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Summary

The varied topography of human skin offers a unique opportunity to study how the body’s 

microenvironments influence the functional and taxonomic composition of microbial 

communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi 

that colonize distinct skin niches. Here, metagenomic analyses of diverse body sites in healthy 

humans demonstrate that local biogeography and strong individuality define the skin microbiome. 

We developed a relational analysis of bacterial, fungal, and viral communities, which showed not 
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only site-specificity but also individual signatures. We further identified strain-level variation of 

dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the 

uncharacterized metagenome through the development of a multi-kingdom gene catalog, which 

was used to uncover genetic signatures of species lacking reference genomes. This work is 

foundational for human disease studies investigating inter-kingdom interactions, metabolic 

changes, and strain tracking and defines the dual influence of biogeography and individuality on 

microbial composition and function.

Human skin harbors an abundant microbial ecosystem with bidirectional metabolic 

exchanges supporting symbiotic and commensal processes. The skin’s surface consists of 

diverse microenvironments with distinct pH, temperature, moisture, sebum content, and 

topography1. These niche-specific physiologic differences influence the resident bacteria2,3 

and fungi4; oily surfaces like the forehead support lipophilic bacteria that differ from dry, 

low biomass sites like the forearm. In turn, microbial sensing and signaling mechanisms, 

metabolic pathways, or immunogenic features likely exhibit site-specificity to sustain host 

interactions. Similar to the distribution of skin microbes, skin disorders often present in a 

site-specific manner, such as atopic dermatitis (eczema) in arm and leg creases or psoriasis 

on the elbows and knees. Inter-kingdom and inter-species microbial interactions may 

exacerbate disease severity5 or facilitate transitions from opportunistic to pathogenic. While 

skin physiology is a dominant force, individuals retain unique elements of microbial profile 

and community organization. Here, we explore the complex skin microbial biogeography, 

integrating broad physiologic characteristics with individual discriminatory attributes.

Studies based on phylogenetic marker genes (e.g., bacterial 16S rRNA gene or fungal 

internal transcribed spacer (ITS) regions) have studied core taxonomic characteristics of 

different skin sites and disease states. However, such approaches survey kingdoms in 

isolation and provide limited information into an ecosystem’s functionality. Metagenomic 

shotgun sequencing interrogates the full complement of DNA present in a sample, enabling 

characterization of both a community’s functional capacity and genomes for which no 

targeted amplicon strategies exist. Several large-scale studies have used metagenomics to 

examine bacterial or viral communities of the healthy gut and other body sites6–8, or 

taxonomic and functional differences in type 2 diabetes9,10. To date, a systematic 

metagenomic investigation of human skin is lacking. The physiologic heterogeneity and 

variable microbial biomass of the skin pose unique technical and analytical challenges for 

metagenomic studies. Each site on the human skin is constrained by ecological properties 

such as host microenvironment, yet possesses a distinct biogeography that significantly 

influences microbial diversity, composition, and biomass2–4,11.

We present the first systematic, multi-site metagenomic study of human skin. We 

determined the composition and function of the healthy skin microbiome using direct 

shotgun sequencing of 15 individuals at 18 clinically relevant sites, which included diverse 

skin microenvironments (dry, moist, sebaceous, or toenail, Extended Data Fig. 1). Our dual 

approach incorporated reference-based and reference-free methods to characterize the 

metagenome. We present new insights into the larger community of skin microorganisms, 

including DNA viruses, lower eukaryotes, bacteria, and subspecies of dominant bacteria. We 
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defined how functional capacity varies by body site and created a multi-kingdom, skin-

associated gene catalog. Using new analytic approaches, we identified metagenomic 

‘clusters’ representing species without known references. Our study demonstrates that 

biogeography and individuality significantly shape a community’s functional and taxonomic 

characteristics and provides a framework for human studies investigating inter-kingdom 

interactions, metabolic changes, and pathogen expansion in disease.

Skin sampling and data characteristics

263 specimens were collected from 15 healthy adults (9 males, 6 females) from 18 defined 

anatomical skin sites (Supplementary Table 1). We modified previous clinical sample 

acquisition, DNA isolation, and library preparation to generate shotgun metagenomic 

sequence data from skin sites, which varied in biomass and composition. For example, 

human-derived DNA accounted for 19.4±6.7% to 98.2±0.1% of reads, reflecting the 

difference between stratified, cornified plantar heel skin and nucleated inner nostril 

epithelium, respectively (Extended Data Fig. 2a). Microbial sequencing yields and estimated 

coverage also varied with skin physiologic features (‘microenvironment’), such that low-

diversity, higher-biomass sebaceous sites generally achieving greater coverage (maximum 

81.0±7.0%) than high-diversity, lower-biomass dry or moist sites (minimum 38.0±5.7%, 

Extended Data Fig. 2c). We obtained a total of 289 Gbp of non-human, quality filtered 

Illumina microbial sequence reads (Extended Data Fig. 2a–c, Supplementary Table 1).

Phylogenetic profiles of skin microbes

To explore the relative abundances of skin microbiota across kingdoms, we performed a 

relational analysis mapping filtered reads to 2342 bacterial, 389 fungal, 1375 viral, and 67 

archaeal genomes. To validate taxonomic assignments, we compared our metagenomic data 

with 16S and ITS sequencing of the same samples, which showed high concordance 

(Extended Data Fig. 3, Supplementary Tables 2–4). While recognizing that fungal and viral 

genomes are more sparsely represented in reference databases, bacteria predominated at 

most sites (Fig. 1a–c, Extended Data Fig. 1, 4a, Supplementary Table 6) and comprised the 

bulk of phylogenetic diversity with fungi and viruses contributing relatively fewer species. 

Fungi, primarily Malassezia (M.) globosa and M. restricta, were a lower fraction 

(3.9±5.0%), except near the ears and forehead, which had a higher fungal presence (external 

auditory canal, 16.8±5.1%; retroauricular crease 7.5±4.2%; glabella 7.1±4.0%). The feet had 

low fungal representation (plantar heel, 0.7±0.2%; toenail 0.5±0.3%; toeweb 0.3±0.1%), 

despite high diversity observed in amplicon-based studies. Archaea were nearly absent on 

skin, but DNA viruses were abundant at specific sites, with marked interpersonal variation. 

Note, RNA viruses are not interrogated by these methods and likely represent 

uncharacterized diversity. The nares and adjacent alar crease showed significant viral 

representation (51.0±11.8% and 54.6±9.3%), compared to 9.9±1.0% at other sites. 

