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Abstract This paper explores biogeography-based learning particle swarm optimization (BLPSO). Specifically, based 
on migration of biogeography-based optimization (BBO), a new biogeography-based learning strategy is proposed for 
particle swarm optimization (PSO), whereby each particle updates itself by using the combination of its own personal 
best position and personal best positions of all other particles through the BBO migration. The proposed BLPSO is 
thoroughly evaluated on 30 benchmark functions from CEC 2014. The results are very promising, as BLPSO 
outperforms five well-established PSO variants and several other representative evolutionary algorithms. 
 
Keywords particle swarm optimization; biogeography- based learning; exemplar generation; biogeography-based 
optimization; migration 
 
1 Introduction 
 
Particle swarm optimization (PSO) is a population-based optimization algorithm, originally proposed by Eberchart and 
Kennedy (1995a). PSO is inspired by the social interaction and communication such as bird flocking, fish schooling, 
and swarm insects searching for food. Owing to its easy implementation, rapid convergence rate, and good 
performance, PSO has become a widely adopted optimization algorithm (Qin et al. 2015). 

In canonical PSO, all particles keep learning from the personal best experience and the global best experience of 
the entire swarm, which may lead to premature convergence (Gong et al. 2015). To improve the performance, numerous 
PSO variants have been proposed, which can be generally divided into four categories that focus on: 
 

• Parameters control, including inertia weight and acceleration coefficients (Hu et al. 2013; Nickabadi et al. 
2011; Shi and Eberhart 2001), and population size (Chen and Zhao 2009; Sheng-Ta et al. 2009). 

• Population topology and  multi-swarm techniques, including fully connected, wheel and Von Neumann 
(Kennedy 1999; Mendes et al. 2004), unified topology (Parsopoulos and Vrahatis 2004), cellular structured 
topology (Fang et al. 2016), adaptive time-varying topology (Lim and Isa 2014a), and dynamic multi-swarm 
(Liang and Suganthan 2005). 

• Hybrid with other algorithms, including genetic algorithm (Gong et al. 2015; Robinson et al. 2002), 
differential evolution (Epitropakis et al. 2012), harmony search (Ouyang et al. 2016), and teaching-learning-
based optimization (Lim and Isa 2014b). 

• New learning strategies, including comprehensive learning strategy (Liang et al. 2006), orthogonal learning 
strategy (Zhan et al. 2011), self-learning strategy (Li et al. 2012), genetic learning strategy (Gong et al. 2015), 
competitive learning strategy (Cheng and Jin 2015a), and social learning strategy(Cheng and Jin 2015b). 

 
An important direction is to design new learning strategies for PSO. Liang et al. (2006) proposed comprehensive 
learning PSO (CLPSO). It uses a novel comprehensive learning strategy (CLS) whereby all other particles’ personal 
best positions are used to update a particle’s velocity. The CLS can preserve the diversity of the swarm to discourage 
premature. 

In a parallel line, Simon (2008) proposed a new evolutionary algorithm (EA), named biogeography-based 
optimization (BBO), inspired from biogeographic evolution. BBO mainly uses the biogeography-based migration 
operator to share the information among individuals. 

We find that there are some similarities between the productive operators of CLPSO and BBO. CLPSO uses 
personal best positions of many particles to construct the exemplars, while BBO uses a migration operator whereby 
many solutions contribute to producing an offspring. We believe that the migration of BBO can serve as a new 
exemplar generation method for CLPSO. Hence, our aim is to introduce the BBO migration into CLPSO, so as to 

1



propose a biogeography-based learning particle swarm optimization (BLPSO). 
In this study, we will propose a biogeography-based learning strategy (BLS) whereby each particle updates itself 

by using the combination of its own personal best position and personal best position of other particles based on the 
BBO migration. Using BLS in place of CLS in CLPSO, a new PSO, i.e., biogeography-based learning particle swarm 
optimization (BLPSO), is proposed. The proposed BLPSO will be thoroughly evaluated on 30 benchmark functions 
from CEC 2014 on single-objective numerical optimization (Liang et al. 2013) and compared with previous 
representative PSO variants and some state-of-the-art EAs. 

The remainder of the paper is arranged as follows: Section 2 introduces the CLPSO and BBO. Section 3 proposes 
the biogeography-based learning strategy and develops BLPSO algorithm. Section 4 presents thorough comparative 
simulation results. Lastly, Sect. 5 draws the conclusions. 
 
2 Comprehensive learning particle swarm optimization and biogeography-based 

optimization 
 
2.1 Comprehensive learning particle swarm optimization 
 
PSO is swarm intelligence algorithm proposed by Eberhart and Kennedy (1995b) . In canonical PSO, each particle 
learns from its own personal best position (i.e., pbest) and the global best position found by the swarm (i.e., gbest) in 
order to update velocity and position. Let vi = (vi1, vi2, ··· , viD ) and xi = (xi1, xi2, ··· , xiD) represent the velocity and 
position  of  particlei ,  respectively. Let  pbesti    =  ( pbesti1, pbesti2, ··· , pbestiD) denotes the personal best position of 
particle i and gbest = (gbest1, gbest2, ··· , gbestD) denotes the global best position found by the swarm. The update 
equations for the d-th dimension of particle i are defined as follows: 
 

1 1 2 2( ) ( ) ( )id id d id id d d idv wv t c r pbest x c r gbest x← + − + −
                 (1) 

id id idx x v← +
                                  (2) 

 
where w is the inertia weight; c1 and c2 are the acceleration coefficients; r1d and r2d are two numbers randomly generated 
within [0, 1]. 

With the canonical learning scheme, PSO may easily get trapped in a local optimum when solving complex 
multimodal problems. To overcome the above shortcoming, Liang et al. (2006) proposed the CLPSO utilizing a new 
comprehensive learning strategy. The velocity updating equation in CLPSO can be described as follows: 
 

( ),( )
iid id id f d d idv wv cr pbest x← + −

                              (3) 
 
where  fi(d) means that, in the d-th dimension, particle i learns from the pbest of particle  fi(d); fi  = [ fi(1), fi(2),··· , fi(D)] 
defines the index vector of exemplars in all dimensions for particle i ; c is the acceleration coefficient. 

From Eq. 3, it can be seen that each particle can learn from pbest of different particles for different dimensions in 
CLPSO. This raises a question: How to select exemplars in all dimensions for particle i ? In other words, how to 
generate the index vector of exemplars fi  = [ fi(1), fi(2),··· , fi(D)] for particle i ? 

The original CLPSO firstly assigns a learning probability Pci for each particle i using the equation below: 
 

10 ( 1)
exp( ) 1

1*
exp(10) 1i

i

NPc a b

⋅ − −
−= +

−                               (4) 
 
where a and b are two parameters to determine the maximum and minimum learning probability; N is the population 
size.  

Then, the exemplar generation method for particle i is presented in Algorithm 1. Moreover, to ensure that a 
particle learns from good exemplars and to minimize the time wasted on poor directions, a refreshing gap number m is 
defined for evaluation, and a new fi  = [ fi(1), fi(2),··· , fi(D)] will be generated if there is no improvement for m 
consecutive moves. 

Since the inception of CLPSO, several improved CLPSO variants have been proposed, including enhanced version 
(ECLPSO) (Yu and Zhang 2014), parallel version (PCLPSO) (Gulcu and Kodaz 2015), heterogeneous version 
(HCLPSO) (Lynn and Suganthan 2015), and multi-objective version (MOCLPSO) (Huang et al. 2006). However, 
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almost all these CLPSO variants use the similar exemplar generation method as that in the original CLPSO. 
 
Algorithm 1. Exemplar generation method for particle  i in CLPSO 
 
1: Input: Fitness of personal best positions fit( pbesti ) , learning probability Pci ( i = 1,    , N )  
2: Output: Exemplar vector index fi  = [ fi(1), fi(2),··· , fi(D)] 
3: for d = 1 to D do 
4:  Randomly generate a real number rand within  [0,1] 
5:  if rand ≥ Pci then   // learn from its own pbest 
6:    fi(d ) ← i ; 
7:  else   // learn from pbest of other particle by a tournament selection  
8:   Randomly select two particle  a  and  b ( a ≠ b ≠ i ) 
9:   If fit( pbesta ) < fit( pbestb ) 
10:     fi(d ) ← a ; 
11:   else  
12:    fi(d ) ← b ; 
13:   end if 
14:  end if 
15: end for 
16: if fi(d ) == i (d = 1,   , D) in all dimensions 
  
17:  Randomly select a particle j( j ≠ i) ; 
18:  Randomly select a dimension  l ; 
19:   fi(l) ← j ; 
20: end if 
 
2.2 Biogeography-based optimization 
 
BBO is biogeography-inspired evolutionary algorithm proposed by Simon (2008). In BBO, each individual is 
considered as a “island” with a habitat suitability index (HSI) to measure the individual, and the individual components 
are analogous to a set of suitability index variables (SIV). A good individual is analogous to an island with a high HSI, 
and a poor individual indicates an island with a low HSI. BBO uses two main operators, migration and mutation, to 
modify the individuals, but the core operator is migration. 

Assume that there are N individuals xi = (xi1, xi2, ··· , xiD), i = 1, ··· , N . In the BBO migration, each individual has 
its own immigration rate λ and emigration rate µ. A   

good individual has a higher emigration rate µ and a lower immigration rate λ, and vice versa, a bad individual has 
a lower µ and a higher λ. The immigration and the emigration rates are functions of the ranking value of the individuals. 
They can be calculated as follows: 
 

1k

k
I

N
λ  = − ⋅ 

                                 (5) 

k

k
E

N
µ  = ⋅ 

                                (6) 
 
where I and E are the maximum possible immigration and emigration rates, commonly set as I = E =1; N is the 
population size; k is the index of the individual with rank k, where k = 1 refers to the worst individual and k = N refers 
to the best individual. 

