germany).   

We analyzed soil samples for N and C isotope composition using continuous 

flow isotope ratio mass spectrometry (CF-IRMS) employing a Vario Micro Elemental 

Analyzer interfaced to a Elementar Isoprime 100 Mass Spectrometer (Elementar 
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Americas, Mt. Laurel, NJ).  The N isotopic composition is expressed as a part per 

thousand (permil) difference from the composition of a recognized reference material, 

which by convention, is N2 in air (Mariotti, 1983). All samples were analyzed in 

duplicate with a typical difference of about 0.1 ‰.  

We measured NO3
--N and NH4

+-N concentrations in soil extracts and water 

samples using an Astoria Pacific Model 303A Segmented Continuous Flow 

Autoanalyzer (Astoria-Pacific Inc., Clackamas, OR).  On this instrument, the open 

tubular cadmium reduction method (APHA et al., 1995) was used for NO3
--N and the 

alkaline phenol and hypochlorite methods (APHA et al., 1995) were used for NH4
+-N.  

Laboratory accuracy was determined by the analysis of reference material and 

comparison of the resulting value to that of the accepted value. The difference 

between the accepted and reference value is the percent difference (%D). The %D had 

to be less than 20 to accept analyses (Green et al., 2009). Precision was assessed 

through the measurement of duplicate samples and subsequent calculation of the 

relative percent difference (%RPD) as described below (Green et al., 2009) 

 
%RPD =   Result of Replicate 1 – Result of Replicate 2                         x 100 

     Average of Result of Replicate 1 and Result of Replicate 2 

The RPD had to be 15% or less to for data acceptance. 

Fumigated and unfumigated soil extracts were analyzed for DOC using a 

Shimadzu Total Organic Carbon Analyzer (Kyoto, Japan). DO and temperature were 

measured in the field using a YSI DO-temperature meter, model 55 (YSI, Yellow 

Springs, Ohio). At the end of the incubation DO was measured using the Winkler 
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titration method (Eaton and Franson, 2005). pH was measured on Accument Research 

AR20 pH/conductivity meter.  

Statistical Analyses 

 

We tested for differences between site and season using two-way Analysis of 

Variance (ANOVA) with a Tukey's post hoc test for the following variables: 

denitrification, net generation of NH4-N, nitrate assimilation into soil organic N, and 

soil microbial biomass C and N. Because all soil 15N recoveries were only obtained 

from analyses performed following two days of mesocosm incubations that included 

24 hours of near-ambient followed by 24 hours of enriched conditions, we cannot 

report nitrate-N transformations in soil for the near-ambient conditions that occurred 

for the first 24 hours.  For the mass balance and estimates of watershed denitrification 

capacity, we focused on the denitrification rates associated with the enriched 

conditions – which were the conditions in the mesocosms for the final 24 hours of the 

incubation.   

We evaluated correlations between denitrification rates and log transformed 

N2O:N2 data using Pearson product-moment correlation coefficients. Statistical 

significance was set at α <0.05 for all analyses.  Two-way ANOVA statistics were 

performed using SAS Software version 9.2, all other statistical analyses were 

performed with Analyse-it version 3.0.  

RESULTS 

Carbon, Oxygen, pH 

Soil microbial biomass C did not vary significantly between ponds. Biomass C 

across all ponds was significantly different between seasons, with spring displaying 
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the highest values (Table 2).  DOC ranged from 3.9-5.2 mg/L between sites and 

seasons (Table 2). DO and temperature changed with the seasons, with summer being 

the warmest and having the lowest DO (Table 2). DO concentrations in the 

mesocosms ranged from 5-8 mg/L throughout all mesocosm incubations. Percent soil 

moisture within the soil cores ranged from 70-90%, with an average of 79%.  Across 

all sites and seasons average dry bulk density was 0.33 g cm-3. These soils are 

considered organic soils based on % C (Table 1) (Fanning & Fanning, 1989). Soil pH 

was similar to water pH (Pond A: 6.3, Pond B: 6.0), Pond C had slightly more acidic 

soil with a pH of 5.5.  

Nitrate Recovery during the Mesocosm Experiment 

The nitrate-N recovery, based on the fate of 15N labeled nitrate, changes in porewater 

nitrate and the nitrate in the water overlying the soil averaged 93.2% (SD:13.8).  29.3-

60.6% of the nitrate-N that we added was transformed during the course of the 

incubation.  The water overlying the soil cores contained a sizeable percentage of the 

added nitrate-N throughout the experiment.   

Denitrification Rates under Enriched Conditions 

Denitrification rates under enriched conditions were high during all seasons 

and constituted the dominant nitrate-N transformation in the mesocosms.  There was 

significant (p < 0.05) variation in denitrification with season and site (Table 3). Spring 

had significantly lower denitrification rates than summer or fall across all ponds 

(Table 3). Pond C, the oldest and largest beaver pond which also had the lowest 

ambient NO3-N concentrations had significantly lower denitrification rates than the 

other ponds (Table 3).  
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Tracing 
15

N in Soil 

Net N uptake by soil microbial biomass (based on the 15N enrichment method) 

was markedly lower than transformations associated with denitrification, ranging 

between 2-10% of denitrification rates.  Site and season were found to be significant 

(p < 0.05) for net 15N uptake by microbial biomass based on the results of the two-way 

ANOVA (Table 4). Net N uptake by microbial biomass was significantly higher in 

Pond C, the pond with the lowest ambient NO3-N concentrations.  The spring season 

had significantly higher net 15N uptake by microbial biomass than the fall season 

(Table 4). 

Nitrate assimilation into soil organic N was also always lower than 

denitrification rates.   Based on the two-way ANOVA only site factors were 

significant (p< 0.05) (Table 5). Although net 15N uptake by soil microbial biomass 

constitutes a portion of measured nitrate assimilation into soil organic N, the patterns 

and differences across sites and seasons did not coincide. Of note, Site C was found to 

have significantly lower nitrate assimilation into soil organic N than Site A.   

15NH4
+-N generation rates (mg N m-2 day-1) were substantially lower than 

transformations associated with denitrification and assimilation into soil organic N.  

Rates were not significantly different when comparing sites or season (Table 6). 

Denitrification constituted between 52 and 86 percent of total N 

transformations under enriched levels of nitrate. Pond B had a significantly higher 

proportion of total N transformation attributed to denitrification compared with the 

other ponds (Figure 2). 
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Denitrification Rates at Near-Ambient and N-Enriched Conditions 

To examine the effects of nitrate enrichment on denitrification, we compared 

rates of denitrification on day 1 (near-ambient conditions; 0.1 mg N L-1) to rates of 

denitrification on day 2 (enriched-N conditions; 3.0 mg N L-1).  There were no 

differences in denitrification rates between the near-ambient and enriched conditions 

for all ponds during summer and fall.  However, during the spring season, Ponds A 

and B had significantly lower denitrification rates in the enriched-N mesocosm 

incubation than in the near-ambient mesocosm incubation (Table 7). 

N2O:N2 

N2O:N2 ratios displayed a significant exponential decline with increasing 

denitrification rates (p<0.02) (Figure 3). N2O:N2 ratios were significantly different 

between near-ambient and enriched-N mesocosm conditions. Under near-ambient 

mesocosm conditions, N2O:N2 ratios averaged 0.002, while under enriched-N 

mesocosm conditions, N2O:N2 averaged: 0.07. 

DISCUSSION 
 

We used a mass-balance approach based on 15N tracer additions to soil core 

mesocosm incubations to understand the fate of nitrate in beaver ponds and the 

capacity of these systems to serve as long-term watershed N sinks. Our mesocosms 

have been used in the past by Seitzinger et al. (1980) and Nowicki (1994) to assess 

nitrogen transformations in subaqueous soils. The mesocosm approach enables a suite 

of processes in both water and soil to be examined simultaneously in replicated 

samples (Oviatt and Gold, 2005; Fulweiler et al., 2007). Past 15N experiments have 

studied the effects of N inputs on N retention and mobility, addressing questions such 
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as microbial uptake, plant-microbial competition for N, and links to C cycling 

(Tietema et al., 1998; Currie et al 1999; Nadelhoffer et al., 1999). The use of the stable 

isotope 15N as a tracer has provided important insights into the fluxes and 

transformations of N in soils and at the ecosystem level (Stark and Hart 1997; Tietema 

et al., 1998, respectively).  