Interestingly, a few individuals had sites that were dominated by viruses (up to 96%). These 

‘blooms’ contained Propionibacterium (P.) or Staphylococcus (S.) phage and/or human viral 

pathogens (Molluscum contagiosum, human papillomavirus, and Merkel cell polyomavirus), 

although skin sites were free of clinical lesions. Communities were shaped primarily by 

microenvironment in which differential abundance of stereotypical taxa such as P. acnes, 
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commensal staphylococci, Corynebacterium, and P. phage contributed most significantly to 

variation both between and within individuals (Fig. 1d).

To compare skin with other body sites, we analyzed 552 Human Microbiome Project (HMP) 

metagenomic samples obtained from anterior nares, posterior fornix (vagina), retroauricular 

crease, stool, supragingival plaque, and tongue dorsum (Fig. 1b, Extended Data Fig. 4b, 

Supplementary Table 6–7)12. Our skin samples were similar to the HMP’s in community 

membership and structure of all kingdoms (P > 0.05). However, retroauricular crease 

samples from our study had greater fungal abundance than HMP (7.5% vs. 3.4%), likely 

reflecting differences in nucleic acid extraction techniques, which we optimized to recover 

fungal DNA. Fungi were relatively scarce at non-skin sites. Similar to skin sites with phage 

co-occurring with their host bacteria, Lactobacillus phage was observed in the posterior 

fornix with marked interpersonal variation. Viruses were low abundance in the mouth, but 

Streptococcus phage was universal, present in 99.2% of samples (mean abundance 

1.2±0.1%). Overall, the human body is rich in both bacterial and non-bacterial taxa, with 

site-specific fungal enrichment and viral blooms.

Individuality underlies biogeography

Differential manifestations of phenotypes including disease susceptibility, antibiotic 

response, drug metabolism, or even weight gain are likely influenced by an individual’s 

exclusive microbial community features. We explored whether we could classify individuals 

based on unique taxonomic signatures across their body. We used random forests, which 

incorporates interactions of both rare and abundant taxa, to identify key taxa that might 

differentiate individuals (Supplementary Table 8). Surprisingly, low-abundance taxa shared 

across skin sites discriminated individuals (Fig. 2). For example, the strongest 

discriminatory feature was Merkel cell polyomavirus, present in low abundance at all skin 

sites within one individual, regardless of site. Several taxa could also be discriminatory on 

an individual level; Gardnerella vaginalis and Streptococcus pyogenes were host-specific 

across all skin sites in addition to taxa that likely represent transient populations (e.g., 

Acheta domesticus densovirus).

With our multi-kingdom taxonomy, we could differentiate our 15 individuals with >80% 

accuracy (19.3% error). The increased error estimates based upon kingdom-specific analyses 

(21.8%, bacteria; 74%, fungi; 41.2%, viruses) underscores the importance of understanding 

the full phylogenetic diversity of a community. Such approaches are relevant in identifying 

discriminatory features in disease states or assessing longitudinal community stability in 

which individuals may be identifiable by microbial features. While site-specificity serves as 

an overarching constraint on community composition, we observed a remarkable range of 

individual signatures within the skin biogeography.

Strain heterogeneity in skin symbionts

We further explored individual signatures by examining strain-level variation; substrains 

within a clade can possess different properties of transmissibility, virulence, antibiotic 

resistance, or metabolism14. To investigate strain-level heterogeneity, we focused on two 

common skin commensals with well-documented sequence variation, P. acnes and S. 
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epidermidis. Using a reference-based approach that leveraged both single nucleotide 

polymorphisms and larger variants (Extended Data Fig. 5, Supplementary Table 2, –10), we 

identified phylogenetically ‘most similar’ strains based on differentiating genomic features. 

To reduce false discovery, we characterized both strain and a more conservative subtype 

level that represents phylogenetically similar strain groups (Fig. 3a–b, Extended Data Fig. 

5–6).

Given the extensive strain-level diversity observed for both species, our results suggest that 

individual and microenvironment differentially shape subspecies variation. P. acnes strains 

were more individual- than site-specific (Fig. 3c, e); 11/12 P. acnes subtypes were 

differentially abundant between individuals while only 1 differed between 

microenvironments (Fig. 3g). In contrast, S. epidermidis strains were significantly more site-

driven with diminished inter-individual variation (Fig. 3d, f); nearly all subtypes were 

differentially abundant between sites (Fig. 3h) with subtype ‘B’ particularly dominant in the 

foot and toenail (Fig. 3b). These results strongly suggest that P. acnes and S. epidermidis 

communities are heterogeneous and multiphyletic, properties that likely vary by species and 

niche. Further analyses of this resolution will be powerful in determining genetic variation 

across time, topography, and disease. In summary, our systematic analysis of microbial 

community composition has described a remarkable dynamism spanning inter-kingdom 

partnerships down to sub-species variability, characteristics that are driven both by broad 

ecological constraints and an individual’s unique carriage.

Biogeography shapes functional diversity

While taxonomy yields important insight into community organization, metagenomics also 

enables analysis of a community’s collective functional potential. While previous studies 

reported that most metabolic pathways are evenly distributed across body sites12, we 

observed a modest decrease in metabolic diversity that occurred in tandem with lower 

taxonomic diversity in sebaceous sites (Fig. 4a). Investigating this concept of core 

functionality, we determined that only 30% (44/148) of modules were “core” irrespective of 

site (present in ≥2/3 samples), representing processes essential to microbial growth and 

metabolism (Extended Data Fig. 7, Supplementary Tables 13–15). Extensive variability was 

observed within subclasses of major pathways, particularly transport systems (sulfate, 

glutamate, aspartame, L- or branched amino acids and sorbitol) and putrecine/spermidine 

biosynthesis and transport, which were typically absent in sebaceous regions, attesting to the 

chemical diversity likely present at higher-complexity sites. Conversely, most eukaryotic 

pathways were more prevalent in sebaceous sites (cell cycle, DNA replication, transcription, 

translation, protein degradation, and vitamin D2 biosynthesis, a fungi-produced 

phytonutrient). Thus, while a strong functional core exists, this core metagenome can vary 

tremendously, reflecting functional diversification of skin microenvironments. Future 

studies with transcriptional profiling will likely reveal additional functional variance in vivo.

