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Abstract. Coastal areas are impacted by multiple natural and

anthropogenic processes and experience stronger pH fluctu-

ations than the open ocean. These variations can weaken or

intensify the ocean acidification signal induced by increas-

ing atmospheric pCO2. The development of eutrophication-

induced hypoxia intensifies coastal acidification, since the

CO2 produced during respiration decreases the buffering ca-

pacity in any hypoxic bottom water. To assess the combined

ecosystem impacts of acidification and hypoxia, we quanti-

fied the seasonal variation in pH and oxygen dynamics in the

water column of a seasonally stratified coastal basin (Lake

Grevelingen, the Netherlands).

Monthly water-column chemistry measurements were

complemented with estimates of primary production and

respiration using O2 light–dark incubations, in addition to

sediment–water fluxes of dissolved inorganic carbon (DIC)

and total alkalinity (TA). The resulting data set was used to

set up a proton budget on a seasonal scale.

Temperature-induced seasonal stratification combined

with a high community respiration was responsible for the

depletion of oxygen in the bottom water in summer. The sur-

face water showed strong seasonal variation in process rates

(primary production, CO2 air–sea exchange), but relatively

small seasonal pH fluctuations (0.46 units on the total hy-

drogen ion scale). In contrast, the bottom water showed less

seasonality in biogeochemical rates (respiration, sediment–

water exchange), but stronger pH fluctuations (0.60 units).

This marked difference in pH dynamics could be attributed

to a substantial reduction in the acid–base buffering capacity

of the hypoxic bottom water in the summer period. Our re-

sults highlight the importance of acid–base buffering in the

pH dynamics of coastal systems and illustrate the increasing

vulnerability of hypoxic, CO2-rich waters to any acidifying

process.

1 Introduction

The absorption of anthropogenic carbon dioxide (CO2) has

decreased the average pH of open ocean surface water by

ca. 0.1 unit since the Industrial Revolution (Orr et al., 2005).

In coastal areas, the problem of ocean acidification is more

complex, as seawater pH is influenced by various natural

and anthropogenic processes other than CO2 uptake (Borges

and Gypens, 2010; Duarte et al., 2013; Hagens et al., 2014).

As a result, the signal of CO2-induced acidification may not

be readily discernible in coastal systems, as time series of

pH show high variations at diurnal, seasonal and decadal

timescales (e.g. Hofmann et al., 2011; Wootton and Pfister,

2012). One major anthropogenic process impacting coastal

pH is eutrophication (Borges and Gypens, 2010; Provoost

et al., 2010; Cai et al., 2011). Enhanced inputs of nutrients

lead to higher rates of both primary production and respi-

ration (Nixon, 1995), thereby increasing the variability in

pH on both the diurnal (Schulz and Riebesell, 2013) and

seasonal scales (Omstedt et al., 2009). Moreover, when pri-
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mary production and respiration are not balanced, they can

lead to longer-term changes in pH at rates that can strongly

exceed the expected pH decrease based on rising atmo-

spheric CO2 (Borges and Gypens, 2010). The direction of

this eutrophication-induced pH change depends on the sign

of the imbalance, and the resulting pH trend can be sustained

for decades (Provoost et al., 2010; Duarte et al., 2013).

A well-known effect of eutrophication is the develop-

ment of hypoxia in coastal bottom waters (Diaz and Rosen-

berg, 2008). Such bottom-water oxygen (O2) depletion oc-

curs when the O2 consumption during respiration exceeds

the supply of oxygen-rich waters and typically develops sea-

sonally as a result of summer stratification and enhanced bi-

ological activity. As respiration of organic matter produces

CO2 at a rate proportional to O2 consumption (Redfield et al.,

1963), it follows that zones of low O2 are also zones of high

CO2 (hypercapnia) and thus show high levels of dissolved

inorganic carbon (DIC) and low pH (Brewer and Peltzer,

2009; Howarth et al., 2011). In coastal bays, oxygen and car-

bonate system parameters co-vary on both diurnal (Burnett,

1997) and seasonal timescales (Frankignoulle and Distèche,

1984; Melzner et al., 2013), where the diurnal variability may

be of similar magnitude to the seasonal variability (Yates et

al., 2007). Primary production and respiration are often spa-

tially and temporally decoupled, as phytoplankton biomass

is produced during spring blooms in the surface water, sub-

sequently sinks, and is degraded with a time lag in the bot-

tom water and sediment. In seasonally stratified areas, this

can lead to significant concomitant drops in bottom-water pH

and O2 in summer, as has been shown for the Seto Inland Sea

(Taguchi and Fujiwara, 2010), the northern Gulf of Mexico

and the East China Sea (Cai et al., 2011), the Bohai Sea (Zhai

et al., 2012), the Gulf of Trieste (Cantoni et al., 2012), sev-

eral estuarine bays across the northeastern US coast (Wallace

et al., 2014), the semi-enclosed Lough Hyne (Sullivan et al.,

2014) and in areas just off the Changjiang Estuary (Wang et

al., 2013).

Long-term trends in pH resulting from increased preva-

lence of bottom-water hypoxia can be substantial compared

to the pH trend resulting from anthropogenic CO2-induced

acidification. Data from the Lower St Lawrence Estuary in-

dicate that the decrease in bottom-water pH over the past

75 years is 4–6 times higher than can be explained by the

uptake of anthropogenic CO2 alone (Mucci et al., 2011).

In Puget Sound, respiration currently accounts for 51–76 %

of the decrease in subsurface water pH since pre-industrial

times, although this fraction will likely decrease as atmo-

spheric CO2 continues to increase (Feely et al., 2010). Model

simulations for the northern Gulf of Mexico show that the

seasonal drop in bottom-water pH has increased in the An-

thropocene because of a decline in its buffering capacity (Cai

et al., 2011), an effect that is most pronounced in eutrophied

waters (Sunda and Cai, 2012).

The acid–base buffering capacity (β), also termed the

buffer intensity or buffer factor, is the ability of an aqueous

solution to buffer changes in pH or proton (H+) concentra-

tion upon the addition of a strong acid or base (Morel and

Hering, 1993; Stumm and Morgan, 1996). It is of great im-

portance when considering the effect of biogeochemical pro-

cesses on pH (Zhang, 2000; Soetaert et al., 2007; Hofmann

et al., 2010a). A system with a high acid–base buffering ca-

pacity is efficient in attenuating changes in [H+] and thus

displays a smaller net pH change compared to systems with

a low β. Thus, if two aqueous systems are exposed to the

same biogeochemical processes at exactly the same rate, the

system with the lower β will show pH excursions with larger

amplitudes.

In the 21st century, seawater buffering capacity is expected

to decline as a result of increasing CO2 and the subsequent

decrease in pH (Egleston et al., 2010; Hofmann et al., 2010a;

Hagens et al., 2014). As a result, one would predict a greater

seasonal pH variability (Frankignoulle, 1994; Egleston et

al., 2010) and a more pronounced diurnal pH variability in

highly productive coastal environments (Schulz and Riebe-

sell, 2013; Shaw et al., 2013), which may additionally be

modified by ecosystem feedbacks (Jury et al., 2013). In sea-

sonal hypoxic systems, model analysis predicts more pro-

nounced fluctuations in bottom-water pH (Sunda and Cai,

2012). However, detailed studies of the effects of seasonal

hypoxia on pH buffering and dynamics are currently lacking.

Here we present a detailed study of the pH dynamics and

acid–base buffering capacity in a temperate coastal basin

with seasonal hypoxia (Lake Grevelingen). We quantify the

impact of individual processes, i.e. primary production, com-

munity respiration, sediment effluxes and CO2 air–sea ex-

change, on pH using the method developed by Hofmann et

al. (2010a), which uses DIC and [H+], rather than total alka-

linity (TA), to quantify the carbonate system. From this, we

construct a proton budget that attributes proton production or

consumption to these processes. Our aim is to quantify sea-

sonal changes in the acid–base buffering capacity and eluci-

date their importance for carbon cycling and pH dynamics in

coastal hypoxic systems.

2 Methods

2.1 Site description

Lake Grevelingen, located in the southwestern delta area of

the Netherlands, is a coastal marine lake with a surface area

of 115 km2 and an average water depth of 5.1 m (Nienhuis,

1978; Fig. 1). The bathymetry of the lake is characterised by

deep gullies intersecting extended shallow areas; half of the

lake is shallower than 2.6 m, and only 12.4 % of the lake is

deeper than 12.5 m. In the main gully, several deep basins

are present, which are separated from each other by sills.

The deepest basin extends down to 45 m water depth. Orig-

inally, Lake Grevelingen was an estuary with a tidal range

of about 2.3 m. A large flooding event in 1953 was the mo-
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Figure 1. (a) Map of the Netherlands; (b) bathymetry of Lake Grev-

elingen (data from the executive arm of the Dutch Ministry of In-

frastructure and the Environment). Yellow dot indicates sampling

location at the deepest point of the Den Osse basin (S1; 51.747◦ N,

3.890◦ E). Red bar indicates sluice location.

tive for the construction of two dams. The Grevelingen estu-

ary was closed off on the landward side in 1964 and on the

seaward side in 1971. This isolation led to a freshening of

the system, with vast changes in water chemistry and biol-

ogy (Bannink et al., 1984). To counteract these water quality

problems, a sluice extending vertically between 3 and 11 m

depth was constructed on the seaward side in 1978 (Pieters et

al., 1985). Exchange with saline North Sea water has domi-

nated the water budget since, resulting in the lake approach-

ing coastal salinity (29–32) and an estimated basin-wide wa-

ter residence time of 229 days (Meijers and Groot, 2007).

Upon intrusion, the denser North Sea water forms a distinct

subsurface layer, which is then laterally transported into the

lake. Yet it has been found that opening the sluice hardly af-

fects water-column mixing (Nolte et al., 2008), and the water

quality problems persist. Monthly monitoring carried out by

the executive arm of the Dutch Ministry of Infrastructure and

the Environment revealed that the main gully of Lake Grev-

elingen has experienced seasonal stratification and hypoxia

since the start of the measurements in 1978, which have dif-

fered in extent and intensity annually (Wetsteyn, 2011).
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Figure 2. Schematic overview of the main processes affecting the

Den Osse proton budget. Corg refers to organic carbon; see Sect. 2.8

for a detailed explanation of the budget.

Throughout 2012, we performed monthly sampling cam-

paigns on board the R/V Luctor, examining water-column

chemistry, biogeochemical process rates and sediment–water

exchange. Sampling occurred in the Den Osse basin (maxi-

mum water depth 34 m; Fig. 2), a basin located in the main

gully of Lake Grevelingen. Two sills surround the basin at

water depths of 10 and 20 m at the landward and seaward

sides, respectively. Due to its bathymetry, particulate matter

rapidly accumulates within the deeper parts of the basin (sed-

iment accumulation rate > 2 cm yr−1; Malkin et al., 2014).