We were able to account for a high proportion of the nitrate-N added to the 

mesocosms. Deviations from complete recovery of added nitrate-N may have partially 

resulted from nitrification within the cores, or from intra-core variations between the 

cores.  

Factors Controlling Soil Nitrate Transformation 

Subaqueous beaver pond soils displayed high rates of nitrate transformations 

from all sites and all seasons, suggesting that these ecosystems can serve as substantial 

sinks for watershed nitrate. Denitrification rates were much higher than rates found 

from the other transformation processes; approximately 3 to 5 fold higher than the 

rates ascribed to nitrate assimilation in soil organic N, which constituted the next 

highest mechanism of nitrate transformation (Figure 2). Our denitrification rates were 

comparable to those noted from a number of other studies in freshwater ponds and 

greater than those reported for streams by Mulholland et al. (2008) (Table 8). Our 

values exceed those observed in some studies of freshwater ponds and wetlands; 

however, those rates in those ecosystems may have been limited by low concentrations 

of nitrate. 

We observed significant seasonal patterns, with lower denitrification rates in 

spring. Soil microbial biomass C and microbial biomass uptake of 15N were also 
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higher in the spring, suggesting that high rates of immobilization may have been 

competing with denitrification during this season.  The beaver pond soil had levels of 

microbial biomass C comparable to other wetlands (Nguyen, 2000 Tietz et al., 2007), 

while microbial biomass N values were lower than most published values (Truu et al., 

2009), but were similar to those reported by Nguyen (2000) at 100-400 mm soil 

depths. Microbial biomass has been shown to decrease with depth (Nguyen, 2000). 

Soils used for the biomass experiments were a subsample from the entire core, and 

therefore from a variety of depths.  

In comparing near-ambient and enriched-N mesocosm conditions, there were 

no significant differences during most of the incubations. However, two ponds in the 

spring had higher denitrification rates at near-ambient conditions in the first 24 hours 

of incubation when compared to the nitrate enriched conditions that occurred during 

the following 24 hours (Table 7).  The ambient nitrate-N levels in those two ponds, 

while not comparable to the high levels found in agricultural watersheds are still much 

higher than concentrations found in pristine watersheds.  In these two instances, 

denitrification of the near-ambient nitrate during the first 24 hours may have 

consumed a small pool of highly labile C, resulting in lower denitrification rates under 

the enriched nitrate conditions that occurred on the following day.  The fact that soil 

microbial biomass C was higher during the spring season supports this idea as the 

large microbial biomass may have consumed the pool of labile C, leaving little to 

support denitrification during these incubations. Pond C, which had substantially 

lower ambient nitrate-N concentrations (about 1/12th of the levels of the other ponds), 

did not display elevated denitrification during the first 24 hours when near-ambient 
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nitrate levels were maintained, suggesting the possibility that this pond was nitrate 

limited at near-ambient conditions.  Additionally, Pond C, which is the oldest pond 

and is dominated by deeper, open water, had lower denitrification rates at both 

ambient and enriched nitrate-N conditions. This follows previous studies showing 

young wetlands with emergent macrophyte vegetation have higher denitrification 

potential than open water wetlands (Anderson et al., 2005 and Mitch and Hernandez, 

2007). 

Although nitrate assimilation into soil organic N was the second largest 

ecosystem sink for added nitrate, the large discrepancy between the rates of nitrate 

assimilation in soil organic N and the rates of net N uptake by microbial biomass may 

be an abiotic artifact of the addition of nitrate (Davidson et al., 1991; Colman et al., 

2008) and are not considered to be biological immobilization. In any case, none of this 

assimilation into microbial biomass and/or soil organic N may be a long-term sink, 

increasing the importance of the measured denitrification rates as a more permanent 

nitrate removal mechanism. 

Net NH4
+-N generation (Table 6) may result from rapid immobilization 

followed by mineralization, or from dissimilatory nitrate reduction to ammonium 

(DNRA), a microbially mediated pathway involving the transformation of nitrate to 

ammonium. There are two types of DNRA: fermentive and chemolithoautotrophic. 

Fermentive DNRA is thought to be favored in nitrate limited environments rich in 

labile carbon (Burgin and Hamilton, 2007) while chemolithoautotrophic DNRA, 

which couples the reduction of nitrate to the oxidation of sulfide to sulfate is favored 

in soils high in sulfur.  While we did not measure sulfate over the course of our 
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mesocosm incubations, freshwater systems in Michigan showed simultaneous nitrate 

reduction and sulfate production (Burgin and Hamilton, 2008). Measuring sulfate 

production or identifying the microbial population responsible for generating the 

ammonium would be useful next steps in documenting DNRA in these beaver pond 

systems. The eventual fate of the nitrate converted to ammonium is unknown but it is 

not thought to be a permanent sink for N as it may be converted back to nitrate via 

nitrification or assimilated into biomass (Burgin and Hamilton, 2007). 

Are beaver pond soils a source of N2O? 

The denitrification rates were negatively correlated to N2O:N2 ratios, but 

increased with nitrate concentrations. This ratio has been shown to be controlled by a 

number of factors, including pH, soil moisture and nitrate loading, but there remains 

considerable uncertainty in these relationships (Seitzinger, 1998, Beaulieu et al., 

2011). All of our soils were ponded and had similar pH levels. Several studies have 

shown that the N2O:N2 ratio is positively correlated with nitrate-N concentrations in 

water (Zaman et al., 2008; Baulch et al., 2011; Clough et al., 2011), although Beaulieu 

et al. (2011) did not see increased N2O:N2 with increased NO3
− loading to rivers. 

Beaulieu et al. (2011) report the percentage of denitrification released as N2O ranging 

from 0.04-5.6% in 53 streams.  On average, 0.2% of denitrification is being released 

as N2O under low nitrate-N concentrations in the three beaver ponds, while under N-

enriched conditions, the average was 7%. Our data suggest that under enriched 

conditions beaver ponds have greater N2O production than streams, but are similar to 

wetland soils which have an average N2O yield of 8.2% (Schlesinger, 2009). Further 

fieldwork which measures N2O flux from beaver ponds should be considered. 
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Estimating Watershed Sink Capabilities of Beaver Ponds 

To provide insight into the potential role of beaver ponds on the export of 

nitrate-N from small catchments, we linked annual estimates of beaver pond 

denitrification rates derived from our mesocosm study with estimates of watershed 

nitrate-N inputs and the ratio of catchment area to beaver pond area in the study 

region. We did not include N removal due to immobilization, since beaver ponds are 

transient and the stored organic deposits can be released and mineralized when the 

pond is destroyed. We used the range of annual beaver pond denitrification rates 

obtained when the mesocosms were enriched to 3 mg/l NO3
-N rather than at the lower 

ambient levels (0.5 mg/l) to reflect nutrient conditions expected in rural catchments 

with agricultural or un-sewered residential developments.  The annual rate was 

computed by extrapolating measured seasonal rates over 273 days to represent the 

Fall, Spring and Summer seasons when we obtained measurements, assuming that 

denitrification would be negligible during winter due to low temperatures and reduced 

inflows.  Given the likelihood that some denitrification will occur over the winter 

months, this assumption generated a conservative estimate of annual denitrification. 

We assumed 0.7 beaver ponds per km2 of catchment area based on studies 

conducted in southern New England (DeStefano et al., 2006).  Beaver pond area can 

be quite variable (our three pond areas displayed a range of more than two orders of 

magnitude) due to factors such as physiography and age of pond. We used both the 

median beaver pond area (0.26 ha) from our three sites and a pond area of 1.0 ha, 

which represents a minimum size from many other studies (Weyhenmeyer, 1999 and 

Pollock et al., 2003). 
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We estimate that beaver pond denitrification can remove approximately 50 to 

450 kg nitrate-N km-2 of catchment area (Table 9).  Moore et al. (2004) using the 

SPARROW model predicted total N catchment yields between 200 and 1000 kg km-2 

for undeveloped land uses (i.e., rural) in southern New England. Crumpton et al. 

