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Abstract. Small-scale experiments and theory suggest that ecological functions provided
by communities become more stable with increased species richness. Whether these patterns
manifest at regional spatial scales and within species-rich communities (e.g., coral reefs) is
largely unknown. We quantified five biogeochemical processes, and an aggregate measure of
multifunctionality, in species-rich coastal fish communities to test three questions: (1) Do
previously predicted biodiversity–ecosystem-function relationships hold across large spatial
scales and in highly diverse communities? (2) Can additional covariates of community
structure improve these relationships? (3) What is the role of community biomass and
functional group diversity in maintaining biogeochemical processes under various scenarios of
species loss across ecosystem types? These questions were tested across a large regional
gradient of coral reef, mangrove and seagrass ecosystems. Statistical models demonstrated
that species richness and the mean maximum body size per species strongly predicted
biogeochemical processes in all ecosystem types, but functional group diversity was only a
weak predictor. Simulating three scenarios of species loss demonstrated that conserving
community biomass alone increased the ability for communities to maintain ecosystem
processes. Multifunctionality of biogeochemical processes was maintained least in simulations
that conserved biomass and community structure, underscoring the relative lack of
importance of community structure in maintaining multiple simultaneous ecosystem functions
in this system. Findings suggest that conserving community biomass alone may be sufficient to
sustain certain biogeochemical processes, but when considering conservation of multiple
simultaneous biogeochemical processes, management efforts should focus first on species
richness.

Key words: consumer-driven nutrient recycling; coral reef; diversity; ecosystem function; fish; food web;
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INTRODUCTION

A primary rationale for conservation of biodiversity is

that species loss may undermine our ability to meet the

rising demand for ecosystem services for growing human

populations. Small-scale experiments and theory suggest

that increased species richness or functional group

richness is positively correlated with various ecosystem

functions (e.g., biomass, nutrient and energy cycling, etc.

[Loreau et al. 2001, Hooper et al. 2005]). The nature of

biodiversity–ecosystem-function relationships, and the

mechanisms by which they are governed (i.e., species

dominance vs. species diversity), have been well studied

in model communities (Tilman et al. 1997), yet our

understanding remains limited in three primary ways.

First, studies have largely focused on simple food webs

that do not always encompass the levels of diversity

found in many ecosystems, including many of those at

most risk (e.g., tropical rainforests and coral reefs [Duffy

2009, Hillebrand and Matthiessen 2009, Cardinale et al.

2012, Naeem et al. 2012]). Second, the extent to which

biodiversity–ecosystem-function relationships hold

across space is not well understood, particularly across

large spatial scales of the same ecosystem type (Duffy

2009, Hillebrand and Matthiessen 2009, Cardinale et al.

2012, Naeem et al. 2012, but see Maestre et al. 2012).

Third, biodiversity studies tend to occlude other possible

community characteristics (e.g., trophic structure, body

size, etc.) that may additionally mediate ecosystem

functioning.

Coastal marine ecosystems, including coral reefs,

mangroves, and seagrass beds, are among the most

species-rich and productive ecosystems in the world.

Despite yielding critical ecosystem services for society,

they are also among the most heavily impacted by

humans (Worm et al. 2006), e.g., resulting in drastic

declines of coastal fisheries on which humans rely

(Jackson et al. 2001). While ecological implications of

such declines have been widely studied from a food web

(i.e., top-down) perspective (Pauly et al. 1998, Essing-
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ton et al. 2006), the role of fishes in mediating

biogeochemical pathways (Vanni 2002), a critical

ecosystem function (Naeem et al. 2012), is not well

recognized. Namely, through stoichiometric processes

of assimilation (storage in biomass) and regeneration

(excretion), fishes are among the largest pools (Maran-

ger et al. 2008) and fluxes of nutrients (Allgeier et al.

2013, Burkepile et al. 2013) in oligotrophic coastal

waters, regulating energy and material pathways within

these energetically efficient ecosystems (Deangelis

1980). These stoichiometric processes are governed by

traits that are unique to each species, and thus provide

a framework to understand mechanisms through which

biodiversity mediates ecosystem function (Vanni et al.

2002).

Here we test basic biodiversity–ecosystem-function

relationships using an extensive data set of 172 marine

fish communities in six coastal ecosystem types across

the Northern Antilles (Figs. 1, 2). Specifically, we ask

three primary questions: (1) Do previously predicted

biodiversity–ecosystem-function relationships hold

across large spatial scales and in highly diverse

communities? (2) Can additional covariates of commu-

nity structure improve these relationships? (3) What is

the role of community biomass and functional group

diversity (i.e., trophic structure) in maintaining biogeo-

chemical processes under various scenarios of species

loss across ecosystem types?

To test these questions we quantify five biogeochem-

ical processes of nutrient storage and supply (for

nitrogen, N, and phosphorus, P), and an aggregate

measure of multifunctionality (M ) for 144 species across

mangrove, seagrass, and four coral reef ecosystems. We

apply statistical analyses to explore how variability in

diversity metrics and community structure found across

geographic gradients (and within different ecosystem

types) affect consumer-mediated biogeochemical pro-

cesses at the ecosystem level. We then simulate

hypothetical scenarios of species loss to further explore

the importance of species richness, community biomass,

and functional group diversity for these same biogeo-

chemical processes.

METHODS

Study design

To address our focal questions, we first applied

hierarchical mixed-effects models to test relationships

between biodiversity and community structure, and

biogeochemical processes (Question 1; Fig. 1B). We then

simulated three scenarios of species loss, and applied

qualitative and quantitative assessments of the degree to

which biomass and functional group diversity (i.e.,

trophic structure) help maintain biogeochemical process-

es across all ecosystem types (Question 2; Fig. 1C). This

study represents a companion to Allgeier et al. (2014), but

here the focus is on biodiversity–ecosystem-function

relationships, not the ecological implications of the ratio

of nutrient supply for these ecosystem types, namely coral

reefs (Allgeier et al. 2014).

Our study used two primary data sets: survey data

and a large quantitative data set on fish nutrient

content and excretion. Survey data is from Mumby et

al. (2006), and consists of identification and size

estimates of 71 729 fish across 172 communities. The

excretion data is from Allgeier et al. (2014) and consists

of models for which processes of C, N, and P storage

and N and P supply can be estimated as a function of

wet mass for 144 fish species. The analysis consisted of

three steps: (1) model all processes, plus multifunction-

ality (M ), onto every fish in the data set; (2) quantify

aggregate processes for each community and apply

these data to hierarchical models (Question 1 and 2);

(3) Conduct simulations for three scenarios of species

loss for the average community of fish from each

ecosystem type. (Question 3)

Surveys

We surveyed 172 fish communities across 82 sites

within six different ecosystems (Acropora reef, gorgoni-

an plains [see Plate 1], mangroves, Montastraea reef,

patch reef, seagrass) across seven different islands in the

Northern Antilles with relatively low fishing pressure

(i.e., the Bahamas and Turks and Caicos [Mumby et al.