The surface area and total volume of the Den Osse basin

have been estimated at 649 × 104 m2 and 655 × 105 m3, re-

spectively (Pieters et al., 1985), resulting in an average wa-

ter depth of ca. 10 m. Sampling occurred at three stations

along a depth gradient within the basin (Fig. 1b): S1 at 34 m

water depth and located at the deepest point of the basin

(51.747◦ N, 3.890◦ E), S2 at 23 m (51.749◦ N, 3.897◦ E) and

S3 at 17 m (51.747◦ N, 3.898◦ E). Each campaign, water-

column sampling was performed at station S1. Discrete

water-column samples were collected with a 12 L Niskin

bottle at eight different depths (1, 3, 6, 10, 15, 20, 25 and

32 m) to assess the carbonate system parameters (pH, par-

tial pressure of CO2 (pCO2), total alkalinity (TA) and DIC),

concentrations of O2, hydrogen sulphide (H2S), dissolved

organic carbon (DOC) and nutrients, and rates of commu-

nity metabolism. All water samples were collected from the

Niskin bottle with gas-tight Tygon tubing. A YSI6600 CTD

probe was used to record depth profiles of temperature (T ),

salinity (S), pressure (p) and chlorophyll a (Chl a). To de-

termine sediment–water exchange fluxes, intact, undisturbed

sediment cores (6 cm ∅) were retrieved with a UWITEC

gravity corer in March, May, August and November 2012

at the three stations S1, S2 and S3. Sampling usually took

place mid-morning to minimise the influence of diurnal vari-

ability in determining the seasonal trend. The exact dates and

times of sampling are provided in the online supplementary

information.
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2.2 Stratification-related parameters

From T , S and p the water density ρw (kg m−3) was

calculated according to Feistel (2008) using the package

AquaEnv (Hofmann et al., 2010b) in the open-source pro-

gramming framework R. Subsequently, the density anomaly

σT (kg m−3) was defined by subtracting 1000 kg m−3 from

the calculated value of ρw. Water density profiles were

also used to calculate the stratification parameter φ (J m−3),

which represents the amount of energy required to fully ho-

mogenise the water column through vertical mixing (Simp-

son, 1981):

φ =
1

h

0
∫

−h

(ρav − ρw)gzdz with ρav =
1

h

0
∫

−h

ρwzdz, (1)

where h is the total height of the water column (m), z is depth

(m), g is gravitational acceleration (m s−2), and ρav is the

average water-column density (kg m−3).

Samples for the determination of [O2] were drawn from

the Niskin bottle into volume-calibrated clear borosilicate

biochemical oxygen demand (BOD) bottles of ca. 120 mL

(Schott). O2 concentrations were measured using an auto-

mated Winkler titration procedure with potentiometric end-

point detection (Mettler Toledo DL50 titrator and a platinum

redox electrode). Reagents and standardisations were as de-

scribed by Knap et al. (1994).

During summer months we examined the presence of H2S

in the bottom water. Water samples were collected in 60 mL

glass serum bottles, which were allowed to overflow and

promptly closed with a gas-tight rubber stopper and screw

cap. To trap the H2S as zinc sulphide, 1.2 mL of 2 % zinc

acetate solution was injected through the rubber stopper into

the sample using a glass syringe and needle. A second nee-

dle was inserted simultaneously through the rubber stopper

to release the overpressure. The sample was stored upside

down at 4 ◦C until analysis. Spectrophotometric estimation

of H2S (Strickland and Parsons, 1972) was conducted by

adding 1.5 mL of sample and 0.120 mL of an acidified so-

lution of phenylenediamine and ferric chloride to a dispos-

able cuvette. The cuvette was closed immediately thereafter

to prevent the escape of H2S and was allowed to react for

a minimum of 30 min before the absorbance at 670 nm was

measured. For calibration, a 2 mmol L−1 sulphide solution

was prepared, for which the exact concentration was deter-

mined by iodometric titration.

2.3 Carbonate system parameters

For the determination of TA, two separate samples were col-

lected in 50 mL centrifuge tubes. To determine the contri-

bution of suspended particulate matter to TA, one sample

was left unfiltered, while the other was filtered through a

0.45 µm nylon membrane syringe filter (Kim et al., 2006). TA

was determined using the standard operating procedure for

open cell potentiometric titration (Dickson et al., 2007; SOP

3b), using an automatic titrator (Metrohm 888 Titrando),

a high-accuracy burette (1 ± 0.001 mL), a thermostated re-

action vessel (T = 25 ◦C) and combination pH glass elec-

trode (Metrohm 6.0259.100). TA values were calculated by

a non-linear least-squares fit to the titration data in a custom-

made script in R. Quality assurance involved regular analysis

of Certified Reference Materials (CRM) obtained from the

Scripps Institution of Oceanography (A.G. Dickson, batches

116 and 122). The relative standard deviation of the proce-

dure was less than 0.2 % or 5 µmol kg−1 (n = 10).

Samples for DIC analysis were collected in 10 mL

headspace vials, left to overflow and poisoned with 10 µL of

a saturated mercuric chloride (HgCl2) solution. DIC analysis

was performed using an AS-C3 analyser (Apollo SciTech)

which consists of an acidification unit in combination with

a LICOR LI-7000 CO2/H2O gas analyser. Quality assurance

involved carrying out three replicate measurements of each

sample and regular analysis of CRM. The accuracy and pre-

cision of the system are 0.15 % or 3 µmol kg−1.

Water for pCO2 analysis was collected in 50 mL glass

serum bottles from the Niskin bottle with Tygon tubing, left

to overflow, poisoned with 50 µL of saturated HgCl2 and

sealed with butyl stoppers and aluminium caps. Samples

were analysed within 3 weeks of collection by the headspace

technique (Weiss, 1981) using gas chromatography (GC)

with a methaniser and flame ionisation detection (GC-FID,

SRI 8610C). The GC-FID was calibrated with pure N2 and

three CO2 : N2 standards with a CO2 molar fraction of 404,

1018, 3961 ppmv (Air Liquide Belgium). Headspace equili-

bration was done overnight in a thermostated bath, and tem-

perature was recorded and typically within 3 ◦C of in situ

temperature. pCO2 data were corrected to in situ temper-

ature. Samples were collected in duplicate and the relative

standard deviation of duplicate analysis averaged ±0.8 %

(n = 90).

Samples for the determination of pH were collected in

100 mL glass bottles. pH measurements were done im-

mediately after collection at in situ temperature using a

glass/reference electrode cell (Metrohm 6.0259.100) follow-

ing standard procedures (Dickson et al., 2007; SOP 6a). Both

National Institute of Standards and Technology (NIST) and

TRIS (2-amino-2-hydroxymethyl-1,3-propanediol) buffers

were used for calibration. The temperature difference be-

tween buffers and samples never exceeded 2 ◦C. pH values

are expressed on the total hydrogen ion scale (pHT).

2.4 Community metabolism

Net community respiration (NCP), gross primary production

(GPP) and community respiration (CR) were determined us-

ing the oxygen light–dark method (Riley, 1939; Gazeau et

al., 2005a). Samples were drawn from the Niskin bottle into

similar BOD bottles as described in Sect. 2.2. Bottles were

incubated on-deck in a water bath, keeping them at ambient
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surface-water temperature by continuous circulation of sur-

face water. Samples were incubated both under various light

intensities and in the dark. Hard neutral density filters with

varying degrees of shading capacity (Lee Filters) were used

to mimic light conditions at different depths, while sample

bottles incubated in the dark were covered with aluminium

foil. Incubations lasted from the time of sampling (usually

mid-morning) until sunset. Oxygen concentrations were de-

termined before and after incubation using the automated

Winkler titration procedure described in Sect. 2.2.

Samples incubated in the light were used to determine

NCP by calculating the difference in oxygen concentrations

between the start and end of the incubations, divided by the

incubation time (5 to 13 h). CR was determined in a similar

fashion from samples incubated in the dark. GPP was subse-

quently calculated as NCP+CR (all rates expressed in mmol

O2 m−3 h−1). To determine the relationship between algal

biomass (represented as Chl a concentration) and GPP, sam-

ples from all depths were incubated in triplicate at 51.2 %

of surface photosynthetically active radiation (PAR). This

yielded a linear relationship between [Chl a] and GPP for

most months (data not shown). Samples from one depth (typ-

ically 3 m) were incubated at 10 different light intensities to

determine the dependency of GPP on light availability (P/I

curve). These data were normalised to [Chl a] and fitted by

non-linear least squares fitting using the Eilers–Peeters func-

tion (Eilers and Peeters, 1988):

GPPnorm = pmax

(2 + ω)(I/Iopt)

(I/Iopt)2 + ω(I/Iopt) + 1
, (2)

where GPPnorm is the measured GPP normalised to [Chl a]

(mmol O2 mg Chl a−1 h−1), pmax is the maximum GPPnorm

(mmol O2 mg Chl a−1 h−1), I and Iopt are the measured

and optimum irradiance, respectively (both in µmol pho-

tons m−2 s−1) and ω is a dimensionless indicator of the rela-

tive magnitude of photoinhibition.

Downwelling light as a function of water depth was mea-

sured using a LI-COR LI-193SA spherical quantum sen-

sor connected to a LI-COR LI-1000 data logger. A separate

LICOR LI-190 quantum sensor on the roof of the research

vessel connected to this data logger was used to correct

for changes in incident irradiance. Light penetration depth

(LPD; 1 % of surface irradiance) was quantified by calcu-

lating the light attenuation coefficient using the Lambert-

Beer extinction model. To additionally assess water-column

transparency, Secchi disc depth was measured and corrected

for solar altitude (Verschuur, 1997). In contrast to the mea-

surements of downwelling irradiance, which were only taken

mid-morning, Secchi depths were also determined in the af-

ternoon. Although Secchi depths cannot directly be trans-

lated into LPD estimates, they do give an indication of the

seasonal and diurnal variability in subsurface light climate.

Hourly averaged measurements of incident irradiance

were obtained with a LI-COR LI-190SA quantum sensor

from the roof of NIOZ-Yerseke, located about 31 km from

the sampling site (41.489◦ N, 4.057◦ E). These measure-

ments, together with the light attenuation coefficient, were

used to calculate the irradiance in the water column at each

hour over the sampling day in 10 cm intervals until the LPD.

Measured [Chl a] was linearly interpolated between sam-

pling depths and combined with the fitted P/I curve (Eq. 2)

to calculate GPP (mmol O2 m−3 h−1) at 10 cm intervals:

GPP = [Chl a]pmax

(2 + ω)(I/Iopt)

(I/Iopt)2 + ω(I/Iopt) + 1
. (3)

These GPP values were integrated over time to determine

volumetric GPP on the day of sampling (mmol O2 m−3 d−1).

A similar procedure using measured hourly incident irradi-

ance was followed to calculate volumetric GPP on the days

in between sampling days. Parameters of the Eilers-Peeters

fit were kept constant in the monthly time interval around the

day of sampling, while [Chl a] depth profiles and the light at-

tenuation coefficient were linearly interpolated between time

points. These daily GPP values were integrated over time to

estimate annual GPP (mmol O2 m−3 yr−1).

Rates of volumetric CR (mmol O2 m−3 h−1) were con-

verted to daily values (mmol O2 m−3 d−1) by multiply-

ing them by 24 h. An annual estimate for CR (mmol

O2 m−3 yr−1) was calculated through linear interpolation of

the daily CR values obtained on each sampling day. Finally,

CR and GPP were converted from O2 to carbon (C) units.

For CR, a respiratory quotient (RQ) of 1 was used. For GPP,

the photosynthetic quotient (PQ) was based on the use of am-

monium (NH+
4 ) or nitrate (NO−

3 ) during primary production.