(2008) found nitrate mass removal by wetlands in tile-drained agricultural lands to 

range between 25-78% for wetland/watershed area ratios of 0.57-2.25.   Based on the 

beaver pond/watershed area ratios (0.18-0.7%), and inter-pond variability in 

denitrification we estimate that beaver ponds in southern New England can remove 5-

45% of watershed nitrate loading from rural watersheds with high N loading (i.e., 

1000 kg km-2). Thus, beaver ponds represent a proportionally significant sink for 

watershed N if current beaver populations persist. 
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TABLE 1. Site characteristics. Values for water depth and depth of organic soil 
materials are mean (SD). 

Beaver Pond A B C 

Lat/Long 
41.486175/ 
71.548384 

41.503464/ 
71.533608 

41.565725/ 
71.677929 

Surface Area (ha) 0.26 0.05 8.00 
Drainage Area (ha) 2450 2093 976 

Tributary (name and stream 
order) 

Chipuxet, 2 Chipuxet, 2 
Roaring 
Brook, 1 

Water Depth (m) mean (SD) 0.93(0.48) 0.59 (0.24) 0.75 (0.22) 
Thickness of Organic Soil 
Materials (m) mean (SD) 

0.29 (0.28) 0.66 (0.23) 0.45 (0.18) 

First documented evidence (yr) 1992 2008 1988 
Average Pond Nitrate 

Concentration (mg/L) † 0.57 0.35 0.04 
Mean % Carbon in Soil Cores 18.3 15.0 29.8 

†Means represent average nitrate-N concentration during soil sampling days. 
 

TABLE 2. Dissolved oxygen in water column, water temperature, dissolved organic 
carbon (DOC) in water column, pond pH data during each sampling visit, and 
microbial biomass C data by season.  

Spring 

DO 

(mg/L) 

Water 

Temperature 

(°C) DOC (ppm) 

Pond 

pH 

Microbial 

Biomass C, 

mean (SD) (mg 

C kg
-1

 dry soil) 

Pond A 8.1 16.4 4.7 6.4 
188.4 (84.0) Pond B 8.9 15.1 5.2 6.3 

Pond C 7.2 16.4 5.0 6.0 
Summer      
Pond A 3.1 26.4 5.6 6.2 

95.7 (68.0) Pond B 3.7 25.5 4.0 6.2 
Pond C 4.8 25.2  4.6 6.1 
Fall      
Pond A 4.8 8.8 3.9 6.3 

16.9 (18.8) Pond B 6.3 9.3 4.5 6.2 
Pond C 4.6 10.6 5.0 5.9 
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TABLE 3. Beaver pond denitrification rates (mg N m-2 day-1) (based on recovery of 
15N) at enriched-N mesocosm conditions. Values within each cell are mean (SD).  

  Spring‡ Summer‡ Fall‡ 
Site Grand 

Means† 

Site A‡ 46.6 (71.2) 248.8 (144.8) 249.8 (83.9) 181.7
a
 

Site B‡ 101.2 (64.1) 371.0 (105.4) 236.1 (185.8) 236.1
a
 

Site C‡ 40.3 (44.4) 117.4 (68.3) 134.7 (64.2) 97.5
b
 

Seasonal 

Grand 

Means† 

62.7
a
 245.7

b
 206.9

b
   

†Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season). ‡Cells represent homogeneous subset 
sets with sample size per cell of n = 9.  
 
 

TABLE 4. Beaver pond net 15N uptake by microbial biomass (mg N m-2 day-1) at 
enriched-N mesocosm conditions (rates based on recovery of 15N). Values within each 
cell are mean (SD). Grand means are the average of the entire sample of interest, not 
the average of the means. Note that n values were not equal. Spring Pond B data and 
all of Fall data have an n value of 5 per site. Ponds A and C in the Spring and all three 
sites during the Summer have an n value of 9. 

  Spring Summer Fall 
Site Grand 

Means† 

Site A 2.7 (3.4) 1.8 (1.9) 2.1 (2.2) 2.2
a
 

Site B 6.3 (6.6) 0.2 (0.3) 5.1 (3.4) 3.1
a
 

Site C 9.5 (6.3) 8.8 (5.4) 0.8 (0.8) 7.3
b
 

Seasonal 

Grand Means† 6.1
a
 3.6

ab
 2.7

b
   

†Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season).  
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TABLE 5. Rates of nitrate assimilation into soil organic N (mg N m-2 day-1) in beaver 
ponds at enriched-N mesocosm conditions (rates based on recovery of 15N). Values 
within each cell are mean (SD). Grand means are the average of the entire sample of 
interest, not the average of the means. Note that n values were not equal. Spring Pond 
B data and all of Fall data have an n value of 5 per site. Ponds A and C in the Spring 
and all three sites during the Summer have an n value of 9. 

 
Spring Summer Fall Site Grand 

Means† 

Site A 39.5 (22.4) 48.8 (14.3) 55.1 (20.1) 46.5
a
 

Site B 26.4 (9.4) 14.3 (5.5) 27.5 (9.1) 21.0
c
 

Site C 32.3 (27.5) 47.3 (23.9) 22.1 (6.8) 36.0
b
 

Seasonal 

Grand Means† 33.8 36.8 34.9   

†Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season).  
 
 
 
TABLE 6. Beaver pond net 15NH4-N generation rates (mg N m-2 day-1) at enriched-N 
mesocosm conditions (rates based on recovery of 15N). Values within each cell are 
mean (SD). Grand means are the average of the entire sample of interest, not the 
average of the means. Note that n values were not equal. Spring Pond B data and all of 
Fall data have an n value of 5 per site. Ponds A and C in the Spring and all three sites 
during the Summer have an n value of 9. 

  Spring Summer Fall 
Site Grand 

Means† 

Site A 2.8 (2.7) 8.1 (5.9) 6.2 (2.6) 5.6
a
 

Site B 10.3 (9.9) 3.2 (2.5) 9.6 (4.3) 6.7
a
 

Site C 6.7 (3.6) 6.6 (2.7) 7.8 (5.9) 6.9
a
 

Seasonal 

Grand Means† 6.0
a
 6.0

a
 7.9

a
   

†Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season). 
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TABLE 7. Mean denitrification rates (mg N m-2 day-1) (based on recovery of 15N) at 
near-ambient (~0.1 mg N l-1) and enriched-N (~3.0 mg N l-1) mesocosm incubations.  

Spring 

Near-Ambient 

Mesocosm 

Incubation†‡ 

Enriched-N 

Mesocosm 

Incubation†‡ 

Pond A‡ 1205.6a 46.6b 
Pond B‡ 1156.3a 101.2b 
Pond C‡ 23.9 40.3 
   
Summer   
Pond A‡ 605.9 248.8 
Pond B‡ 488.3 371.0 
Pond C‡ 79.6 117.4 
   
Fall   
Pond A‡ 189.6 249.8 
Pond B‡ 102.8 236.1 
Pond C‡ 118.2 134.7 

†Means within a row with distinct superscript letters are significantly different (p< 
0.05) as determined by a one-way ANOVA analysis between enrichment levels by 
site. ‡Cells represent homogeneous subset sets with sample size per cell of n = 9. 
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TABLE 8. Denitrification rates in comparison to other studies of shallow ponds, 
meadows and wetlands. 

