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Biogeochemistry of arsenic and antimony in the North Pacific
Ocean

Gregory A. Cutter and Lynda S. Cutter
Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
(gcutter@odu.edu)

[1] The biogeochemical cycles of the metalloid elements arsenic and antimony were examined along a
15,000 km surface water transect and at 9 vertical profile stations in the western North Pacific Ocean as
part of the 2002 IOC Contaminant Baseline Survey. Results show that the speciation of dissolved arsenic
(As III, As V, and methylated As) was subtly controlled by the arsenate (AsV)/phosphate ratio. An
additional fraction of presumed organic arsenic previously reported in coastal waters was also present
(�15% of the total As) in oceanic surface waters. Dissolved inorganic antimony displayed mildly
scavenged behavior that was confirmed by correlations with aluminum, but atmospheric inputs that may be
anthropogenic in origin also affected its concentrations. Monomethyl antimony, the predominant organic
form of the element, behaved almost conservatively throughout the water column, radically changing the
known biogeochemical cycle of antimony.
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1. Introduction

[2] The first comprehensive study of the marine
arsenic cycle occurred in the North Pacific Ocean
over 27 years ago [Andreae, 1978], while inves-
tigations of its companion on the Periodic Table,
antimony, began in earnest roughly 10 years later
[e.g., Middelburg et al., 1988; Cutter and Cutter,
1995]. The predominant form of arsenic, like
phosphorus, in most oxygenated surface waters
is the thermodynamically stable As(V) as arsenate
(AsO4

3�). However, arsenic differs from phospho-

rus by the presence of other dissolved forms of the
element. Despite its thermodynamic instability in
the presence of oxygen, a low background level of
dissolved arsenite (As III) is ubiquitous in oxic
seawater [Cutter, 1992; Cutter et al., 2001]. Two
methyl forms of dissolved arsenic have also been
commonly observed, monomethyl arsenic (MMAs)
and dimethyl arsenic (DMAs) [Braman and
Foreback, 1973; Andreae, 1978]. They are usually
found as minor fractions of total As in river water
[Braman and Foreback, 1973; Andreae, 1977;
Byrd, 1990] and seawater [Andreae, 1978, 1979;
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Cutter et al., 2001]. Higher molecular weight
dissolved organic arsenicals have been found in
coastal waters (up to 25% of the total dissolved As
[Howard and Comber, 1989]), but no values for
oceanic waters have been reported.

[3] In the open ocean, dissolved arsenate has
nutrient-like depth profiles, with the degree of
surface depletion affected by the ambient phos-
phate concentration [Cutter et al., 2001], and a
rapid increase in the thermocline to relatively
constant deepwater concentrations. Between the
Atlantic and Pacific, deep-water interbasin frac-
tionation is only 36% compared to phosphate’s
>300% [Cutter and Cutter, 1998]. DMAs and
MMAs are restricted to the upper 500 m of the
oceanic water column, and correlations with chlo-
rophyll and productivity indicate phytoplankton
sources [Andreae, 1979]. Arsenite also has its
highest concentrations in surface waters and corre-
lations with chlorophyll [e.g., Cutter et al., 2001]
similarly argue for biotic production. However, low
concentrations of arsenite in deep waters of the
Atlantic and Pacific suggest other sources, or a
very long residence time. For autotrophic phyto-
plankton, arsenate acts as a phosphate analogue,
showing competitive uptake by algae [Sanders,
1979]. The toxicity of arsenic is also linked to
phosphorus; arsenate can be coupled to 3-phospho-
glyceraldehye in the place of phosphate, but the
bond is less stable and spontaneously breaks apart
to 3-phosphoglycerate and arsenate, effectively
decoupling energy metabolism [Lehninger, 1975].
Phytoplankton appear to have evolved several
different strategies for ameliorating the toxic
effects of As. One is to have phosphate uptake
mechanisms that discriminate against arsenic [e.g.,
Budd and Craig, 1981]. Second, arsenate can be
transformed into compounds that are less harmful
and easier to excrete (arsenite, MMAs, DMAs),
and then either transferred to the water column or
stored innocuously [e.g., Andreae and Klumpp,
1979; Sanders and Windom, 1980].