Assuming Redfield ratios, when NH+
4 is taken up, this re-

sults in an O2 : C ratio of 1 : 1, hence a PQ of 1. Alterna-

tively, when the algae use NO−
3 , this leads to an O2 : C ratio

of 138 : 106 and a PQ of 1.3. Since the utilisation of NH+
4 is

energetically more favourable than that of NO−
3 , the former

is the preferred form of dissolved inorganic nitrogen taken

up during primary production (e.g. MacIsaac and Dugdale,

1972). If [NH+
4 ] < 0.3 µmol L−1, we supposed that GPP was

solely fuelled by NO−
3 uptake, while above this threshold

only NH+
4 was assumed to be taken up during GPP. Although

we are aware that this is a simplification of reality, as NO−
3

uptake is not completely inhibited at [NH+
4 ] > 0.3 µmol L−1

(Dortch, 1990), we have no data to further distinguish be-

tween the two pathways. Concentrations of NH+
4 and NO−

3

were determined in conjunction with concentrations of phos-

phate (PO3−
4 ), silicate (Si(OH)4) and nitrite (NO−

2 ) by au-

tomated colorimetric techniques (Middelburg and Nieuwen-

huize, 2000) after filtration through 0.2 µm filters. Water for

DOC analysis was collected in 10 mL glass vials and filtered

over pre-combusted Whatman GF/F filters (0.7 µm). Samples

were analysed using a Formacs Skalar-04 by automated UV-

wet oxidation to CO2, which concentration is subsequently

measured with a non-dispersive infrared detector (Middel-

burg and Herman, 2007). Nutrient and DOC data can be

found in the Supplement.
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2.5 Sediment fluxes

To determine DIC and TA fluxes across the sediment–water

interface, we used shipboard closed-chamber incubations.

Upon sediment core retrieval, the water level was adjusted

to ca. 18–20 cm above the sediment surface. To mimic in situ

conditions, the overlying water was replaced with ambient

bottom water prior to the start of the incubations, using a gas-

tight tube and ensuring minimal disturbance of the sediment–

water interface. Immediately thereafter, the cores were sealed

with gas-tight polyoxymethylene lids and transferred to a

temperature-controlled container set at in situ temperature.

The core lids contained two sampling ports on opposite sides

and a central stirrer to ensure that the overlying water re-

mained well mixed. Incubations were done in triplicate and

the incubation time was determined in such a way that dur-

ing incubation the concentration change of DIC would re-

main linear. As a result, incubation times varied from 6 (at

S1 during summer) to 65 h (at S3 during winter).

Throughout the incubation, water samples (∼ 7 mL) for

DIC analysis were collected from each core five times at

regular time intervals in glass syringes via one of the sam-

pling ports. Concurrently, an equal amount of ambient bot-

tom water was added through a replacement tube attached

to the other sampling port. About 5 mL of the sample was

transferred to a headspace vial, poisoned with 5 µL of a sat-

urated HgCl2 solution and stored submerged at 4 ◦C. These

samples were analysed as described in Sect. 2.3. The subsam-

pling volume of 7 mL was less than 5 % of the water mass,

so no correction factor was applied to account for dilution.

DIC fluxes (mmol m−2 d−1) were calculated from the change

in concentration, taking into account the enclosed sediment

area and overlying water volume:

J =

(

1Cow

1t

)

Vow

A
, (4)

where 1Cow

1t
is the change in DIC in the overlying water vs.

time (mmol m−3 d−1), which was calculated from the five

data points by linear regression, Vow is the volume of the

overlying water (m3) and A is the sediment surface area (m2).

To determine TA fluxes, no subsampling was performed. In-

stead, the fluxes were calculated from the difference in TA

between the beginning and end of the incubation, account-

ing for enclosed sediment area and overlying water volume.

TA samples were collected and analysed as described in

Sect. 2.3.

2.6 Carbonate system calculations

The measurement of four carbonate system parameters im-

plies that we can check the internal consistency of the car-

bonate system (see Appendix A). For the rest of this paper,

we use DIC and pHT for the carbonate system calculations.

This has been suggested to be the best choice when systems

other than the open ocean are studied and measurements of

TA may be difficult to interpret (Dickson, 2010; see also

Appendix A). All calculations were performed using the R

package AquaEnv. The main advantage of AquaEnv is that

it has the possibility to include acid–base systems other than

the carbonate and borate system, which is especially impor-

tant in highly productive and hypoxic waters. Furthermore, it

provides a suite of output parameters necessary to compute

the individual impact of a process on pH, such as the acid–

base buffering capacity. As equilibrium constants for the car-

bonate system we used those of Mehrbach et al. (1973) as

refitted by Dickson and Millero (1987), which were calcu-

lated from CTD-derived T , S and p using CO2SYS (Pier-

rot et al., 2006). For the other equilibrium constants (bo-

rate, phosphate, ammonia, silicate, nitrite, nitrate and the

auto-dissociation of water) we chose the default settings of

AquaEnv.

CO2 air–sea exchange (mmol C m−2 d−1) on the day of

sampling was estimated using the gradient between atmo-

spheric pCO2 (pCO2,atm) and the calculated seawater pCO2

at 1 m depth (both in atm):

F = kα
(

pCO2 − pCO2,atm

)

, (5)

where k (m d−1) is the gas transfer velocity, which was cal-

culated from wind speed according to Wanninkhof (1992),

normalised to a Schmidt number of 660. Daily-averaged

wind speed at Wilhelminadorp (51.527◦ N, 3.884◦ E, mea-

sured at 10 m above the surface) was obtained from the Royal

Netherlands Meteorological Institute (http://www.knmi.nl).

The quantity α is the solubility of CO2 in seawater (Henry’s

constant; mmol m−3 atm−1) and was calculated according to

Weiss (1974). For pCO2,atm we used monthly mean val-

ues measured at Mace Head (53.326◦ N, 9.899◦,W) as ob-

tained from the National Oceanic and Atmospheric Admin-

istration Climate Monitoring and Diagnostics Laboratory air

sampling network (http://www.cmdl.noaa.gov/). To calculate

CO2 air–sea exchange on the days between sampling days,

we used daily-averaged wind speed and linear interpolation

of the other parameters.

2.7 Acid–base buffering capacity and proton cycling

The acid–base buffering capacity plays a crucial role in the

pH dynamics of natural waters. Many different formulations

of this buffering capacity exist (Frankignoulle, 1994; Egle-

ston et al., 2010). However, a recent theoretical analysis

(Hofmann et al., 2008) has shown that, for natural waters,

it is most adequately defined as the change in TA associated

with a certain change in [H+], thereby keeping all other total

concentrations (e.g. DIC, total borate) constant:

β = −

(

∂TA

∂[H+]

)

. (6)

Hence, when the acid–base buffering capacity of the water

is high, one will observe only a small change in [H+] for
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a given change in TA. It should be noted that β is intrinsi-

cally different from the well-known Revelle factor (Revelle

and Suess, 1957; Sundquist et al., 1979) that quantifies the

CO2 buffering capacity of seawater, i.e. the resilience of the

coupled ocean–atmosphere system towards a perturbation in

atmospheric CO2.

In this study, β was calculated according to Hofmann et

al. (2008) and subsequently used to quantify the effect of sev-

eral processes on pH individually as described in Hofmann et

al. (2010a). Traditionally, the carbonate system is quantified

using DIC and TA. Although this approach has many advan-

tages, it can only determine the combined effect of several

concomitantly acting processes on pH. In the method pro-

posed by Hofmann et al. (2010a), pH is calculated explicitly

in conjunction with DIC. As a result, the individual contribu-

tion of each individual process on pH can be extracted, even

though several processes are acting simultaneously (Hagens

et al., 2014). Therefore, this method is ideally suited for the

analysis of proton cycling and constructing proton budgets.

Briefly, each chemical reaction takes place at a certain rate

and with a certain stoichiometry; for example, aerobic respi-

ration can be described as

CH2O(NH3)γN(H3PO4)γP + O2 → CO2 + H2O

+γNNH3 + γPH3PO4,
(R1)

where γN and γP are the ratios of nitrogen (N) and phos-

phorus (P) to carbon (C) in organic matter, respectively. At

first sight, this reaction equation does not seem to produce

any protons. However, the CO2 (as carbonic acid, H2CO3),

ammonia (NH3) and phosphoric acid (H3PO4) formed will

immediately dissociate into other forms at a ratio similar to

their occurrence at ambient pH. As a result, protons are pro-

duced during aerobic respiration, despite the fact they are ab-

sent in Eq. (R1). The amount of protons produced is termed

the stoichiometric coefficient for the proton (νx
H+ ) or proton

release rate. This coefficient is process-specific and, for aer-

obic respiration, equals c2+2c3−γNn1+γP(p2+2p3+3p4)

(Hofmann et al., 2010a; Table 1). Here, c2 and c3 are the ra-

tios of bicarbonate (HCO−
3 ) and carbonate (CO2−

3 ) to DIC,

n1 is the ratio of NH+
4 to total ammonia, and p2, p3 and p4

are the ratios of dihydrogen phosphate (H2PO−
4 ), monohy-

drogen phosphate (HPO2−
4 ) and PO3−

4 to total phosphate, re-

spectively. As these ratios depend on the ambient pH, so does

the value of νx
H+ .

In natural systems, the vast majority of protons produced

during a biogeochemical process according to νx
H+ are con-

sumed through immediate acid–base reactions, thereby neu-

tralising their acidifying effect. The extent to which this at-

tenuation occurs is controlled by the acid–base buffering ca-

pacity of the system. Hence, the net change in [H+] due to a

certain process x (µmol kg−1 d−1) is the product of the pro-

cess rate (Rx ; µmol kg−1 d−1) and the stoichiometric coeffi-

cient for the proton of that reaction (νx
H+ ), divided by β:

d[H+]x

dt
=

νx
H+

β
Rx . (7)

The total net change in [H+] over time is simply the sum of

the effects of all relevant processes, as they occur simultane-

ously:

d[H+]tot

dt
=

1

β

n
∑

x=1

νx
H+Rx . (8)

A straightforward way to express the vulnerability of a sys-

tem to changes in pH is to look at the proton turnover

time (Hofmann et al., 2010a). For this we first need to de-

fine the proton cycling intensity, which is the sum of all

proton-producing (or consuming) processes. When dividing

the ambient [H+] by the proton cycling intensity, the proton

turnover time (τH+ ) can be estimated. The smaller the proton

turnover time, the more susceptible the system is to changes

in pH. In a system that is in steady state, i.e. the final change

in [H+] is zero, the proton cycling intensity is the same irre-

spective of whether the sum of the proton producing or con-

suming processes is used for its calculation. In a natural sys-

tem like the Den Osse basin this is not the case, meaning that

total H+ production and total H+ consumption are not equal.

Here, we use the smaller of the two for the calculation of the

proton cycling intensity. As a result, the calculated turnover

times should be regarded as maximal values.

2.8 Proton budget calculations

Figure 2 shows a schematic overview of the major processes

affecting proton cycling in the Den Osse basin. For each of

the four seasons (March, May, August and November), we

estimated a proton budget for the basin by calculating the

net production of protons ( d[H+]x
dt

) for GPP, CR, nitrification,

CO2 air–sea exchange, sediment–water exchange of DIC and

TA and vertical water-column mixing, taking account of the

effects of S and T changes (Hofmann et al., 2008, 2009).