Study Setting 

Denitrification mg N2-N m
-2

 day
-1 

(method) 

Naiman et al., 1994 beaver pond 2.0 (Acetylene Block Technique) 

Naiman et al., 1994 wet meadow 2.6 (Acetylene Block Technique) 

Batson, et al., 2012 constructed wetland 3.4 (Acetylene Block Technique) 

Song et al., 2012 constructed wetland 
0.82-15.8 (Acetylene Block 

Technique) 

Bonnett et al., 2013 wetland 17.90(Acetylene Block Technique) 

Scott et al 2008 constructed wetland 16.8 (Net N2 flux) 

Lazar et al., (this study) beaver ponds 96-236 (15N tracer technique) 

Xue et al., 1999 constructed wetland 
48.0-283.2 (Acetylene Block 
Technique)  

Xue et al., 1999 constructed wetland 48.0-223.2 (15N technique ) 

Vecherskiy et al., 2011 beaver pond 266 (Acetylene Block Technique) 

David et al., 2006 
reservoir in ag 

landscape 
169.9- 616.4 (Acetylene Block 
Technique) 

 

TABLE 9. Annual catchment scale denitrification capacity of beaver ponds. 

Pond Area (ha) 

Annual catchment scale denitrification 

capacity of beaver pons in kg km
-2

 yr
-1 

(% of catchment loading) 

Median from this study (0.26 ha) 49-118 (4.9-11.8%) 
Minimum from other studies (1 ha) 187-454 (18.7-45.4%) 
Assumptions include: 0.7 beaver ponds km-2 of catchment area; removal processes 
only occur during spring, summer, and fall; range in rates are due to scaling up the 
range in rates observed in our study; total N catchment yields up to 1000 kg km-2 
for rural areas in Southern New England (Moore et al., 2004). 
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FIGURE 1. Soil core incubation mesocosm shown in an illustration (edited from 
Nowicki, 1994). The mesocosm consists of two pieces of glass pipe held together with 
an O-ring and metal clamp. Three glass stopcocks are in the top section, one rubber 
septa is added for sampling the gas phase. Air-driven stirrer is placed on top of the 
chamber to drive a magnetic stir bar floating in the chamber. 

 

 
FIGURE 2.  Mean N transformations per site at enriched-N mesocosm conditions. 
Measured nitrate-N transformations include denitrification, soil immobilization 
(measured in total soil organic N) and net ammonium-N generated.  
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FIGURE 3. Denitrification rate vs. log transformed N2O:N2, Pearson correlation 
p<0.02.These data do not include observations when denitrification rates were less 
than 0.1 mg N m-2 day-1 (32 out of 153).  
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ABSTRACT 

We determined the diffusive flux of greenhouse gases (GHGs) — methane (CH4), 

carbon dioxide (CO2), and nitrous oxide (N2O) — from the air-water interface of three 

beaver ponds in Rhode Island, USA. We launched five floating static gas chambers on 

each beaver pond during spring, summer, and fall seasons, and sampled at 15-minute 

intervals over one hour. Emission rates were derived for each gas from the linear 

regression of the change in concentration of the gas over time. Fall had significantly 

higher CO2 emission than other seasons, mean 9.298 g CO2 m
-2 day-1 versus 3.305g 

CO2 m
-2 day-1 in spring and 3.188g CO2 m

-2 day-1 in summer. CH4 and N2O emissions 

did not show seasonal differences: annual means were 174 mg CH4m
-2 day-1 and 1 mg 

N2Om-2 day-1, respectively. When flux was expressed in CO2 global warming 

equivalents, CH4 emissions comprised the majority of the GHG emissions, at 67.5% 

across all sites and seasons. Significant correlation was found between CO2 emission 

rates and pond water DOC, while CH4 emissions were significantly correlated to air or 

water temperature. Our results show that beaver ponds generate high fluxes of CH4 

and CO2 emissions per surface area of the pond. However, the relatively small areal 

footprint of beaver ponds at the watershed scale greatly diminishes their net effect. 

Thus, at a catchment scale we estimate that the global warming potential of the GHG 

emissions from the beaver ponds expressed as CO2 equivalents range from 3-26 Mg 

km-2 yr-1.  Assessment of the net effect of beaver ponds on the greenhouse gas budget 

of the Northeast U.S. must consider more than the GHG emissions from the ponded 

areas of the beaver ponds.  Studies are warranted on the extent of changes in water 
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tables, and associated changes in GHG emissions, in the lands surrounding the ponds 

and the fate of the organic soils in abandoned beaver ponds.   

INTRODUCTION 
 

Climate change is due to anthropogenic alterations of the atmosphere’s 

composition, with additional contributions from natural biochemical processes (IPCC, 

2007).  In particular, the rapid increase in the concentrations of greenhouse gases 

(GHGs) in the atmosphere trigger atmospheric warming as these gases absorb the heat 

radiated from the earth and re-emit it into the atmosphere. Research has been directed 

at understanding the sources of GHGs to better assess how to reduce GHG emission 

rates. The study of biogeochemical cycling, particularly the cycling of carbon (C) and 

nitrogen (N), underlies our ability to predict GHG generation from natural 

environments. Research is necessary to derive accurate estimates of GHG emission 

rates from different landscapes around the globe and to attempt to correlate these rates 

with various parameters, such as temperature, to identify potential interaction of 

emission rates with probable alterations resulting from climate change. These 

estimates will help inform decisions about GHG management. 

Research to date has indicated inland waters play a substantial role in the 

global C cycle and that certain landscape features, such as wetlands, may function as 

“hotspots” for GHG emissions (Cole et al., 2007; Reddy and DeLaune, 2008). 

Because natural wetlands are estimated to account for nearly 30% of total global 

methane emissions (Reddy and DeLaune, 2008), it is important to better quantify the 

fluxes of methane and other GHGs from these ecosystems into the atmosphere. 

Studies (Naiman et al., 1994, Soumis et al.,2004) have shown that wetland 
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environments, such as beaver ponds, may be sources of atmospheric carbon dioxide 

(CO2), nitrous oxide (N2O) and methane (CH4) – all GHGs. Due to the resurgence of 

the North American beaver (Castor canadensis), there is increasing interest in 

investigating beaver ponds as potential hotspots of GHG emission.  

North American beaver populations, once decimated due to over-trapping by 

European settlers in the 1500 -1800s, have been rebounding since the 1900s due to 

hunting restrictions and improved habitat conditions (Butler and Malanson, 2005). 

Beaver influence stream hydrology and morphology through the construction of dams 

–blocking the stream channel with trees, sticks and mud. These dams obstruct normal 

stream flow, causing water to pool, thereby forming ponds with high retention times. 

These ponds create wetland environments that accumulate organic matter, foster 

anaerobic conditions, and trap sediments and nutrients. The organic matter trapped 

within beaver ponds can serve as a C source for enhanced microbial activity, 

facilitating biogeochemical cycling. Compared to free-flowing riverine systems, 

beaver ponds alter the cycling of C and N, potentially increasing the rate and areal 

extent of methanogenesis (producing CH4),respiration (producing CO2), and 

denitrification, (producing N2O) (Naiman et al., 1994). Methane and nitrous oxide 

fluxes from these locations are important since the climate-forcing potential of CH4 is 

25 times more than that of CO2 and N2O is 298 times more potent than CO2 on a 100-

year time frame (IPCC, 2007). 

Beaver ponds accumulate organic C through both allochthonous (import from 

other sources) and autochthonous (created within the pond) sources. Beaver ponds 

capture organic sediments flowing downstream and flood terrestrial plants, which then 



 

72 
 

die and contribute to C accumulation. Within the ponds, primary production from 

rooted aquatics and plankton also add to the pool of organic C. Bacteria decompose 

these C sources into CO2 and CH4 (St. Louis et al., 2000). Often, wetlands have an 

aerobic zone at the surface of subaqueous sediments, underlain by an anaerobic zone, 

which facilitates various reduction-oxidation reactions. In the aerobic zone, 

heterotrophic bacteria decompose organic matter and respire CO2. Decomposition of 

this available organic matter leads to oxygen depletion in the water column and 

sediments (Huttunen et al., 2003). Methanogens can then use CO2 and acetate, both of 

which are produced during degradation of organic matter (Conrad, 2007), as electron 

acceptors, producing CH4 (Huttunen et al., 2003). This CH4 can become oxidized into 

CO2 as it travels upwards through the aerobic zone and the water column. CO2 and 

CH4 can then diffuse from the water into the air. CH4 can also be converted to CO2 in 

the oxidized rhizosphere of emergent vegetation (Gerard and Chanton, 1993). 