[4] In the last 27 years, our understanding of the
As cycle has expanded only incrementally. In
studying the behavior of As in a phosphorus-
enriched estuary, Froelich et al. [1985] proposed
that the arsenate/phosphate ratio controlled the
reduction and methylation of arsenate, and that
most of the arsenate taken up by phytoplankton
was transformed into the methylated fraction. Nev-
ertheless, they also argued that much of the DMAs
and MMAs could be produced via the regeneration
of organic matter rather than by direction methyl-

ation and release. Such a mechanism for the
production of DMAs was also invoked by Howard
and Comber [1989]. With respect to the conditions
under which arsenate is reduced and methylated,
Hellweger et al. [2003] developed a simulation
model to explain the production of arsenite and
methyl As as a function of phosphate concentra-
tion. They assumed that arsenate is taken up with
phosphate and then detoxified by rapid reduction to
arsenite and slower methylation to MMAs and
DMAs. For cells growing under P-replete condi-
tions (i.e., log phase growth), arsenite is rapidly
produced and excreted (arsenite predominates
since methyl As is produced slowly), whereas
under P limitation and slow growth, the production
of methylated As is favored. This relationship with
the phosphorus status of surface waters that was
also postulated by Froelich et al. [1985] raises a
compelling reason to reexamine the marine bio-
geochemistry of arsenic. If the ocean is becoming
more phosphorus limited as hypothesized by Karl
et al. [2001] and Ammerman et al. [2003], then the
As/P ratio will increase and the resident phyto-
plankton will become more As-stressed (i.e., de-
toxification mechanisms employed).

[5] Although a Group V element, the oceanic
behavior of antimony is quite different than that
of arsenic, with depth profiles from the North and
South Atlantic [Middelburg et al., 1988; Cutter
and Cutter, 1995, 1998; Cutter et al., 2001] show-
ing either conservative behavior, or surface
maxima and slight decreases with depth, consistent
with mildly scavenged behavior. Like arsenic,
dissolved antimony is primarily in the pentavalent
oxidation state. Antimony (III) and methyl Sb,
primarily monomethyl (MMSb), are found in sur-
face waters, but dimethyl and trimethyl antimony
also have been detected [Ellwood and Maher,
2002]. Benson and Cooney [1988] reported the
production of a methylated antimony lipid by a
marine diatom that had an arsenic equivalent, but it
was produced from Sb(III) not (V). Thus, in spite
of the existence of methylated and reduced anti-
mony in surface waters, there are no supporting
studies of antimony that show a detoxification
pathway equivalent to that of arsenic. The sources
of reduced and methylated antimony are largely
unidentified. Furthermore, if scavenging is an im-
portant process affecting antimony, then data for
the Pacific Ocean will help highlight this behavior
due to longer deep-water residence times.

[6] The 2002 IOC Contaminant Baseline Survey in
the North Pacific [Measures et al., 2006] traversed
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waters ranging from the extremely oligotrophic
North Pacific central gyre to the high nutrient-
low chlorophyll region of the sub-Arctic Pacific,
ideal for examining the cycling of arsenic and
antimony. This paper examines antimony and ar-
senic behavior in the North Pacific Ocean in order
to evaluate the arsenic-phosphorus relationship, as
well as to evaluate whether antimony truly behaves
as a mildly scavenged element.

2. Methods

2.1. Study Area and Sampling Methods

[7] The 2002 expedition used the U.S. Research
Vessel Melville and left Osaka, Japan, on 1 May
2002 and arrived in Honolulu, Hawaii, on 5 June
2002. A total of nine vertical profiles stations were
occupied, and surface samples were acquired 2–
3 times per day during transects between stations
(Figure 1). In addition to hydrographic sampling
using a CTD/rosette, trace element samples at the
vertical profile stations were acquired using 12 and
30 L trace metal-clean Go Flo bottles deployed on
a 5600 m, 6 mm Kevlar cable with plastic-coated
weight and triggered with plastic messengers; the
depth of the deepest bottle was verified using a
logging pressure transducer. After recovery, the Go
Flo bottles were brought into a clean room, the
bottles pressurized (8 psi, filtered compressed air),
the water directly passed through acid-cleaned,
0.4mm polycarbonate filters in Teflon holders, and
into sample containers (500 mL FEP Teflon); these
bottles were refrigerated until analysis (within
24 hours). Additional samples for salinity, nutrients,

and chlorophyll were also taken [Measures et al.,
2006].

[8] For underway surface sampling, a ‘‘fish’’ [Vink
et al., 2000] was towed �7 m off the port, aft
quarter of the ship at 1–3 m depth depending on
ship’s roll. Water was peristaltically pumped
through Teflon tubing and into a clean facility in
the ship’s analytical lab where it passed through a
0.2 mm filter and into a Teflon bottle as above;
nutrient, salinity, and chlorophyll samples were
also taken.