These budgets thus represent the processes influencing the

cycling of protons on the day of sampling. We divided the

vertical of the basin into eight depth layers, whereby the eight

sampling depths represented the midpoint of each layer. Us-

ing the bathymetry of the lake, for each box we calculated

the total volume of water in the layer, the area at the up-

per and lower boundary (planar area) and the sediment area

interfacing each box. The stoichiometric coefficients for the

proton (νx
H+ ) were calculated with AquaEnv using the mea-

sured concentrations of DIC, total phosphate, total ammo-

nia and total nitrate (Table 1). Rates of nitrification (mmol

N m−3 d−1) were estimated from the measured T , [NH+
4 ] and
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Table 1. Stoichiometric coefficients for the proton (νx
H+ ) for each reaction considered in the proton budget. c2 and c3 are the ratios of HCO−

3

and CO2−
3

to DIC, na1 and na2 are the ratios of HNO3 and NO−
3

to total nitrate, n1 is the ratio of NH+
4

to total ammonia, and p2, p3 and p4

are the ratios of H2PO−
4

, HPO2−
4

and PO3−
4

to total phosphate, respectively.

Process x νx
H+ Range in 2012

GPP (N-source = NH+
4

) −c2 − 2c3 + γNn1 − γP(p2 + 2p3 + 3p4) −1.01 to −0.88

GPP (N-source = NO−
3

) −c2 − 2c3 − γNna2 − γP(p2 + 2p3 + 3p4) −1.31 to −1.18

CR c2 + 2c3 − γNn1 + γP(p2 + 2p3 + 3p4) 0.88 to 1.01

Nitrification 2 − n2− na1 1.93 to 1.99

CO2 sea-air exchange c2 + 2c3 1.01 to 1.13

Transport/sediment efflux of TA −1 –

Transport/sediment efflux of DIC ∂TA
∂DIC

1.01 to 1.13

[O2] (in mmol m−3) using (Regnier et al., 1997):

Rnitr = 86400kmax exp

(

T − 20

10
ln(q10)

)

[NH+
4 ]

[NH+
4 ] + 250

[O2]

[O2] + 15
, (9)

where kmax is the maximum nitrification rate constant

(3 × 10−4 mmol m−3 s−1) and q10, which is set at 2, is

the factor of change in rate for a change in temperature

of 10 ◦C. CO2 air–sea exchange rates were converted to

mmol m−3 d−1 by first multiplying them with the total sur-

face area of the Den Osse basin (m2) and then dividing

them by the volume of the uppermost box (m3), assuming

that CO2 air–sea exchange only directly affects the proton

budget of this box. Similarly, DIC and TA sediment fluxes

(mmol m−2 d−1) were multiplied by the corresponding sedi-

ment area of the basin (m2) and then divided by the volume

of the box corresponding to their measurement depth (m3).

To ensure mass conservation, vertical TA and DIC transport

rates (mmol d−1) were computed by multiplying the differ-

ence in mass between two consecutive boxes (mmol), i.e. the

product of concentration and volume, with a mixing coef-

ficient ζ (d−1) that was calculated based on the entrainment

function by Pieters et al. (1985), multiplied by the volume of

water below the pycnocline. Then the transport rates were

converted to mmol m−3 d−1 by dividing them by the vol-

ume of the corresponding box. Finally, all rates (expressed

in mmol m−3 d−1) were divided by 10−3 × ρw (kg L−1) to

convert them to µmol kg−1 d−1.

The sum of d[H+]x
dt

of all processes considered ( d[H+
tot

dt
;

Eq. 8) was compared with 1[H+]obs

1t
, which was calculated

from the measured pHT as the weighted average of the ob-

served change in [H+] between the previous month and the

current month, and between the current month and the next

month. The difference between 1[H+]obs

1t
and d[H+]tot

dt
is rep-

resented as the closure term of the budget, which is needed

because some of the proton producing and consuming pro-

cesses are unknown or have not been measured. This budget

closure term includes the effect of lateral transport induced

by wind and/or water entering Lake Grevelingen through the

seaward sluice, which could not be quantified due to a lack

of hydrodynamic data.

3 Results

3.1 Environmental settings

Over the year 2012, the surface-water temperature at Den

Osse ranged from 1.99 to 21.03 ◦C, while bottom-water

temperature showed a substantially smaller variation (1.47–

16.86 ◦C; Fig. 3a). The surface water was colder than the

bottom water in January, while the reverse was true between

February and April. However, the temperature difference be-

tween surface and bottom water of Den Osse remained within

1 ◦C. Warming of the surface water in late spring rapidly in-

creased the difference between surface and bottom water to

9.3 ◦C in May. This surface-to-bottom difference in temper-

ature decreased but persisted until August. The thermocline,

which was located between 10 and 15 m in May, deepened to

15–20 m in June. In July and August, on the contrary, temper-

ature continuously decreased with depth. In September, the

temperature depth profile was almost homogeneous, while in

November and December surface waters were again cooler

than bottom waters.

Salinity (Fig. 3b) increased with water depth at all months,

but the depth of the halocline and the magnitude of the salin-

ity gradient varied considerably over the year. This salin-

ity gradient resulted from denser, more saline North Sea

water that sank when entering Lake Grevelingen. Varia-

tions in the sluice operation, and resulting changes in North

Sea exchange volumes, could therefore explain the observed

month-to-month variability in salinity depth profiles. Halo-

cline depth varied between ca. 6 m (March and from August

to October) to ca. 17 m (November). The largest difference

between surface (30.08) and bottom (32.21) water salinity

was found in March. Lower inflow and outflow volumes, re-

sulting from strict water level regulations in spring and early
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summer (Wetsteyn, 2011), led to a lower salinity through-

out the water column between April and June. In July and

August, a small (∼ 0.2) but noticeable decrease in salinity

was recorded from 15–20 m onwards, suggesting the intru-

sion of a different water mass. Precipitation did not appear

to exert a major control on the salinity distribution, as there

was no correlation between mean water-column salinity and

monthly rainfall as calculated from daily-integrated rainfall

data obtained from the Royal Netherlands Meteorological In-

stitute (http://www.knmi.nl) measured at Wilhelminadorp.

Similar to temperature, the difference in density anomaly

(σT; Fig. 3c) between surface and deep water was highest in

May. This density gradient was sustained until August, indi-

cating strong water-column stratification during this period.

The depth of the pycnocline decreased from ca. 15 m in May

and June to ca. 10 m in July and August. This corresponded

to a weakening of the stratification as indicated by the strati-

fication parameter φ, which dropped from 3.34 J m−3 in May

to 2.09 J m−3 in August (Fig. 3e). This weakening in stratifi-

cation was presumably due to the delayed warming of bottom

water compared to surface water. A week before sampling

in September, weather conditions were stormy (maximum

daily-averaged wind speed of 7.0 m s−1), which most likely

disrupted stratification and led to ventilation of the bottom

water. The resemblance in the spatio-temporal patterns of T ,

S and σT indicates that the water-column stratification was

controlled by both temperature and salinity, where salinity

was important in winter (φ values of ca. 1 J m−3) and tem-

perature gradients intensified stratification in late spring and

summer.

Oxygen concentrations (Fig. 3d) were highest in Febru-

ary as a result of the low water temperatures, increasing O2

solubility. A second peak in [O2] occurred in the surface wa-

ter in July, during a period of high primary production (see

Sect. 3.3.1), and led to O2 oversaturation in the upper metres.

From late spring onwards, water-column stratification led to

a steady decline in [O2] below the mixed-layer depth, result-

ing in hypoxic conditions (< 62.5 µmol L−1) below the pyc-

nocline in July and August. Although in August the bottom

water was fully depleted of O2, [H2S] remained below the de-

tection limit (5 µM), indicating the absence of euxinia. From

September onwards, water-column mixing restored high O2

concentrations throughout the water column.

Lake Grevelingen surface water is generally characterised

by high water transparency and deep light penetration

(Fig. 3e). LPD was 9.4 m in March and slightly increased

to 10.6 m in May. Between June and August, during a pe-

riod of high primary production (see Sect. 3.3.1), LPD de-

creased until 5.8 m. From September onwards, the surface

water turned more transparent again. Accordingly, LPD in-

creased up to 12.6 m in November, after which it stabilised at

a value of 12.0 m in December. The Secchi disc data gener-

ally confirm the observed temporal pattern in the LPD, as is

shown by the significant correlation between morning Secchi

depths and LPD (r2 = 0.86; P < 0.001). Secchi disc depth
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Figure 3. (a) Temperature (◦C), (b) salinity, (c) density anomaly

(kg m−3), (d) O2 (µmol L−1), (e) stratification parameter φ (J m−3)

and (f) light penetration and Secchi disc depths at the Den Osse

basin in 2012. Black dots in (a–d) indicate measurements. Data

from (a–d) were linearly interpolated in space and time.

was on average ∼ 80 % of LPD and, similar to LPD, was

highest in November and lowest in July. Additionally, the

Secchi depths indicate that diurnal variations in light pene-

tration may exist. Especially in July, during an intense di-

noflagellate bloom (see Sect. 3.3.1), light penetrated much

deeper into the water column in the morning than in the af-

ternoon (Secchi disc depths of 2.9 and 0.9 m, respectively).

The difference between morning and afternoon Secchi disc

depth was much smaller in August (3.3 and 2.5 m) and virtu-

ally absent in November (8.5 and 8.4 m).

3.2 Carbonate system variability

3.2.1 pHT, DIC, TA, pCO2

In January, pHT showed little variation with depth, with an

average value of 8.04 (Fig. 4a). From February to April, pHT

increased throughout the water column, though the increase

was faster at the surface than at depth, up to a maximum

of 8.36 in the surface water in April. From June onwards,

stratification augmented the difference between surface and

bottom water pHT. In August, this difference had increased

to 0.69 units. The sharp decrease in pHT with depth during

this month coincided with the declining trend seen for [O2]

(Fig. 3d), highlighting the connection between bottom-water
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Figure 4. (a) pHT (at in situ temperature), (b) DIC (µmol kg−1), (c)

TA (µmol kg−1), (d) pCO2 (ppmv), (e) buffering capacity (β) and

(f) concentration of Chl a (µg L−1) at Den Osse in 2012. Black

dots indicate sampling intervals. TA and pCO2 were calculated

from measured pHT and DIC using the equilibrium constants of

Mehrbach et al. (1973) as refitted by Dickson and Millero (1987),

while β was calculated from measured pHT and calculated TA. All

data were linearly interpolated in space and time.

pH and low [O2] in seasonally stratified waters. Addition-

ally, elevated surface water pHT in summer co-occurred with

high [O2], concurrent with an intense dinoflagellate bloom

(see Sect. 3.3.1). Similar to the depth profiles of [O2], the

termination of stratification diminished the gradient between

surface and bottom-water pHT. However, pHT at the end of

2012 was significantly lower (average value of 7.98) than at

the beginning of 2012. Over the year, surface-water pHT var-

ied 0.46 units, while bottom-water pHT variation was higher

(0.60 units).