Additionally, CH4 can be transported and emitted via the vascular system of plants 

(Chanton and Whiting, 1995).  

Oxygen gradients can also stimulate N2O generation due to aerobic 

nitrification and/or anaerobic denitrification (Huttunen et al., 2003). Rivers in many 

locations transmit considerable loads of NO3
- that can be transformed to N2O through 

denitrification in anaerobic zones. Also, organic N and ammonium (NH4
+) are 

converted to nitrate (NO3
-) in the aerobic water column and sediments – which can 

directly yield N2O or result in N2O during subsequent denitrification (Khalil et al., 

2004).   
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In a review of GHG emissions from reservoirs, St. Louis et al. (2000) state that 

the potential for GHG emission is related to the amount of organic matter present, the 

age of the reservoir, and water temperature. However, there are few data on emission 

from beaver ponds, and the spatial and temporal dynamics of these ecosystems create 

high uncertainty about their importance in landscape and regional scale GHG budgets. 

We hypothesized that 1) beaver ponds would be significant sources of GHG, 2) that 

emission rates are highest in summer when temperatures are most elevated and when 

the rate of CH4 transport from plant roots is most pronounced and 3) that emissions are 

highest in ponds with long water retention times and high depths of sediment organic 

matter.  We tested these hypotheses by measuring the diffusive flux of CH4, CO2 and 

N2O from the air-water interface of three beaver ponds in Rhode Island, USA using 

floating static gas chambers during spring, summer, and fall seasons. 

METHODS 
Study Sites 

 

We selected three beaver ponds that varied in age and size in Washington 

County, Rhode Island, USA: two were located on the Chipuxet River (Ponds A and B) 

and one was located on Roaring Brook (Pond C). Based on digital aerial photos 

available in four year intervals from 1976 to 2012 (RIGIS, 2009), the dams were first 

observed in 1988, 1992 and 2008, respectively, at ponds C, A, and B. We coupled the 

digital imagery with geographical information system (GIS) to determine the current 

pond area at each site, which ranged from 0.05-8.00 ha (Table 1).   

Static Chambers 

 

We used static floating chambers (not equipped with an air circulation system) 

to measure diffusive fluxes from the ponds to the atmosphere (Moore and Roulet, 
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1991). Gas samples were collected and then analyzed remotely. Following protocols 

from many other studies gas flux was calculated based from the linear rate of gas 

accumulation in the chamber over time (St. Louis et al., 2000).  

Five 27-L floating static chambers were launched in sequence at each pond 

from a canoe and were positioned in open water at least three meters away from the 

canoe, pond edges, and emergent vegetation (Figure 1). Efforts were made to keep the 

chambers from accumulating together or drifting closer to the canoe by gently pushing 

them away with a long pole. Five 10-mL gas samples were drawn from each chamber 

over the course of one hour via air-tight syringes and placed into 10 ml pre-evacuated 

vials. We collected headspace samples from each chamber at 0, 15, 30, 45, and 60 

minutes after chambers were deployed.  

After headspace sampling was completed, time of day, air temperature, water 

temperature, and dissolved oxygen (DO) were recorded. A 20-mL water sample for 

dissolved organic carbon (DOC) was filtered through a muffled filter disc into an 

amber glass vial. Water samples were collected for pH, NO3
-, and NH4

+ analysis, 

transported in a cooler, and stored at 4°C until analysis. Chambers were deployed and 

sampled at each of the three sites on a total of 18-19 days; 3-4 days in fall, 6-8 in the 

spring, and 8-9 in the summer. 

Diffusive Fluxes of GHGs. 
 

Gas fluxes were determined via linear least squared regression of changes in 

gas concentration over time, as described in Huttunen et al. (2002). Acceptability 

criteria for each gas were developed in accordance with published values (Duchemin 

et al., 1995; Duchemin et al., 1999; Huttunen et al., 2002; Soumis et al., 2004; and 
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Tremblay et al., 2005). The R2 value for acceptance was 0.90 for CO2 data and 0.85 

for N2O and CH4. The n value (number of chambers per site) for each sampling date 

was ≤5, depending on the number of chambers that met the acceptance criteria. Slope 

of each regression was expressed in uLL-1min-1. Because more than half of all the N2O 

flux measurements did not display significant changes in slope over time, we were 

concerned that following published acceptability criteria could bias the data by 

ignoring actual observations with negligible flux.  Accordingly, we also analyzed the 

N2O results from chamber measurements where the slope derived from the linear least 

squared regression did not meet the acceptance criteria. This primarily resulted in the 

inclusion of data that generated small positive (or negative) rates which lowered our 

estimates of N2O flux.  

The flux of all measurements used for statistical analyses was then scaled up to 

a daily rate and multiplied by the density of the gas and headspace volume of the 

chamber to obtain mass of gas over time (μgd-1). This rate was divided by surface area 

of pond covered by the chamber to express rates in mg m-2 d-1for comparison with 

other studies. 

Additional Analyses 

 

Pond retention times were determined from the ratio of pond volume to 

average seasonal flow rates into each pond. Average seasonal flow rates were obtained 

by multiplying watershed area of each pond (calculated from USGS Streamstats; 

National Land Cover Dataset, 2006, accessed February 12, 2013; 

http://streamstats09.cr.usgs.gov/) by the normalized seasonal flow data in (flow per 

unit area) from USGS datasets developed for the study region (Armstrong et al., 

http://streamstats09.cr.usgs.gov/


 

76 
 

2001). Pond volumes were calculated from field measurements of depth and cross 

sectional areas.  

We collected subaqueous (below the water) sediment cores from each pond 

with a soil coring device from a canoe during fall 2011, spring 2012, and summer 

2012 (Lazar et al., 2013). Each season we collected 16 cores (6 cm diameter and 13 

cm depth) from the inundated sediment at random locations within each of the three 

beaver ponds. Subsamples of the cores were analyzed for microbial biomass using a 

rapid chloroform-fumigation extraction technique (Witt et al., 2000). For analysis of 

organic soil C, sediments were dried and ground through a 2 mm (size 10) sieve with 

material not passing through the sieve being discarded. A small subsample (5-8 mg) 

was weighed into a tin capsule and stored in a desiccator until analysis. Depth of 

organic matter was evaluated at a minimum of 7 locations at each pond using a 3 m 

tile probe, and reported as an average of depth to mineral soil throughout the pond. 

Sample Analyses 

 

Gas samples were analyzed on a Shimadzu GC-2014 Greenhouse Gas 

Analyzer (Kyoto, Japan), with a flame ionization detector for CO2 and CH4, and an 

electron capture detector for N2O. We measured NO3
--N and NH4

+concentrations in 

water samples using Astoria Pacific Model 303A Segmented Continuous Flow 

Autoanalyzer (Astoria-Pacific Inc., Clackamas, OR). On this instrument, the open 

tubular cadmium reduction method (APHA et al., 1995) was used for NO3
--N and the 

alkaline phenol and hypochlorite methods (APHA et al., 1995) were used for NH4
+-N.  

Fumigated and unfumigated sediment extracts were analyzed for DOC using a 

Shimadzu Total Organic Carbon Analyzer (Kyoto, Japan). Total C was analyzed with 
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a Vario Micro Elemental Analyzer (Elementar Americas, Mt. Laurel, NJ). DO and 

temperature were measured in the field using a YSI DO-temperature meter, model 55 

(YSI, Yellow Springs, Ohio). pH was measured on Accument Research AR20 

pH/conductivity meter. 

Statistical Analyses 

 

We tested for differences between site and season using two-way Analysis of 

Variance (ANoVA) with a Tukey's post hoc test for CH4, CO2, and N2O emissions and 

soil microbial biomass C. We evaluated correlation between GHG generation rates 

and pH, DOC, DO, and air and water temperature data using Pearson product-moment 

correlation coefficients. Statistical significance was set at α <0.05 for all analyses.  

Two-way ANOVA analyses were performed using SAS Software version 9.2 and all 

other statistical analyses were performed with Analyse-it version 3.0.  