2006, Harborne et al. 2008]). Surveys consisted of

multiple transects (typically 8–10), which were averaged

per area following Mumby et al. (2006) and Harborne et

al. (2008).

Models for nutrient excretion

Bayesian statistics allow parameters to be estimated

based on observed distributions (the observed data), and

prior distributions that allow knowledge from previous

studies to be applied explicitly and quantitatively

(McCarthy 2007). In this study, we used Bayesian

statistics to develop models that predict excretion rate as

a function of wet mass by informing empirical data (the

observed data) with bioenergetics models (used to

generate the priors), thus incorporating the two most

widely applied methods to estimate fish excretion

(Schreck and Moyle 1990b, Schaus et al. 1997, Whiles

et al. 2009) into singular models of nutrient excretion by

fishes. The modeling approach was developed such that

if the empirical data were robust then the final model

would primarily reflect these data (i.e., the priors

developed from the bioenergetics model would only

minimally inform the output). When the empirical data

were not robust, due to lack of individual empirical

measurements on rare species or high variability in the

data, the final model would then be more of a reflection

of the bioenergetics models (i.e., the priors would have

more influence on the output). In doing so, this

approach allowed us to underpin extensive empirical

data to produce robust models with realistic error and

fill gaps in the empirical data set for which empirical

data was incomplete.
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This modeling process consisted of four steps:

1) Bioenergetics models were developed for each family

(and in some cases at the genus level) in our data set

to estimate excretion rates of N and P for a given

mass of an individual fish.

2) These data were run in an initial Bayesian simple linear

regression analysis (using uninformative priors), to

generate parameter estimates for the slope and

intercept of each model (y ¼ mx þ b, where y is

excretion rate, x is the wet mass of an individual, m is

the slope, and b is the intercept) (see detailed methods

for bioenergetics models in Methods and Appendix A).

3) A second Bayesian simple linear regression analysis

was conducted using the empirical data. In this case,

we used the posterior distributions (i.e., the mode and

standard deviation) for the slope and intercept

generated in Step 2 as the priors for the model

(McCarthy 2007). In this way, we were able to take

advantage of all available data and multiple ap-

proaches to generate robust estimates of nutrient

supply by fishes.

4) The posterior distributions of these final estimates for

the slope and intercept were then used to calculate the

excretion rate for every fish within our survey data

set. See Ecosystem modeling for further explanation.

FIG. 1. Hierarchical conceptual model of
research and hypotheses. (A) Empirical data used
in statistical models to test for biodiversity effects,
including the empirical survey data set, stoichio-
metric data set, and the total species and
percentage of biomass accounted for by our study.
(B) Hypotheses for biodiversity effects: (i) species
richness has either a positive saturating nonlinear,
or positive linear, relationship with ecosystem
processes; (ii) species dominance, i.e., the degree
to which individual species have disproportionate
influence on ecosystem processes, here quantified
with diversity indices (e.g., Simpson’s diversity
index), may be either positively or negatively
related to ecosystem process; (iii) functional group
(FG) diversity, here calculated using diversity
indices for FGs, may be either positively or
negatively related to ecosystem processes. (C)
Three scenarios of species loss used in simulation
models in this study: (i) no replacement, i.e.,
random removal of species without compensation;
(ii) biomass, i.e., random removal with compen-
sation to maintain total community biomass; and
(iii) biomass þ FG, i.e., random removal with
compensation to maintain total community bio-
mass and functional group diversity (i.e., trophic
structure). The three plots are examples of
potential outcomes from simulations, including
bifurcation (left panel). (D) Hypothesized strength
of model variance structure produced from the
different scenarios of species loss (indicated by
color) at each level of species richness associated
with each ecosystem type.
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Bioenergetics models

Bioenergetics models use a mass balance approach

given a priori knowledge of the natural history (e.g.,

diet, feeding activity), physiology (e.g., stoichiometry of

predator and prey, assimilation efficiency of nutrients,

consumption rates, energy density of prey) and envi-

ronmental conditions (temperature) to estimate nutrient

excretion (Schreck and Moyle 1990b, Hanson et al.

1997). We followed the approach to construct bioener-

getics models, and used the same diet stoichiometry data

as found in Allgeier et al. (2013, 2014). In total,

bioenergetic models for 31 genus and 25 families within

our surveys were developed (Appendix A).

Empirical excretion estimates

All fish were captured using hook and line or traps on

Abaco Island, the Bahamas between 2008–2011. Fish

were captured in coral reef, mangrove, and seagrass

ecosystem types representing all of the ecosystem types

for which excretion rates were modeled herein. Fish were

pooled across ecosystem type, such that individuals from

a given species could have been caught in any one or all

ecosystems. We accounted for potential differences in

resource availability across ecosystem type, which would

be predicted to affect recycling rates, in two ways: (1)

individuals within a given species were often collected

from different ecosystem types and potential variation

across ecosystem type was pooled, and thus accounted

for, in our empirical models, and (2) we modeled error

for diet nutrient content in our bioenergetics models

(Appendix A). Excretion rates, for nitrogen-NH4
þ and

soluble reactive phosphorus (SRP), were measured in

situ following the methodologies of Schaus et al. (1997),

as modified by Whiles et al. (2009). Values were control

corrected through the use of multiple (typically n ¼ 6)

identical control incubation bags without fish (see

Appendix B for details on nutrient analyses). Each fish

used for excretion experiments (n ¼ 665 individual fish,

79 species, 46 genera and 26 families; size range: 2–107

cm) was weighed for wet mass and measured to standard

length. Fish were identified, and dissected to remove

stomach contents, and then frozen for transport to the

University of Georgia’s (UGA) Odum School of

Ecology and processed for elemental content (C, N,

and P). UGA’s Institutional Animal Care and Use

Committee approved protocols for the capture and

handling of fish (AUP #A2009-10003-0) were used.

Water samples (filtered with 0.45-lm Whatman nylon

membrane filters) were immediately placed on ice and,

within 10 hours, analyzed for NH4 using the method-

ologies of Taylor et al. (2007), or frozen for transport to

UGA for SRP analyses using the ascorbic acid method

and colorimetric analyses (APHA 1995; Appendix B).

Bayesian excretion models

Previous research on fish nutrient stoichiometry has

shown that variation within families is relatively con-

strained (Vanni et al. 2002). As such, we used genus- or

family-level bioenergetics models to inform empirical

data in a Bayesian framework (i.e., bioenergetics models

were employed to constrain excess variance in empirical

excretion models when present). To further illustrate this

approach, we follow each step taken to generate the final

equation (excretion rate ¼ wet mass3 slope þ intercept)

with an example species: gray snapper (Lutjanus griseus).