Equations 5 and 6 are the linear migration model proposed in the original BBO. Figure 1 plots the immigration and 
emigration curves. Besides the linear migration model, Ma (2010) gave a total of six migration models for BBO, as 
presented in “Appendix 1.” 
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Figure 1  The immigration and emigration curves 
 
The BBO migration for individual xi can be presented in Algorithm 2. From Algorithm 2, it can be seen that a good 
individual has a low immigration rate λ, and thus, the solution modifies its components with low probability; a poor 
individual has a high immigration rate λ, and thus, the solution modifies its components with high probability. At the 
same time, a good individual has a high emigration rate µ, so that other solutions can obtain more features from that 
good individual; a poor individual has a low emigration rate µ, so that other solutions obtain few features from the poor 
individual. This migration makes BBO be good at exploiting the information of the current population. 

Further details about BBO can be found in (Gong et al. 2010b; Simon 2008) and on webpage of BBO.1  
 
Algorithm 2. BBO migration for individual  xi 
 
1: Input: Individual xi = (xi1, xi2, ··· , xiD) , immigration rate λi , and emigration rate µi 
2: Output: Modified individual   �� = (���, ���, ⋯ , �

��
) 

3: for d = 1 to D do 
4:  Randomly generate a number rand within  [0,1] 
5:  if rand < λi then    // whether to immigrate? 
6:   Select an individual xj with probability ∝ µj // which individual to emigrate? 
7:   ��� ← xjd ; 
8:  else 
9:   ���    ← xid  ; 
10:  end if 
11: end for 
 
3 Proposed biogeography-based learning particle swarm optimization 
 
3.1 Biogeography-based learning strategy 
 
The core idea of biogeography-based learning strategy(BLS) is to generate the exemplar vector index fi  = [ fi(1), fi(2),··· 
, fi(D)] based on the BBO migration. The steps of the exemplar generation in BLS can be described as follows: 

First, all particles are ranked based on the quality of their pbest . For minimization problem, assume 
 ���(�������) ≤ ���(�������) ≤ ⋯ ≤ ���(�������)      (7) 
 
where s1 is the subscript of the particle with the best pbest , s2 is the subscript of the particle with the second best pbest , 
and sN is the subscript of the particle with the worst pbest . 

Then, the rankings of particles are assigned as below: 
 	
��
��� = � − 1, 	
��
��� = � − 2,⋯ , 	
��
��� = 0    (8) 
 
According to Eq. 8, the particle with the best pbest obtains the highest ranking value, and the particle with the worst 

                                                           
1 webpage of BBO http://embeddedlab.csuohio.edu/BBO/. 

probability 

immigration 
λ emigration 

µ 

rank 
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pbest obtains the lowest ranking value. 
Second, immigration and emigration rates are assigned for all particles. Here, we use the linear migration model as 

an example. The immigration and emigration rates for all particles can be calculated as follows: 
 

�λ
��� = 1 −
���

�

µ
��� = ���

�

, �λ
��� = 1 −
���

�

µ
��� = ���

�

, ⋯ , �λ
��� = 1 −
	

�

µ
��� = 	

�

         (9) 

 
According to Eq. 9, the solution xs1 with the best pbests1 will have the lowest immigration rate λ(s1) and highest 
emigration rate µ(s1); the solution xsN with the worst pbestsN will have the highest immigration rate λ(sN ) and lowest 
emigration rate µ(sN ). 

Third, the biogeography-based exemplar generation method for particle i can be generated as in Algorithm 2. 
From Algorithm 2, it can be seen that: 
 

(1) particle xs1 with the best pbests1  has the lowest immigration rate λ(s1), so it will learn more from its own 
pbests1 ; 

(2) particle xsN  with the worst pbestsN has the highest immigration rate λ(sN ), so it will learn more from others’ 
pbest ; 

(3) particle xs1 with the best pbests1 has the highest emigration rate, so its pbests1 will tend more to be learned by 
other particles; and 

(4) particle xsN with the worst pbestsN has the lowest emigration rate, so its pbestsN will tend less to be learned by 
other particles. 

 
3.2 Biogeography-based learning particle swarm optimization (BLPSO) algorithm 
 
Using BLS  in place  of CLS  in the  original CLPSO,  a biogeography-based learning particle swarm optimization 
(BLPSO) can be proposed as in Algorithm 4. 
 
Algorithm 3. Biogeography-based exemplar generation method for particle  i 
 
1: Input: Rank value rank(i) , immigration rate λrank(i) , and emigration rate µrank(i)   
2: Output: Exemplar vector index fi  = [ fi(1), fi(2),··· , fi(D)] 
3: for k = 1 to D do 
4:  if rand < λrank(i)   // learn from other particle 
5   Utilize a roulette wheel to select a particle index j with probability ∝ µrank(j) ; 
6:   fi(k) ← j ; 
7:  else // learn from itself 
8:   fi(k) ← i ; 
9:  end If  
10: end for 
11: if fi(k) == i (i = 1, ···, D) 
12:  Randomly select a particle index j( j ≠ i) ; 
13:  Randomly select a dimension  l ; 
14:  fi(l) ← j ; 
15: end if 
 
Algorithm 4. BLPSO 
 
1: for each particle i ∈{1, 2, ···, ps} // initialize the population 
2:  Randomly initialize the position xi  and velocity vi ;  
3:  Evaluate the position fit(xi) ; 
4:  Store the personal best position pbesti ; 
5 end for 
6: while the halting criterion is not satisfied do   // main loop of BLPSO 
7:  for each particle i ∈{1, 2, ···, ps} do 
8:   Assign the ranking values for all particles based on the fitness of their pbest ;  
9:   Assign the immigration and emigration rates for all particles; 
10:   Generate the exemplar vector index fi = [ fi(1), fi(2), ···, fi(D)] using Algorithm 3; 
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11:   Update the velocity   vi according to Eq.(3); 
12:   Update the position   xi according to Eq.(2); 
13:   Evaluate the new position fit(xi ) ; 
14:   Update the personal best position pbesti ;  
15:  end for 
16: end while 
17: Output the best solution. 
 
The main differences between the proposed BLPSO and the original CLPSO can be summarized as follows: 
 

(1) The original CLPSO uses learning probability and tournament selection to generate exemplars for particles, 
whereas BLPSO uses the migration of BBO to generate exemplars. 

(2) Given a specific problem, there are two difficult-to-tune parameters in the original CLPSO, i.e., the learning 
probability Pci  and the refreshing gapm. On the contrary, there is no parameter to tune in BLPSO, only except 
that the maximum possible immigration and emigration rates can be trivially set as I = E =1. What needs to be 
done is select an appropriate migration model from the pool of migration models as listed in “Appendix 1.” 

(3) The adaptation of the original CLPSO is limited, as the learning probability Pci is usually assigned a value just 
based on the particle index i , and the Pc value usually remains unchanged during the whole process of 
optimization. Differently, BLPSO ranks the particles based on their pbest and assigns new immigration and 
emigration rates in each generation, and thus, BLPSO may have a stronger adaption ability. 

 
It is also worth pointing out that the structure of BLPSO is as simple as CLPSO. Compared with other state-of-the-art 
CLPSO variants such as ECLPSO (Yu and Zhang 2014), PCLPSO (Gulcu and Kodaz 2015), and HCLPSO (Lynn and 
Suganthan 2015), BLPSO is relatively easy to realize. 
 
Remark 1 The core idea of BLPSO is that the “ranking” technique and “migration” technique are used simultaneously 
so that the particles can learn from different personal best positions. Recently, Cheng and Jin (2015b) proposed a social 
learning PSO (SL-PSO) in which ’swarm sorting’ and ’learning probability’ are utilized. However, there are important 
differences between BLPSO and SL-PSO. Firstly, there are no historical personal best positions in SL-PSO, so the 
“swarm sorting” is conducted on the current swarm, whereas in BLPSO the ranking technique is conducted on personal 
best positions. Secondly, the particles in SL-PSO have the “learning probability,” which is similar to the “immigration 
rate” in BLPSO, whereas BLPSO has an “emigration rate,” i.e., the probability learned by the others. Thirdly, SLPSO 
uses the three-term formula for behavior correction, while BLPSO uses the two-term formula for velocity updating. 
Finally, the learning mechanism of SL-PSO is inspired from a social phenomenon called imitation, while the learning 
mechanism of BLPSO is inspired from biogeographic migration. 
 
Remark 2 Gong et al. (2015) proposed a generalized learning paradigm for PSO, called the “*L-PSO.” The paradigm is 
composed of two cascading layers, the first for exemplar generation and the second for particle updates. As the “*L-
PSO” paradigm involves the evaluation procedure to calculate the fitness of the constructed exemplars, our BLPSO 
does not belong to the “*L-PSO” paradigm. 
 
4 Numeric simulations 
 
We employ the 30 benchmark functions from CEC 2014 on single-objective numerical optimization (Liang et al. 2013) 
to evaluate the performance of our proposed BLPSO. These benchmark functions fall into four groups: (1) unimodal 
functions (F1 - F3); (2) simple multimodal functions (F4 - F16); (3) hybrid functions (F17 - F22); and (4) composition 
function (F23 - F30). 

The proposed BLPSO is tested on both 30-D and 50D functions. The maximal number of function evaluations 
(Max N FEs) is set as 1000D. All numeric simulation results are obtained based on 30 independent runs. 

Two performance criteria as below are used for comparing the performance of each algorithm. 
(1) Error (Suganthan et al. 2005): The mean and standard deviation of the error value f (x) − f (x∗) are 

recorded, where x∗ is the global optimum of the test function and x is the best solution found by the 
algorithm in a single run. 