DIC (Fig. 4b) showed little variation with depth in Jan-

uary and February (average value 2257 µmol kg−1), with the

exception of the bottom water, where DIC was slightly (40–

50 µmol kg−1) elevated. In March, DIC decreased slightly

throughout the water column, with a stronger drawdown

in the upper 6–10 m, and the higher bottom-water con-

centrations diminished. The difference between surface and

deeper water increased until ca. 70 µmol kg−1 in April, due

to an increase in bottom-water DIC. In May, a concur-

rent drawdown in DIC above 15 m and increase in DIC

below this depth resulted in a surface-to-bottom DIC dif-

ference of 250 µmol kg−1. The depth of this sharp transi-

tion coincided with the pycnocline depth. In June, DIC in-

creased strongly (by 100–200 µmol kg−1) below the pycno-

cline, while in July and August, a strong drawdown in DIC

occurred above the pycnocline, concurrent with an intense di-

noflagellate bloom (see Sect. 3.3.1). In combination with the

persisting stratification, this resulted in a surface-to-bottom

difference in DIC of 600 µmol kg−1. After the disruption of

the stratification, the difference between surface and bot-

tom water DIC was greatly reduced, and decreased further

from 144 to 47 µmol kg−1 between September and Decem-

ber. Concomitantly, the average DIC increased from 2146 to

2201 µmol kg−1, although the month of October was char-

acterised by overall slightly lower DIC (average value of

2123 µmol kg−1). Surface-water DIC variation over the year

(453 µmol kg−1) was somewhat higher than in the bottom

water (361 µmol kg−1).

TA (Fig. 4c) generally showed more temporal than spa-

tial variability. Therefore, variations in TA with depth were

usually much smaller compared to DIC. In January and

February, TA was fairly constant with depth (average value

of 2404 µmol kg−1), with the exception of bottom-water

TA in January (2460 µmol kg−1). In March and April, TA

in the upper 6 m was 40–50 µmol kg−1 higher than in the

underlying water. Overall, TA in April had increased by

on average 105 µmol kg−1 compared to March. The pe-

riod of water-column stratification was characterised by a

positive surface-to-bottom-water TA difference correlating

with pycnocline depth. This difference was highest in June

(195 µmol kg−1), as a result of high bottom-water TA, and in

August (306 µmol kg−1), mainly due to the strong drawdown

in surface-water TA. Because of this, average water-column

TA in June was much higher (2520 µmol kg−1) than in Au-

gust (2366 µmol kg−1). The low surface-water TA persisted

until November, while TA below 10 m depth was much less

variable. Similar to DIC, the month of October was charac-

terised by overall lower TA. There was little difference be-

tween surface- and bottom-water variation in TA over the

entire year (372 and 337 µmol kg−1, respectively).

The pattern of pCO2 (Fig. 4d) was inversely proportional

to that of pHT. January was characterised by little varia-

tion with depth and an average pCO2 (404 ppmv) close to

pCO2,atm (396 ppmv). In February, low T throughout the

water column led to a drawdown of pCO2 which contin-

ued until April, albeit with larger magnitude in the surface

compared to the bottom water. The onset of stratification

in May led to a build-up of CO2 resulting from organic

matter degradation in the bottom water. Maximum bottom-

water pCO2 (1399 ppmv) was found in August and, as ex-

pected, co-occurred with the period of most intense hypoxia

(Fig. 3d). While in May and June, pCO2 increased through-

out the water column, in July and August a substantial draw-

down in surface-water pCO2 was observed coinciding with

an increase in [O2], which is indicative of high autotrophic
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Table 2. Contributions of various acid–base systems to the acid–

base buffering capacity β in August at 1 and 32 m depth.

Acid–base system Oxic surface water Anoxic bottom water

(pHT = 8.28) (pHT = 7.52)

Carbonate 72.99 % 81.14 %

Borate 24.41 % 17.44 %

Water (auto-dissociation) 2.42 % 0.72 %

Phosphate 0.09 % 0.30 %

Silicate 0.08 % 0.29 %

Ammonium 0.00 % 0.08 %

Other 0.00 % 0.03 %

activity. Water-column ventilation disrupted the surface-to-

bottom pCO2 difference from September onwards. Mean

water-column pCO2 decreased from 584 to 490 ppmv be-

tween September and December, although pCO2 values

were slightly higher in November, especially in the bot-

tom water (601 ppmv on average). Note that, in contrast to

January, the average water-column pCO2 in December was

much higher than pCO2,atm (398 ppmv). Similar to pHT,

pCO2 variation over the year was higher in the bottom water

(1099 ppmv) than in the surface water (375 ppmv).

We investigated the correlation between the different car-

bonate system parameters and O2 by calculating coefficients

of determination and testing their significance using the

package Stats in R. In line with our visual observations, we

found a strong correlation between pHT and pCO2 (r2 =

0.89, P < 0.001) and weak to moderate correlations between

pHT and O2 (r2 = 0.68, P < 0.001), pCO2 and O2 (r2 =

0.70, P < 0.001), and DIC and TA (r2 = 0.56, P < 0.001).

DIC does not appear to be correlated with pHT (r2 = 0.18,

P < 0.001), pCO2 (r2 = 0.17, P < 0.001) or O2 (r2 = 0.21,

P < 0.001). Finally, as expected, TA could not statistically

significantly be correlated to pHT (r2 = 0.01, P = 0.278),

pCO2 (r2 = 0.01, P = 0.384) or O2 (r2 = 0.04, P = 0.066).

3.2.2 Acid–base buffering capacity

The acid–base buffering capacity generally showed a similar

spatio-temporal pattern to pHT and the inverse of the pCO2

pattern (Fig. 4e). In January, β had an average value of 22 967

and hardly varied with depth. From February to April, the

buffering capacity increased throughout the water column,

with a faster increase in the surface compared to the bottom

water and a maximum of 82 557 in the surface water in April.

In May and June, the acid–base buffering capacity showed

an overall decline. In contrast to pHT, the onset of stratifi-

cation did not lead to a direct amplification of the difference

between surface and bottom water β. July was characterised

by a sharp increase in surface-water β, coinciding with the

decrease in DIC, and a decrease in bottom-water β, a trend

that was intensified in August. During this period of strongest

hypoxia, surface-water β (71 454) was an order of magnitude

higher than bottom-water β (6802). Between September and

December, i.e. after bottom-water ventilation, the buffering

capacity did not show any substantial variations with depth.

Over the course of the year, surface-water β varied by a fac-

tor of 2 more than bottom-water β.

To assess the effect of temperature on the acid–base buffer-

ing capacity, we calculated β for each month and depth us-

ing the annual average temperature at Den Osse, which was

10.8 ◦C for 2012. From this, we calculated the anomaly in β

as the difference between the actual and isothermally calcu-

lated values for β. This analysis shows that the β anomaly

is negatively correlated with the T anomaly, i.e. an increase

in temperature leads to a decrease in the acid–base buffering

capacity. However, β changed by at most ∼ 30 000 as a result

of the range of temperatures the Den Osse Basin experienced

in 2012, while the actual seasonal variation in the acid–base

buffering capacity exceeds 60 000. Temperature thus only

partly explains the variation in β over the year. To further

elucidate what controls the acid–base buffering capacity, we

calculated the contribution of various acid–base systems to

β for the surface and bottom water in August (Table 2). This

calculation shows that in the oxic surface water, where β is

high, the relative contribution of the borate system to the to-

tal buffering capacity was higher than in the anoxic, poorly

buffered bottom water (24 and 17 %, respectively), while the

reverse holds for the carbonate system (73 vs. 81 %). Acid–

base systems other than the carbonate and borate system con-

tributed most to the buffering capacity in the anoxic bottom

water, due to the accumulation of NH+
4 , PO3−

4 and Si(OH)4.

However, their total contribution never exceeded 1 %.

3.3 Rate calculations

3.3.1 Gross primary production and community

respiration

Chl a, which was used as an indicator for algal biomass,

showed three periods of elevated concentrations (Fig. 4f). In

March, surface-water [Chl a] showed a slight increase up to

5.2 µg L−1. In May, elevated [Chl a] could be found between

6 and 15 m, with a subsurface maximum of 19.0 µg L−1 at

10 m depth. Finally, the most prominent peak in [Chl a]

(27.3 µg L−1) was found in the surface water in July. To-

gether with elevated [O2] and pHT and a drawdown of DIC

and pCO2, this indicated the presence of a major phytoplank-

ton bloom. Microscopic observations of phytoplankton sam-

ples from this bloom showed that it consisted mainly of the

dinoflagellate Prorocentrum micans.

Measured volumetric rates of GPP ranged from 0.0 to

150.7 mmol C m−3 d−1 (Fig. 5a), while volumetric CR

ranged from 0.0–31.5 mmol C m−3 d−1 (Fig. 5b). To a large

extent, their spatio-temporal patterns confirm the trends in

[Chl a]. GPP showed a distinct seasonal pattern, with one

major peak in July 2012 (151 mmol C m−3 d−1 at 1 m depth)

coinciding with high surface water [Chl a] and CR (31 mmol

C m−3 d−1). Elevated CR in August between 6 and 10 m

www.biogeosciences.net/12/1561/2015/ Biogeosciences, 12, 1561–1583, 2015
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Figure 5. Volumetric rates of (a) GPP (mmol C m−3 d−1) and (b)

CR (mmol C m−3 d−1) at Den Osse in 2012. Black dots indicate

sampling intervals. Rates were calculated as described in Sect. 2.4.

depth (19 mmol C m−3 d−1) may reflect degrading algal ma-

terial from this bloom. Although surface water [Chl a]

showed a slight increase in March, this was not reflected in

the GPP during this month (maximum 9.4 mmol C m−3 d−1).

The peak in [Chl a] in May correlated with a major peak in

CR (maximum 31 mmol C m−3 d−1) but not in GPP. Since

this Chl a subsurface maximum was close to the LPD of

10.6 m, this indicates that this algal biomass could not sub-

stantially contribute to GPP, as confirmed by the rate mea-

surements. Hence, it presumably represented sinking algal

biomass that was being degraded. The fact that the Chl a

peak at ca. 10 m depth in May was not preceded by a surface

water Chl a peak of equal magnitude could mean that part of

the algal biomass may not have formed in situ, but was im-

ported with North Sea water. As an alternative explanation,

there was a relatively long period between sampling in March

and April (42 days) and between sampling in April and May

(37 days). This means that in either of those periods an algal

bloom could have formed and led to the increase in CR in

May. Between March and May, [NH+
4 ] declined from 0.76 to

0.00 µmol kg−1 and [NO−
3 ] from 20.6 to 0.08 µmol kg−1 (see

online supplementary information), supporting the idea of a

bloom between sampling dates.

To assess the metabolic balance in the surface water,

we averaged the volumetric GPP and CR in the photic

zone. This analysis reveals that in summer, from June to

September, volumetric GPP was higher than CR above the

light penetration depth. Before and after this period, av-

erage photic zone CR was higher than GPP. This is an-

other indication that a significant part of the organic car-

bon respired within the surface water layer was not pro-

duced in situ, emphasising the potential importance of lat-

eral input of detrital matter at the field site. Yearly inte-

grated GPP averaged over the photic zone was estimated

to be 2494 mmol C m−3 yr−1, which amounts to an average

of 6.8 mmol C m−3 d−1. Annual depth-weighted photic zone

CR was slightly higher than GPP, i.e. 2852 mmol C m−3 yr−1

or 7.8 mmol C m−3 d−1. Depth-weighted volumetric CR be-

low the photic zone, the annual rate of which was approx-

imated at 2232 mmol C m−3 yr−1 or 6.1 mmol C m−3 d−1,
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Figure 6. (a) CO2 air–sea flux (mmol C m−2 d−1) and (b) total sed-

iment DIC and TA fluxes (mmol m−2 d−1) at three different depths

(S1 = 34, S2 = 23, and S3 = 17 m) in the Den Osse basin. CO2 air-

sea flux was interpolated using linear interpolation of the CO2 sea-

air gradient and daily averaged wind speed data measured at Wil-

helminadorp (51.527◦ N, 3.884◦ E). Sediment fluxes were obtained

from core incubations executed in triplicate (see Sect. 2.5).

was lower than average photic zone CR except for February

and December.