FIG. 2. Map of region where surveys were conducted. For simplicity, only the islands upon which multiple surveys were
conducted are identified. Numbers represent Bimini, 1; Abaco, 2; Andros, 3; Exuma Cays Land and Sea Park, 4; Lee Stocking
Island, 5; Conception Island, 6; San Salvador, 7; South Turks and Caicos, 8.
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Step 1: A genus-level bioenergetics model for Lutjanus

was developed. Step 2: A Bayesian simple linear analyses

was run using the size-specific data generated from the

bioenergetics model. Step 3: A second Bayesian simple

linear analysis was run using the empirical excretion data

(i.e., collected from individual gray snapper; n¼ 70 fish),

whereby the priors for this model were determined by the

estimates for the slope and intercept calculated from the

bioenergetics data in Step 2. Step 4: The estimates (and

standard deviation) for the slope and intercept from this

final model were applied to calculate the excretion rate

for all gray snapper found within the data set using

Monte Carlo simulations (see Ecosystem modeling).

In the case of the gray snapper models, the empirical

data were robust and thus the priors generated from the

bioenergetics model had little influence on the final

model (e.g., the slope from the empirical data alone, the

bioenergetics model, and the final model were empirical

m ¼ 0.000018, bioenergetic m ¼ 0.0001, final m ¼

0.000022). In cases where the empirical data was less

robust, the bioenergetics model would have more

influence on the final slope estimate. In all cases, the

prior estimates influenced the variance associated with

each parameter estimate. To account for all potential

sources of error we used Monte Carlo simulations to

perpetuate uncertainty into our final estimates of

excretion for each individual fish (see Ecosystem

modeling).

All models were constructed at the level of taxonomic

resolution for which we had optimal data. For example,

if there were not sufficient empirical data at the species

level to generate significant linear models of wet mass vs.

excretion (at a ¼ 0.1, typically more than eight

individuals), data would be pooled among species within

the same genus and informed with the appropriate

genus-level bioenergetics model. Using this approach,

we developed 27 species-, 25 genus-, and 16 family-level

models. With these models nutrient supply and storage

could be estimated for 144 of the 158 species. Using this

approach we accounted for 99.4% of the biomass of

fishes within the field surveys.

All models were run with three chains for 50 000

iterations with a burn-in period of 1000. Data for

excretion models were not transformed and assumptions

of normality were met. Bayesian analysis was run using

the rjags package in R (R Core Development Team

2012).

Ecosystem modeling

Excretion estimates were modeled onto each individ-

ual fish (n ¼ 71 729 fish) using the equations generated

from the Bayesian models, within all communities (n ¼

172 communities, within 82 independent sites), to

quantify species-level and then aggregate community-

level rates of N and P supply and storage. Fish nutrient

supply is a function of body size, organism identity, and

diet (Schreck and Moyle 1990a, Vanni et al. 2002). As

such, we used Monte Carlo simulations to model

uncertainty into our estimates of fish nutrient supply

for individual fish within the data set. For each fish, we

sampled from the posterior distribution of both the

slope and intercept from our Bayesian excretion models

to calculate 1000 mass-based species-specific excretion

estimates (Robert and Casella 2010). These values were

summed to provide a distribution of community-level

aggregate estimates (n ¼ 1000) of N and P supply. We

applied the same methodology to calculate nutrient

storage, whereas, in this case, we sampled 1000 times

from the normal distribution (mean 6 standard

deviation) associated with our stoichiometric estimates

for body nutrient content at each taxonomic level

(typically genus or species). In doing so, we modeled

realistic estimates of error into each step of our analysis

to create a range of values that represent a realistic

distribution of nutrient supply and storage for every fish

and the entire community. Because we sampled from a

normal distributions for each estimate, this error

propagation approach should not inherently alter the

mean value of the aggregate community-level excretion,

but instead provide information as to how much

variability there may be in this mean as a result of

potential error and natural variability.

Hierarchical mixed-effects models

We used hierarchical mixed effects models and

information theory (Akaike information criterion, AICc

[Burnham and Anderson 2002]), to explore the relation-

ship between the aggregate supply, and storage of

nutrients and multifunctionality (M ) and community

assembly. To do so, we ran six separate models, one for

each of the ecosystem processes of interest and for M.

All models included the same six parameters: species

richness, species diversity (SD, the reciprocal of Simp-

son’s index [Simpson 1949]), functional group diversity

(FGD), mean trophic level (TL), mean maximum size of

each species within the community (Lmax) calculated

following Nicholson and Jennings (2004), and skewness

of the size frequency distribution of the community (Ssize

[Joanes and Gill 1998]; Appendix C). Biomass has long

been recognized to be a strong predictor of stoichio-

metric properties (Sterner and Elser 2002) and, in the

case of this study, was directly used to calculate our

response values. For this reason, we did not include

biomass as a predictor in our models (Appendix C).

Models for N and P storage and recycling were similar

to those published in Allgeier et al. (2014), which

examined the roles of the same explanatory variables on

nutrient content (N, P) as well as stoichiometry (N:P) in

fish excretion and storage. The present analysis uses

most of the same data, but tests the relative strength of

predictor variables by employing a different model

structure in which data were standardized to allow for

more formal comparisons of predictor strengths (i.e.,

allowing quantitative assessment of the relative effect

size and direction of each predictor). Here we also test

the effects of species loss on biogeochemical response
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variables, including carbon and multifunctionality (both

not included in Allgeier et al. [2014]).

Multifunctionality was calculated following Maestre

et al. (2012), whereby we calculated the average of the Z

scores for each ecosystem process of interest. Z scores

were calculated from log-transformed normalized data

as Z score ¼ (x � l)/r ; where x is the site-level

ecosystem process, l is the mean value for all sites, and

r is the standard deviation of all sites. This index was

chosen for three primary reasons: (1) it follows a normal

distribution (Kolomgorov-Smirnof test, df ¼ 81, P ¼

0.18 when calculated for use in mixed-effects models,

Kolomgorov-Smirnof test, df ¼ 143, P ¼ 0.79, when

calculated for simulation models) and thus is applicable

to the modeling approach we used herein, (2) all of our

response variables were positively correlated, and (3) Z

scores do not constrain the variability found in the raw

data (Maestre et al. 2012).