2.2. Analytical Methods

[9] Because of the instability of As and Sb species
with storage [Cutter et al., 1991], all analyses were
made on board ship within 24 hours of sample
collection. The simultaneous determinations of
inorganic antimony and arsenic speciation utilized
the selective hydride generation, cryogenic trap-
ping, and gas chromatography-photoionization de-
tection method of Cutter et al. [1991]. Reduced
(i.e., +3) As and Sb were converted to their
hydrides at pH 6.2 (TRIS-HCl buffer) using
NaBH4 in the presence of sulfanilamide (0.5 mL
of a 2% solution to remove nitrite interference; see
below) and determined. Hydride generation at
0.5 M HCl (+KI solution) and GC/PID detection
yielded the concentrations of As and Sb (III + V);
As and Sb (V) were the difference between the
two separate determinations. The detection limit
for inorganic As was 0.001 nmol l�1 while that
for Sb was 0.0005 nmol l�1, and precision at
0.5 nmol l�1 was better than 5% (relative standard

Figure 1. Ship’s track for surface sampling and major vertical profile stations during the 2002 IOC Contaminant
Baseline Survey, 1 May to 5 June 2002. ‘‘Tricho’’ is the location of visually observed blooms of the nitrogen-fixing
cyanophyte, Trichodesmium.
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deviation, RSD). The standard additions method of
calibration was used to assure accuracy.

[10] Dimethyl and monomethyl arsenic and anti-
mony (DMAS, DMSb, MMAs, and MMSb)
were simultaneously determined using the total
inorganic As and Sb procedures above (except
no KI was added), including the addition of
sulfanilamide, but using a different gas chromatog-
raphy column (15% OV-3 on Chromasorb W/AW
DMCS, 80/100 mesh). Detection limit for the
methylated As and Sb species was 0.005 nmol l�1

and the precision was 6% (RSD) at 0.1 nmol l�1.

[11] The addition of sulfanilamide for the determi-
nations of both the trivalent and methylated species
is an update from the procedure used in the
Atlantic Ocean [Cutter et al., 2001], and was
instituted when low recoveries (based on standard
additions) were encountered in the HNLC waters
north of 42�N during the expedition. The major
constituent in these waters that is not present in the
more oligotrophic waters is nitrate. In as much as
sulfanilamide addition removes the interference (no
change in the standard additions slope), it appears
that some nitrate may be reduced to nitrite by
borohydride. More specifically, nitrite is a strong
oxidant for hydrides and sulfanilamide reacts
with nitrite to form a stable diazonium compound
[Cutter, 1983]. Nitrate and nitrite were determined

on board ship and sulfanilamide was available
since it is a key reagent in the colorimetric proce-
dures. The use of this sulfanilamide was instituted
after Station 3 and therefore the methyl Sb data
from Stations 1–3 are suspect; Sb(III) did not
appear to be affected as much. As will be seen,
this analytical modification profoundly changes
our understanding of methyl antimony cycling.

3. Results and Discussion

3.1. Vertical Profiles

[12] For this discussion six of the nine vertical
profile stations on the cruise are covered, and these
represent the highest and lowest latitudes, extremes
in longitude, existing time series stations, and
variations in oceanographic conditions. The west-
ernmost Station 1 (34.467�N, 146.99�E) was at the
northern edge of the subtropical gyre in the Kur-
oshio Current, and had undetectable nutrient con-
centrations [Measures et al., 2006] and the highest
chlorophyll concentration of the vertical profiles
stations (Figure 2). Total inorganic arsenic (As III +
V or Asi) in the 25 m deep mixed layer had the
lowest concentration encountered on the expedi-
tion, while correspondingly high concentrations of
arsenite, but only low methyl arsenic concentra-
tions, were present (Figure 2; for clarity only

Figure 2. Vertical profiles for dissolved inorganic (As III + V and As III) and organic (dimethyl arsenic, DMAs)
arsenic speciation, phosphate, and chlorophyll a at 2002 IOC Stations 1, 3, and 5. Note that in the right-hand panel,
phosphate concentrations are plotted as the open symbols, while chlorophyll are the filled green symbols, with the
shape of the symbols corresponding to the stations numbers in the legend.
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DMAs data are plotted). In contrast, total inorganic
antimony (Sb III + V or Sbi) had its highest mixed
layer concentration at Station 1 (Figure 3), with a
slight decrease into the thermocline. Antimony (III)
was undetectable at this and all other vertical
profile stations and will only be discussed for the
horizontal transect. However, monomethyl antimo-
ny had its highest concentrations in the mixed layer
and upper thermocline at Stn. 1, but then dropped
to undetectable levels by 200 m (Figure 3); this
later feature is likely an analytical artifact that will
be discussed below.