3.3.2 CO2 air–sea exchange

For most of 2012, the surface water (1 m) of the Den Osse

basin was undersaturated with respect to pCO2,atm, which

led to CO2 uptake from the atmosphere (Fig. 6a). In January,

surface-water pCO2 was very close to pCO2,atm, resulting in

a very small influx. From February to April, surface-water

pCO2 steadily declined to a value of 199 ppmv in April.

This brought about an increasingly larger gradient and a CO2

uptake that was highest in April (21.4 mmol C m−2 d−1).

Surface-water pCO2 increased in late spring until a value

of 350 ppmv in June, after which it declined to 202 ppmv in

August. Water-column ventilation from September onwards

brought CO2-rich bottom water to the surface, leading to a

surface-water pCO2 value exceeding that of the atmosphere

and inducing strong outgassing of CO2 towards the atmo-

sphere. Outgassing continued until the end of 2012, albeit

with a smaller magnitude due to a decrease in surface water

pCO2 to 411 ppmv in December.

Although the direction of the CO2 air–sea flux is solely

determined by the saturation state of surface water with re-

spect to pCO2,atm, its magnitude is also influenced by the

gas transfer velocity k, which is parameterised as a function

of wind speed. Daily-averaged wind speed over 2012 varied

between 1.5 and 14.5 m s−1, with an average of 4.6 m s−1.
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With the exception of January, February, April and Decem-

ber, our samples were taken on days with wind speeds below

average (see online supplementary information). We interpo-

lated the CO2 air–sea flux as described in Sect. 2.6 (red dot-

ted line in Fig. 6a). When integrated over the year, this leads

to a value of −0.98 mol C m−2 yr−1, or an average flux of

−2.66 mmol C m−2 d−1, indicating that the Den Osse basin

was a weak sink for CO2.

3.3.3 Sediment fluxes

In all months, sediment DIC fluxes were highest at S1

(Fig. 6b). Since S1 is located at the deepest point of the Den

Osse basin, it receives the highest input of organic matter

through both sinking and lateral transport. S2 and S3 showed

similar DIC fluxes throughout the year, with the exception of

November, when the flux at S2 (18.6 ± 2.9 mmol m−2 d−1)

exceeded that of S3 (10.7 ± 2.3 mmol m−2 d−1). In August,

DIC fluxes at S2 and S3 were substantially higher than in

the other months. During this month, the amount of organic

matter sinking through the water column may have been high

as a result of a peak in primary production in the preceding

month.

The sediment TA fluxes generally showed much

more site-specific variability, making it difficult to

identify any spatial or temporal patterns. TA fluxes

in March showed a clear spatial variability, with

the highest flux at S1 (45.0 ± 19.0 mmol m−2 d−1),

followed by S2 (13.1 ± 2.7 mmol m−2 d−1) and S3

(4.9 ± 1.3 mmol m−2 d−1). May and August did not display

any difference between stations or months, with fluxes

varying from 10.4 ± 12.7 to 25.3 ± 19.3 mmol m−2 d−1. In

November, TA fluxes at S2 (0.3 ± 5.2 mmol m−2 d−1) and

S3 (1.2 ± 3.9 mmol m−2 d−1) were similar and very small,

while S1 showed an uptake rather than a release of TA

(−10.1 ± 9.9 mmol m−2 d−1), likely because of reoxidation

processes that consume TA. Beggiatoa spp. were abundant

in these sediments in November (Seitaj et al., 2015a) and

their activity may generate a decrease in surface-sediment

TA (Sayama et al., 2005).

For most of the year, the ratio of sediment DIC to TA flux

was higher than 1, meaning that more DIC than TA was re-

leased from the sediments. Only in March at S1 and S2, the

efflux of TA was higher than that of DIC. Because of the sed-

imentary uptake of TA at S1 in November, the corresponding

DIC : TA was negative.

4 Discussion

4.1 Community metabolism

In 2012, Lake Grevelingen experienced a major phytoplank-

ton bloom in summer (July), a minor bloom with completely

different dynamics in early spring (March), and a potential

third bloom in late spring (April). The minor March bloom is

reflected in a slightly elevated surface water [Chl a] and pHT,

no obvious peak in GPP, but a small peak in CR. The major

peak in CR in May, accompanied by a Chl a peak at 10 m

depth, could result from the early spring bloom, as we might

not have captured its full extent, or the potential late spring

bloom (see Sect. 3.3.1). However, it most likely represents

laterally transported degrading Phaeocystis globosa, the hap-

tophyte that makes up the spring bloom in the southern part

of the North Sea (Cadée and Hegeman, 1991). Highest P.

globosa cell counts have been found between mid-April and

mid-May, corresponding to the timing of the CR peak, at the

mouth of the Eastern Scheldt (51.602◦ N, 3.721◦ E) between

1990 and 2010 (Wetsteyn, 2011), and off the Belgian coast

between 1989 and 1999 (Lancelot et al., 2007). Moreover,

the years with high P. globosa cell counts at the mouth of the

Eastern Scheldt coincided with a large area of low-oxygen

water in the entire Lake Grevelingen (Peperzak and Poelman,

2008; Wetsteyn, 2011), highlighting the connection between

P. globosa blooms and O2 consumption in the lake. The high

CR in May combined with the onset of stratification led to

a rapid decline in bottom water [O2]. The major dinoflagel-

late bloom in July was short but very intense in terms of GPP

and [Chl a] and appeared to contribute to the sharp increase

in hypoxic water volume between June and August. Sinking

P. micans from this bloom was degraded, which is reflected

in higher CR in July and August compared to June, and the

products of this degradation were trapped in the water below

the pycnocline, as is indicated by elevated DIC levels. How-

ever, the higher CR in July and August and subsequent de-

cline in [O2] may also result from higher water temperatures

(Fig. 3a), resulting in faster degradation of allochthonous or-

ganic matter. The drawdown of bottom-water O2 is, however,

not due to CR alone. The fact that [O2] declines with depth

at all months indicates that sediment oxygen uptake may be

an important process affecting water-column [O2]. Indeed,

substantial sediment O2 uptake was found to take place year-

round with rates up to 61 mmol m−2 d−1 at S1 (Seitaj et al.,

2015b).

Our depth-weighted, annually averaged CR of 7.8 mmol

C m−3 d−1 in the photic zone and 6.1 mmol C m−3 d−1 be-

low the LPD are similar to estimates from the nearby lo-

cated Western Scheldt, where annually averaged CR ranged

from 4.7–19.1 mmol C m−3 d−1, with a mean value of

6.6 mmol C m−3 d−1 (Gazeau et al., 2005b). In the mesoha-

line part of the seasonally hypoxic Chesapeake Bay, sum-

mertime surface-water CR was found to vary between 9.8–

53.0 mmol C m−3 d−1, while bottom-water CR varied be-

tween 0–45.6 mmol C m−3 d−1 (Lee et al., 2015). Thus, our

measurements of CR are well within the range of published

values, both for the Dutch coastal zone and for other season-

ally hypoxic basins.

Recent modelling studies and previous measurement cam-

paigns have presented lake-wide estimates of GPP rang-

ing from 100 g C m−2 yr−1 (Nienhuis and Huis in ’t Veld,

1984) to 572 g C m−2 yr−1 (Meijers and Groot, 2007). When
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integrating annual volumetric GPP over the depth of the

photic zone, we arrive at an estimate of GPP for the Den

Osse basin of 225 g C m−2 yr −1 in 2012. Given the dif-

ferent methods used and time periods considered, our esti-

mate of GPP is consistent with these previous studies. In

comparison with other coastal systems in the Netherlands,

GPP in the Den Osse basin is somewhat lower than that in

the adjacent Eastern Scheldt (200–550 g C m−2 yr−1; Wet-

steyn and Kromkamp, 1994) and of similar magnitude to

that in the western Wadden Sea between 1988 and 2003

(185 ± 13 g C m−2 yr−1; Philippart et al., 2007) and in the

Western Scheldt in 2003 (150 g C m−2 yr−1; Gazeau et al.,

2005b).

4.2 Proton cycling due to GPP and CR

The fluctuations in pHT as shown in Fig. 4a result from

the balance between rates and stoichiometry of proton-

producing and -consuming processes, mediated by the acid–

base buffering capacity of the water. Taking into account

that variations in the stoichiometric coefficient for the proton

are relatively minor (Table 1) compared to changes in pro-

cess rates (Figs. 5 and 6) and acid–base buffering capacity

(Fig. 4e), we will focus our discussion mainly on the latter

two.

Any biogeochemical process will either consume or pro-

duce protons based on its stoichiometry, as the reaction al-

ways proceeds in the forward direction. The signs of νx
H+

in Table 1 indicate whether a process produces (positive) or

consumes (negative) protons. Thus, CR and nitrification in-

crease [H+], while GPP leads to an increase in pH. For trans-

port processes, the direction of the flux determines whether

protons are produced or consumed. For example, CO2 up-

take from the atmosphere leads to an increase in [H+], while

outgassing of CO2 to the atmosphere consumes protons. For

vertical transport and sediment–water exchange, the direc-

tion of the net change in [H+] depends on the ratio of TA

to DIC flux entering the water mass. When the flux of TA

exceeds that of DIC, protons are consumed. On the contrary,

when DIC fluxes are higher than TA fluxes, the net effect is

an increase in [H+]. Considering the magnitude of the sea-

sonal variability in the various process rates measured at Den

Osse, they must significantly impact H+ dynamics.

Aside from this, the spatio-temporal variations in buffer-

ing capacity (Fig. 4e) also exert a major control on the pro-

ton cycling in this basin. Taking the month of August as an

example, β decreases by one order of magnitude when go-

ing from surface to bottom water. When the rate of a certain

process does not change with depth, the number of protons

produced or consumed by this process per kg of water is 1

order of magnitude higher in the bottom water than in the

surface water (see Eq. 7). This indicates that, in August, the

bottom water is much more prone to changes in pH than the

surface water. In line with previous studies focusing on the

CO2 buffering capacity (e.g. Thomas et al., 2007; Shadwick

et al., 2013), temperature was found to exert an important

control on the seasonal variability of the acid–base buffering

capacity in the Den Osse Basin. The fact that the contribu-

tion of acid–base systems other than the carbonate and bo-

rate system to β is highest in the anoxic bottom water is in

line with previous work (e.g. Ben-Yaakov, 1973; Soetaert et

al., 2007). However, their small contribution in the Den Osse

basin contrasts with results from the Eastern Gotland basin

in the Baltic Sea. Here, generation of TA during remineral-

isation under anoxic conditions by denitrification, sulphate

reduction and the release of NH+
4 and PO3−

4 , and the resul-

tant increase in buffering capacity were found to contribute

significantly to the observed changes in pH (Edman and Om-

stedt, 2013).

To understand how variations in both process rates and

acid–base buffering capacity control proton cycling in the

Den Osse basin, we used Eq. (7) to calculate the change

in [H+] (µmol kg−1 d−1) due to GPP at 1 m depth and CR

at 1 and 25 m depth. This analysis reveals that it is the in-

terplay between GPP (Fig. 7d) and β (Fig. 7b) that drives

temporal variations in d[H+]GPP

dt
(Fig. 7e). The seasonal pat-

tern of d[H+]GPP

dt
resembles that of GPP, but its magnitude

is significantly modulated by β, especially in late summer.