Modules present across all sites were typically low abundance and associated with 

uncharacterized biomolecular functions and metabolism (Supplementary Table 14). 88% of 

modules were differentially abundant in at least one microenvironment (adjusted P < 0.05, 

Supplementary Table 13, 15), suggesting that functional capacity is driven primarily by 
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biogeography. Principal components identified modules that discriminate 

microenvironments (Fig. 4c). Sebaceous sites (PC1) are distinguished by overrepresentation 

of glycolysis and related components (ATP and GTP generation) and NADH dehydrogenase 

I. Toenail samples differed primarily by the presence of different energy production 

components, such as conversion of oxaloacetate to fructose-6P, and ATPase and ATP 

synthase. Dry sites were characterized by the presence of citrate cycle modules. Covariance 

analysis imputing pathway abundance to select species suggested that P. acnes and M. 

restricta are likely candidates to drive some niche-specific metabolism, given their 

abundance in sebaceous sites (Fig. 4d, Extended Data Fig 8).

With increasing concerns of antibiotic-resistant microorganisms, we explored the reservoir 

of antibiotic resistance genes in the skin. While skin is physically compartmentalized from 

other body sites, cross-inoculation remains a risk factor. For example, the nares can harbor 

methicillin-resistant Staphylococcus aureus (MRSA)15 underlying skin and soft tissue 

infections. Strain crosstalk between oral, lung, and skin sites may underlie recurrent 

infections in immunocompromised patients16. Here, we identified presence/absence of well-

characterized resistance gene families as pioneered for the gut17 and soil18. We observed 

significant variability across individuals and resistance types (Extended Data Fig. 9, 

Supplementary Table 16). Certain antibiotic classes were highly host-specific, such as multi-

antimicrobial extrusion (MATE) efflux pumps (Fig. 4e). In an example of site-specific 

dominance, lincosamide resistance showed significant representation in three foot sites but 

was generally absent in sebaceous regions. Finally, certain families were broadly 

represented across samples, such as class A beta-lactamases, rRNA methyltransferases, 

efflux mechanisms, or quinolone resistance. Thus, carriage of antibiotic resistance families 

demonstrated both site- and individual-specificity, although we note that resistance activity 

may differ in vivo.

Insights into microbial dark matter

Our reference-based analysis showed a large variable fraction of reads (2–96%) unmapped 

to reference genomes, most frequently originating from decreased bacterial assignments 

(Supplementary Table 6, Extended Data Fig. 10a). Such uncharacterized sequences likely 

originate from both taxa with no representative reference and intraspecies pangenomic 

variation, which can represent significant gene content14. Using reference-free methods to 

capture this ‘dark matter’ of the skin metagenome, we created a skin gene catalog that we 

then used to identify previously uncharacterized taxa in the skin. Such resources will be 

invaluable for downstream analyses, enabling in silico prediction and synthesis of genes and 

pathways that are over- or underrepresented in, for example, disease states.

The inherent variation in skin community complexity and human DNA admixture presents 

new challenges in reference-free methodologies; variable microbial load and taxonomic 

diversity across sites affect sequencing depth and coverage. To account for this variability, 

we devised an adaptive and iterative strategy (Extended Data Fig. 10b–c) that optimizes 

assembly on a per-sample basis (Fig. 5a, Supplementary Table S17). We then established 

the first multi-kingdom skin microbial gene catalog using both fungal and bacterial 

prediction models. Of 5.92 million open reading frames (ORFs), 75.7% could be 
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reconstructed as bacterial and 15.9% as eukaryotic, consistent with our taxonomic analyses 

(Fig. 5b). Large numbers of KEGG hypothetical genes (25.7% of bacterial, 48.3% of 

eukaryotic) likely represent pangenomic loci of characterized taxonomies, e.g., P. acnes and 

M. globosa, based on association without pathway annotation. In support of their 

authenticity, ORFs with no identifiable homologs (7.9%) were typically longer than 

classified ORFs (Fig. 5b, inset). <1% of ORFs were assigned to Archaea and viruses (which 

require unique prediction models), possibly reflecting integrative viruses or overlap in gene 

prediction models.

Finally, we used our gene catalog to identify microbial species and pangenomic content 

independently of reference genomes. Under the assumption that genes from one genome 

covary in abundance across samples due to physical linkage, we created metagenomic 

‘clusters’9,10 by correlating gene abundances across samples. Most resultant clusters were 

relatively small, but others contained hundreds of thousands of predicted ORFs, which likely 

represent both genes and gene fragments. High-complexity dry sites had the most clusters 

and while toenails had the fewest, their median gene recruitment was significantly larger 

(Fig. 5c). To strengthen the reliability of our metagenomic clusters, we required clusters to 

share >50% consensus taxonomy at the species level and uncovered large clusters of fungi, 

bacteria, and viruses (Fig. 5d). M. globosa, P. acnes, and S. epidermidis had very large 

clusters, consistent with their high abundance in skin. In addition to clusters representing 

referenced genomes, we also identified multiple uncharacterized genomes (Fig. 5e), most 

commonly species of common genera in the skin, including Corynebacterium, 

Propionibacterium, and Staphylococcus. In summary, leveraging reference-free approaches, 

we identified previously undefined elements of the human skin microbiota. While dominant 

species or pathogens are targeted for sequencing, metagenomic studies reveal striking 

additional taxonomic and thereby functional diversity.

Conclusions

The healthy skin metagenome possesses surprising taxonomic and functional diversity 

dependent on both biogeography and individuality. In contrast to other body sites like the 

gut, skin has markedly higher viral and fungal representation. For most individuals, common 

skin species exist as a heterogeneous mix of strains, raising questions of whether transitions 

to a pathogenic state are mono- or multiphyletic, and how strain heterogeneity affects 

disease incidence or severity. Significant decreases in community diversity are a hallmark of 

a disease state19; whether such shifts occur at all taxonomic levels down to the subspecies 

awaits investigation. Our reference-based toolkit for multi-kingdom analyses and strain 

differentiation is broadly applicable to ecosystems with a well-characterized sequence space. 

Our reference-free resources, generated by adaptive assemblies, enable interrogation of the 

significant uncharacterized proportion of the metagenome, even identifying species without 

reference genomes.

From a therapeutic perspective, the metagenome represents a rich resource for synthetic 

biology approaches to modify and transplant endogenous elements to other communities. 