RESULTS 
Site and Seasonal Characteristics 

 

Sediment pH was similar to water pH (Pond A: 6.3, Pond B: 6.0), Pond C had 

slightly more acidic sediment with a pH of 5.5 (Table 1). Nitrate concentrations were 

highest at Pond B and lowest at Pond C (0.90 mg L-1 and below detection limits of 

0.02 mg L-1, respectively) (Table 1). As expected, air and water temperatures followed 

seasonal patterns with summer being the warmest and having the lowest water column 

DO (Table 2). Spring DO was found to be significantly higher than the other two 

seasons (Table 2). DO was never found to be below 2.0 mg L-1. 

DOC did not vary significantly between ponds or seasons. Seasonal means 

ranged from 4.5-5.7 mg L-1with spring DOC being highest (Table 3). Sediment 

microbial biomass C did not vary significantly between ponds; however, biomass C 
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across all ponds was significantly different between seasons, with spring displaying 

the highest values (Table 3). 

Greenhouse Gas Emission Rates 

 CH4 emission rates showed no significant seasonal differences and ranged 

from 154.9-208.4 mg CH4 m
-2 day-1. There were significant (p<0.0001) differences 

between sites with Pond B generating 2.5 to 9 fold higher CH4 emission rates than 

Ponds A or C (Table 4). 

 Site and season were found to be significant for CO2 emission rates based on a 

two-way ANOVA (Table 5). Fall generated CO2 emission rates were markedly and 

significantly higher (e.g., 3 fold difference; p<0.0001) than CO2 emissions during 

spring or summer. Pond A had significantly higher (p<0.05) CO2 emission than the 

other ponds, but mean differences were less than 20%.   

 When using the acceptance criteria there were no significant differences 

between site or season for N2O emission rates (Table 6). Mean emission rates ranged 

from 0.96-1.09 mg N2O m-2 day-1 throughout the three seasons. Since 14 of the 55 

total sampling days did not generate significant trends in N2O emissions over the one 

hour sampling period, considerable data were excluded from Table 6. When we 

analyzed the N2O results including all observations the mean emission rates ranged 

from 0.14-0.51 mg N2O m-2 day-1 throughout the three seasons (Table 7). “Site” was 

found to be significant for N2O emissions based on a two-way ANOVA, with Pond C 

having significantly lower emissions than the other two ponds (Table 7). 

 CH4 emission rates were significantly correlated with both air and water 

temperature (p<0.01, n=258, r=0.199 and 0.199, respectively). CO2 emission rates 
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were significantly correlated with the DOC concentration of pond water (p<0.05, 

n=223, r= 0.143). No other significant correlations were found. 

Greenhouse Gas Emissions in CO2 Equivalents 

 

To assess the relative greenhouse forcing strength of the cumulative GHG 

emissions, CO2, CH4, and N2O fluxes were converted into common units (mmol m-2 d-

1) and multiplied by their respective global warming potentials— CO2 by 1, CH4 by 

25, and N2O by 298 (Figure 2). Overall our sites and seasons, CH4 comprised 67.5% 

of the global warming potential of GHG emissions, while CO2 and N2O (with 

acceptance criteria) constituted the remaining 30.9% and 1.7%, respectively.  

DISCUSSION 

 This study examined GHG emissions from the water-air interface of beaver 

ponds, which have been increasing steadily in southern Rhode Island and across 

Northeastern North America over the past several decades. Our results show that these 

beaver ponds have significant CH4 and CO2 emissions, as others have shown in the 

past (Naiman et al., 1991; Yavitt et al., 1992). In addition twenty-one reservoirs were 

found to be net sources of CO2 and CH4 (St. Louis et al., 2000). 

Beaver Pond Emissions 

Mean CH4 emissions were within the upper range of other previous beaver 

pond studies (Table 8). The beaver ponds with the lowest CH4 emissions tend to be in 

colder climates or in ponds with more aerobic bottom sediments. Pond B had 

significantly higher CH4 emissions than the other ponds, with very high variance 

(Table 4). Although Pond B was the youngest pond, it had the greatest depth of 

organic matter. It was also substantially smaller than the other ponds (average 
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diameter of just 25 meters) and largely protected from the wind by a surrounding tree 

canopy. These characteristics suggest conditions of limited mixing of oxygenated 

waters with the bottom sediments, potentially creating anaerobic conditions at the 

water-sediment interface. Bubbles from ebullition may account for some of the 

variability observed in the CH4 rates (Husted, 1994). Wagner et al. (2003) noted that 

extensive oxidation of CH4 can occur if only 5 cm of oxidized sediment overlies the 

zone of methane production.  In addition, shallow water columns may limit the time 

for microorganisms to oxidize the CH4 into CO2 before release into the atmosphere 

(Keller and Stallard, 1994).  

We observed significantly higher CO2 emissions during the fall.  Although 

temperatures were highest during the summer, the increased CO2 emission rate may 

have been due to high rates of respiration associated with the degradation of fresh 

input of allochthonous C (fresh leaves) and from plant senescence in the fall (Ford and 

Naiman, 1988; Gessner, 1991). Bosetta and Agren (1985) suggest that fresh organic 

matter is highly decomposable and becomes increasing more recalcitrant through the 

decay process. 

When using acceptance criteria (Table 6) N2O emissions were high relative to 

more aerobic, terrestrial ecosystems and comparable to many aquatic systems (Table 

9). Many incubations did not have significant N2O production and therefore without 

using acceptance criteria the fluxes of N2O lowered. Bodaly et al. (2004) found 

reservoirs to be sinks of N2O, and N2O fluxes from boreal ponds were found to be 

negligible (Huttunen et al., 2002).  
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Pond C, which has the lowest nitrate concentration and is the largest of the 

sites (Table 1), was a small sink for N2O (Table 7). In a related study by Lazar (2013), 

Pond C had significantly lower denitrification rates than the other sites, which follows 

previous research showing open water wetlands had lower denitrification potential 

than emergent macrophyte wetlands (Anderson et al., 2005 and Hernandez and 

Mitsch, 2007). A recent study in a eutrophic pond, found low N2O production (<0.01 

mg m-2 day-1) due to denitrification going to completion, i.e. any N2O was reduced to 

N2 (Gao et al., 2013). The high CH4 emissions that we observed suggest that 

sediments in our ponds are anaerobic, which fosters complete denitrification.  Song et 

al. (2009) reported N2O emissions from wetlands ranging from 0.47-1.2 mg m-2 day-1 

which are comparable to our beaver pond N2O emissions (Table 9). The beaver pond 

sediments are fully saturated with water and several studies suggest that N2O 

emissions tend to peak when sediments are partially saturated, declining markedly at 

full saturation (Davidson et al., 2000; Jungkunst et al., 2008). Our low N2O emissions 

may be also be due to low nitrate concentrations limiting rates of denitrification (Table 

1).These beaver ponds are located in forested watersheds, with low agricultural 

activity and high capacity for nitrate removal by riparian zones. 

Environmental Drivers of GHG Emissions  

CH4 emissions were positively correlated with air and water temperature. 

Increasing temperatures increase rates of organic matter decomposition and microbial 

activity, and under anaerobic sediment conditions, lead to increased CH4 emissions.  

The significant correlation between temperature and CH4 production is consistent with 

previously published results (Roulet et al., 1997; Conrad, 2007). As temperatures 



 

82 
 

increase with climate change, more methane is likely to be released, creating a positive 

feedback (IPCC, 2007).  

CO2 emissions were positively correlated to DOC, which is consistent with 

results reported by Hope et al., (1996) for Wisconsin lakes. Increased DOC 

concentrations in ponds may be caused by increased decomposition of organic matter, 

and CO2 is a byproduct. A long-term regional study by Laudon et al. (2012) concluded 

that average stream DOC is related to mean annual temperature. Optimum conditions 

for DOC production and export is 0-3°C, beyond that temperature, high mineralization 

rates reduce production of DOC. For this reason DOC is expected to decrease with 

increasing temperatures (Laudon et al., 2012). Conversely, decreased atmospheric 

deposition has increased DOC concentrations in streams (De Wit et al., 2007). 