For example, GPP in August was 4.6 times higher than that

of September (57.9 and 12.6 µmol kg−1 d−1, respectively),

but d[H+]GPP

dt
in August was only 1.8 times higher. This dif-

ference cannot be explained by νGPP
H+ (Fig. 7c), which had

a higher magnitude in August (−1.31) in comparison with

September (−0.92), due to a switch from NO−
3 to NH+

4 up-

take (Sect. 2.4). Thus, the relatively high proton consumption

in September was driven by the lower surface-water buffer-

ing capacity, which is a factor of 3.7 smaller in September

compared to August (71 454 vs. 19 474). When comparing
d[H+]GPP

dt
and d[H+]CR

dt
in the surface layer (Fig. 7e), we see

that when GPP was higher than CR, the decrease in [H+]

due to GPP was also higher than the increase in [H+] due to

CR. This can simply be explained by the fact that β was the

same for both processes (Fig. 7b), and the effect of νGPP
H+ was

only minor (Fig. 7c), so that the difference between d[H+]GPP

dt

and d[H+]CR

dt
can directly be linked to the difference between

GPP and CR (Fig. 7d). Some clear differences between the

patterns of d[H+]CR

dt
at 1 and 25 m depth can be identified

(Fig. 7e). With the exception of February, October and De-

cember, volumetric CR was higher at 1 m depth than at 25 m

depth (Fig. 7d). Thus, the higher d[H+]CR

dt
in June and Au-

gust at 25 m compared to 1 m depth was solely driven by

the lower acid–base buffering capacity of the bottom water

(Fig. 7b). In July, on the contrary, CR at 1 m depth was so

much higher than at 25 m depth (30.8 vs. 2.9 µmol kg−1 d−1)

that this compensated for the lower buffering capacity at

depth (65 373 vs. 10 025) and led to a higher surface-water
d[H+]CR

dt
. Again, this highlights that the magnitudes of both

CR and β play a role in determining the actual change in pH.
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Figure 7. (a) pHT (at in situ temperature) and (b) acid–base buffer-

ing capacity β at 1 and 25 m depth; (c) stoichiometric coefficient

for the proton νx
H+ , d) process rate (µmol kg−1 d−1) and (e)

d[H+]x
dt

(µmol kg−1 d−1) for gross primary production (GPP; at 1 m depth)

and community respiration (CR; at 1 and 25 m depth) at Den Osse

in 2012.

In summary, in the Den Osse surface water we observe rel-

atively small pH fluctuations (Fig. 7a), despite high variabil-

ity in the balance between GPP and CR. In the bottom water,

CR is much more constant, yet pH variability is much higher.

Assuming these processes are the main biogeochemical pro-

cesses producing or consuming H+ on a seasonal scale, this

shows that seasonal changes in the acid–base buffering ca-

pacity play a major role in pH dynamics. Thus, our calcula-

tions clearly demonstrate that we cannot use only measured

process rates to estimate the effect of a certain process on pH.

Rather, it is the combined effect of variability in process rates

and buffering capacity, combined with minor fluctuations in

νx
H+ , that determines the change in pH induced by a certain

process.

4.3 Proton budget for the Den Osse basin

To further elucidate the driving mechanisms of pH fluctua-

tions, we calculated a full proton budget for each of the four

seasons in 2012. One should realise that these proton bud-

gets are among the first of their kind based on measured data

and contain many uncertainties. Figure 8 shows these bud-

gets for 1 and 25 m depth; the budgets for the other depths

can be found in the online supplementary information. This

calculation illustrates that of all the measured processes, GPP

and CR generally had the highest contribution to proton cy-

cling intensity in 2012. CR always dominated the total proton

production between 4.5 and 17.5 m and was usually a major

contributing process above and below this interval. In the sur-

face water GPP accounted for 34.8–99.2 % of H+ consump-

tion, but deeper in the photic zone GPP still accounted for a

significant part of the proton removal (2.7–30.3 % between

4.5 and 8 m depth). CO2 air–sea exchange usually played a

minor role in the surface-water proton cycling, apart from

November when outgassing of CO2 was high, and 56.6 % of

the total proton consumption in the surface water was due

to this process. In March, CO2 air–sea exchange contributed

14.2 % to the budget, while in May and August, its influence

was less than 6 %. Nitrification accounted for 0.00–34.4 % of

the total proton production and was mostly a significant pro-

ton cycling process in November and in May below 17.5 m

depth. The change in temperature from one day to the next

contributed 0.2–30.7 % to the proton cycling intensity and

was generally a more important factor in the proton budget

in March and November than in May and August. The effect

of vertical mixing was even less pronounced, as it accounted

for only 0.04–12.7 % of the proton cycling intensity through-

out the water column.

With the exception of March, the net result of the TA and

DIC fluxes from the sediment was the dominant contributor

to the total H+ production in the bottom layer (62.3–99.4 %).

Higher up in the basin, its contribution ranged from 2.6 to

49.2 %. In March, the net result of the sediment flux at S1

was a contribution of 24.0 % to the total proton consump-

tion, while at S2 and S3 its effect on the budget was less

than 10 %. During all months and at all depths, the abso-

lute value of d[H+]CR

dt
was larger than that of 1[H+]obs

1t
. This

was also usually the case for d[H+]GPP

dt
, d[H+]exch

dt
and d[H+]sed

dt
,

and in March and November for d[H+]nitr

dt
and

d[H+]temp

dt
, at the

depths where these processes took place. Thus, as was the

case for another coastal system (Hofmann et al., 2009), the

final change in [H+] resulting from all proton-producing and

-consuming processes was much smaller than the change in

[H+] induced by each of the separate processes.

The sum of d[H+]x
dt

of all measured processes ( d[H+]tot

dt
;

Eq. 8) was 1–2 orders of magnitude higher than 1[H+]obs

1t
.

As a result, the budget closure term dominated the proton

cycling intensity, with the exception of the surface water in
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[H+] change (µmol kg-1 d-1)

CO
2
 air-sea exchange

Vertical transport

Sediment fluxes

Gross primary production

Respiration

Nitrification

Temperature change

Closure term (lateral transport)

Net [H+] change

March 1 m

 -2e-4  -1e-4     0      1e-4   2e-4

+

March 25 m

-2e-4            0            2e-4  

+

May 1 m

 -2e-4  -1e-4     0      1e-4   2e-4

+

May 25 m

-2e-4            0            2e-4  

+

August 1 m

 -1e-3    -5e-4        0        5e-4     1e-3

+

August 25 m

     -1e-3            0             1e-3

+

November 1 m

 -2e-4  -1e-4     0     1e-4    2e-4

+

November 25 m

 -4e-4    -2e-4       0        2e-4    4e-4

+

Figure 8. Proton budget for the Den Osse basin at 1 and 25 m depth for the months of March, May, August and November. The closure term

is calculated as the difference between the calculated and measured net change in [H+].

March and November. Its contribution ranged from 34.8 to

100 % of the total H+ production or consumption, the latter

depending on the sign of the budget closure term. The domi-

nance of the closure term highlights the uncertainties under-

lying the current proton cycling budget. These uncertainties

arise from spatial and temporal variability, measurement er-

ror and incomplete coverage of all processes affecting proton

cycling. Taking the sediment fluxes (Fig. 6b) as an example,

we see that the standard deviation of both the TA and DIC

fluxes, which mostly results from small-scale spatial variabil-

ity, ranges up to ∼ 100 % of the measured flux. This imposes

a large uncertainty on the corresponding proton flux, which

may severely impact the bottom-water proton budget. Simi-

larly, by using an empirical nitrification rate expression based

on [NH+
4 ] and [O2], we ignore temporal variability caused

by, for example, changes in the microbial community. As the

nitrification rate, like the other process rates, linearly corre-

lates with the amount of protons produced, changes therein

may especially impact the proton budget in November.

Since d[H+]tot

dt
was mostly positive, the processes making

up the closure term generally had to decrease [H+], i.e. re-

move protons from the basin. Taking account of both its or-

der of magnitude and direction of change, we calculated that

lateral transport may have accounted for the budget closure

term. The average inflow in Lake Grevelingen through the

seaward sluice in 2012 was 221 m3 s−1 and took place for

9.9 h per day (calculated based on sluice water levels mea-

sured at 10 min intervals; P. Lievense, personal communica-

tion, 2013). Meijers and Groot (2007) showed that 30.2 %

of the water entering Lake Grevelingen through the sluice

remains in the lake for a longer period of time and is not di-

rectly transported back during the consecutive period of out-

flow. This means that, per day, 24 × 105 m3 of North Sea wa-

ter enters Lake Grevelingen. Assuming that all of this water

eventually reaches the Den Osse basin and taking account

of the total volume of this basin (655 × 105 m3), this means

that the inflow of the seaward sluice can fully replenish the

Den Osse basin in 30 days. The average density of the wa-

ter in the basin in 2012 was 1023.7 kg m−3. If we assume

that the pH of the inflowing water was 8.2, or [H+] was

6.31 × 10−3 µmol kg−1, then the proton flux entering the Den

Osse basin was 1.55 × 107 µmol d−1. Dividing this by the to-

tal volume of the Den Osse basin, which may be a valid as-

sumption if stratification is absent, and correcting for density

led to a proton flux of 2.11 × 10−4 µmol kg−1 d−1 into the

entire basin. This is in the same order of magnitude as the

closure term, which, for example, for the surface water in

May was −1.85 × 10−4 µmol kg−1 d−1. Note, however, that

the net proton flux will be smaller as protons are also leav-

ing the basin with outflowing water. Additionally, on both

the seaward and landward sides Den Osse is surrounded by

shallower waters, which are supposed to have a pH similar

to that of the surface water at Den Osse. Depending on the

depths at which water is entering and leaving the Den Osse

basin, most likely more protons will be removed from the

basin than it will receive from the adjacent water during hor-

izontal water exchange, thus leading to a negative d[H+]closure

dt
.

This is in line with the negative sign of the budget closure

term for most months.

Over the course of the year, proton turnover time (τH+ )

varied substantially. In March (32.8 days) and November

(35.9 days), the linearly interpolated and depth-averaged τH+

in the basin was much higher than in May (17.7 days) and

August (14.4 days). For each month, different driving factors

explain these patterns. The proton turnover time is linearly

correlated with both ambient [H+] and β, and inversely cor-

related to the process rates. The high average value of τH+

in March is mostly explained by a high buffering capacity

in combination with low biogeochemical activity. The de-

crease in May resulted from a significant increase in biogeo-

Biogeosciences, 12, 1561–1583, 2015 www.biogeosciences.net/12/1561/2015/



M. Hagens et al.: Acidification in a seasonally hypoxic coastal basin 1577

chemical and physical process rates, since both the average

[H+] and β were higher compared to March. In August, on

the contrary, average β decreased a factor of 2.6 while av-

erage [H+] increased a factor 2.7, thereby almost cancelling

out each other’s effect on τH+ . The higher turnover time in

November, finally, was mostly driven by low process rates

in combination with a relatively high average [H+]. To sum-

marise, the proton turnover time in the Den Osse basin is

a complex combination of variability in process rates and

buffering capacity, but also depends on the ambient pH.