[13] Station 5 (33.765�N, 170.58�E) was at nearly
the same latitude as Station 1, and in the Kuroshio
Current Extension and subtropical Gyre, but much
farther from potential atmospheric sources of As
and Sb (discussed below). Like Station 1, nutrients
were below detection limits, but chlorophyll a
concentrations were elevated [Measures et al.,
2006] (Figure 2). Total inorganic arsenic was not
as depleted in surface waters compared to Station 1,
arsenite concentrations were roughly equivalent,
but DMAs was twice that at Station 1 (Figure 2).
Total inorganic antimony had a surface maximum
and decrease into the major thermocline, but the
maximum was 15% lower than the concentrations
at Station 1 (Figure 3). In contrast to the Station 1

profile, MMSb had a relatively uniform concentra-
tion with depth (Figure 3; 0.084 ± 0.007 nmol l�1),
a change that is due to the use of sulfanilamide to
remove the nitrite/nitrate interference.

[14] Stations in the western sub-Arctic gyre (2 at
44.0�N, 155.0�E; and 3 at 50.0�N, 167.0�E) had
properties that were quite different than those to the
south, particularly their nutrient enrichment
(Figures 2 and 4) in surface waters characteristic
of this High Nutrient-Low Chlorophyll (HNLC)
region; however, both stations still had strong
subsurface (40 – 50 m) chlorophyll maxima
(Figures 2 and 4). For arsenic, the most striking
features at these stations were the lack of surface
depletion of Asi relative to stations in more oligo-
trophic waters, and the low concentrations of arse-
nite and methyl As in the upper water column
(Figures 2 and 4), particularly at Station 2 (Japanese
JGOFS Time Series Station KNOT). For total
inorganic antimony, surface maxima were absent
and indeed, the vertical profiles look almost nutrient-
like (surface depletion, deep water enrichment;
Figures 3 and5),with nearly identical concentrations
in the major thermocline of the two stations (1000–
1500 m). Data for MMSb are not available at
these stations since the nitrite interference problem
had not been resolved at this stage.

[15] Within the oligotrophic subtropical gyre at
Stations 7 (24.25�N, 170.33�E) and 9 (US JGOFS
Time Series Station ALOHA; 22.75�N, 158.0�W),
nutrient concentrations dropped back to undetect-
able levels, while chlorophyll maxima were deeper
and much lower concentration than at the other
stations (Figure 4). Total inorganic arsenic dis-
played �25% surface depletion relative to deep
waters, typical of oligotrophic waters [e.g.,
Andreae, 1978; Cutter et al., 2001], while promi-
nent maxima in arsenite and methyl As were found
in the upper 200 m of the water column (Figure 4).
The deepest samples at Station 7 were composed of
Antarctic Bottom Water (AABW) and it appears
that Asi decreased slightly into this water mass.
Interestingly, the concentration of Asi in AABW at
Station 7, 20.6 nmol l�1, was identical to that in the
South Atlantic (20.4 nmol l�1 [Cutter et al.,
2001]).

[16] Surface maxima in total inorganic antimony
were apparent at Stations 7 and 9 (Figure 5),
although the actual concentrations (average of
1.05 nmol l�1) were over 30% less than those
at Stations 1 and 5 to the west. Using data
below 2500 m at Station 9, Sbi averaged 0.83 ±
0.08 nmol l�1, slightly lower, but not statistically

Figure 3. Vertical profiles for dissolved inorganic
(Sb III + V) and organic antimony (monomethyl
antimony, MMSb) at 2002 IOC Stations 1, 3, and 5.
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different, than the value for deep waters in the
South Atlantic [Cutter et al., 2001]. However, in
the AABW at Station 7, Sbi averaged 1.14 nmol
l�1, over twice that in the AABW of the South
Atlantic (0.53 ± 0.05 nmol l�1 [Cutter et al.,
2001]). The most significant dissolved antimony
profile for the entire data set is that of MMSb at
Station 9, which displayed an essentially conser-
vative behavior for the entire water column (0.037
± 0.006 nmol l�1). This has never been reported for
any ocean or sea, and we believe that the discovery
of the nitrite/nitrate interference, also previously
unreported, provides an explanation. However, it
also changes the role of methyl Sb in the antimony
cycle, to be elaborated below.