(2) Statistics by the Wilcoxon and the Friedman tests: The Wilcoxon rank sum test at 5 % significance 
level is conducted to show the significant differences between two algorithms on the same problem. The 
Friedman test conducted by the KEEL software (Alcala-Fdez et al. 2009) is used to obtain the rankings of 
the algorithms on all the benchmark functions. 
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4.1 Comparisons over different migration models 
 
There are no parameters to tune in BLPSO, but an appropriate migration model has to be selected for BLPSO on the test 
functions. Hence, first of all, we compare the performance of BLPSO over six different migration models as presented 
in Appendix 1. The six BLPSO are denoted as BLPSO-i , i = 1, 2, 3, 4, 5, and 6, i.e., with the i -th migration model. 
Table 1 shows the parameter settings for the six BLPSO. Table 2 shows the errors of the six BLPSO on the 30-D 
functions. In general, BLPSO-5 demonstrates the best performance among the six BLPSO, as it attains its best results 
on 12 out of the 30 test functions, including 1 unimodal function, 6 simple multimodal functions, 2 hybrid functions, 
and 3 composition functions. BLPSO-1, BLPSO-2, BLPSO-3, BLPSO-4, and BLPSO-6 attain their best results on 5, 1, 
2, 4, and 6 functions, respectively. 
 

Table 1  Parameter settings for the six BLPSO 
 
Parameter Value 
Population size N 40 
Inertia weight w 0.9 ∼0.2, linearly decrease 
Acceleration coefficients c 1.496 
Maximum immigration and rates I 1 
Maximum emigration rates E 1 

 
Table 2  Errors of the six BLPSO on the 30-D functions 
 
  BLPSO-1 BLPSO-2 BLPSO-3 BLPSO-4 BLPSO-5 BLPSO-6 
F1 Mean 8.91E+05 4.11E+06 3.52E+06 1.18E+06 2.99E+06 3.21E+06 
 SD 3.84E+05 1.62E+06 1.09E+06 9.06E+05 1.10E+06 1.38E+06 
F2 Mean 7.50E+03 8.39E+03 6.17E+03 7.57E+03 5.09E+03 5.75E+03 
 SD 4.46E+03 4.27E+03 4.23E+03 6.36E+03 4.25E+03 4.41E+03 
F3 Mean 1.90E+02 4.73E+01 1.59E+01 5.52E+01 3.67E+00 2.12E+00 
 SD 1.31E+02 4.95E+01 3.06E+01 7.29E+01 1.16E+01 4.38E+00 
F4 Mean 1.43E+00 2.72E+01 1.07E+01 3.32E+00 2.68E+01 3.11E+01 
 SD 3.03E−01 3.13E+01 2.36E+01 1.24E+01 3.47E+01 4.04E+01 
F5 Mean 2.10E+01 2.09E+01 2.08E+01 2.09E+01 2.08E+01 2.08E+01 
 SD 3.84E−02 8.02E−02 6.50E−02 5.53E−02 7.01E−02 7.22E−02 
F6 Mean 3.28E−02 2.62E−07 1.17E−07 6.57E−02 9.37E−06 1.18E−06 
 SD 1.80E−01 1.44E−06 6.42E−07 2.50E−01 3.20E−05 5.27E−06 
F7 Mean 1.10E−13 1.21E−13 9.85E−14 6.44E−14 9.47E−14 2.47E−04 
 SD 3.64E−14 4.15E−14 3.93E−14 5.73E−14 4.31E−14 1.35E−03 
F8 Mean 3.12E+00 2.67E+00 1.54E+00 3.58E+00 2.32E−01 3.32E−01 
 SD 1.99E+00 2.59E+00 1.02E+00 1.60E+00 5.65E−01 6.03E−01 
F9 Mean 1.54E+02 4.49E+01 3.98E+01 5.67E+01 3.54E+01 3.31E+01 
 SD 7.33E+00 7.09E+00 8.78E+00 1.25E+01 6.93E+00 6.59E+00 
F10 Mean 1.39E+02 1.66E+02 1.07E+02 8.36E+01 8.83E+01 1.00E+02 
 SD 1.02E+02 1.16E+02 1.06E+02 9.52E+01 6.48E+01 9.47E+01 
F11 Mean 6.12E+03 2.73E+03 2.61E+03 3.38E+03 2.08E+03 2.29E+03 
 SD 3.12E+02 5.23E+02 4.55E+02 4.10E+02 3.82E+02 4.00E+02 
F12 Mean 2.41E+00 1.25E+00 1.32E+00 1.73E+00 8.83E−01 8.90E−01 
 SD 2.51E−01 2.67E−01 2.86E−01 3.59E−01 1.49E−01 1.63E−01 
F13 Mean 2.36E−01 2.32E−01 2.14E−01 2.08E−01 2.21E−01 2.11E−01 
 SD 3.96E−02 4.42E−02 3.90E−02 4.29E−02 2.85E−02 3.52E−02 
F14 Mean 2.45E−01 2.29E−01 2.28E−01 2.19E−01 2.14E−01 2.24E−01 
 SD 3.09E−02 2.62E−02 3.20E−02 3.39E−02 2.88E−02 2.38E−02 
F15 Mean 1.50E+01 9.12E+00 8.93E+00 1.06E+01 7.41E+00 7.43E+00 
 SD 8.57E−01 1.18E+00 1.65E+00 1.60E+00 8.49E−01 1.03E+00 
F16 Mean 1.10E+01 9.98E+00 9.46E+00 9.85E+00 9.67E+00 9.43E+00 
 SD 3.85E−01 5.15E−01 8.07E−01 6.46E−01 4.92E−01 5.50E−01 
F17 Mean 4.35E+05 2.83E+05 2.37E+05 3.26E+05 1.86E+05 2.48E+05 
 SD 2.26E+05 1.98E+05 8.98E+04 1.30E+05 1.11E+05 1.42E+05 
F18 Mean 6.14E+02 3.63E+02 6.83E+02 7.56E+02 9.05E+02 9.10E+02 
 SD 6.85E+02 4.89E+02 8.48E+02 1.06E+03 1.20E+03 1.24E+03 
F19 Mean 4.55E+00 3.86E+00 3.60E+00 3.67E+00 3.74E+00 3.67E+00 
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 SD 5.30E−01 4.93E−01 6.32E−01 5.86E−01 6.12E−01 6.27E−01 
F20 Mean 6.06E+02 5.58E+02 2.77E+02 2.53E+02 3.12E+02 1.77E+02 
 SD 2.88E+02 3.26E+02 2.06E+02 7.50E+01 3.48E+02 8.05E+01 
F21 Mean 1.45E+05 4.04E+04 5.73E+04 5.86E+04 3.85E+04 3.79E+04 
 SD 5.85E+04 2.60E+04 3.93E+04 5.45E+04 3.19E+04 3.01E+04 
F22 Mean 2.08E+02 1.20E+02 1.34E+02 1.46E+02 1.16E+02 1.42E+02 
 SD 4.41E+01 4.86E+01 7.67E+01 3.95E+01 6.86E+01 6.11E+01 
F23 Mean 3.15E+02 3.15E+02 3.15E+02 3.15E+02 3.15E+02 3.15E+02 
 SD 5.24E−12 1.39E−11 2.69E−12 8.64E−12 6.11E−13 1.77E−12 
F24 Mean 2.14E+02 2.21E+02 2.20E+02 2.20E+02 2.22E+02 2.22E+02 
 SD 1.02E+01 3.94E+00 6.65E+00 5.46E+00 7.39E−01 3.07E+00 
F25 Mean 2.05E+02 2.05E+02 2.04E+02 2.04E+02 2.05E+02 2.05E+02 
 SD 6.05E−01 5.94E−01 5.68E−01 6.45E−01 4.41E−01 5.39E−01 
F26 Mean 1.00E+02 1.04E+02 1.07E+02 1.04E+02 1.04E+02 1.04E+02 
 SD 1.25E+00 1.82E+01 2.54E+01 1.82E+01 1.82E+01 1.83E+01 
F27 Mean 3.03E+02 3.00E+02 3.07E+02 3.07E+02 3.08E+02 3.00E+02 
 SD 1.87E+01 4.22E−02 2.59E+01 2.59E+01 2.94E+01 8.82E−03 
F28 Mean 8.12E+02 7.94E+02 8.08E+02 8.15E+02 7.87E+02 7.99E+02 
 SD 4.62E+01 4.61E+01 3.62E+01 4.40E+01 5.22E+01 4.51E+01 
F29 Mean 1.23E+03 1.52E+03 1.49E+03 1.31E+03 1.39E+03 1.39E+03 
 SD 1.54E+02 1.32E+02 1.36E+02 1.96E+02 1.39E+02 1.27E+02 
F30 Mean 1.40E+03 1.47E+03 1.37E+03 1.34E+03 1.19E+03 1.40E+03 
 SD 3.36E+02 3.34E+02 3.14E+02 2.74E+02 2.49E+02 2.78E+02 
The best mean error values are marked in bold 
 
Table 3 shows the ranking of the six BLPSO according to the Friedman test on the 30-D functions. BLPSO-5 attains the 
best rank, BLPSO-6 the second, followed by BLPSO-3, BLPSO-4, BLPSO-2, and BLPSO-1. 
 

Table 3  Ranking of the six BLPSO according to the Friedman test on the 30-D functions 
 
 BLPSO-1 BLPSO-2 BLPSO-3 BLPSO-4 BLPSO-5 BLPSO-6 

Friedman rank 4.45 4.05 3.17 3.68 2.68 2.97 

Final rank 6 5 3 4 1 2 

 
Table 4 shows the errors of the six BLPSO on the 50-D functions. BLPSO-5 also demonstrates the best performance 
among the six BLPSO, as it attains its best results on 13 out of the 30 functions, including 7 simple multimodal 
functions, 2 hybrid functions, and 4 composition functions. BLPSO-1, BLPSO-2, BLPSO-3, BLPSO-4, and BLPSO-6 
attain their best results on 1, 3, 3, 4, and 6 functions, respectively. 