When the proton turnover time is divided by β, one cal-

culates the gross proton turnover time, i.e. the turnover time

without buffering (Hofmann et al., 2010a). Given that the av-

erage β in the Den Osse basin is ∼ 30 000 and τH+ varies be-

tween 14.4 and 35.9 days in the 4 months studied, the gross

proton turnover time is in the order of minutes. This demon-

strates that buffering reactions in active natural systems are

extremely important in modulating the net change in [H+],

and again highlights the fact that pH dynamics in these set-

tings cannot be studied by measuring process rates alone.

5 Conclusions

The Den Osse basin experiences temperature-induced sea-

sonal stratification that, combined with high oxygen con-

sumption, results in the development of hypoxic bottom wa-

ter with higher DIC and pCO2 and lower pHT. The strong

correlation between pHT and pCO2 in 2012 and their mod-

erate correlations with O2 suggest a link between GPP, CR

and pHT, which was further investigated in a detailed proton

study. Volumetric GPP showed a major peak in July, while

CR was highest in late spring. Although atmospheric CO2

was taken up for most of the year, the relatively strong out-

gassing after the termination of stratification resulted in the

Den Osse basin being only a weak sink for CO2. Sediment

DIC fluxes were highest at the deepest point of the basin and

were generally higher than TA fluxes.

The calculated proton budgets clearly show that it is the

combination of changes in process rates and changes in

buffering capacity that determines the net proton change of

the system. Which of these two dominates depends on the

season, depth and the process considered. However, it ap-

pears that variations in the process rates control the gen-

eral pattern of proton cycling, while the buffering capacity

dampens its signal with varying intensity. In 2012, this be-

came especially apparent during the period of summer hy-

poxia, when the decrease in buffering capacity with depth

led to a much shorter proton turnover time at depth com-

pared with the surface. Of the process rates considered, the

balance between primary production and respiration had the

biggest impact on proton cycling. The influence of CO2 air–

sea exchange was most apparent during outgassing in au-

tumn, while sedimentary TA and DIC fluxes impinged the

proton balance in the deepest part of the basin. While the ef-

fect of vertical mixing on the proton balance was mostly neg-

ligible, horizontal exchange appeared to exert a major control

on the proton budget of the basin.

This work highlights that process rates, buffering capacity

and ambient pH are all essential compartments when deter-

mining the vulnerability of a system to changes in pH. By

constructing one of the first proton budgets originating from

in situ measurements, this study shows the associated uncer-

tainties and challenges for future studies.
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Appendix A: Overdetermination of carbonate system

A1 A1 Contribution of particles and organic alkalinity

to TA

In oceanic research, samples for the determination of TA

are typically not filtered before measurements (e.g. Dick-

son et al., 2007). In an open ocean setting, concentrations

of suspended matter are usually low and its effect on TA

may therefore be neglected. However, in highly productive

regions, such as coastal regions, high concentrations of par-

ticulate organic matter and calcium carbonate (CaCO3) par-

ticles are often found. In an incubation experiment, Kim et

al. (2006) showed that the titration of surface sites on phyto-

plankton and bacterial cells can add significantly to the mea-

sured TA. By filtering seawater upon collection, particulates

are removed and the contribution of particulate organic mat-

ter (POM) and CaCO3 particles to TA can be ignored.

We assessed the contribution of suspended particulate

matter (SPM) to TA by calculating the difference between

TA measured on unfiltered and filtered (0.45 µm) seawater.

This difference 1TA, which could indicate the contribu-

tion of SPM to TA, is not significantly different from zero

(t = 0.1281, df = 190, P = 0.898; two-sided Student’s t-test

calculated using the package Stats in R), nor does it not show

a clear pattern with TA (Fig. A1; blue triangles), pHT or SPM

(results not shown). Additionally, the outliers in this data set

could not unequivocally be correlated to events such as the

phytoplankton bloom in July or high CR in May.

Additionally, dissolved organic matter (DOM) may con-

tribute to TA, as DOM is composed of several compounds

that have acid–base groups attached to them. The bulk of

terrestrial-derived DOM consists of humic and fulvic acids

and their contribution to estuarine TA and acid–base prop-

erties were described by Cai et al. (1998). In general, the

contribution of DOM-associated acid–base groups to TA

can be assessed using a chemical model set up by Oliver

et al. (1983), which was calibrated for natural waters by

Driscoll et al. (1989). However, the calibration performed

by these authors was done on freshwater lakes with maxi-

mum pH < 7.5. Thus, their parameterisation might not be

directly applicable to saline waters including Lake Grevelin-

gen, where most DOM is derived from phytoplankton. Both

in incubation experiments (Hernández-Ayon et al., 2007;

Kim and Lee, 2009; Koeve and Oschlies, 2012) and in bio-

logically active natural waters (Hernández-Ayon et al., 2007;

Muller and Bleie, 2008) it has been shown that DOM re-

sulting from phytoplankton may contribute significantly to

seawater TA. The contribution of DOM to TA relies on two

factors: the density of acid–base functional groups within the

organic matter compounds and their associated pKa values.

Both of these factors depend on DOM quality and source ma-

terial, and neither of them is well known for marine DOM. To

highlight this complexity, the increase in TA per unit increase

of DOM in phytoplankton culture experiments appears to be

species-specific (Kim and Lee, 2009).

In theory, one would expect that TA calculated from DIC

(and total concentrations of borate, ammonia, phosphate and

other inorganic species contributing to TA) represents the in-

organic, aqueous fraction of TA. When TA is measured di-

rectly using a filtered seawater sample, one implicitly in-

cludes TA derived from dissolved organic acids and bases.

We evaluated the contribution of DOM to the total alkalinity

by: (1) comparing TA calculated from pH and DIC with TA

determined from filtered (0.45 µm) seawater; and (2) apply-

ing the formulation of Driscoll et al. (1989) using concentra-

tions of DOC.

A two-sided Student’s t-test revealed that there was no

significant difference between TA measured on filtered sam-

ples and TA calculated from DIC and pHT (t = −0.044,

df = 187, P = 0.965). However, Fig. A1 shows that, in gen-

eral, the difference between TA measured on filtered samples

and TA calculated from DIC and pH (red squares) is positive

in the lower range of TA values. A positive difference might

indicate that DOM-associated acid–base groups increase TA.

On the contrary, a negative difference was found in the higher

range of TA values, indicating that DOM-associated groups

decrease the acid neutralisation capacity of the water. When

these data were plotted as a function of pHT or DOC, no

pattern was observed (results not shown). Similar to the dif-

ference between TA measured on unfiltered and filtered sea-

water, we found no correlation between the outliers in this

data set and biogeochemical process rates.

The contribution of organic alkalinity to TA as calcu-

lated with the model calibrated by Driscoll et al. (1989)

did not show any systematic variability and ranged between

16 and 32 µmol kg−1, with DOC ranging between 119 and

237 µmol kg−1 (see online supplementary information). Its

pattern did not resemble the difference between TA measured

from filtered samples and calculated TA, indicating that the

model could not explain the current results. In the range of

pH values observed at Den Osse, the operational pK value

derived from the Driscoll et al. (1989) model, which is an

average representative of various DOM-associated acid–base

groups, ranged between 5.91 and 6.06, indicating that the

majority of these groups were present in their basic form.

However, this operational pK value is significantly lower

than the pKa of organic acids associated with phytoplank-

ton, which was found to be above 7 (Hernández-Ayon et

al., 2007), indicating that the fraction of organic acid–base

groups present in their basic form may be smaller. This

would thus decrease the calculated contribution of DOC to

TA. Additionally, the fraction of DOC that is releasing bases

during phytoplankton blooms is unknown but may be higher

than the 14 % calibrated by Driscoll et al. (1989), which

would mean that their model underestimates organic alka-

linity in coastal systems.
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Figure A1. Differences in total alkalinity (1TA; µmol kg−1) mea-

sured on unfiltered and filtered (0.45 µm) samples (blue triangles;

representing the effect of particles) and between TA measured on

filtered seawater and TA calculated from DIC and pHT (red squares;

representing potential organic alkalinity), plotted as a function of

TA calculated from DIC and pHT. The dotted lines indicate the typi-

cal standard deviation of the difference between two measurements.

A2 Comparison of measured and calculated pCO2

values

During this study, we measured four parameters of the car-

bonate system (DIC, TA, pCO2, pHT), while, theoretically,

only two parameters are necessary for a full determination.

Which two parameters can best be measured to describe the

carbonate system is subject of an ongoing debate. Dickson

et al. (2007) suggest that, if possible, it is always better to

measure a parameter rather than calculate it from other pa-

rameters, since there are limitations to the accuracy of the

carbonate system prediction when certain combinations of

parameters are used. For instance, in a compilation of in-

cubation studies it was found that calculating pCO2 from

DIC and TA tends to underestimate pCO2 at high levels (i.e.

∼ 1000 ppmv) by up to 30 %, for, as yet, unknown reasons

(Hoppe et al., 2012).

In 2012, pCO2 calculated from DIC and pHT ranged be-

tween 189 and 1407 ppmv in the Den Osse basin. To check

whether this natural system also showed internal inconsis-

tencies, and to further highlight the complexity of an overde-

termined system, we compared pCO2 values calculated with

different combinations of TA, DIC and pHT with measured

pCO2 values (Fig. A2). For each combination of parame-

ters, we assessed their agreement with measured pCO2 by

calculating the sum of squared differences. This calculation

showed that using pHT and DIC provides the best agreement

between measured and calculated pCO2. The highest sum

of squares was found when using DIC with either filtered

or unfiltered TA, which is another indication of the uncer-

tainties introduced when using this combination of carbon-

ate system parameters in non-open-ocean settings. Another
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Figure A2. Differences in partial pressure of CO2 (1pCO2; ppmv)

measured by the headspace technique using gas chromatography

and calculated using a suite of parameter combinations (pHT and

DIC, TA and DIC, pHT and TA). TAFI and TAUF indicate TA mea-

sured on filtered and unfiltered samples, respectively.

feature in Fig. A2 is that calculated pCO2 values are gen-

erally lower than measured values, as indicated by a posi-

tive 1pCO2. Only in the higher range of measured pCO2

(> ca. 1000 ppmv) and when TA is used as a starting pa-

rameter is the calculated pCO2 mostly higher than the mea-

sured pCO2. A closer look at these data reveals that all sam-

ples below the pycnocline in August show higher calculated

than measured pCO2 when DIC and either of the TA mea-

surements are used as the parameter combination. These dif-

ferences range between 3 and 299 ppmv (0–21.4 %) and are

generally higher when unfiltered TA samples are used. Fur-

thermore, the two points where TA calculated from pH and

DIC is highest (2593 and 2629 µmol kg−1; Fig. A1), which

are the samples taken at 25 and 32 m depth in July, also show

a higher calculated than measured pCO2 when DIC and un-

filtered TA are used as parameter combination (differences

of 185 and 169 ppmv or 20.6 and 17.6 %, respectively).

A3 Concluding remarks

To summarise, these results suggest that, especially in hy-

poxic natural waters, TA cannot unequivocally be chosen as

one of the two parameters necessary to quantify the carbon-

ate system. Additionally, the Den Osse data set cannot be

used to draw any clear conclusions on the effect of DOM

and SPM on TA. This conclusion supports our choice of us-

ing pHT and DIC for the carbonate system calculations.
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