3.2. Horizontal Transect

[17] The surface water transect from Osaka to
Honolulu between the vertical profile stations cov-
ered almost 15000 kilometers, and crossed, in
order, the subtropical gyre, the Kuroshio Current,
the Oyashio Current, the western sub-Arctic gyre,
back across the 2 major current systems, and into
the subtropical gyre (Figure 1). Data for dissolved
arsenic, phosphate, and chlorophyll a are plotted in

Figure 4. Vertical profiles for dissolved inorganic (As III + V and As III) and organic (dimethyl arsenic, DMAs)
arsenic speciation, phosphate, and chlorophyll a at 2002 IOC Stations 2, 7, and 9. Note that the upper 400 m are
plotted on an expanded scale. Also, in the right-hand panel, phosphate concentrations are plotted as the open
symbols, while chlorophyll are the filled green symbols, with the shape of the symbols corresponding to the stations
numbers in the legend.

Figure 5. Vertical profiles for dissolved inorganic
(Sb III + V) and organic antimony (monomethyl
antimony, MMSb) at 2002 IOC Stations 2, 7, and 9. Note
that the upper 400 m are plotted on an expanded scale.
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Figure 6. For the entire transect, Asi averaged
14.6 ± 1.2 nmol l�1, and had little variation with
the oceanographic regimes crossed (Figure 6). In
comparison to Asi in the Atlantic Ocean (16.3 ±
2.1 nmol l�1 [Cutter et al., 2001]) and South
Pacific (18 ± 2 nmol l�1 [Ellwood and Maher,
2002]), these North Pacific arsenic concentrations
are noticeably lower.

[18] The speciation of dissolved arsenic on the
horizontal transect displayed variations through
the various oceanic regimes that may be diagnostic
of processes controlling it. The most notable were
the low concentrations of arsenite and methylated
As in the HNLC region where elevated phosphate
concentrations were present (Figure 6). In the
region of mixed waters that are the transition
between the subtropical and sub-Arctic gyres (and
Kuroshio and Oyashio Currents) from Station 1 to
Station 2, the highest chlorophyll a concentrations
(biomass) were found in the same waters where
arsenite reached its highest concentrations and
methylated As was generally low (Figure 6). The
equivalent transition region going into the subtrop-

ical gyre further to the east (Stations 4–6) also had
elevated arsenite concentrations, but methylated
arsenic was at equivalent concentrations. In the
subtropical gyre east of Station 7, the 3 reduced
forms of arsenic remained at relatively similar
concentrations. The one exception was the high
DMAs concentration northeast of Station 9 in the
vicinity of blooms of the nitrogen-fixing cyano-
phyte, Trichodesmium. Although the discrete chlo-
rophyll concentrations did not mark these blooms,
they were recorded in the flow-through fluorome-
ter, as well as visually observed [Measures et al.,
2006].

[19] In contrast to Asi, Sbi had considerably more
variability along the transect (1.16 ± 0.35 nmol l�1;
Figure 7), with the highest concentrations found
on the western south-north leg downwind of
Asia (1.33 ± 0.42 nmol l�1); these results are
consistent with the surface water trends at the
vertical profile stations (Figures 3 and 5). The
concentrations of Sbi on the transect were substan-
tially lower than in North and Equatorial Atlantic
(1.87 ± 0.38 nmol l�1, high latitude North Atlantic;

Figure 6. Dissolved arsenic speciation (As III + V, As III, monomethyl arsenic or MMAs, and dimethyl arsenic or
DMAs), phosphate, and chlorophyll a as a function of distance along the surface transect depicted in Figure 1. The
positions of the vertical profile stations and the Trichodesmium blooms (‘‘Tricho’’) are shown for reference (see
Figure 1).
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Cutter and Cutter, 1998; 1.25–1.44 nmol l�1,
Equatorial Atlantic [Cutter et al., 2001]), but
higher than those reported for the South Pacific
(0.99 ± 0.06 nmol l�1 [Ellwood and Maher,
2002]). For the entire transect, Sb (III) was only
detected in 6 samples, with an unusually high
concentration off of Japan and detectable levels
to the northwest of Station 9 (Figure 7). Other than
this one Sb (III) anomaly, monomethyl Sb was the
predominant form of reduced and methylated anti-
mony in surface waters, particularly early in the
expedition when transiting along the Japanese
coast (recall that there were no determinations in
the HNLC waters due to the interference problem
that was subsequently remedied); these results
are consistent with those from the South Pacific
[Ellwood and Maher, 2002].