Studies of metabolic capacity, pathogenicity islands, and virulence genes in disease states, 

with our catalog from healthy skin, will uncover biomarkers associated with transmission, 
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recurrence, and severity of disease. Finally, characterization and tracking of surprisingly 

pervasive antibiotic resistance elements will remain clinically relevant, as skin sites can 

serve as a taxonomic and genetic reservoir for pathogens. We envision a new therapeutic 

landscape leveraging unique metagenomic profiles with tailored clinical interventions that 

reshape our microbial communities.

Methods

Subject recruitment and sampling

Healthy male and female volunteers of 23 to 39 years of age without chronic skin diseases 

were recruited from the Washington, DC metropolitan region, USA, between June 2011 and 

May 2013. This natural history study was approved by the Institutional Review Board of the 

National Human Genome Research Institute (http://www.clinicaltrials.gov/ct2/show/

NCT00605878). All subjects provided written informed consent prior to participation. 

Subjects provided medical and medication history and underwent a physical examination. 

Exclusion criteria included history of chronic medical conditions, including chronic 

dermatologic diseases, and use of antimicrobial medication (antibiotic or antifungal 

treatments) 1 year before sampling. Cleansing with only non-antibacterial cleansers was 

allowed during the 7 days before sample collection. To maximize microbial load, no 

bathing, shampooing, or moisturizing was permitted within 24 hours of sample collection15, 

which we have previously observed produces no discernible shifts in the overall diversity 

and structures of skin communities.

18 skin sites representing diverse physiologic characteristics and sites of predilection for 

specific dermatologic diseases were sampled: moist (antecubital crease, inguinal crease, 

interdigital web space, nares, popliteal crease, plantar heel, toeweb space), dry (hypothenar 

palm, volar forearm), sebaceous (alar crease, back, cheek, external auditory canal, glabella, 

manubrium, occiput, retroauricular crease), and toenail (Extended Data Fig. 1). Additional 

unmatched samples excluded from statistical analyses included samples extracted with the 

NEBNext Microbiome DNA Enrichment Kit (NEB), axillary vault (moist), bacterial and 

fungal mock communities19, samples that were whole genome amplified prior to library 

creation, and samples from disease patients (SH). To obtain sufficient DNA from defined 

anatomical skin sites with low and variable microbial biomass, we modified clinical sample 

acquisition methods using a swab-scrape-swab procedure, in which a defined anatomical 

skin area was swabbed with a swab (Catch-All Sample Collection Swabs, Epicentre) pre-

moistened with yeast cell lysis buffer (MasterPure Yeast DNA Purification Kit, Epicentre), 

scraped via sterile disposable surgical blade, and swabbed with the same swab again. 

Residuals from the scalpel and swab were collected into lysis buffer. Nares and external 

auditory canal sites were sampled via swabbing with pre-moistened swabs that were then 

placed into lysis buffer. Toenail samples were cut with sterilized nail clippers and placed 

into lysis buffer. All samples were stored at −80 C until extraction. Samples were then 

incubated in yeast cell lysis buffer (MasterPure Yeast DNA Purification Kit, Epicentre) and 

Readylyse (Epicentre) for 30 min at 37 C, then mechanically disrupted using 5 mm stainless 

steel beads (Qiagen) in a Tissuelyser (Qiagen) for 2 min, 30 Hz. Samples were incubated for 

30 min at 65 C, placed on ice for 5 min, and debris spun down after treatment with MPC 
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protein precipitation reagent. Samples were combined with 350 µL of 100% ethanol and 

column purified using the Invitrogen PureLink Genomic DNA. Finally, samples were eluted 

in 30 µl of water (MoBio).

Sample sequencing

Because of low bioburden typical of skin samples, Illumina libraries were created using 

Nextera library preparation. Briefly, 1–50 ng of extracted DNA was used as input into the 

transposome fragmentation step. Manufacturer’s protocol was followed with the exception 

of using 10 cycles of PCR. 1–10 ng of extracted DNA was used as input according to 

manufacturers’ recommended protocol (Qiagen Repli-G Mini). Libraries were then 

sequenced with 2×100bp paired end reads on an Illumina HiSeq at the NIH Intramural 

Sequencing Center with a target of 15 or 50 million clusters, depending on the microbial 

diversity of that site and the human DNA admixture. To ascertain that the Nextera approach 

resulted in minimal sequencing bias, we calculated expected distribution of breaks as 

represented by the expected frequency of 5-mers starting a read for 4 different genomes, 

with high correlation with a standard Illumina prep. Moreover, expected vs. observed 

frequencies of species in sequencing of the bacterial mock community were closely 

matched.

In total, we obtained 7.4 billion reads (289 Gbp) of non-human, quality-filtered paired-end 

and singleton reads (median 9.5 million reads (893 Mbp) per sample, mean insert size 145±2 

bp). Sequencing data were processed to remove low quality reads and any read pairs in 

which at least one read mapped to the human hg19 human reference. Nextera adapter 

sequences were trimmed, if necessary, using Crossmatch 1.090518 (http://www.phrap.org) 

and custom scripts. Bases with quality score below 20 were trimmed, and reads <50 bp 

length were removed. Sequencing depth varied by site with estimated kmer coverage 

ranging from 38.0±5.7% to 81.0±7.0% based on the accumulation of unique DNA 

substrings, or kmers. Rarefaction curves were generated using Khmer v0.7.120 with a 20× 

coverage cut-off. Briefly, reads were split into k-mers, compared to a k-mer coverage table 

and kept only if the median k-mer coverage was below the cutoff. Resulting curves showed 

the coverage of k-mer space as a function of sequencing effort. Median insert size was 

estimated from a subsample of paired reads that match hg19. Post sequence quality control, 

samples with >20 million reads remaining were subsampled to 10 million paired end reads, 

and singletons were discarded. HMP data from the anterior nares, retroauricular crease, 

stool, posterior fornix, tongue dorsum, and supragingival plaque were obtained from public-

ftp.hmpdacc.org and subsampled to 1 million reads for taxonomic comparisons.

Amplicon processing

To validate our taxonomic assignments, normalize for sequencing levels, and reduce false 

positives, we also compared our results with matched bacterial 16S and fungal ITS amplicon 

sequencing. 159 matched 16S rRNA and 92 matched ITS1 samples were processed as 

previously described15. Briefly, the V1–V3 region of the 16S rRNA gene was amplified 

using the barcoded 27F and 534R and the ITS1 with 18SF and 5.8S-1R primers. Amplicon 

libraries were sequenced on a 454 GS FLX (Roche) instrument using titanium chemistry. 