There were no patterns of younger ponds having more or less global warming 

potential (in CO2 equivalents) of GHGs than older ponds. Pond B, the youngest pond, 

had significantly higher CH4 than the other sites, but not significantly higher CO2 or 

total global warming potential. Previously published work shows GHG fluxes both 

decreasing (St. Louis et al., 2000 and Duchemin et al., 2002) and increasing (Soumis 

et al., 2004) with age of pond. The oxidative state of the sediment/water interface and 

the mass and quality of labile carbon inputs – two properties that we were not able to 

measure – are likely confounding factors.   

Estimating Watershed Scale Emissions from Beaver Ponds 

We hypothesized that beaver ponds would generate high emissions of 

GHG. To compare the observed beaver pond emissions to studies of other ecosystems, 

we extrapolated the measured seasonal rates over 273 days to represent the Fall, 
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Spring and Summer seasons when we obtained measurements. Given that emissions 

may occur over the winter months, this assumption is likely an underestimate of 

annual GHG generation. On a per unit area basis, the beaver ponds in our study 

yielded much higher annual GHG emissions, expressed as global warming potential 

(Figure 3) than upland land uses in temperate settings. Comparing median values, the 

annual global warming potential of beaver ponds per unit area were generally more 

than 20 times higher than fertilized grasslands (Freibauer, 2003) and 2 fold higher than 

upland forests (Bowden et al., 2000).  

However, beaver ponds have a limited areal footprint within the landscape.  In 

southern New England, we estimate that beaver ponds may constitute only 0.3 -0.7% 

of catchment area. Our estimate of is based on the work DeStefano et al. (2006) who 

found 0.7 beaver ponds per km2 of catchment area, coupled with two estimates of 

beaver pond area – the median beaver pond area (0.26 ha) from our three sites and a 

pond area of 1.0 ha, which represents a minimum size from many other studies 

(Weyhenmeyer, 1999 and Pollock et al., 2003). Given this limited footprint, the recent 

return of beaver ponds are not likely to dramatically increase GHG emission from the 

rural landscapes of the northeast. We estimate that beaver ponds in this study are 

contributing 11 Mg km-2 of catchment area yr-1 of global warming potential expressed 

as CO2 equivalents. In comparison, the median global warming potential of emissions 

from upland temperate deciduous forests are estimated at approximately 1,700 Mg km-

2 of catchment area yr-1 while emissions from fertilized grasslands have been 

documented at approximately 175 Mg km-2 yr-1. These rates are based solely on 

gaseous emissions, not taking into account sequestration in plants and soils.  
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  The net effect of beaver ponds on the global warming potential of GHG 

emissions of the Northeast U.S. will depend not only on the ponded areas of the 

beaver ponds, but also upon changes in the areal extent of riparian lands with elevated 

water tables. In most riparian sites of the Northeast U.S. water tables display seasonal 

patterns, rising during the wet season and falling during summer and early fall. A 

beaver dam can “reset” the boundary conditions that govern groundwater drainage of 

the riparian land adjacent to the ponds – potentially increasing the temporal areal 

extent of saturated or partially saturated forest soils and switching these areas from 

upland GHG sinks to partially wet GHG sources. In a series of microcosm studies on 

three different wetland soils, Jungkunst et al. (2008) showed that rising water tables 

(from -40 to -5 cm from the ground surface) exerted control over greenhouse gas 

emissions as soils switched from aerobic to anaerobic metabolism. CO2 emissions 

from the soils decreased with rising water tables, but consistent CH4 emissions were 

not observed until water tables were close to the surface (-5 cm). They found the 

highest global warming potential (expressed as CO2 equivalents) from forested 

wetlands when water tables were -20 cm, and both CO2 and N2O were the major 

components of the total emissions (Figure 3). These water table levels may reflect 

optimum moisture conditions for N2O generation (Davidson et al., 2000).  

A complete examination of the greenhouse gas budget (i.e., net greenhouse gas 

exchange expressed as the global warming potential in CO2 equivalents) of beaver 

ponds requires consideration of both GHG emissions and the long-term fate of carbon 

that is sequestered in beaver pond sediments.  Indeed, both temperate forests and 

grasslands serve as net C sinks when both emissions and sequestration are quantified 
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(Valentini et al., 2000; Follett, 2001; Gilmanov et al., 2007).  Naiman et al., (1988) 

found that abandoned beaver ponds in boreal areas may persist for centuries as 

marshes, bogs and forested wetlands, rather than reverting back to the pre-ponded 

landscape. Some of the organic material in the beaver ponds might pre-date the 

establishment of the beaver ponds if they developed in riverine marshes or riparian 

wetland forests that were subsequently inundated by the pond. Pollen analyses and 

other dating methods would be required to characterize the pedogenesis throughout the 

organic horizons of the ponds (Ricker et al., 2012). The carbon stocks accumulated in 

beaver ponds may be stored under anaerobic conditions for extended periods. This 

storage might be offset however, by high CH4 and N2O emissions under anaerobic 

conditions.  Alternatively, if beaver ponds are subject to more intensive disturbance 

and drainage, the carbon rich sediments may undergo more rapid aerobic 

decomposition to CO2, either in situ or as it is transported through the fluvial 

ecosystem.  Further studies that track the pattern and conditions of abandoned beaver 

ponds over time will be essential to understanding their role as greenhouse gas sources 

or sinks.   
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TABLE 1.Site characteristics on sampling dates. Values for water depth, depth of 
organic sediment, water and sediment pH, sediment carbon content and water nitrate 
concentration are mean, standard deviation (n value). 

Beaver Pond A B C 

Lat/Long 
41.486175/ 
71.548384 

41.503464/ 
71.533608 

41.565725/ 
71.677929 

Surface Area (ha) 0.26 0.05 8.00 
Drainage Area (ha) 2450 2093 976 

Retention Time (hours) 1.8 0.3 111.4 
Tributary (name and 

stream order) 
Chipuxet, 2 Chipuxet, 2 Roaring Brook, 1 

Water Depth (m) † 0.93,0.49 (23) a 0.59, 0.25 (16) b 0.75,0.23 (38) ab 
Depth of Organic 
Sediment (m) † 

0.29, 0.29 (15) b 0.66, 0.25 (7) b 0.45, 0.19 (8) ab 

Pond Water pH† 6.3, 0.1 (19) a 6.3, 0.2 (20) a 6.0, 0.2 (18) b 
Sediment pH† 6.3, 0.2 (6) a 6.0, 0.4 (7) a 5.5, 0.1 (5) b 

First documented 
evidence (yr) 

1992 2008 1988 

Sediment carbon (%)† 18.3, 5.99 (42) b 15.0, 2.97 (46) b 29.8, 13.46 (43) a 

Nitrate (mg N L-1) † 
0.30, 0.22 (17) b 0.89, 0.21 (19) a 

Below detection 
<0.02 (16)c 

Oxygen (mg L-1) † 5.1, 2.6 (18)b 6.2, 3.4 (19)a 5.4, 1.9 (18)ab 
†Means within a row with distinct superscript letters are significantly different (p< 
0.05) as determined by a Tukey’s post hoc mean separation test following a 1 way 
ANOVA. 
 
 
 
TABLE 2.Seasonal characteristicson sampling dates. 

 
Spring Summer Fall 

Air Temperature (°C)† 19.5, 7.0 (23) b 29.7, 3.9 (25) a 16.5,3.3 (9) b 
Water Temperature (°C)† 16.5, 5.3 (23) b 24.5, 3.4 (25) a 13.8 3.2 (9) b 
Dissolved Oxygen (mg L-1) † 8.0, 2.4 (21) a 4.1, 1.1 (25) b 4.9, 1.8 (9) b 

†Means within a row with distinct superscript letters are significantly different (p< 
0.05) as determined by a Tukey’s post hoc mean separation test following a 1 way 
ANOVA. 
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TABLE 3.Dissolved organic carbon and microbial biomass C throughout the seasons. 
Values are mean, standard deviation, (n value). 
 Spring Summer Fall 
Dissolved Organic Carbon           
(mg C L-1) mean 5.7, 2.1 (16) 4.6, 1.4 (24) 4.5, 0.7 (9) 
Microbial Biomass 
Carbon (mg C kg-1 soil 
dry soil) mean (SD) † 188.4, 84.0 (27) a 95.7, 68.0 (27) b 16.9, 18.8 (27)c 

†Means within a row with distinct superscript letters are significantly different (p< 
0.05) as determined by a Tukey’s post hoc mean separation test following a 1 way 
ANOVA. 
 