3.3. Arsenic Biogeochemistry in the
North Pacific

[20] All past studies of arsenic biogeochemistry
have clearly shown linkages with phosphate

cycling [e.g., Andreae, 1978; Cutter et al., 2001]
as well as processes unique to arsenic (e.g., redox
changes [Cutter, 1991]. The stark contrast between
the high phosphate/low reduced and methylated As
of the HNLC region (atomic Asi/PO4 = 0.01) and
low phosphate/elevated reduced and methylated
As concentrations in oligotrophic waters (atomic
Asi/PO4 > 1.0) is clearly apparent in the horizontal
transect data (Figure 6). As has been noted by many
studies [e.g., Andreae, 1978; Andreae and Klumpp,
1979; Sanders and Windom, 1980; Froelich et al.,
1985; Cutter et al., 2001], the ratio of arsenate (the
major portion of Asi) to phosphate affects the
production of reduced and methylated arsenic.
However, the finer detail afforded by the vertical
profile stations allows an evaluation of factors
affecting their production. Again, in the HNLC
region (e.g., Station 2; Figure 4) phosphate concen-
trations were elevated and the Asi/P ratio was very
low, and both arsenite and methyl As concentrations
were low; this behavior has been well established
[e.g., Andreae, 1978, 1979].

Figure 7. Dissolved antimony speciation (Sb III + V, Sb III, monomethyl antimony, or MMSb) and leachable/easily
soluble aerosol antimony (see text for extraction method) as a function of distance along the surface transect depicted in
Figure 1. The positions of the vertical profile stations and the Trichodesmium blooms (‘‘Tricho’’) are shown for
reference (see Figure 1). Note that the middle panel has an expanded concentration scale for Sb species <0.4 nmol l�1.
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[21] In the transition waters where phosphate con-
centrations were low, there were still substantial
biomass and presumably higher growth rates (i.e.,
chlorophyll a; Stations 1 and 5; Figure 2; no
productivity data were obtained), arsenite concen-
trations were higher than those of the methyls. This
is consistent with the model of Hellweger et al.
[2003] where arsenite production is favored during
higher growth rates before phosphate is completely
depleted (but still low concentrations). They also
proposed that methyl production is favored under
phosphate-depleted conditions and slow growth
rates, typical of oligotrophic gyres. The data from
Stations 7 and 9 (Figure 4) and the horizontal
transect (Figure 6) do not completely agree
with this proposition, but the ratio of reduced to
methylated As certainly was less in the gyre
samples (AsIII/MMAs + DMAs = 1.0 ± 1.2, n =
17) compared to those near the HNLC region
(AsIII/MMAs + DMAs = 3.1 ± 1.9, n = 7).

[22] It appears that Hellweger et al. [2003] may be
correct that phytoplankton growth rate relative to
As/P ‘‘stress’’ (i.e., when detoxification processes
are invoked) may be a factor controlling the
relative production of arsenite and methyl As.
However, residence times of these species also
affect their abundances in the water column (i.e.,
what was measured), and in this respect, previous
works [e.g., Johnson and Pilson, 1975; Cutter,
1992; Cutter et al., 2001] suggest that methyl As
has a 2–3� longer residence time than that of
arsenite. Moreover, photochemical studies con-
ducted on this expedition (Cutter; unpublished)
show that arsenite had a residence time of �3 days
due to photoxidation, while methyl As showed no
photochemical reactivity. Thus the relative abun-
dances of methylated As and arsenite in the upper
ocean are not just due to production rates alone.

[23] While the data for methylated As on this
expedition have increased our understanding of
the conditions under which they are produced,
there are other higher molecular weight organic
arsenicals for which there are very little data from
the open ocean. Howard and Comber [1989] found
a nonhydride labile dissolved arsenic fraction (up
to 25% of Asi) that must consist of a higher
molecular weight organic compounds containing
As (e.g., arsenobetaine, arsenocholine, arsenosu-
gars). To investigate whether such a compound
class was present in the North Pacific, four 0.2mm
filtered, surface transect samples (between Stations
1 and 2; Figure 1) were photo-oxidized (1000 W
UV; 6 hour irradiation in quartz tubes). The excess