We averaged the 172 fish communities at the site level

(n ¼ 82 sites) to account for variability that may exist

within sites. Site and ecosystem were held as random

effects in all models to control for the confounding

effects that may be present due to site or ecosystem

differences. In all cases, both random effects were for the

intercept only as the random slope, or random intercept

and slope, models were always significantly different (P

. 0.001) and selected against using Akaike’s informa-

tion criterion (Zuur et al. 2009). Models were run using

the lme4 package in R (R Development Core Team

2012). All response variables, as well as richness, SD,

FGD, and Lmax, were log-transformed to ensure linear

relationships and all predictors were standardized in

order to make comparisons among estimates. In all

cases, model assumptions of normality and homogeneity

of variance were met (Appendix C).

Simulation models

We conducted three types of simulations of commu-

nity disassembly: (1) random removal without replace-

ment (the null model, hereafter, no-replacement

models), (2) removal with compensation of biomass by

any remaining species (hereafter, biomass models), and

(3) removal with compensation of biomass whereby the

biomass of all FG remained constant for each species

combination (hereafter, biomassþ FG models). In each

case whereby biomass was compensated due to species

loss, the proportion of biomass for each simulated

community was kept within 62.5% of the mean biomass

for its respective ecosystem type. All simulations were

initially parameterized using the nonrandom average

community structure and richness associated with each

ecosystem type and the entire coastal ecosystem, as

calculated in our surveys (Acropora reef, 68 species;

gorgonian plains, 98 species; mangroves, 48 species;

Montastraea reef, 114 species; patch reef, 86 species;

seagrass, 45 species; entire region, 144 species). For each

level of species richness, we simulated 500 combinations

of communities (created from random draws of species

until that given level of richness was achieved) to create

distinct communities. For each community, the aggre-

gate sum of each ecosystem process and M was

calculated.

Our simulations may not precisely mirror real

scenarios of community disassembly, as we had to limit

the complexity through which species loss occurred

(increasingly complex scenarios would both be nearly

impossible due to the complexity of unknown ecological

interactions and would render model simulations

intractable). For example, in real coral reef ecosystems,

species loss can coincide with replacement by other

species whereby the biomass of the community can be

maintained or even exceed the biomass of the historical

community (e.g., the loss of key predators causes top-

down release of prey species allowing their prolifera-

tion). Our biomass simulations sought to approximate

this reality by generating all (or at least most) potential

combinations of communities that could arise from such

a scenario. These simulations likely generated species

combinations that are not probable (e.g., a community

in which only predators remained) detracting from

realism in some cases. Nonetheless, these simulations

allow us to isolate the specific role of community

biomass in maintaining consumer-mediated biogeo-

chemical processes, and thus it provides important

theoretical and applied perspective into these ecosystems

and the biodiversity–ecosystem-function literature.

Simulations allowed for two tests. First, a qualitative

assessment of the variance associated with each process

within each ecosystem type. Here we were primarily

looking for obvious bifurcations in the simulated data.

Bifurcations indicate disproportionate effects on ecosys-

tem processes by single (or a few) species on a given

ecosystem process (i.e., species identity [Solan et al.

2004, Bunker et al. 2005, McIntyre et al. 2007]),

whereby, when this species is lost, a fundamental shift

in aggregate ecosystem process occurs. Bifurcations

allow inference regarding the degree of disproportionate

species effects (i.e., species identity effects; Fig. 1C, panel

i ).

A second test quantified the variance associated with

the response axis for each simulation. In the case of our

study, the variance represents a measure of how well a

given process was maintained under all species combi-

nations for any given level of richness, and in particular

allows a more quantitative measure of data bifurcation.

That is, if all species contributed relatively equally to a

given process, i.e., high species evenness (Tilman et al.

1997), then the variance would be equal for all levels of

species richness. Conversely, when a single (or few)

species has a disproportionate role in this process, i.e.,

species identity (Tilman et al. 1997), as would be

indicated by a bifurcation in the data, then the variance

would be expected to be greater. As such, comparing

how much variation exists among ecosystem types and,

importantly, among different scenarios of species loss,

allows inference to be made regarding the relative
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importance of maintaining community biomass or

functional group diversity (i.e., trophic structure) in

the face of species loss. To do this, the normalized root

mean squared error (NRMSE; [100 3 RMSE/max(re-

sponse) � min(response)]) was calculated for each

simulation (Moore et al. 2010). A generalized linear

model was then applied for each biogeochemical

process, to assess the relationship between NRMSE of

each ecosystem type and the initial species richness of

the community. The slope and the intercept (here the

mean because the data were centered) were then used to

make comparisons among the three scenarios of species

loss.

RESULTS

Hierarchical linear mixed-effects models and informa-

tion theory (Akaike information criterion corrected for

sample size; AICc [BurnhamandAnderson 2002]) revealed

that best predictors of all ecosystem processes were species

richness (i.e., positive saturating relationship; gray line

Fig. 1B, panel i, Table 1; see Appendix D for raw plots of

richness against all ecosystem processes) andmeanLmax of

individuals in the community (positive relationship, Table

1). Because the parameters were standardized (Gelman

and Hill 2007), estimates indicate a relative effect size. As

such, richness was the best predictor of all ecosystem

processes, followed by Lmax, though their relative impor-

tance was very similar in the multifunctionality, M,

models. For all processes, with the exception ofM, species

diversity (i.e., Simpson’s index [SD], negative relationship;

black line in Fig. 1B, panel ii) was included in all top

models (DAIC , 10), but in all cases the effect of this

predictor was weak relative to richness or Lmax (Table 1;

see Appendix D for untransformed plots of SD against

ecosystem processes). Functional group diversity (i.e.,

trophic groups, FGD) was positively related to all

ecosystem process and negatively related to M but,

importantly, was both weak in effect size and not included

in all top models (Table 1). Mean TL was the only other

predictor that was present in all top models forM (always

negative), but also had a small effect size relative to

richness orLmax. TLwas also an important predictor for P

supply (positive relationship) and, in this case, had a

relatively strong effect size and was included in all models.

The skewness of size distribution (Ssize) was found to have

relatively weak relationships with all processes except P

supply and N storage (both positive). However with all

models, removing any parameter other than richness or

Lmax from the model does not substantially alter the R2 or

AIC values, emphasizing the overwhelming importance of

these two parameters for the global model. To explore the

importance of these two parameters further, we ran the P

supply model without either richness or Lmax. The R
2 and

AICc values changed to 0.70 (a decrease of 0.22) and;150

(an increase of 100), respectively, further highlighting the

importance of richness and Lmax for model fit. This

additional test, however, also demonstrated that themodel

without these parameters (driven only by TL and FGD)

still did remarkably well, explaining 70% of the variance in

the data.