16S rRNA and ITS1 samples were processed using the mothur pipeline21 as previously 
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described15. Briefly, 454 flow gram data were denoised, error-trimmed, and chimeric 

sequences removed. 16S sequences were classified using RDP training set 9 and ITS1 using 

a custom ITS1 database4. Staphylococcus and Malassezia genera were classified to the 

species level using pplacer22 with custom databases.

Reference-based taxonomic and functional classification

We compiled a list of complete and draft microbial reference genomes of 2342 bacterial, 

389 fungal, 1375 viral, and 67 archaeal genomes from the National Center for Biological 

Information (NCBI, http://www.ncbi.nlm.nih.gov), the Human Microbiome Project (HMP, 

www.hmpdacc.org), the Saccharomyces Genome Database (SGD, www.yeastgenome.org), 

the Fungal Genome Initiative (FGI, http://www.broadinstitute.org), FungiDB (fungidb.org), 

and internally sequenced genomes (Supplementary Table 2). Where multiple genomes for a 

reference were available, we selected complete over draft genomes. Reads not matching 

hg19 + hg19 rRNA were mapped to this genome collection using bowtie2’s23 —very-

sensitive parameter retrieving the top 10 hits. Reads mapping to multiple genomes were then 

reassigned to a ‘most likely’ genome using Pathoscope v1.024, which uses a Bayesian 

framework to examine each read’s sequence and mapping quality within the context of a 

global reassignment. Read hit counts were then normalized by genome length and scaled to 

sum to one. To reduce the likelihood of recovering spurious genomes, we also calculated 

genome coverage for each genome hit using the genomeCoverageBed tool in the Bedtools 

suite25. For relative abundance and diversity calculations, genomes with coverage < 1 were 

removed to decrease low-abundance false positives, providing a measure of normalization 

for sequencing depth.

To assess the accuracy of our taxonomic classifications and our estimation of community 

diversity, we compared taxonomic assignments of bacteria and fungi to 16S and ITS 

amplicon results, as well as to the output from a bacterial and archaeal mapping tool, 

Metaphlan26. We observed high correlations extending to the species level for bacterial 

sequences (Extended Data Fig. 3, Supplementary Tables 2–4). Concordance of non-

Malassezia fungal species was lower, presumably due to the relative paucity of sequenced 

fungal genomes. We used the Shannon diversity index as well as species observed for 

diversity comparisons for bacterial classifications. All taxonomies were reconstructed to the 

species level, combining hits to multiple strain subtypes. The coverage cutoff of 1 was 

chosen as an inflection point for species accumulation and as a point of concordance 

between diversity estimates derived from other approaches.

We characterized the representation of functional gene groups in the skin using the KEGG 

Orthology gene pathway (KO) and module (MO) annotations27, calculating corresponding 

abundances and coverages using the HMP Unified Metabolic Analysis Network 

(HUMAnN)28. We note that functional diversity is likely underestimated in the absence of 

viral pathways in the KEGG database. We mapped reads to the 2013.10.14 KEGG release 

using USEARCH v7.029 e-value <0.01, -accel 0.5 as described28. The top 10 hits were then 

processed with HUMANN v0.9928. To define genetic carriage of resistance profiles in the 

skin, antibiotic resistance genes from the Antibiotic Resistance Genes Database (ARDB)30 

were clustered based on sequence similarity to produce families of unique short sequence 
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markers using ShortBRED31. Reads were then mapped to the top marker using USEARCH 

v7.0, minimum alignment length 20, percent identity 95%. A family (resistance gene) was 

called present if at least one gene of that family was represented with a non-zero median of 

all its markers (median # hits to its markers > 0). Each family was normalized by the number 

of the hits, the marker length, and the length of the original protein sequence. We considered 

only presence/absence for a more conservative assessment. We note that while antibiotic 

resistance genes are typically classified with respect to a particular species, from 

metagenomic data it is difficult to impute an organism of origin because families can be 

encoded on plasmids (e.g., NP_040465, a tetracycline efflux pump).

Reference-based strain mapping

Accurate, de novo identification of single nucleotide polymorphisms (SNPs), used in 

metagenomic strain tracking of high-biomass stool samples, typically requires 100× 

coverage for robust identification32. Given strain variance due to differential representation 

and sequencing depth, we developed a reference-based approach, assessing feasibility and 

accuracy with computational simulations of communities of mixed complexity. For bacteria 

Propionibacterium acnes and Staphylococcus epidermidis, we created custom, species-

specific reference databases incorporating all complete and draft genomes present for those 

species from NCBI, totaling 78 and 61, respectively (Supplementary Table 2). To visualize 

relationships between the strains, all SNPs identified in core regions were used to create 

dendrograms with the program PhyML 3.033. Strains were assigned to a subtype based on 

phylogenetic distance, e.g., we defined 12 subtypes for P. acnes and 14 for S. epidermidis.

For each respective set of reference genomes, we identified first, SNPs unique to each strain 

in regions shared in all genomes (‘core’), and second, larger regions that are partially shared 

or unique to a strain (‘non-core’, Supplementary Table 2). We mapped reads to each 

database using bowtie2 with stringent parameters (--score-min L, −0.6,0.006), allowing zero 

mismatches and as many hits as genomes in the database. Read assignment using 

Pathoscope was performed as described, except theta_prior, an option that controls the 

proportion of non-unique reads that are assigned to a genome, was set to 10e88 (most 

genomes permitted). Normalization was performed as described above.

Because Pathoscope can reassign reads to closely related genomes rather than an actual 

target genome that may or may not be present in a sample, we evaluated the ability of 

Pathoscope to accurately reassign reads to very similar substrains by first, assessing 

sensitivity of complex staggered mixtures of synthetic communities, and second, 

demonstrating the presence of unique genomic loci that allow discrimination between 

subtypes. First, synthetic communities were created with 6, 12, or 18 genomes per 

community, with 50,000, 1000,000, or 500,000 reads sampled per genome for an even mix, 

as well as a staggered community to estimate accuracy in abundance calling. 15 random 

synthetic communities for each even genome group, and 5 for staggered, were created and 

mapped to the full genome set. Sensitivity was calculated from the expected vs. observed 

abundances. Second, we identified SNPs unique to each genome in ‘core’ regions of the 

genome (defined as shared between all reference genomes in species-specific database) 

using nucmer34 and custom scripts. Nucmer was also used to identify ‘non-core’ regions in 
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each of the genomes. Simulated reads were then mapped to strains based upon: 1) consensus 

SNPs, 2) non-core region variants, or 3) full genomes to identify what variants are shared 

between sites/individuals. In simulations, core SNPs had the highest sensitivity, but whole 

genomes, which incorporate both core and non-core elements, were best able to identify 

closest neighbor strains (Extended Data Fig. 6, Supplementary Table 9). Although we have 

supported our results using SNPs (Supplementary Table 10), mapping to whole genomes 

provided clear advantages if an exact reference strain is not present in vivo, which is likely 

given the limited number of fully sequenced genomes. In absence of an exact reference, our 

approach robustly defines most similar strains based on differentiating genomic features.