As averaged 16.3 ± 4.7% of the nonirradiated Asi
(or, 2.42 ± 0.63 nmol l�1 organic As). At Station 2,
seven samples from the depth profile (4 in
the upper 230 m, 3 from 900 to 4525 m) were
treated similarly. The concentration of excess
As was constant in the upper 230 m (2.73 ±
0.20 nmol l�1, or 17.5 ± 1.4% of Asi), but then
dropped to nondetectable levels (approximately
<0.4 nmol l�1) in the deeper water samples. These
data document a presumably organic form of
dissolved As that is not determined by direct
hydride generation was present in oceanic surface
waters. On the basis of its absence in the major
thermocline (and therefore North Pacific Interme-
diate Waters that have ages of �20 years and likely
ventilated in the Sea of Okhotsk [Warner et al.,
1996; Yamamoto-Kawai et al., 2004]) and deep
ocean, this excess arsenic must have a residence
time on the order of years (i.e., similar to the
methyl species). With such reactivity, the un-
known, but presumably organic, fraction should
play a role in arsenic’s oceanic cycle and deserves
further attention, particularly if it is a source of
MMAs and DMAs [Howard and Comber, 1989].

3.4. Antimony Biogeochemistry in the
North Pacific Ocean

[24] Most of the previous studies of antimony have
been in the Atlantic Ocean and adjacent seas, but
these showed either conservative or mildly scav-
enged behavior for dissolved inorganic antimony
(not the individual species) and the importance of
atmospheric deposition on both vertical and hori-
zontal profiles [Andreae and Froelich, 1984;
Middelburg et al., 1988; Cutter and Cutter, 1995,
1998; Takayanagi et al., 1996; Cutter et al., 2001].
The most complete data set for antimony in the
South Pacific [Ellwood and Maher, 2002] showed
that Sbi behaved conservatively in the subtropical
to sub-Antarctic waters. Aluminum is the classic
example of a trace element with scavenged
behavior [Hydes, 1979; Measures et al., 1986;
Orians and Bruland, 1986], so comparing the
vertical profiles of the two elements should illumi-
nate processes affecting dissolved inorganic anti-
mony. In this respect, the older deep waters of the
North Pacific relative to those in the Atlantic
facilitate comparisons between Al and Sbi, but a
confounding issue is that anthropogenic emissions
increase the concentration of Sb in atmospheric
deposition [Nriagu and Pacyna, 1988; Arimoto et
al., 1989, 1996; Cutter, 1993]. Since Station 9 had
full vertical profiles of both elements (Al from
Measures et al. [2005]; Sbi in Figure 5) and was
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farthest away from potential anthropogenic inputs
(to be discussed next), it was used for the compar-
ison; the linear correlation coefficient (r) was 0.768
(n = 16, m = 0.09 atomic Sb/Al). This correlation
strongly supports the interpretation of inorganic
antimony acting as a scavenged element. In this
respect, Sbi in the AABW at Station 7 was much
higher than AABW in the South Atlantic [Cutter et
al., 2001], consistent with the behavior of Al in the
same waters [Measures et al., 2005].

[25] For stations on the western side of the basin
(1–5), the correlation between Sbi and Al begins to
decrease, largely due to the apparent enrichment of
Sbi relative to Al. At Station 2 in the western North
Pacific (and with a full profile), the linear correla-
tion coefficient (r) decreased to 0.592 (n = 16), but
more significantly, the atomic Sb/Al slope rose by
a factor of 6 to 0.53, largely due to higher Sbi in
surface waters. This apparent enrichment of Sbi in
the western North Pacific was also present in the
horizontal transect (Figure 7). The atmosphere may
be one source of this antimony and during the
cruise easily leachable/soluble Sbi in 12 aerosol
samples was determined using the method de-
scribed by Buck et al. [2006]. Briefly, 100 mL of
0.2 mm-filtered seawater was passed through the
aerosol filter and Sbi determined before and after
the filter. Soluble Sbi in these aerosols was highest
in the atmosphere overlying the higher surface
water Sbi region (Figure 7). Although we did not
determine total aerosol Sb during the cruise, these
soluble results are consistent with measurements of
aerosol Sb at island sites in the northwestern
Pacific that bound the IOC transect area (Okinawa,
Midway, Shemya, Oahu [Arimoto et al., 1989,
1996]). Moreover, Arimoto et al. [1996] attribute
most of the aerosol Sb enrichment to anthropogenic
emissions from Asia. Significantly, Ranville
and Flegal [2005] made a similar argument for
dissolved silver on the 2002 IOC cruise.