Table 5 shows the ranking of the six BLPSO according to the Friedman test on the 50-D functions. BLPSO-5 
attains the best rank, BLPSO-6 the second, followed by BLPSO-3, BLPSO-4, BLPSO-2, and BLPSO-1. 
Overall, BLPSO-5 demonstrates the best performance on both  30-Dand 50-Dbenchmark  functions.  Therefore, 
BLPSO-5 is to be used in the following comparisons with the other algorithms. 
 
Table 4  Error values of the six BLPSO on the 50-D functions 
 
   BLPSO-1 BLPSO-2 BLPSO-3 BLPSO-4 BLPSO-5 BLPSO-6 
F1 Mean 1.01E+06 7.22E+06 6.31E+06 2.66E+06 5.10E+06 5.38E+06 
 SD 2.46E+05 2.41E+06 1.85E+06 2.54E+06 1.28E+06 1.63E+06 
F2 Mean 3.49E+03 2.57E+03 3.25E+03 3.32E+03 3.44E+03 3.74E+03 
 SD 3.08E+03 2.52E+03 3.04E+03 2.46E+03 2.35E+03 2.65E+03 
F3 Mean 7.41E+02 5.61E+02 9.70E+01 1.70E+02 4.23E+01 3.21E+01 
 SD 2.70E+02 2.75E+02 7.00E+01 1.27E+02 8.97E+01 3.01E+01 
F4 Mean 8.99E+01 9.00E+01 7.22E+01 7.87E+01 8.64E+01 6.06E+01 
 SD 5.21E+00 5.28E+00 2.92E+01 2.28E+01 5.04E+00 3.17E+01 
F5 Mean 2.11E+01 2.10E+01 2.10E+01 2.11E+01 2.09E+01 2.09E+01 
 SD 3.89E−02 6.25E−02 6.17E−02 4.22E−02 5.07E−02 4.62E−02 
F6 Mean 5.02E−02 1.08E−01 8.79E−02 1.28E−05 9.22E−02 8.04E−02 
 SD 2.74E−01 3.51E−01 3.09E−01 2.68E−05 3.21E−01 3.83E−01 
F7 Mean 4.74E−13 5.42E−13 3.49E−13 3.87E−13 2.92E−13 2.47E−04 
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 SD 1.30E−13 7.72E−14 7.86E−14 1.02E−13 6.46E−14 1.35E−03 
F8 Mean 9.75E+00 1.32E+01 5.49E+00 9.75E+00 4.97E−01 1.16E+00 
 SD 2.81E+00 5.49E+00 3.48E+00 3.22E+00 8.16E−01 1.06E+00 
F9 Mean 3.12E+02 1.05E+02 1.00E+02 1.50E+02 7.10E+01 7.52E+01 
 SD 1.29E+01 2.14E+01 1.78E+01 2.46E+01 9.02E+00 1.03E+01 
F10 Mean 3.88E+02 4.27E+02 3.45E+02 3.61E+02 3.63E+02 4.31E+02 
 SD 1.72E+02 2.09E+02 1.75E+02 1.95E+02 1.81E+02 2.21E+02 
F11 Mean 1.21E+04 6.39E+03 6.18E+03 7.69E+03 4.46E+03 4.65E+03 
 SD 4.56E+02 7.88E+02 8.13E+02 7.23E+02 4.77E+02 4.67E+02 
F12 Mean 3.31E+00 1.61E+00 1.55E+00 2.21E+00 8.77E−01 9.03E−01 
 SD 3.55E−01 2.36E−01 3.62E−01 3.67E−01 1.18E−01 1.47E−01 
F13 Mean 3.14E−01 3.13E−01 2.97E−01 2.83E−01 2.86E−01 2.88E−01 
 SD 3.89E−02 3.57E−02 3.79E−02 3.62E−02 3.72E−02 3.30E−02 
F14 Mean 3.07E−01 2.73E−01 2.95E−01 2.77E−01 2.65E−01 2.62E−01 
 SD 1.40E−01 3.48E−02 1.24E−01 8.72E−02 2.42E−02 2.40E−02 
F15 Mean 3.00E+01 1.93E+01 1.87E+01 2.33E+01 1.48E+01 1.55E+01 
 SD 1.65E+00 2.32E+00 2.23E+00 3.12E+00 1.33E+00 1.74E+00 
F16 Mean 2.04E+01 1.89E+01 1.87E+01 1.92E+01 1.82E+01 1.81E+01 
 SD 3.77E−01 7.41E−01 5.45E−01 5.64E−01 4.73E−01 6.34E−01 
F17 Mean 9.19E+05 6.69E+05 6.85E+05 6.90E+05 5.97E+05 6.34E+05 
 SD 6.21E+05 2.87E+05 3.69E+05 3.52E+05 2.10E+05 3.09E+05 
F18 Mean 2.32E+02 1.36E+02 1.67E+02 1.92E+02 3.73E+02 4.41E+02 
 SD 1.98E+02 1.75E+02 1.71E+02 2.05E+02 3.68E+02 4.44E+02 
F19 Mean 1.41E+01 2.00E+01 1.93E+01 1.22E+01 2.16E+01 1.96E+01 
 SD 3.45E+00 8.74E+00 9.13E+00 1.03E+00 9.78E+00 8.73E+00 
F20 Mean 5.54E+02 4.87E+02 2.83E+02 3.02E+02 2.57E+02 2.19E+02 
 SD 1.02E+02 1.51E+02 9.59E+01 5.18E+01 1.41E+02 9.69E+01 
F21 Mean 7.87E+05 6.43E+05 4.56E+05 4.98E+05 3.80E+05 4.56E+05 
 SD 3.27E+05 2.87E+05 2.41E+05 2.97E+05 1.44E+05 2.28E+05 
F22 Mean 8.02E+02 2.09E+02 2.04E+02 2.39E+02 2.64E+02 2.27E+02 
 SD 2.43E+02 1.21E+02 1.09E+02 1.63E+02 1.30E+02 1.06E+02 
F23 Mean 3.44E+02 3.44E+02 3.44E+02 3.44E+02 3.44E+02 3.44E+02 
 SD 2.23E−13 2.67E−13 1.93E−13 2.60E−13 2.56E−13 2.63E−13 
F24 Mean 2.59E+02 2.58E+02 2.60E+02 2.59E+02 2.58E+02 2.57E+02 
 SD 4.64E+00 3.54E+00 4.70E+00 4.17E+00 4.07E+00 3.49E+00 
F25 Mean 2.10E+02 2.11E+02 2.09E+02 2.09E+02 2.10E+02 2.11E+02 
 SD 1.23E+00 1.10E+00 1.16E+00 9.90E−01 7.36E−01 1.11E+00 
F26 Mean 1.70E+02 1.61E+02 1.67E+02 1.71E+02 1.47E+02 1.70E+02 
 SD 4.36E+01 5.00E+01 4.81E+01 4.68E+01 5.08E+01 4.66E+01 
F27 Mean 3.25E+02 3.15E+02 3.27E+02 3.21E+02 3.24E+02 3.27E+02 
 SD 2.65E+01 2.40E+01 3.00E+01 2.72E+01 2.85E+01 3.24E+01 
F28 Mean 1.15E+03 1.15E+03 1.14E+03 1.14E+03 1.14E+03 1.17E+03 
 SD 6.49E+01 1.06E+02 4.89E+01 4.13E+01 4.20E+01 5.50E+01 
F29 Mean 1.78E+03 2.11E+03 1.87E+03 1.71E+03 1.36E+03 1.48E+03 
 SD 2.72E+02 3.84E+02 2.87E+02 2.96E+02 1.82E+02 2.33E+02 
F30 Mean 9.44E+03 9.64E+03 9.64E+03 9.57E+03 9.09E+03 9.44E+03 
 SD 4.47E+02 4.14E+02 4.14E+02 4.61E+02 3.05E+02 3.54E+02 
The best mean error values are marked in bold 
 

Table 5  Ranking of the six BLPSO according to the Friedman test on the 50-D functions 
 
 BLPSO-1 BLPSO-2 BLPSO-3 BLPSO-4 BLPSO-5 BLPSO-6 

Friedman rank 4.65 3.88 3.15 3.52 2.63 3.17 

Final rank 6 5 3 4 1 2 

 
4.2 Comparison with the other PSO variants 
 
In order to study the performance of BLPSO against PSO variants, we compare BLPSO-5 with five well-established 
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PSO variants:2  
• Linearly decreasing inertia weight PSO (LDWPSO) (Shi and Eberhart 1998) 
• Dynamic multi-swarm PSO (DMSPSO) (Liang and Suganthan 2005) 
• Fully informed PSO (FIPS) (Mendes et al. 2004) 
• Social learning PSO (SL-PSO) (Cheng and Jin 2015b) 
• Comprehensive learning PSO (CLPSO) (Liang et al. 2006) 

 
Table 6 shows the parameter settings for the other PSO variants. 

Table 7 shows the errors of BLPSO-5 and the other PSO variants on the 30-D functions. BLPSO-5, LDWPSO, 
DMSPSO, FIPS, SL-PSO, and CLPSO attain their best results on 12, 1, 4, 1, 6, and 6 functions, respectively. It can also 
be observed that BLPSO-5 performs particularly well on hybrid functions and composition functions. The three rows at 
the bottom section present the results of the Wilcoxon rank sum test between BLPSO-5 and the other PSO variants. 
BLPSO-5 performs significantly better than LDWPSO, DMSPSO, FIPS, SL-PSO, and CLPSO on 26, 18, 28, 22, and 
21 functions, respectively, though it is significantly worse than LDWPSO, DMSPSO, FIPS, SL-PSO, and CLPSO on 2, 
8, 1, 6, and 8 functions, while similar to them on 2, 3, 1, 2, and 1 functions, respectively. 
 