Adaptive iterative de novo assembly

Assembly efficacy varies depending on the site’s unique features of community complexity, 

typically defined by microenvironment, and sequencing depth, which is affected by biomass 

and human DNA admixture. To optimize assembly parameters, individual samples were 

assembled using a wide kmer range in Velvet35, and contigs greater than 300 bp in length 

were analyzed. To examine assembly efficacy, reads were remapped to assemblies using 

bowtie2 —sensitive. ’Adaptive’ denotes that each sample was assembled using kmers 

ranging from 37–69. A quality score was calculated using % paired or singleton reads 

realigning to the assembly, the number of bases incorporated into the assembly, and number 

of contigs > 300 bp. The assembly with the highest quality score was used for subsequent 

analysis. ‘Iterative’ denotes subsequent steps in which unaligned reads from remapping were 

then pooled to improve recovery of rare genes that may represent genomes unique to an 

individual. We found that pooling by individual produced higher quality assemblies than 

pooling by site (Supplementary Table S17). This observation supported our insight that 

while site can shape the major features of a community, species and strains are shared within 

an individual. To improve assembly quality and reduce computational burden, digital 

normalization20, which reduces error by removing redundant data and performs similarly to 

non-normalized data (Extended Data. Fig 14c), was applied on pooled samples prior to 

assembly. We used two pass normalization to 20× then 5× with variable coverage and 

assembled with adaptive kmer selection. Finally, unaligned reads from pooled individual 

assemblies were pooled and subsampled 1:10 prior to normalization and variable assembly.

To create a multi-kingdom skin microbial gene catalog, genes were predicted from contigs 

using two models, MetaGeneMark36, which incorporates multiple bacterial models, and 

Augustus37 with a Ustilago maydis model as a phylogenetically near neighbor to 

Malassezia, the most predominant skin fungi. To account for cases where both fungal and 

bacterial genes were called for the same contig, we adopted a filtering methodology by 

which each contig was assigned to a kingdom using blastn against our microbial database, or 

where no blastn hit was available, a blastx against nr using USEARCH. Discordant calls not 

resolved by blastn/x filtration were marked ambiguous or assigned to whichever caller 

generated a prediction. A non-redundant catalog was constructed using UCLUST with 

sequence identity cut-off of 0.95 and a minimum coverage cutoff of 0.9 for shorter 

sequences. This final catalog contained 5,922,920 putative bacterial and fungal genes.
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During this process, we also observed that many short contigs (<1000bp) produced no 

putative genes. To circumvent losing partial genes or genes unidentifiable by our prediction 

models, we revised our gene catalog to first retrieve contigs <1000bp, then call genes on 

contigs > 1000bp as previously described. To assess the abundance of genes, reads were 

aligned to the gene catalog with Bowtie2 —sensitive and counts per gene were normalized 

by length.

Putative metagenomic clusters, based on covariance of gene abundances across samples, 

were formed as described10. Genes from the same genome are assumed to co-vary in 

relative abundance across subjects due to physical linkage; therefore such clusters can serve 

as a proxy for unknown organisms or known organisms with variable gene content. We 

clustered gene abundances across samples, grouped by site characteristic both to improve 

segregation of clusters and reduce computational burden. To reduce false positives and 

computational complexity, we required genes to be present in at least 20% of samples for a 

given site characteristic. The abundances of these genes across samples were then clustered 

using the Markov clustering algorithm implemented in MCL38 with a Spearman correlation 

coefficient of 0.85 and inflation parameter set to 2. Cluster parameters varying presence to 

40% presence across samples, correlation coefficients to 0.80 and 0.90, and inflation 

parameters of 4 produced similar results. For toenail, 40% presence and clustering at 80% 

was performed due to computational limitations imposed by site complexity. Clusters were 

taxonomically annotated by blastx-ing each gene in a cluster to nr as previously described, 

and as a strict requirement against false binning, clusters with at least 50% of genes mapping 

to the same phylogenetic group at the species, genus, and/or family level were retained as a 

metagenomic ‘cluster’. Clusters with the same consensus taxonomy were merged at the 

genus and species level; family level analysis showed minimal improvements in consensus 

(Supplementary Table 18). Because a typical microbial genome contains thousands of genes, 

we speculate that many of these represent gene fragments that did not pass our stringent 

redundancy thresholds. While our variable sequencing depth likely precludes recovery of 

complete genomes from such a metagenomic linkage analysis, we identified large clusters of 

taxonomically related groups of covarying genes for both characterized and uncharacterized 

species.

Statistical analysis

All statistical analyses were performed in the R software. Data are represented as mean ± 

standard error of the mean unless otherwise indicated. For all boxplots, black center lines 

represent the median and box edges the first and third quartiles. 'e' in scientific notation 

refers to 10×, e.g., 10e5 represents 10×105. Spearman correlations (ρ) of non-zero values 

were used for all correlation coefficients. The nonparametric tests Wilcoxon rank-sum and 

Kruskal-Wallis were used to determine statistically significant differences between 

microbial populations, and to identify significant inter-category comparisons, we used a 

post-hoc multiple comparison test, implemented by the kruskalmc test in the pgirmess 

package. Unless otherwise indicated, P-values were adjusted for multiple comparisons using 

the p.adjust function in R using method = “fdr”39. Statistical significance was ascribed to an 

alpha level of the adjusted P-values ≤ 0.05. Site characteristics were treated as separate 

groups where indicated based on spatial physiological differences between these different 
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body niches2. Similarity between samples was assessed using the Yue-Clayton theta 

similarity index40 with relative abundances of species, substrains, or shared genomic 

variants. The theta coefficient assesses the similarity between two samples based on (1) 

number of features in common between two samples, and (2) their relative abundances with 

θ=0 indicating totally dissimilar communities and θ=1 identical communities. To avoid 

repeated measures, samples belonging to an individual were averaged prior to statistical 

comparisons between site characteristic when using summary metrics such as means, 

diversity, or theta indices.