Simulations allowed for qualitative and quantitative

assessment of the role of biomass and functional group

diversity (i.e., trophic structure) for maintaining bio-

geochemical processes under different scenarios of

PLATE 1. Nassau grouper, one of the more dominant species in our study, on a typical gorgonian-dominated reef in the
Bahamas. Photo credit: C. A. Layman.
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species loss. Qualitatively, three general patterns

emerged (Fig. 1C, panels i–iii, Fig. 3). Bifurcations in

simulated data (Fig. 1C, panel i ) indicate dispropor-

tionate species effects on ecosystem processes (hereafter,

species-identity effects), and thus the sensitivity of these

ecosystem processes to species loss. While bifurcations

might be mitigated by the compensatory dynamics of the

simulations, e.g., the maintenance of community bio-

TABLE 1. Results from hierarchical mixed effects models exploring the relationship between aggregate nitrogen (N) and
phosphorous (P) supply, and N, P, and carbon (C) storage of nutrients and mutlifunctionality (M ) and six independent variables
of community assembly.

Richness SD FGD Mean TL Ssize Lmax R2 AIC AICc DAIC

P supply

1.40 �0.58 0.19 0.31 0.19 1.02 0.92 �63.56 150.20 0.00
1.46 �0.48 0.33 0.18 1.04 0.92 �65.44 151.40 1.16
1.56 �0.61 0.17 0.35 0.89 0.92 �67.10 154.70 4.48
1.61 �0.53 0.37 0.91 0.91 �68.52 155.00 4.81

N supply

1.62 �0.54 0.18 0.58 0.92 �58.57 135.10 0.00
1.60 �0.57 0.06 0.17 0.57 0.92 �58.38 137.30 2.15
1.61 �0.54 0.17 0.01 0.58 0.92 �58.55 137.60 2.47
1.49 �0.48 0.65 0.91 �61.57 138.60 3.53
1.58 �0.57 0.07 0.17 0.02 0.58 0.92 �58.31 139.70 4.60
1.47 �0.48 0.05 0.67 0.91 �61.32 140.60 5.49
1.48 �0.51 0.04 0.64 0.91 �61.47 140.90 5.79
1.45 �0.52 0.06 0.05 0.66 0.91 �61.13 142.80 7.64

P storage

1.56 �0.46 0.18 1.19 0.93 �73.31 164.60 0.00
1.68 �0.50 0.12 0.16 1.13 0.93 �72.27 165.00 0.44
1.56 �0.54 0.12 0.19 1.18 0.93 �72.85 166.20 1.60
1.78 �0.53 0.15 1.03 0.93 �74.26 166.50 1.90
1.78 �0.68 0.19 0.14 0.17 1.07 0.93 �71.96 167.00 2.42
1.63 �0.48 1.10 0.93 �75.77 167.10 2.46
1.80 �0.59 0.08 0.15 1.02 0.93 �74.08 168.70 4.07
1.64 �0.52 0.06 1.09 0.93 �75.67 169.30 4.71

N storage

1.71 �0.53 0.14 0.16 1.15 0.93 �70.17 160.80 0.00
1.58 �0.49 0.19 1.23 0.93 �71.90 161.80 0.94
1.68 �0.60 0.14 0.13 0.17 1.12 0.93 �69.35 161.80 0.96
1.56 �0.59 0.16 0.19 1.19 0.93 �70.77 162.00 1.21
1.85 �0.57 0.17 1.03 0.93 �72.34 162.70 1.82
1.84 �0.64 0.12 0.17 1.01 0.93 �71.75 164.00 3.17
1.66 �0.50 1.12 0.92 �74.48 164.50 3.64
1.77 �0.69 0.17 1.04 0.92 �74.53 167.00 6.20

C storage

1.71 �0.53 0.15 0.15 1.14 0.93 �69.46 159.40 0.00
1.68 �0.59 0.12 0.14 0.16 1.12 0.93 �68.79 160.70 1.26
1.85 �0.57 0.18 1.03 0.93 �71.48 160.90 1.50
1.57 �0.49 0.18 1.23 0.93 �71.54 161.10 1.63
1.54 �0.57 0.15 0.19 1.20 0.93 �70.56 161.60 2.19
1.83 �0.63 0.11 0.18 1.01 0.93 �70.99 162.50 3.05
1.65 �0.50 1.12 0.92 �74.10 163.70 4.29
1.67 �0.60 0.14 1.10 0.93 �73.57 165.10 5.70

M

0.14 �0.05 �0.08 0.11 0.72 53.70 �89.40 0.00
0.12 �0.04 �0.07 0.11 0.72 53.21 �88.40 0.98
0.10 �0.08 0.10 0.71 51.77 �88.00 1.40
0.14 �0.04 �0.02 �0.07 0.11 0.72 54.25 �88.00 1.44
0.15 �0.05 �0.07 �0.01 0.11 0.72 54.00 �87.50 1.93
0.13 �0.04 �0.07 �0.01 0.10 0.72 53.43 �86.40 3.08
0.15 �0.04 �0.03 �0.07 �0.01 0.10 0.73 54.54 �86.00 3.45
0.10 �0.08 �0.01 0.10 0.71 51.84 �85.70 3.73

Notes: Variables include species richness (richness), the number of species within a community; species diversity (SD) and
functional group diversity (FGD), both measured by the reciprocal Simpsons’ diversity index at the species level and functional
group level based on discrete trophic delineations, respectively; mean trophic level (mean TL) and mean maximum size per species
within the community (Lmax); skewness of the size frequency distribution of the community (Ssize); Akaike’s information criterion
(AIC); AIC corrected for sample size (AICc); and the change in AIC attributable to this model (DAIC). Top models (DAIC , 10)
are shown for each response, with models decreasing in support from top to bottom. Empty cells indicate that the parameter was
not in a model; the sign of the values associated with each parameter indicates the direction of change. Predictor variables were all
standardized for ease of comparison among parameter estimates.
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mass, the general paucity of bifurcations across all

simulations suggests that contributions to nutrient

cycling is relatively evenly dispersed across communities

(i.e., species diversity, not species identity, may be

driving biodiversity effects for most scenarios of species

loss; Fig. 3, Appendix D: Figs. D1–D3). Data clouds

that indicate a sharp reduction in variance with

increasing species richness (Fig. 1C, panel ii ), indicate

that with increased species richness the range at which

communities can affect biogeochemical processes sub-

stantially increases. Data clouds with less reduction in

variance (Fig. 1C, panel iii ) indicate that the identity of

species present in the community tends to be less

important for that particular biogeochemical process;

this tended to occur in both scenarios in which biomass

was compensated and for processes of storage. The

increased propensity for communities to have larger

rates of supply and storage with decreased species

richness is a result of communities that are dominated

by species that have large effects on biogeochemical

processes in the biomass-only and the biomass þ FG

scenarios. For example, when simulating communities

with species richness of two, a possible outcome is that

the only two species remaining have relatively high

recycling rates (or store large amounts of nutrients). In

this case, if this community of two high impact species

has the same biomass as a community with 80 species

(including many species with a lower recycling rate of

nutrients), the net outcome will be a substantially larger

community level nutrient supply.