Table 6  Parameter settings for the other PSO variants  
 
Algorithm Parameter settings 
LDWPSO Population size N  = 40, inertia weight w linearly decreasing from 0.9 to 0.4, 

acceleration coefficients c1 = c2 = 2, Global topology 
DMSPSO Population size N = 40, inertia weight w = 0.729, acceleration coefficients c1 = c2 = 

1.496, population size of sub-swarm m = 5, regrouping period R = 5 
FIPS Population size N = 40, constriction coefficient χ = 0.729, sum of acceleration 

coefficients ϕ = 4.1, URing topology 
SL-PSO Population size N = 100 + floor(D/10), social influence factor ε = 0.0001D 
CLPSO Population size N = 40, inertia weight w linearly decreasing from 0.9 to 0.2, acceleration 

coefficients c = 1.496, refreshing gap m = 5, parameters for calculating learning 
probability a = 0, b = 0.5 

 
Table 7  Error results of BLPSO-5 and the other PSO variants on the 30-D functions 
 

  LDWPSO  DMSPSO  FIPSO  SL-PSO  CLPSO  BLPSO-5 
F1 Mean 3.41E+06 = 2.42E+05 − 1.01E+07 + 3.81E+05 − 8.74E+06 + 2.99E+06 
 SD 3.69E+06  1.71E+05  3.81E+06  3.38E+05  3.09E+06  1.10E+06 
F2 Mean 3.02E+01 − 1.23E+02 − 3.08E+03 = 1.06E+04 + 2.18E+02 − 5.09E+03 
 SD 5.14E+01  3.32E+02  2.97E+03  9.46E+03  9.42E+02  4.25E+03 
F3 Mean 9.31E+01 + 1.25E+02 + 1.85E+03 + 5.74E+03 + 1.29E+02 + 3.67E+00 
 SD 1.04E+02  1.49E+02  9.64E+02  5.42E+03  1.36E+02  1.16E+01 
F4 Mean 1.39E+02 + 1.67E+01 − 1.99E+02 + 4.16E+01 + 6.06E+01 + 2.68E+01 
 SD 3.72E+01  2.99E+01  2.36E+01  2.95E+01  2.35E+01  3.47E+01 
F5 Mean 2.09E+01 + 2.04E+01 − 2.09E+01 + 2.10E+01 + 2.03E+01 − 2.08E+01 
 SD 8.97E−02  8.57E−02  5.66E−02  4.56E−02  3.55E−02  7.01E−02 
F6 Mean 1.08E+01 + 5.51E+00 + 6.25E+00 + 1.05E+00 + 1.34E+01 + 9.37E−06 
 SD 2.50E+00  2.80E+00  2.56E+00  1.45E+00  1.50E+00  3.20E−05 
F7 Mean 1.50E−02 + 8.69E−03 + 1.25E−04 + 1.31E−03 + 3.47E−05 + 9.47E−14 
 SD 1.33E−02  1.21E−02  6.15E−04  3.47E−03  3.94E−05  4.31E−14 
F8 Mean 1.93E+01 + 4.33E+01 + 4.97E+01 + 1.65E+01 + 1.14E−13 − 2.32E−01 
 SD 4.58E+00  1.22E+01  1.04E+01  3.79E+00  0.00E+00  5.65E−01 
F9 Mean 5.75E+01 + 4.51E+01 + 1.45E+02 + 2.18E+01 − 5.27E+01 + 3.54E+01 
 SD 1.73E+01  1.50E+01  1.16E+01  9.99E+00  6.59E+00  6.93E+00 
F10 Mean 4.59E+02 + 8.50E+02 + 2.13E+03 + 4.38E+02 + 1.55E−01 − 8.83E+01 
 SD 2.16E+02  3.62E+02  5.09E+02  2.50E+02  3.72E−02  6.48E+01 
F11 Mean 2.93E+03 + 2.57E+03 + 6.11E+03 + 8.93E+02 − 2.20E+03 = 2.08E+03 
 SD 8.68E+02  5.61E+02  3.63E+02  4.72E+02  2.78E+02  3.82E+02 
F12 Mean 1.75E+00 + 8.36E−01 = 2.48E+00 + 2.28E+00 + 3.34E−01 − 8.83E−01 

                                                           
2
 The source codes of DMSPSO, FIPS, and CLPSO are provided by Dr. P.N. Suganthan, and the source code of SL-PSO is 

downloaded from Dr. Y. Jin’s homepage http://www.surrey.ac.uk/cs/research/nice/ people/yaochu_jin/. 
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 SD 5.16E−01  1.99E−01  2.73E−01  5.99E−01  5.34E−02  1.49E−01 
F13 Mean 4.81E−01 + 1.83E−01 − 2.96E−01 + 1.62E−01 − 2.94E−01 + 2.21E−01 
 SD 1.32E−01  2.66E−02  3.33E−02  3.23E−02  3.88E−02  2.85E−02 
F14 Mean 3.01E−01 + 2.04E−01 = 2.85E−01 + 3.98E−01 + 2.60E−01 + 2.14E−01 
 SD 4.65E−02  4.10E−02  3.16E−02  7.73E−02  3.15E−02  2.88E−02 
F15 Mean 7.60E+00 = 8.27E+00 + 1.50E+01 + 5.97E+00 − 8.27E+00 + 7.41E+00 
 SD 2.56E+00  1.83E+00  9.32E−01  4.27E+00  1.01E+00  8.49E−01 
F16 Mean 1.08E+01 + 1.05E+01 + 1.18E+01 + 1.20E+01 + 1.01E+01 + 9.67E+00 
 SD 8.30E−01  4.90E−01  3.17E−01  2.62E−01  3.57E−01  4.92E−01 
F17 Mean 3.07E+05 + 1.11E+05 − 4.20E+05 + 8.28E+04 − 9.45E+05 + 1.86E+05 
 SD 1.75E+05  7.38E+04  2.19E+05  7.24E+04  5.13E+05  1.11E+05 
F18 Mean 2.31E+03 + 1.12E+03 = 2.94E+03 + 1.40E+03 = 9.40E+01 − 9.05E+02 
 SD 2.30E+03  1.07E+03  3.37E+03  2.43E+03  4.91E+01  1.20E+03 
F19 Mean 6.98E+00 + 1.05E+01 + 5.72E+00 + 6.90E+00 + 7.75E+00 + 3.74E+00 
 SD 2.55E+00  1.48E+01  1.45E+00  1.03E+00  5.96E−01  6.12E−01 
F20 Mean 4.87E+02 + 3.54E+02 + 2.23E+03 + 2.19E+04 + 2.70E+03 + 3.12E+02 
 SD 2.91E+02  1.38E+02  1.28E+03  1.36E+04  1.41E+03  3.48E+02 
F21 Mean 8.77E+04 + 4.61E+04 = 9.08E+04 + 7.12E+04 + 8.94E+04 + 3.85E+04 
 SD 6.75E+04  2.99E+04  5.86E+04  5.95E+04  4.96E+04  3.19E+04 
F22 Mean 1.99E+02 + 2.36E+02 + 1.71E+02 + 1.85E+02 + 1.98E+02 + 1.16E+02 
 SD 1.34E+02  7.31E+01  9.30E+01  1.17E+02  7.60E+01  6.86E+01 
F23 Mean 3.15E+02 + 3.15E+02 − 3.16E+02 + 3.15E+02 + 3.15E+02 + 3.15E+02 
 SD 1.46E−01  2.19E−13  3.33E−01  1.20E−12  1.33E−05  6.11E−13 
F24 Mean 2.31E+02 + 2.23E+02 + 2.24E+02 + 2.32E+02 + 2.25E+02 + 2.22E+02 
 SD 7.12E+00  5.01E+00  5.95E−01  6.59E+00  2.46E+00  7.39E−01 
F25 Mean 2.08E+02 + 2.09E+02 + 2.08E+02 + 2.04E+02 = 2.08E+02 + 2.05E+02 
 SD 1.75E+00  2.81E+00  1.08E+00  1.25E+00  1.17E+00  4.41E−01 
F26 Mean 1.17E+02 + 1.67E+02 + 1.00E+02 − 1.07E+02 + 1.00E+02 − 1.04E+02 
 SD 3.79E+01  4.79E+01  4.48E−02  2.53E+01  9.22E−02  1.82E+01 
F27 Mean 5.46E+02 + 4.15E+02 + 3.33E+02 + 3.81E+02 + 4.14E+02 + 3.08E+02 
 SD 1.06E+02  4.25E+01  4.96E+01  6.46E+01  5.28E+00  2.94E+01 
F28 Mean 1.20E+03 + 9.93E+02 + 1.30E+03 + 9.00E+02 + 8.92E+02 + 7.87E+02 
 SD 3.30E+02  1.85E+02  7.72E+01  7.59E+01  4.98E+01  5.22E+01 
F29 Mean 1.26E+03 − 1.09E+03 − 4.01E+03 + 2.02E+03 + 9.79E+02 − 1.39E+03 
 SD 8.50E+02  3.05E+02  1.85E+03  5.58E+02  1.13E+02  1.39E+02 
F30 Mean 3.59E+03 + 1.90E+03 + 4.40E+03 + 3.26E+03 + 4.13E+03 + 1.19E+03 
 SD 1.68E+03  4.78E+02  1.60E+03  1.01E+03  1.28E+03  2.49E+02 
+   26  18  28  22  21  
=   2  4  1  2  1  
−   2  8  1  6  8  

“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 
Table 8 shows the ranking of BLPSO-5 and the other PSO variants according to the Friedman test on the 30-D 
functions. BLPSO-5 attains the best rank, DMSPSO the second, followed by CLPSO, SL-PSO, LDWPSO, and FIPS. 