Supervised random forest models to identify discriminatory taxa and modules was 

implemented with the randomForest package in R41. This analysis was enabled by our 

multi-site sampling strategy, as using a single or few sites lacks statistical power to detect 

low abundance features. Mean decrease in accuracy denotes the normalized difference in the 

classification accuracy when that variable is included versus when data is randomly 

permuted, i.e., to what degree inclusion of this predictor in the model reduces classification 

error. Model accuracy was calculated using the out-of-bag (oob) error estimate, which is an 

approximation of how frequently an individual is misclassified.

Data deposition

Data deposition is with the SRA and all sequences can be accessed under BioProject 46333. 

Human subject clinical data is deposited with dbGaP 2188. Analysis workflow is available 

at https://github.com/julia0h/skinmetagenome.git.

NISC Comparative Sequencing Program2 (additional authors)
Betty Barnabas, Robert Blakesley, Gerry Bouffard, Shelise Brooks, Holly Coleman, Mila Dekhtyar, Michael Gregory, Xiaobin Guan, 
Jyoti Gupta, Joel Han, Shi-ling Ho, Richelle Legaspi, Quino Maduro, Cathy Masiello, Baishali Maskeri, Jenny McDowell, Casandra 
Montemayor, James Mullikin, Morgan Park, Nancy Riebow, Karen Schandler, Brian Schmidt, Christina Sison, Mal Stantripop, James 
Thomas, Pamela Thomas, Meg Vemulapalli, Alice Young
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Extended Data

Extended Data Figure 1. 

The 18 selected skin sites and their location on the human body. These sites represent three 

microenvironments: sebaceous (blue), dry (red), and moist (green). Toenail (black) is a site 

that does not fall under these major microenvironments and is treated separately. Pie charts 

represent consensus relative abundance of the kingdoms Bacteria, Eukaryota (Fungi), and 

Virus from multi-kingdom mapping.
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Extended Data Figure 2. 

Per-sample read statistics. Additional samples (bacterial and eukaryotic mock communities) 

are shown. a, Boxplots (line indicates median; boxes represent first and third quartiles) 

show, for each site, % reads mapping to human hg19 that are discarded prior to analysis. 

Sites are colored by site characteristic. b, Samples are ordered by label. Lines indicate the 

median value for that statistic; value is in parenthesis. c, Estimate of sequencing coverage. 

Reads seen is the number of reads in a sample sampled. Reads are then split into 20-mers, 
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compared to a k-mer coverage table and kept only if the median k-mer coverage is below 

20×. Curves are grouped by site, colored by individual as indicated.

Extended Data Figure 3. 

Validation of taxonomic classifications. a, Bacterial sample community diversity as a 

function of genome coverage for two diversity metrics, the Shannon index that measures the 

richness and evenness of the community (left), and # species observed (right). Genome 

coverage is defined as for each genome hit, the % of genome covered by reads. Boxplots 
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show the range of diversity values for all samples, segregated by microenvironment. Black 

lines indicate median; boxes represent first and third quartiles. As coverage cutoffs increase, 

diversity estimates drop sharply. b, Comparisons of bacterial community diversity for 

Metaphlan-derived classifications vs. custom bacterial Pathoscope-derived classifications. 

Each point represents a different sample, colored by microenvironment. With no coverage 

cutoffs (left), Pathoscope may overestimate diversity, which is reduced by setting a 

minimum 1× coverage requirement. Spearman correlation (ρ) and corresponding P-values 

are shown. Pathoscope-derived relative abundances versus relative abundances derived from 

c, 16S amplicon sequencing, d, Metaphlan genus-level, e, Metaphlan-species level (ρ & P-

value are calculated for non-zero abundance taxa) f, Metaphlan, staphylococcal species, g, 

ITS1 amplicon sequencing, genus (ρ & P-value are calculated for non-zero abundance taxa) 

and h, ITS1 amplicon sequencing, Malassezia species.

Extended Data Figure 4. 

Full taxonomic classifications for all healthy volunteers (HV), all sites. To aid visualization 

of site- and individual-specific similarities, samples are grouped by site/microenvironment 

for each individual. Relative abundances of the most abundant skin taxa for each super-

kingdom are shown. b, Taxonomic re-classification of major sites sampled by the Human 

Microbiome Project. Samples are from the anterior nares and retroauricular crease (skin), 

tongue dorsum and supragingival plaque (oral), stool, and posterior fornix (vaginal). 

Relative abundances of the most abundant taxa for each kingdom in the skin, for 

comparison, are shown.
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Extended Data Figure 5. 

Strain-level classification based on reference genomes show sub-species heterogeneity for 

dominant skin taxa. a, Simulations to assess sensitivity of Pathoscope-based mapping to 

SNPs, non-core regions, or whole genomes. Synthetic communities were created with 6, 12, 

or 18 genomes per community. Sizes of circles reflect the number of reads sampled from 

each genome, e.g., 50,000, 1000,000, or 500,000 reads per genome. 15 random synthetic 

communities for each genome group were created and mapped to SNPs, non-core regions, or 

the full genome set. Sensitivity is calculated from the expected vs. the observed abundances. 

b, Full strain-level assignments for samples with relative abundances of closest related 

Propionibacterium acnes strains, by individual. c, Dendrograms of strain similarity. Trees 

were generated using core SNPs; genomes were aligned with nucmer to identify core 

regions, and then SNPs within these core regions were identified by calculating all pairwise 

differences between genomes. Bar of colors indicates delineations of subtypes where 

phylogenetically more similar genomes are in similar colors, e.g., we defined 12 subtypes 

for P. acnes.
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Extended Data Figure 6. 

Strain-level classification for Staphylococcus epidermidis. a, Full strain-level assignments 

for samples by microenvironment. b, Description is as in Extended Data Figure 5c. We 

defined 14 subtypes for S. epidermidis.
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Extended Data Figure 7. 

Full version of coreness of different module categories across skin microenvironment. A 

module is defined as core if occurring in >2/3 of samples for that class. Major KEGG 

module descriptors are shown in the different colors. Height of bars reflects the proportion 

of samples that a module occurs in; error bars reflect the variation of the members of that 

KEGG descriptor and are standard error of the mean.
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Extended Data Figure 8. 