 
 
TABLE 4. CH4 emission rates (mg CH4 m

-2 day-1) from beaver ponds.  Values within 
each cell are means, standard error (n value). "Grand Means" cells are mean, standard 
error. Grand means are weighted averagesof the entire sample of interest, not the 
average of the means. Note that n values (each n representing one chamber on one 
date) were not equal.  

 
Spring Summer Fall Grand Means† 

Pond A 

32.0, 17.0 
(33) 

51.8, 16.1 
(40) 

29.3, 7.0 
(15) 40.5, 9.8

b
 

Pond B 

276.1, 77.4 
(32) 

487.7, 112.9 
(31) 

303.2, 
120.8 (17) 363.9, 57.1

a
 

Pond C 

100.9, 13.3 
(30) 

155.2, 18.3 
(35) 

139.5, 19.8 
(15) 134.5, 11.0

b
 

Grand Means  136.0, 23.7 208.4, 35.4 163.5, 47.2 

 †Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season). 
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TABLE 5. CO2 emission rates (mg CO2 m
-2 day-1) from beaver ponds. Values within 

each cell are mean, standard error (n value). "Grand Means" cells are mean, standard 
error. Grand means are weighted averages of the entire sample of interest, not the 
average of the means. Note that n values (each n representing one chamber on one 
date) were not equal. 

 

Spring Summer Fall 

Grand 

Means† 

Pond A 

3245.5, 
173.7 (34) 

4282.1, 
251.2 (38) 

7898.3, 
407.1 (15) 4500.5, 227.5

a
 

Pond B 

3474.1, 
436.9 (35) 

3216.9, 
223.9 (33) 

5473.6, 
419.2 (20) 3832.1,235.5

 b
 

Pond C 

3160.2, 
242.3 (27) 

2243.9, 
135.6 (45) 

15795.9, 
1348.0 

(15) 4018.1,593.8
ab

 

Grand 

Means† 

3304.9, 

184.3
b
 

3188.4, 

141.3
b
 

9297.7, 

767.2
 a
 

 †Grand means within a row or column with distinct superscript letters are significantly 
different (p< 0.05) as determined by a Tukey’s post hoc mean separation test 
following a 2 way ANOVA (site and season). 
 

 

TABLE 6. N2O emission rates (mg N2O m-2 day-1) from beaver ponds. Values within 
each cell are mean, standard error (n value). "Grand Means" cells are mean, standard 
error. Grand means are weighted averages of the entire sample of interest, not the 
average of the means. Note that n values (each n representing one chamber on one 
date) were not equal. 

 
Spring Summer Fall

‡
 

Grand 

Means 

Pond A 0.96, 0.1 (18) 1.52, 0.4 (14) 0, no data (0) 1.20, 0.2 

Pond B 0.98, 0.1 (16) 1.00, 0.2 (23) 1.09, 0.4 (12) 1.02, 0.1 

Pond C 0.90, 0.2 (4) 0.38, 0.0 (6) 0, no data (0) 0.59, 0.2 

Grand 

Means 0.96, 0.1 1.08, 0.2 1.09, 0.4 

 †No significant differences were found between "Grand Means" within a row or 
column (p< 0.05) as determined by a Tukey’s post hoc mean separation test following 
a 2 way ANOVA (site and season).  ‡In the fall two ponds did not generate N2O. 
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TABLE 7. N2O emission rates (mg N2O m-2 day-1), without using acceptance criteria, 
from beaver ponds. Values within each cell are mean, standard error (n value). "Grand 
Means" cells are mean, standard error. Grand means are weighted averages of the 
entire sample of interest, not the average of the means. Note that n values (each n 
representing one chamber on one date) were not equal. 

 
Spring Summer Fall

‡
 Grand Means 

Pond A 0.69, 0.08 (35) 1.03, 0.65 (40) -0.03, 0.08 (15) 0.72, 0.29
 a
 

Pond B 0.80, 0.08 (36) 0.54, 0.11 (44) 0.51, 0.09 (20) 0.63, 0.06
 a
 

Pond C -0.07, 0.1 (30) 0.01, 0.08 (45) -0.17, 0.08 (15) -0.05, 0.05
b
 

Grand 

Means 0.50, 0.06 0.51, 0.21 0.14, 0.07 

 †No significant differences were found between "Grand Means" within a row or 
column (p< 0.05) as determined by a Tukey’s post hoc mean separation test following 
a 2 way ANOVA (site and season).  ‡In the fall two ponds did not generate N2O. 
 
 
 
 
TABLE 8. CH4 emission comparison to other static-chamber studies. 

Study Setting 

CH4 mg m
-2

 

day
-1

 

Bowden et al., 2000 Pennsylvania forest 0 

Groffman et al., 2006 
Northern Hardwood 
forest 1 

Soumis et al., 2004 
Sierra Nevada region, 
reservoir 3-10 

Duchemin et al., 1995 
1500 km north of 
Montreal, reservoirs 15 

Ford and Naiman, 1988 Quebec,beaver ponds 27 
Naiman et al., 1991 Minnesota,beaver ponds 78 

Roulet et al., 1997 
Boreal region, Canada, 
beaver ponds 109 

Yavitt et al., 1992 
Adirondack, beaver 
ponds 150 

Lazar et al., 2013 (this study) 

Rhode Island, beaver 

ponds 174 

Yavitt et al., 1990 
West Virginia, beaver 
pond 250 

Keller and Stallard, 1994 
Panama, lake formed by 
dam 725 

Hlavacova et al., 2006 
Czech Republic, stream 
emissions 6500 
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TABLE 9. N2O emission comparison to other static-chamber studies. 

Study Setting N2O mg m
-2

 day
-1

 

Brumme et al., 1999 temperate forest, Germany 0.17 
Hlavacova et al., 
2006 

stream emissions 0.31 

Bowden et al., 2000 forest, Midwest USA 0.31 

Song et al., 2009 wetlands, Northeast China 0.47-1.2 

Groffman et al., 2006 forest, Northeast USA <1 

Lazar et al., 2013 beaver pond, Northeast USA 0.14-1.09 

Clough et al., 2006 spring fed river, New Zealand 4.1 
Jungkunst et al, 2008 hydric temperate forest, Germany 16.9-36.3 
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FIGURE 1. Floating static chambers on a beaver pond. 
 
 

 
FIGURE 2. Total greenhouse gas emissions expressed in CO2 equivalents. These rates 
do not account for sequestration from plants and soils. 
 

 
 
 

0

100

200

300

400

500

600

700

800

900

Pond A
Fall

Pond B
Fall

Pond C
Fall

Pond A
Spring

Pond B
Spring

Pond C
Spring

Pond A
Summer

Pond B
Summer

Pond C
Summer

m
m

o
l 

m
-2

 d
a
y

-1
 

Total Greenhouse Gas Emissions in CO2 

Equivalents 

N2O

CH4

CO2



 

97 
 

 
FIGURE 3. Average emission ranges in CO2-equivalents per hectare from fertilized 
grassland (Freibauer, 2003), conventional and conservation tillage of a corn/soybean 
site in Iowa and a corn/wheat site in Hebie, China (Changsheng et al., 2008), upland 
temperate deciduous forests (Bowden et al., 2000), hydric temperate deciduous 
forests* (Jungkunst et al., 2008) and the three beaver ponds in this study. Beaver pond 
emissions represent the range of the three sites in this study based on 270 days of 
emissions per year, assuming no emissions during winter when ice cover is likely.  
*Water table position is at -20cm (Jungkunst et al., 2008). These rates do not account 
for sequestration from plants and soils. 
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