Table 9 shows the errors of BLPSO-5 and the other PSO variants on the 50-D functions. BLPSO-5, LDWPSO, 
DMSPSO, FIPS, SL-PSO, and CLPSO attain their best results on 14, 0, 3, 1, 4, and 8 functions, respectively. It can be 
observed that BLPSO-5 performs well on simple multimodal functions, hybrid functions, as well as composition 
functions. The three rows at the bottom section present the results of the Wilcoxon rank sum test between BLPSO-5 and 
the other PSO variants. BLPSO-5 performs significantly better than LDWPSO, DMSPSO, FIPS, SL-PSO, and CLPSO 
on 24, 19, 28, 21, and 22 functions, respectively, though it is significantly worse than LDWPSO, DMSPSO, FIPS, 
SLPSO, and CLPSO on 5, 6, 2, 5, and 2 functions, and it is similar to them on 1, 5, 0, 4, and 6 functions, respectively.  

Table 10 shows the ranking of BLPSO-5 and the other PSO variants according to the Friedman test on the 50-D 
functions. BLPSO-5 attains the best rank, CLPSO the second, followed by DMSPSO, SL-PSO, LDWPSO, and FIPS. 

Based on the comparisons with the other PSO variants on both 30-D and 50-D benchmark functions, it is fair to 
say that the performance of BLPSO-5 is the best among the PSO variants. Also, BLPSO-5 performs particularly well on 
the composition functions. 
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Table 8  Ranking of BLPSO-5 and the other PSO variants according to the Friedman test on the 30-D 
functions 
 
 LDWPSO DMSPSO FIPSO SL-PSO CLPSO BLPSO-5 

Friedman rank 4.25 3.25 4.73 3.47 3.30 2.00 

Final rank 5 2 6 4 3 1 

 
Table 9  Errors of BLPSO-5 and the other PSO variants on the 50-D functions 
 

  LDWPSO  DMSPSO  FIPSO  SL-PSO  CLPSO  BLPSO-5 
F1 Mean 6.54E+06 = 8.93E+05 − 3.43E+07 + 8.81E+05 − 1.62E+07 + 5.10E+06 
 SD 5.07E+06  3.06E+05  9.04E+06  2.92E+05  4.01E+06  1.28E+06 
F2 Mean 3.32E+03 = 4.66E+03 = 2.97E+04 + 8.40E+03 = 4.68E+01 − 3.44E+03 
 SD 4.67E+03  4.72E+03  3.10E+04  8.19E+03  4.82E+01  2.35E+03 
F3 Mean 2.93E+03 + 1.37E+03 + 1.15E+04 + 1.93E+04 + 1.76E+03 + 4.23E+01 
 SD 2.16E+03  6.57E+02  2.39E+03  9.39E+03  8.01E+02  8.97E+01 
F4 Mean 1.89E+02 + 5.40E+01 − 2.68E+02 + 9.40E+01 + 1.01E+02 + 8.64E+01 
 SD 5.58E+01  3.36E+01  3.70E+01  5.00E+00  8.95E+00  5.04E+00 
F5 Mean 2.11E+01 + 2.05E+01 − 2.11E+01 + 2.11E+01 + 2.05E+01 − 2.09E+01 
 SD 7.13E−02  8.75E−02  3.65E−02  3.28E−02  3.40E−02  5.07E−02 
F6 Mean 2.60E+01 + 1.51E+01 + 2.02E+01 + 2.52E+00 + 2.93E+01 + 9.22E−02 
 SD 4.37E+00  4.44E+00  5.56E+00  1.68E+00  2.31E+00  3.21E−01 
F7 Mean 9.11E−03 + 3.45E−03 = 6.07E−05 + 1.40E−03 + 1.09E−03 + 2.92E−13 
 SD 9.46E−03  6.12E−03  1.72E−04  3.76E−03  1.08E−03  6.46E−14 
F8 Mean 4.79E+01 + 1.02E+02 + 1.60E+02 + 3.72E+01 + 1.17E−13 − 4.97E−01 
 SD 1.17E+01  2.18E+01  1.70E+01  8.29E+00  2.08E−14  8.16E−01 
F9 Mean 1.38E+02 + 1.06E+02 + 3.25E+02 + 1.67E+02 + 1.27E+02 + 7.10E+01 
 SD 2.28E+01  2.84E+01  1.80E+01  9.57E+01  1.33E+01  9.02E+00 
F10 Mean 1.09E+03 + 2.94E+03 + 6.63E+03 + 1.19E+03 + 4.53E−01 − 3.63E+02 
 SD 4.06E+02  6.84E+02  5.84E+02  4.69E+02  3.02E−01  1.81E+02 
F11 Mean 6.12E+03 + 5.97E+03 + 1.26E+04 + 2.06E+03 − 4.93E+03 + 4.46E+03 
 SD 2.42E+03  8.40E+02  3.03E+02  6.46E+02  4.11E+02  4.77E+02 
F12 Mean 2.65E+00 + 1.10E+00 + 3.36E+00 + 3.16E+00 + 3.68E−01 − 8.77E−01 
 SD 5.62E−01  2.01E−01  2.69E−01  5.24E−01  5.99E−02  1.18E−01 
F13 Mean 5.83E−01 + 3.01E−01 = 4.41E−01 + 3.15E−01 + 3.95E−01 + 2.86E−01 
 SD 1.19E−01  5.12E−02  4.78E−02  4.27E−02  3.42E−02  3.72E−02 
F14 Mean 4.07E−01 + 2.50E−01 = 3.48E−01 + 4.50E−01 + 3.06E−01 + 2.65E−01 
 SD 1.91E−01  3.74E−02  3.81E−02  1.33E−01  2.17E−02  2.42E−02 
F15 Mean 1.88E+01 + 1.92E+01 + 3.22E+01 + 2.75E+01 + 1.83E+01 + 1.48E+01 
 SD 6.07E+00  3.09E+00  1.41E+00  4.47E+00  2.22E+00  1.33E+00 
F16 Mean 2.08E+01 + 1.94E+01 + 2.15E+01 + 2.18E+01 + 1.86E+01 + 1.82E+01 
 SD 8.41E−01  7.28E−01  3.10E−01  2.59E−01  4.20E−01  4.73E−01 
F17 Mean 5.52E+05 − 1.97E+05 − 1.78E+06 + 9.95E+04 − 2.78E+06 + 5.97E+05 
 SD 4.48E+05  2.66E+05  7.18E+05  6.30E+04  9.94E+05  2.10E+05 
F18 Mean 5.38E+02 = 1.19E+03 + 1.18E+03 + 1.33E+03 + 1.69E+02 = 3.73E+02 
 SD 4.59E+02  1.03E+03  9.53E+02  1.43E+03  6.47E+01  3.68E+02 
F19 Mean 4.37E+01 + 3.34E+01 + 6.51E+01 + 1.83E+01 = 1.81E+01 = 2.16E+01 
 SD 2.82E+01  1.94E+01  1.91E+01  5.25E+00  3.06E+00  9.78E+00 
F20 Mean 1.52E+03 + 5.40E+02 + 1.86E+03 + 2.74E+04 + 4.92E+03 + 2.57E+02 
 SD 7.99E+02  1.29E+02  6.23E+02  1.31E+04  1.87E+03  1.41E+02 
F21 Mean 3.51E+05 = 1.39E+05 − 1.19E+06 + 9.91E+04 − 1.56E+06 + 3.80E+05 
 SD 2.56E+05  7.26E+04  4.72E+05  5.86E+04  7.61E+05  1.44E+05 
F22 Mean 8.20E+02 + 4.00E+02 + 1.02E+03 + 3.82E+02 = 7.18E+02 + 2.64E+02 
 SD 2.65E+02  1.78E+02  2.84E+02  3.14E+02  1.65E+02  1.30E+02 
F23 Mean 3.45E+02 + 3.44E+02 + 3.51E+02 + 3.44E+02 + 3.44E+02 + 3.44E+02 
 SD 7.79E−01  1.73E−13  1.26E+00  3.60E−13  7.48E−05  2.56E−13 
F24 Mean 2.76E+02 + 2.71E+02 + 2.58E+02 = 2.73E+02 + 2.60E+02 + 2.58E+02 
 SD 3.71E+00  4.64E+00  4.02E+00  3.03E+00  3.62E+00  4.07E+00 
F25 Mean 2.19E+02 + 2.24E+02 + 2.21E+02 + 2.12E+02 = 2.16E+02 + 2.10E+02 
 SD 3.29E+00  4.19E+00  2.16E+00  3.43E+00  1.68E+00  7.36E−01 
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F26 Mean 1.37E+02 = 1.70E+02 = 1.39E+02 = 1.47E+02 = 1.01E+02 − 1.47E+02 
 SD 4.91E+01  4.65E+01  5.11E+01  5.04E+01  1.05E−01  5.08E+01 
F27 Mean 1.01E+03 + 7.69E+02 + 6.99E+02 + 4.63E+02 + 8.74E+02 + 3.24E+02 
 SD 8.97E+01  9.17E+01  1.80E+02  6.57E+01  2.92E+02  2.85E+01 
F28 Mean 2.26E+03 + 2.22E+03 + 2.88E+03 + 1.36E+03 + 1.48E+03 + 1.14E+03 
 SD 6.77E+02  6.94E+02  2.18E+02  2.29E+02  1.30E+02  4.20E+01 
F29 Mean 1.36E+07 + 1.48E+03 = 2.62E+04 + 2.53E+03 + 1.54E+03 + 1.36E+03 
 SD 4.24E+07  4.27E+02  1.31E+04  5.95E+02  2.51E+02  1.82E+02 
F30 Mean 3.17E+04 + 1.15E+04 + 5.20E+04 + 1.28E+04 + 1.04E+04 + 9.09E+03 
 SD 1.04E+04  1.06E+03  1.10E+04  2.43E+03  9.29E+02  3.05E+02 
+   24  19  28  21  22  
=   5  6  2  5  2  
−   1  5  0  4  6  

“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 

Table 10  Ranking of BLPSO-5 and the other PSO variants according to the Friedman test on the 50-D 
functions 

 
 LDWPSO DMSPSO FIPSO SL-PSO CLPSO BLPSO-5 

Friedman rank 4.33 3.23 4.98 3.60 2.97 1.88 

Final rank 5 3 6 4 2 1 

 
4.3 Comparisons with BBO algorithms 
 
BLPSO can be viewed as a hybrid algorithm of CLPSO and BBO. Therefore, it makes sense to compare BLPSO with 
the major BBO algorithms. In the following, four representative BBO are selected for comparisons: 

• Real code BBO (RCBBO) (Gong et al. 2010b) 
• Real code BBO with Gaussian mutation (RCBBOG) (Gong et al. 2010b) 
• Perturb BBO (PBBO) (Li et al. 2011) 
• Hybrid  differential  evolution  with  BBO  (DE/BBO) (Gong et al. 2010a) 

 
Table 11 shows the parameter settings for the BBO algorithms. 