To quantitatively assess the degree to which biomass

and functional group diversity affects the maintenance

of biogeochemical processes under scenarios of species

loss, we conducted simple linear regression analyses on

the NRMSE for each process across all ecosystem types

(i.e., for each simulation). The slopes of the two

scenarios of species loss in which community biomass

was maintained (both biomass-only and biomassþ FG)

was significantly less than the no-replacement scenarios

(the latter of which effectively functions as the null

model), for all three processes of storage (Fig. 4B; Table

2). There was no significant effect for either supply

process or M (Fig. 4B; Table 2). With the exception of P

storage, slopes did not differ between the biomass-only

and biomassþFG scenarios (though, in all cases but M,

slopes increased but not significantly). The mean

variance of the two scenarios of species loss in which

community biomass was maintained (both biomass-only

and the biomass þ FG) was significantly less than the

no-replacement scenarios for all three processes of

storage. The exceptions were processes of supply and

M, whereby difference in the three scenarios were not

different, or were significantly greater, respectively

(Table 2).

DISCUSSION

Biodiversity–ecosystem-function research often relies

on small-scale experiments that capture limited gradi-

ents of species richness, or meta-analyses and global

scale analyses that may overlook important ecosystem-

specific details. As such, there has been a consistent call

for increased efforts to bridge these scales of research

(Duffy 2009, Hillebrand and Matthiessen 2009, Cardi-

nale et al. 2012, Naeem et al. 2012). Our study tackles

this challenge by quantifying patterns of process across

an unprecedented spatial scale in species-rich ecosys-

tems. Our study also incorporates additional factors that

may be important to consider as to how biogeochemical

processes will change in the face of species loss. Results

from our study underscore the importance of absolute

species number as being a remarkably reliable predictor

of biogeochemical processes, across large spatial scales

and multiple ecosystem types. Our analyses did not

include a temporal component, but using simulations we

provide qualitative evidence that high levels of species

richness increases the ability of ecosystems to maintain

high functioning, whereby species loss had only poten-

tially disproportionate effects in the coastal ecosystem

with the lowest initial species richness (seagrass ecosys-

tems). Importantly, our research also highlights the

importance of the maintenance of community biomass,

but not community structure, for biogeochemical

processes. That is, we demonstrate that community

biomass alone is nearly sufficient to maintain biogeo-

chemical processes in the face of species loss.

Hierarchical models revealed the importance of

different biodiversity and community characteristics

with surprising consistencies across different biogeo-

chemical processes. Most notable was that species

richness was retained in all models for all processes,

and in each case had the largest effect size of any

parameter. It should be noted that, because we were

unable to measure empirical excretion rates for all

species, and thus relied to some extent on bioenergetics

models at the family or genus level to estimate species-

level excretion, our approach may mask potential

differences among species. In this sense, our findings

that the importance of species richness for biogeochem-

ical processes is conservative. This strongly supports

previous biodiversity–ecosystem-function research and

provides a needed test of this relationship across space.

Maestre et al. (2012) recently found that species richness

was among the most important predictors of multi-

functionality across an impressive global scale of

different dryland ecosystem types. Our study takes a

similar approach but makes comparisons within multi-

ple ecosystem types across a large region of the

Caribbean (e.g., coral reefs among similar islands).

Interestingly, though richness was the strongest predic-

tor of multifunctionality in the Maestre et al. (2012)

study, the support for this parameter was relatively weak

(e.g., R2
¼ 0.03, P ¼ 0.009 for relationships between

multifunctionality and species richness using trans-

formed data). In our study, species richness was the

best predictor for all processes, and explained a large

proportion of the variance in the data as a single
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predictor (R2
¼ 0.57, P , 0.001 for relationships

between the same index of multifunctionality and species

richness using transformed data). Regardless of the

strength of support for these relationships, collectively,

these studies provide consistent results that suggest

species richness is a very important predictor of

ecosystem processes and multifunctionality.

Two additional measures of biodiversity, species

diversity (i.e., Simpson’s index; SD), and functional

group diversity (FGD), had relatively weak effects in

FIG. 3. Results from probabilistic simulation models for the three different scenarios of species loss within a given community:
no replacement, biomass, and biomassþFG. Only fish communities associated with seagrass ecosystems and the entire region are
shown for simplicity (for all others, see Appendix D: Figs. D1–D3). For each biplot, the y-axis is the rate for each of the five
processes and multifunctionality (M ). Each data point within a graph indicates the aggregate process rate for each simulated
community with its corresponding species richness (x-axis).
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comparison to species richness. SD was negatively

related to all responses (Table 1) and, though it was

present in the top models for all processes (with the

exception of M ), it was always associated with a

relatively weak effect size. The negative relationship in

our global models suggests that higher biogeochemical

processes were found when species assemblages had

relatively uneven diversity, but this trend is notably

driven by seagrass ecosystems. Further, it is notable

that the SD–ecosystem-function relationships were

positive when regressed independently (Appendix D).

The opposing directions (between the independent

regressions and the global model) and the weak nature

of all of the relationships (R2
, 0.15 for all

independent processes), underscores the relative lack

of importance of SD for ecosystem function (Gelman

FIG. 3. Continued.
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and Hill 2007). FGD, on the other hand, was not

present in most top models. The exception to this was

for P supply, for which the relationship was positive.

This finding may be intuitive in that a more even

distribution of functional groups within a community

would suggest more predators are present. Predators

supply P at higher rates than other groups due to the

fact that their diet is rich in P (Schindler and Eby 1997,

Allgeier et al. 2013). All slopes for FGD were positive,

with the exception of M, which suggests that certain

functional groups tend to disproportionately enhance

multifunctionality, underscoring the importance of the

identity of functional groups. But it is important to

highlight that effect sizes for FGD in all models suggest

that these trends are relatively unimportant in explain-

ing variance associated with the different ecosystem

processes. The relatively weak role of functional group

diversity in our study is an important finding, as it

contrasts many previous expectations (Naeem and Li

1997, Diaz and Cabido 2001, Duffy et al. 2007, Weigelt

et al. 2008).

Basic community structure has also been shown to

be important for ecological functions (Duffy et al.