Correlation analysis of module abundance with species abundance to infer a module’s 

taxonomic origin. Spearman correlation (ρ) was calculated with corresponding P-value for 

taxa with relative abundance > 0.5% and modules with greater than 0.05% relative 

abundance. Corynebacterium (Coryn.) a, Unsupervised clustering of correlation 

coefficients. Species from the same genera clustering together may suggest a shared 

contribution of a pathway. b, Most significantly correlated taxa; colors represent broad 

KEGG classes. Adjusted P < 2e-16.
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Extended Data Figure 9. 

Antibiotic resistance profiles in the skin. Reads were mapped to a short marker database 

consensus created from the ARDB database, which catalogs publicly available resistance 

genes. Genes are grouped into broad resistance classes; a resistance category is called 

present (black; absent = white) if at least one gene from its family is present.
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Extended Data Figure 10. 

Reference-free analysis of skin metagenome with adaptive iterative assembly, gene catalog, 

and metagenomic clusters. a, Tracking unclassified reads. Fraction unmapped reads refers to 

the fraction of total reads passing quality control that do not map to the major super 

kingdoms Archaea, Bacteria, Eukaryota, and Viruses. Samples are ordered by label and are 

divided by site. b, Assembly, gene-calling, and clustering workflow. c, Assembly efficacy 

varies significantly by kmer depending on the site’s unique features of community 

complexity and sequencing depth, which is most affected by that site’s human DNA 
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admixture. Assembly statistics are shown for samples pooled by individual, which produced 

higher quality assemblies than pooling by site. Because of large pool size, khmer digital 

normalization was used prior to Velvet assembly. % overall alignment rate indicates the 

total % of reads that map back to that sample’s assembly for each kmer. % paired 

concordant indicates the fraction paired reads (of overall, not of % paired) in which both 

pairs of a mate map back to an assembly; discordant is where one mate of a pair does not 

map, or maps to a different contig. Contigs are then assessed by the maximum assembly 

size, the number of bases that are used in the assembly, and the number of contigs above a 

threshold of 300bp. d, Effect of khmer digital normalization on individual sample assembly. 

Digital normalization + Velvet assembly performs similarly to Velvet assembly alone.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Multi-kingdom relative abundances are strongly shaped by skin microenvironment. a, 

Boxplots of mean relative abundance of different kingdoms by site; see Extended Data Fig. 

1 for site codes. Black lines indicate median; boxes first and third quartiles. Triangles 

indicate significance (adjusted P < 0.05, Kruskal-Wallis post-hoc test) for over- (up) or 

under- (down) representation in a majority of pairwise comparisons between sites. b, 

Kingdoms in HMP body sites. c, Consensus relative abundance plots of major skin taxa by 

microenvironment. d, Communities cluster primarily by microenvironment with sebaceous 
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regions most distinct in principal components (PC) analysis. Propionibacterium (P.), 

Staphylococcus (S.), Corynebacterium (C.).
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Figure 2. 

Individual-specific signatures are typically low abundance but shared across most sites. Left, 

variable importance plot of most discriminatory taxa from random forests analysis. For each 

individual, center: proportion of the 18 sites in which each taxa is present, and right: mean 

relative abundance of that taxa across sites. Streptococcus (Str.)
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Figure 3. 

Propionibacterium acnes and Staphylococcus epidermidis are heterogeneous and 

multiphyletic at the strain level. a, b, Reference genomes used for a, P. acnes and b, S. 

epidermidis. Leftmost bar shows subtypes (phylogenetically similar genomes) as color 

groups. Adjacent heatmap shows mean relative abundance by skin microenvironment. Dry 

(D), moist (M), sebaceous (S), toenail (T). c, d, Select relative abundance plots; strain colors 

as in a–b. e, f, P. acnes subtypes differ more significantly between individuals than skin 

microenvironment with the converse observed for S. epidermidis. Boxplots of Yue-Clayton 

theta indices calculate similarity between (‘inter’) or within (‘intra’) individuals/

microenvironments (θ=1: identical). Black lines indicate median; boxes first and third 

quartiles. P-value, Wilcoxon rank-sum test. g, h, Barcharts show P. acnes and S. 

epidermidis subtypes that differ by microenvironment or individual. Length of bar 

represents the fraction of post-hoc tests significant for each comparison; 105 comparisons 

for individual; 6 for microenvironment. *P < 0.05, adjusted Kruskal-Wallis test.
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Figure 4. 

Functional capacity varies by microenvironment. a, Shannon diversity of functional 

pathways and taxonomy by site; P-value, Kruskal-Wallis test between microenvironments. 

Error bars: standard error of the mean. b, Microenvironments possess different core 

modules; ‘core’ = occurrence in > 2/3 of samples. Error bars show variation within a class of 

modules (full version in Extended Data) that may arise from a unique specialization for that 

microenvironment. c, PCA shows clustering by microenvironment, with strong separation of 

sebaceous, dry, and toenail modules. Heatmaps: left, loadings for the first two PCs; right, 
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mean relative abundances for modules with the greatest variation by microenvironment. d, 

A module’s taxonomic origin can be imputed by Spearman correlation (ρ; adjusted P ≤ 

2e-16) with P. acnes and M. restricta relative abundances. e, Presence of select antibiotic 

resistance gene families by individual and site.
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Figure 5. 

Reconstruction of metagenomic dark matter with reference-free methods. a, Per-sample 

iterative assembly with variable kmers optimizes assembly quality as assessed by % reads 

mapping back to assembly (left) and the number of bases incorporated (right). b, Skin gene 

catalog was mapped to nr and KEGG to identify kingdom and functional category. Density 

plot compares length of genes with and without homology; gene length was typically larger 

for unmapped genes. c, Metagenomic clusters represent genes that covary in abundance 

across samples within a microenvironment; boxplots show cluster sizes; histograms show 

number of clusters (log10 scale). d, A lowest common ancestor (LCA) was assigned to a 

cluster with >50% consensus taxonomy. Bar length indicates the total number of ‘genes’ in a 

cluster; black represents the number of genes mapping to the LCA. Gray represents 

ambiguous or unannotated genes. “Characterized” indicates that a reference genome exists 

for that species; for e, “Uncharacterized genomes”, no reference exists. Propionibacterium 

(P.), Staphylococcus (S.), Corynebacterium (C.)
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