Table 12 shows the errors of BLPSO-5 and the BBO algorithms on the 30-D functions. BLPSO-5, RCBBO, 
RCBBOG, PBBO, and DE/BBO attain their best results on 17, 2, 0, 3, and 8 functions, respectively. Based on the 
results of the Wilcoxon rank sum test, it can be observed that BLPSO5 performs significantly better than RCBBO, 
RCBBOG, PBBO, and DE/BBO on 25, 23, 23, and 17 functions, respectively, though BLPSO-5 performs significantly 
worse than RCBBO, RCBBOG, PBBO, and DE/BBO on 4, 3, 5, and 10 functions, and it is similar to them on 1, 4, 2, 
and 3 functions, respectively. 

Table 13 shows the ranking of BLPSO-5 and the BBO algorithms according to the Friedman test on the 30-D 
functions. BLPSO-5 attains the best rank, DE/BBO the second, followed by PBBO, RCBBO, and RCBBOG. 
 

Table 11  Parameter settings for the compared BBO 
 
Algorithm Parameter settings 
RCBBO Population size N = 100, maximum habitat probability mmax = 0.005, maximum possible 

immigration and emigration rates I = E = 1, linear migration model 
RCBBOG Population size N = 100, maximum habitat probability mmax = 0.005, maximum possible 

immigration and emigration rates I = E = 1, linear migration model 
PBBO Population size N = 100, maximum habitat probability mmax = 0.005, maximum possible 

immigration and emigration rates I = E = 1, sinusoidal migration model 
DE/BBO Population size N = 100, maximum habitat probability mmax = 0.005, maximum possible 

immigration and emigration rates I = E = 1, scaling factor 
F = rand(0.1, 1), crossover probability CR = 0.9, linear migration model 
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Table 12  Errors of BLPSO-5 and BBO on the 30-D functions 
 
  RCBBO  RCBBOG  PBBO  DE/BBO  BLPSO-5 
F1 Mean 2.75E+07 + 3.77E+06 = 1.55E+06 − 1.01E+07 + 2.99E+06 
 SD 2.26E+07  2.16E+06  1.08E+06  2.93E+06  1.10E+06 
F2 Mean 1.35E+06 + 9.36E+03 = 1.09E+04 + 2.72E+01 − 5.09E+03 
 SD 5.76E+05  1.08E+04  9.93E+03  1.42E+02  4.25E+03 
F3 Mean 1.51E+04 + 1.53E+04 + 1.37E+04 + 5.31E−01 − 3.67E+00 
 SD 1.20E+04  1.19E+04  1.25E+04  6.87E−01  1.16E+01 
F4 Mean 1.19E+02 + 7.70E+01 + 5.92E+01 + 6.25E+01 + 2.68E+01 
 SD 3.54E+01  3.37E+01  3.62E+01  1.67E+01  3.47E+01 
F5 Mean 2.02E+01 − 2.00E+01 − 2.00E+01 − 2.04E+01 − 2.08E+01 
 SD 4.02E−02  4.44E−03  4.45E−06  4.28E−02  7.01E−02 
F6 Mean 1.47E+01 + 2.09E+01 + 1.39E+01 + 4.53E+00 + 9.37E−06 
 SD 2.72E+00  2.94E+00  3.81E+00  5.68E+00  3.20E−05 
F7 Mean 8.38E−01 + 1.98E−02 + 4.97E−03 + 4.17E−14 − 9.47E−14 
 SD 1.27E−01  2.75E−02  7.34E−03  5.57E−14  4.31E−14 
F8 Mean 2.79E−01 + 2.83E+01 + 1.52E+01 + 1.89E−14 = 2.32E−01 
 SD 1.15E−01  7.33E+00  5.12E+00  4.31E−14  5.65E−01 
F9 Mean 5.05E+01 + 5.54E+01 + 5.12E+01 + 6.07E+01 + 3.54E+01 
 SD 1.47E+01  1.51E+01  1.46E+01  5.90E+00  6.93E+00 
F10 Mean 1.68E+00 − 1.61E+02 = 1.39E+02 = 1.38E+01 − 8.83E+01 
 SD 4.72E−01  1.22E+02  1.23E+02  3.18E+00  6.48E+01 
F11 Mean 2.39E+03 = 3.22E+03 + 2.96E+03 + 3.15E+03 + 2.08E+03 
 SD 7.67E+02  5.42E+02  5.49E+02  2.51E+02  3.82E+02 
F12 Mean 2.06E−01 − 2.29E−01 − 2.32E−01 − 5.83E−01 − 8.83E−01 
 SD 5.63E−02  1.17E−01  1.07E−01  7.89E−02  1.49E−01 
F13 Mean 4.54E−01 + 3.85E−01 + 3.21E−01 + 3.14E−01 + 2.21E−01 
 SD 1.12E−01  9.87E−02  8.20E−02  3.02E−02  2.85E−02 
F14 Mean 4.05E−01 + 4.77E−01 + 3.62E−01 + 2.63E−01 + 2.14E−01 
 SD 1.65E−01  2.24E−01  1.17E−01  2.15E−02  2.88E−02 
F15 Mean 1.42E+01 + 4.37E+01 + 6.10E+00 − 7.70E+00 = 7.41E+00 
 SD 4.88E+00  1.49E+01  1.77E+00  8.34E−01  8.49E−01 
F16 Mean 1.01E+01 + 1.18E+01 + 1.18E+01 + 1.02E+01 + 9.67E+00 
 SD 8.45E−01  7.54E−01  6.17E−01  3.09E−01  4.92E−01 
F17 Mean 3.99E+06 + 1.13E+06 + 6.42E+05 + 6.94E+05 + 1.86E+05 
 SD 1.97E+06  7.61E+05  4.45E+05  2.95E+05  1.11E+05 
F18 Mean 9.69E+04 + 3.67E+03 + 9.52E+02 = 1.80E+03 = 9.05E+02 
 SD 6.42E+04  4.95E+03  1.03E+03  1.75E+03  1.20E+03 
F19 Mean 2.58E+01 + 1.49E+01 + 8.07E+00 + 4.83E+00 + 3.74E+00 
 SD 2.82E+01  1.11E+01  1.08E+01  3.72E−01  6.12E−01 
F20 Mean 4.62E+04 + 3.83E+04 + 3.07E+04 + 1.19E+03 + 3.12E+02 
 SD 2.32E+04  1.81E+04  1.68E+04  6.63E+02  3.48E+02 
F21 Mean 1.09E+06 + 4.35E+05 + 3.70E+05 + 7.46E+04 + 3.85E+04 
 SD 8.69E+05  3.50E+05  2.47E+05  2.85E+04  3.19E+04 
F22 Mean 5.24E+02 + 4.90E+02 + 5.30E+02 + 5.03E+01 − 1.16E+02 
 SD 1.97E+02  1.97E+02  2.32E+02  3.02E+01  6.86E+01 
F23 Mean 3.17E+02 + 3.15E+02 + 3.15E+02 + 3.15E+02 − 3.15E+02 
 SD 1.86E+00  1.68E−02  5.33E−04  5.78E−14  6.11E−13 
F24 Mean 2.35E+02 + 2.47E+02 + 2.35E+02 + 2.23E+02 + 2.22E+02 
 SD 3.56E+00  4.37E+00  5.59E+00  8.32E−01  7.39E−01 
F25 Mean 2.11E+02 + 2.15E+02 + 2.11E+02 + 2.07E+02 + 2.05E+02 
 SD 2.75E+00  6.88E+00  4.16E+00  9.81E−01  4.41E−01 
F26 Mean 1.00E+02 − 1.01E+02 − 1.00E+02 − 1.00E+02 − 1.04E+02 
 SD 8.45E−02  1.48E−01  8.78E−02  3.61E−02  1.82E+01 
F27 Mean 6.11E+02 + 6.89E+02 + 5.30E+02 + 3.19E+02 + 3.08E+02 
 SD 1.19E+02  2.20E+02  1.18E+02  3.68E+01  2.94E+01 
F28 Mean 9.74E+02 + 1.14E+03 + 9.31E+02 + 7.80E+02 − 7.87E+02 
 SD 6.99E+01  2.44E+02  5.33E+01  2.04E+01  5.22E+01 
F29 Mean 2.28E+03 + 1.50E+03 = 1.63E+03 + 1.80E+03 + 1.39E+03 
 SD 4.82E+02  3.29E+02  3.87E+02  3.04E+02  1.39E+02 
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F30 Mean 5.84E+03 + 4.20E+03 + 3.62E+03 + 1.88E+03 + 1.19E+03 
 SD 2.45E+03  4.67E+03  9.00E+02  6.57E+02  2.49E+02 
+   25  23  23  17  
=   1  4  2  3  
−   4  3  5  10  
“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 

Table 13  Ranking of BLPSO-5 and BBO according to the Friedman test on the 30-D functions 
 
 RCBBO RCBBOG PBBO DE/BBO BLPSO-5 

Friedman rank 3.87 4.02 2.92 2.43 1.77 

Final rank 4 5 3 2 1 

 
Table 14 shows the errors of BLPSO-5 and the BBO algorithms on the 50-D functions. BLPSO-5, RCBBO, RCBBOG, 
PBBO, and DE/BBO attain their best results on 17, 3, 1, 2, and 7 functions, respectively. Based on the results of the 
Wilcoxon rank sum test, it can be observed that BLPSO5 performs significantly better than RCBBO, RCBBOG, PBBO, 
and DE/BBO on 24, 24, 22, and 18 functions, respectively, though BLPSO-5 performs significantly worse than 
RCBBO, RCBBOG, PBBO, and DE/BBO on 4, 3, 5, and 8 functions, and it is similar to them on 2, 3, 3, and 4 
functions, respectively. 