2007, McIntyre et al. 2007). Exploring the relative

importance of three parameters of community struc-

ture for biogeochemical processing revealed mixed

support for this hypothesis. In particular, the mean

maximum body size per species within each commu-

nity, Lmax, had strong and consistent relationships

with the different ecosystem processes, and remained

in the top model for every process (including M ). A

community that is characterized with a high Lmax also

tends to have high relative biomass (correlation r ¼

0.64; using the natural log of both parameters), and

because many of these processes scale with biomass

the strong relationship would be expected. The strong

positive relationship between TL and P supply is

likewise supported by previous work, whereby pred-

atory fish have been shown to excrete high amounts of

P relative to lower trophic level organisms (Schindler

and Eby 1997). Finally, TL is the only parameter that

had opposing slopes for M and other parameters. Two

factors can be inferred from the relatively weak,

negative relationship between TL and M. First,

different trophic groups have varying degrees of

influence on different processes (e.g., predators supply

more P and herbivores more N, relative to body size

[Schindler and Eby 1997, Allgeier et al. 2013]).

Second, the trophic structure of a community is

relatively unimportant for predicting multiple simul-

taneous functions, a finding that is supported by our

simulations.

Given our findings from the statistical models, we

extended our analyses through the use of simulations to

further explore how communities would respond under

various scenarios of species loss (reduction in richness)

in which additional measures of community structure

were maintained (e.g., biomass and function group

diversity). Previous work has shown that the biomass of

single (or few) species can drive ecosystem function (i.e.,

overyielding [Cottingham et al. 2001]), a factor we were

unable to test for in our statistical models given that

biomass was directly used to calculate each response

variable. Further, it is widely regarded that functional

group diversity is important for the maintenance of

ecosystem function (Diaz and Cabido 2001, Duffy et al.

2007, Weigelt et al. 2008), a previous finding that our

statistical models refute. To provide additional tests of

the influence of these two community characteristics

(functional group diversity and biomass) on the

maintenance of biogeochemical processes, we simulated

three scenarios of species loss. Specifically, simulations

were conducted whereby species loss occurred (1)

randomly (null model); (2) randomly, but biomass loss

(due to species loss) was compensated by the increase in

biomass of other species (randomly chosen) that

remained within the species pool; and (3) randomly,

but the biomass of the community was maintained

through compensation by increase in biomass of species

within the same functional group as the species lost (Fig.

1C, panels i–iii, respectively). In doing so, we were able

to explore two aspects of each community: the relative

importance of biomass and the structure of the

community for biogeochemical processes and the degree

to which species identity or diversity maintained these

processes (i.e., the degree to which a given process can

be sustained under various levels of biodiversity).

Bifurcations produced from simulations indicate

strongly disproportionate effects on ecosystem processes

by single (or a few) species on a given ecosystem process

(Solan et al. 2004, Bunker et al. 2005, McIntyre et al.

2007), whereby when this species is lost, a fundamental

shift in aggregate ecosystem process occurs (Fig. 1C,

panel i ). While bifurcations might be mitigated by the

compensatory dynamics of the simulations, e.g., the

maintenance of community biomass, the general paucity

of bifurcations across all simulations suggests that the

roles of nutrient cycling are relatively evenly dispersed

across these communities (i.e., species diversity, not

species identity, may be driving biodiversity effects for

most scenarios of species loss; Fig. 3, Figs. D1–D3).

Exceptions are found in two cases. First, bifurcations

were found within the processes that are most strongly

driven by species-specific traits as opposed to biomass,

e.g., P supply and storage (Fig. 3, Figs. D1–D3),

suggesting that in these cases certain species have such

dominant traits that they are driving these processes.

Second, bifurcations emerged in the seagrass bed

communities under the biomass þ FG model scenarios,

and strongly so under the no-replacement scenarios

(Fig. 3, Figs. D1–D3), suggesting strong disproportion-

ate species effects (species identity) in these communi-

ties. For example, total N supply by seagrass fish

communities (n ¼ 45 species, the lowest richness) was

dominated by a single species of Belonidae (49%). As

such, the loss of this one species would disproportion-
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ately reduce N supply, as is represented by the obvious

bifurcation in the data (Fig. 3, Figs. D1–D3). Interest-

ingly, the only model scenario that produced indications

of bifurcations for M in any ecosystem was the biomass

þ FG (Fig. 3, Figs. D1–D3), suggesting that the degree

of overlap in species-level multifunctionality may be less

within functional groups than among species across

functional groups. This finding is consistent with the

negative FG diversity and TL effects with M in our

statistical models. This finding contrasts expectations of

redundancy among species within the same functional

groups (Loreau 2004, Hooper et al. 2005).

The biodiversity insurance hypothesis suggests that

ecosystem processes are maintained by differences in

species’ responses to temporal environmental fluctua-

tions (Cottingham et al. 2001). Insurance effects are

typically measured over temporal scales (Yachi and

Loreau 1999), allowing covariance among species’

responses to be calculated (Cottingham et al. 2001).

Here, given that we did not have time-series data

available for our communities, meaningful covariance of

species responses over time could not be generated. Yet,

comparing the collective variance for each simulation

model across all ecosystem types allows meaningful

inference regarding the ability of a given community to

maintain ecosystem processes under various scenarios of

species loss. In our analysis, the degree to which

biodiversity maintained a given process was indicated

by the slope between the NRMSE and initial richness of

a given ecosystem type. The relative steepness of the

slope indicates the relative importance of biodiversity

for maintaining that process as it is associated with each

scenario of species loss (Fig. 4).

Findings from this analysis demonstrated three main

conclusions. First, maintaining community biomass

negates the relative importance of biodiversity for all

three processes of storage, i.e., the slopes for the models

with biomass compensation is significantly less than the

FIG. 4. (A) Relationship between model variance structure (normalized root mean square error; NRMSE, log-transformed)
and species richness (log-transformed) for each fish community associated with each ecosystem type and across the entire region
(� P , 0.1; * P , 0.05; gray bands indicate 95% confidence intervals). (B) Bar plots of the mean value of the variance for each
regression (top) and the slope for each regression (bottom). Error bars indicate SD of the mean and different letters indicate
significant differences (P , 0.05) between bars within each individual plot; NS indicates not significant. Each color is associated
with a given ecosystem process or M. Color shade indicates the type of simulation model: light, no replacement (left bar of each
plot); medium, biomass (middle bar in each plot); dark, biomassþ FG (right bar of each plot).
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no-replacement models (Fig. 4). This finding is largely

intuitive for both N and C storage in that differences

among species in N or C body nutrient content have not

typically been observed in fishes (Sterner and George

2000, Vanni et al. 2002), thus suggesting the role of

biodiversity for these processes are likely minimal.

However, P nutrient content has been found to vary

relatively dramatically among fishes, particularly in

species-rich communities (Vanni et al. 2002), and as

such would be expected to have been influenced by the

diversity of the community present. Second, the lack of

significant effect for either supply process or M (Fig. 4B;

Table 2) indicates that these processes are more strongly

regulated by species-specific traits than community

biomass. This conclusion is supported by previous

research suggesting the importance of biodiversity for

N and P supply (Vanni et al. 2002), as well asM (Hector

and Bagchi 2007). Finally, the finding that, with the

exception of P storage, slopes did not differ between the

biomass-only and biomassþFG scenarios (though in all

cases but M slopes increased but not significantly),

emphasizes that maintaining functional group diversity

does not generally enhance the maintenance of ecosys-

tem function. The general significance of the finding is

that while trophic complexity and functional group

diversity has been widely cited for its importance for

food web stability in aquatic food webs (Pauly et al.