[26] While the North Pacific results confirm the
previous assertion that Sbi behaves as a scavenged
element, the results for methyl antimony radically
change the understanding of its behavior: from a
relatively reactive species like methylated arsenic
restricted to the upper water column [Cutter et
al., 2001; Ellwood and Maher, 2002] to one
that behaves more like a conservative tracer
(Figures 3 and 5). The only other metalloid
displaying such behavior is germanium, for which
the lack of reactivity leads to an oceanic residence
time on the order of 106 years [Lewis et al., 1985,
1989]. While the vertical profile at Station 9

(Figure 5) suggests a very long residence time
(>105 y), concentrations in surface waters (Figure
7) showed some variation, with higher levels
nearshore. This implicates a shorter residence time
on the order of 103–104 y to minimize the effects
from mixing. What is needed are profiles for the
Atlantic Ocean using proper interference proce-
dures (as above) to evaluate the amount of inter-
basin fractionation and therefore a better estimate
of methyl antimony’s oceanic residence time.
Although Benson and Cooney [1988] found a
diatom-produced methylated antimony lipid, there
have not been reports of free methyl Sb (e.g.,
MMSb) production by marine phytoplankton like
arsenic [Andreae and Froelich, 1984]. However,
fungus [e.g., Craig et al., 1999] and bacteria [e.g.,
Jenkins et al., 2002] do produce minor amounts
under aerobic conditions. Nevertheless, if methyl
antimony, like germanium, has a long oceanic
residence time, its sources and sinks do not have
to be readily detectable to explain the observed
concentrations. Similarly, no removal processes
(e.g., oxidation or demethylation) have been iden-
tified, but need to be examined to understand the
cycling of these now enigmatic species.

4. Conclusions

[27] The use of combined surface water and verti-
cal profile sampling allows the inputs and cycling
of trace elements to be carefully examined, partic-
ularly in the North Pacific where potentially large
atmospheric sources from Asia (mineral aerosols
and anthropogenic emissions) enter an ocean that
ranges from mesotrophic on its western boundary,
to oligotrophic in the central gyres, to the rather
special HNLC environment of the sub-Arctic gyre.
For arsenic, this approach refines the relationship
between As, P, and the production of presumed
arsenate detoxification products, reduced and
methylated arsenic. With surface water phosphate
varying from <10–1500 nmol l�1, the relative
amounts of arsenite and methyl As appeared to
support the model of Hellweger et al. [2003] that
predicts primarily methyl As in oligotrophic waters
and a predominance of arsenite in low phosphate/
moderate productivity (transitional) waters. How-
ever, it should be noted that other mechanisms
such as the regeneration of organic matter [e.g.,
Froelich et al., 1985] or degradation of arsenosu-
gars [Howard and Comber, 1989] could slowly
produce methyl As and thus fit into the production
scheme simulated by the Hellweger et al. [2003]
model.
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[28] The biogeochemical and perhaps ecological
relevance of these findings is that since the resi-
dence times of these detoxification by-products
with respect to oxidation back to arsenate is days
(arsenite) to years (MMAs and DMAs), expendi-
ture of metabolic energy by phytoplankton to
perform these conversions varies with arsenic spe-
cies produced (i.e., since arsenite is rapidly cycled
back to arsenate in surface waters, the detoxifica-
tion is not efficient). Other organic arsenic metab-
olites like arsenobetaine may be contained in the
newly quantified dissolved As fraction in the upper
water column of the western North Pacific. While
this ‘‘extra’’ arsenic has been reported in coastal
waters [Howard and Comber, 1989], the observa-
tions that it was 15–17% of the total inorganic
arsenic in the open ocean, but apparently turned
over on the same timescales as the lower molecular
weight methyl As species, suggest that this arsenic
fraction requires further examination.

[29] The data on the 2002 IOC cruise yielded data
to refine the understanding of arsenic biogeochem-
istry. The dissolved inorganic antimony data pro-
vided more detail on its biogeochemical cycling; it
does appear to be a mildly scavenged element and
atmospheric input is a major controller of its
abundance. However, the discovery of an analyti-
cal interferent and its resolution on the cruise,
provided data for the Pacific that completely
changes our understanding of methylated
antimony. The findings of largely conservative
depth profiles and the increase in methyl Sb’s
residence time by a factor of >103 clearly indicate
that this element is even less like arsenic than
previously believed. Indeed, sources of these forms
do not have to be large or even coupled to
processes analogous to those for arsenic (i.e., in
situ bioreduction and methylation). Methyl anti-
mony data for other ocean basins using methods
that can accurately quantify these forms will reveal
how rapidly they are cycled. If they are as inert as
methyl germanium forms, their importance to the
antimony cycle will diminish and become more of
an intellectual curiosity.
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