1998, Duffy et al. 2005, 2007), these data instead suggest

that species richness and biomass are most critical for

maintaining biogeochemical processes.

The mean variance for each model provides an

additional measure of the degree to which biogeochem-

ical processes are maintained in the face of species loss,

allowing inference regarding the relative importance of

disproportionate species effects (species identity) for

these processes, whereby the greater the variance the

stronger the role of species identity. Similar to findings

from the slope of these relationships, maintaining

community biomass for all storage processes increased

the overall ability of all communities to maintain these

functions, but this did not improve when additionally

maintaining functional group diversity (Fig. 4B; Table

2). M appears to be more strongly regulated by species-

specific traits than by biomass or functional group

diversity, as it was the only process in which mean

variance decreased with greater regulation of communi-

ty structure (Fig. 4). It is noteworthy that there were no

significant differences in either the slope or the mean

variance for either of the supply models (though there is

a notable nonsignificant difference). This underscores

the importance of species diversity for these two

properties (i.e., supply of N and P) more so than all

other processes quantified herein. This finding may be of

critical significance for these ecosystems given the recent

evidence of the important role that fish nutrient supply

has been documented to have in these ecosystems

(Allgeier et al. 2013, 2014, Burkepile et al. 2013, Layman

et al. 2013).

TABLE 2. Results from linear regression models for each
ecosystem process for relationships between model variance
structure (normalized root mean square error; NRMSE, log-
transformed) and species richness (richness, log-transformed)
for each fish community associated with each ecosystem type
and across the entire region.

Parameter Estimate SE t P

N Supply

Intercept 5.40 0.97 5.57 0.000
NR–B 1.13 1.37 0.83 0.420
BF–B �0.76 1.36 �0.56 0.584
BF–NR �1.89 1.35 �1.40 0.183
Slope �0.80 0.22 �3.61 0.003
Slope NR–B �0.03 0.31 �0.11 0.915
Slope BF–B 0.25 0.31 0.81 0.431
Slope BF–NR 0.28 0.31 0.92 0.372

P Supply

Intercept 3.44 1.03 3.34 0.005
NR–B 1.55 1.45 1.06 0.304
BF–B 1.73 1.44 1.20 0.248
BF–NR 0.18 1.44 0.13 0.900
Slope �0.36 0.23 �1.54 0.144
Slope NR–B �0.03 0.33 �0.08 0.936
Slope BF–B �0.29 0.33 �0.88 0.390
Slope BF–NR �0.26 0.33 �0.80 0.434

N Storage

Intercept 3.16 0.59 5.40 0.000
NR–B 2.36 0.83 2.85 0.012
BF–B 0.29 0.82 0.35 0.733
BF–NR �2.07 0.82 �2.53 0.023
Slope �0.19 0.13 �1.41 0.179
Slope NR–B �0.38 0.19 �1.99 0.065
Slope BF–B �0.05 0.19 �0.25 0.807
Slope BF–NR 0.33 0.19 1.76 0.099

P Storage

Intercept 2.30 0.58 3.97 0.001
NR–B 3.69 0.82 4.51 0.000
BF–B 1.36 0.81 1.68 0.115
BF–NR �2.33 0.81 �2.88 0.012
Slope �0.06 0.13 �0.43 0.673
Slope NR–B �0.62 0.19 �3.32 0.005
Slope BF–B �0.22 0.19 �1.17 0.261
Slope BF–NR 0.40 0.18 2.17 0.046

C Storage

Intercept 2.35 0.60 3.94 0.001
NR–B 3.01 0.84 3.56 0.003
BF–B 1.12 0.84 1.34 0.200
BF–NR �1.89 0.83 �2.26 0.039
Slope �0.08 0.14 �0.59 0.561
Slope NR–B �0.44 0.19 �2.31 0.035
Slope BF–B �0.16 0.19 �0.82 0.423
Slope BF–NR 0.29 0.19 1.51 0.152

M

Intercept 4.74 0.68 6.93 0.000
NR–B �1.66 0.97 �1.72 0.107
BF–B 0.27 0.96 0.28 0.780
BF–NR �0.16 0.22 �0.74 0.473
Slope �0.65 0.16 �4.20 0.001
Slope NR–B 0.19 0.22 0.87 0.396
Slope BF–B 0.03 0.22 0.15 0.887
Slope BF–NR �0.16 0.22 �0.74 0.473

Notes: Values associate with graphs in Fig. 4. Abbreviations
are B, biomass-only simulations; NR, random simulation (null);
BF, biomassþFG simulations. The dash indicates comparisons
between two simulation types. Response values are centered,
thus intercept values indicate mean NMRSE values for all
ecosystem types.
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Our findings collectively demonstrate that (1) com-

munity biomass is an extremely important regulating

factor for independent biogeochemical processes, but its

relative importance can vary depending on the process;

(2) additional maintenance of functional group diversity,

i.e., community trophic structure, does not increase the

ability of a community to maintain any independent or

simultaneous biogeochemical process, consistent with

the weak role of functional group diversity in our

statistical models, but contrary to some expectations

(Hooper et al. 2005, Duffy et al. 2007, Hillebrand and

Matthiessen 2009); and (3) species-specific traits are

substantially more important for maintaining multi-

functionality than any other singular process, empha-

sizing the fact that we are likely underestimating the role

of species richness for biogeochemical processing (and,

likely, other important functions) at the ecosystem scale.

As such, a critical conclusion to this study is that species

loss, irrespective of the maintenance of community

structure, will drastically alter biogeochemical process-

ing in these coastal ecosystems.

Improving our understanding of biogeochemical

processes in coastal ecosystems is greatly needed if we

are to implement more effective measures to ensure the

future health of these important systems. Consumer

regulation of nutrient pathways may provide a baseline

from which to better understand these processes because

fishes can constitute a critical role in these cycles

(Pomeroy 1974, Kitchell et al. 1979, Vanni 2002). Our

study emphasizes that the role of coastal fish commu-

nities in maintaining these ecosystem functions warrants

immediate conservation attention given the susceptibil-

ity of communities to species loss. We underscore that

maintaining the biodiversity and biomass of these

communities needs to be a central goal of management

strategies. The implications of this research for conser-

vation efforts may be significant as it provides a

complementary framework to understand how anthro-

pogenic impacts, e.g., overharvesting of species, are

affecting these imperiled ecosystems.
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