Table 15 shows the ranking of BLPSO-5 and the BBO algorithms according to the Friedman test on the 50-D 
functions. BLPSO-5 attains the best rank, DE/BBO the second, followed by PBBO, RCBBO, and RCBBOG. 

Based on the comparisons with the BBO algorithms on both 30-D and 50-D benchmark functions, it can be 
observed that BLPSO-5 performs significantly better than all the four BBO algorithms. 
 
Table 14  Errors of BLPSO-5 and the BBO algorithms on the   50-D functions 
 
  RCBBO  RCBBOG  PBBO  DE/BBO  BLPSO-5 
F1 Mean 1.55E+07 + 3.35E+06 − 1.94E+06 − 2.07E+07 + 5.10E+06 
 SD 6.54E+06  1.39E+06  6.00E+05  5.56E+06  1.28E+06 
F2 Mean 8.69E+05 + 3.52E+03 = 4.91E+03 = 3.44E+03 = 3.44E+03 
 SD 3.52E+05  4.81E+03  4.26E+03  2.81E+03  2.35E+03 
F3 Mean 3.14E+04 + 3.41E+04 + 3.15E+04 + 1.08E+03 + 4.23E+01 
 SD 1.38E+04  1.66E+04  1.45E+04  4.25E+02  8.97E+01 
F4 Mean 1.15E+02 + 9.76E+01 + 8.81E+01 + 9.68E+01 + 8.64E+01 
 SD 3.16E+01  3.40E+01  2.66E+01  2.23E+00  5.04E+00 
F5 Mean 2.01E+01 − 2.00E+01 − 2.00E+01 − 2.06E+01 − 2.09E+01 
 SD 3.12E−02  5.33E−05  3.43E−03  4.35E−02  5.07E−02 
F6 Mean 2.70E+01 + 4.13E+01 + 2.40E+01 + 1.41E+01 + 9.22E−02 
 SD 4.45E+00  5.60E+00  6.07E+00  1.17E+01  3.21E−01 
F7 Mean 7.89E−01 + 1.42E−02 + 6.33E−03 + 2.31E−13 − 2.92E−13 
 SD 9.33E−02  7.10E−03  6.42E−03  5.57E−14  6.46E−14 
F8 Mean 1.93E−01 − 5.78E+01 + 3.50E+01 + 6.99E−12 = 4.97E−01 
 SD 6.56E−02  1.07E+01  6.16E+00  3.69E−11  8.16E−01 
F9 Mean 9.85E+01 + 1.06E+02 + 1.03E+02 + 1.32E+02 + 7.10E+01 
 SD 1.55E+01  2.48E+01  2.88E+01  1.32E+01  9.02E+00 
F10 Mean 1.31E+00 − 5.54E+02 + 4.31E+02 = 3.98E+01 − 3.63E+02 
 SD 3.40E−01  2.92E+02  2.13E+02  6.56E+00  1.81E+02 
F11 Mean 4.48E+03 = 5.79E+03 + 5.68E+03 + 6.43E+03 + 4.46E+03 
 SD 7.89E+02  8.05E+02  7.22E+02  4.62E+02  4.77E+02 
F12 Mean 1.78E−01 − 2.49E−01 − 2.07E−01 − 6.44E−01 − 8.77E−01 
 SD 5.09E−02  8.51E−02  6.84E−02  7.41E−02  1.18E−01 
F13 Mean 5.44E−01 + 5.26E−01 + 4.13E−01 + 4.27E−01 + 2.86E−01 
 SD 1.17E−01  1.20E−01  9.04E−02  4.57E−02  3.72E−02 
F14 Mean 3.99E−01 + 5.47E−01 + 4.14E−01 + 3.34E−01 = 2.65E−01 
 SD 1.59E−01  2.50E−01  1.40E−01  1.76E−01  2.42E−02 
F15 Mean 2.85E+01 + 9.56E+01 + 1.88E+01 + 1.65E+01 + 1.48E+01 
 SD 7.27E+00  1.96E+01  5.44E+00  1.32E+00  1.33E+00 
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F16 Mean 1.81E+01 = 2.13E+01 + 2.12E+01 + 1.89E+01 + 1.82E+01 
 SD 7.66E−01  6.47E−01  9.03E−01  3.39E−01  4.73E−01 
F17 Mean 6.02E+06 + 9.61E+05 + 5.07E+05 − 3.42E+06 + 5.97E+05 
 SD 3.01E+06  5.13E+05  2.89E+05  8.87E+05  2.10E+05 
F18 Mean 7.40E+04 + 1.33E+03 + 1.00E+03 + 3.76E+02 = 3.73E+02 
 SD 4.93E+04  1.28E+03  1.02E+03  4.51E+02  3.68E+02 
F19 Mean 5.26E+01 + 2.27E+01 = 1.38E+01 − 1.14E+01 − 2.16E+01 
 SD 1.98E+01  5.28E+00  2.09E+00  5.36E−01  9.78E+00 
F20 Mean 6.53E+04 + 7.82E+04 + 7.00E+04 + 3.49E+03 + 2.57E+02 
 SD 2.47E+04  3.66E+04  2.81E+04  1.18E+03  1.41E+02 
F21 Mean 6.86E+06 + 1.42E+06 + 7.36E+05 + 1.38E+06 + 3.80E+05 
 SD 4.87E+06  7.65E+05  4.76E+05  5.64E+05  1.44E+05 
F22 Mean 1.09E+03 + 1.11E+03 + 1.22E+03 + 5.05E+02 + 2.64E+02 
 SD 2.99E+02  3.82E+02  2.68E+02  1.07E+02  1.30E+02 
F23 Mean 3.46E+02 + 3.44E+02 + 3.44E+02 + 3.44E+02 + 3.44E+02 
 SD 1.95E+00  2.60E−04  9.18E−07  1.79E−13  2.56E−13 
F24 Mean 2.67E+02 + 2.98E+02 + 2.76E+02 + 2.61E+02 + 2.58E+02 
 SD 5.86E+00  7.16E+00  3.54E+00  4.23E+00  4.07E+00 
F25 Mean 2.19E+02 + 2.27E+02 + 2.21E+02 + 2.16E+02 + 2.10E+02 
 SD 3.96E+00  9.51E+00  7.64E+00  1.70E+00  7.36E−01 
F26 Mean 1.53E+02 + 1.40E+02 = 1.40E+02 = 1.00E+02 − 1.47E+02 
 SD 6.30E+01  4.96E+01  4.98E+01  4.48E−02  5.08E+01 
F27 Mean 1.01E+03 + 1.33E+03 + 8.43E+02 + 3.48E+02 + 3.24E+02 
 SD 8.68E+01  9.56E+01  1.15E+02  1.72E+01  2.85E+01 
F28 Mean 1.63E+03 + 1.84E+03 + 1.53E+03 + 1.04E+03 − 1.14E+03 
 SD 2.05E+02  2.47E+02  3.51E+02  2.03E+01  4.20E+01 
F29 Mean 4.29E+03 + 2.39E+03 + 2.49E+03 + 2.30E+03 + 1.36E+03 
 SD 9.91E+02  7.93E+02  5.99E+02  3.08E+02  1.82E+02 
F30 Mean 1.49E+04 + 1.33E+04 + 1.34E+04 + 8.15E+03 − 9.09E+03 
 SD 2.69E+03  2.03E+03  1.95E+03  2.53E+02  3.05E+02 
+   24  24  22  18  
=   2  3  3  4  
−   4  3  5  8  
“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 

Table 15  Ranking of BLPSO-5 and the BBO algorithms according to the Friedman test on the 30-D functions 
 
 RCBBO RCBBOG PBBO DE/BBO BLPSO-5 

Friedman rank 3.67 3.98 3.05 2.45 1.85 

Final rank 4 5 3 2 1 

 
4.4 Comparisons with the other EAs 
 
We further compare BLPSO with four non-PSO and non-BBO algorithms. The four EAs are:3  

• Covariance matrix adaptation evolution strategy (CMAES) (Hansen and Ostermeier 2001) 
• Global and local real-coded genetic algorithms based on parent-centric crossover operators (GL-

25)(GarciaMartinez et al. 2008) 
• Gaussian bare-bones artificial bee colony (GBABC) (Zhou et al. 2014) 
• Adaptive differential evolution with Optional External Archive (JADE) (Zhang and Sanderson 2009) 

 
Table 16 shows the parameter settings for these EAs. 

Table 17 shows the errors of BLPSO-5 and the other EAs on the 30-D functions. BLPSO-5, CMAES, GL-25, 
GBABC, and JADE attain their best results on 6, 6, 2, 4, and 12 functions, respectively. Based on the results of the 
Wilcoxon rank sum test, it can be observed that BLPSO-5 performs significantly better than CMAES, GL-25, GBABC, 
                                                           

3 The source codes of CMAES, GL-25, and JADE are downloaded from Dr. Y. Wang’s homepage 
http://ist.csu.edu.cn/YongWang.htm. 
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and JADE on 16, 18, 14, and 8 functions, respectively, though BLPSO-5 performs significantly worse than CMAES, 
GL-25, GBABC, and JADE on 12, 7, 12, and 19 functions, and it is similar to them on 2, 5, 4, and 3 functions, 
respectively. 

Table 18 shows the ranking of BLPSO-5 and the other EAs according to the Friedman test on the 30-D functions. 
JADE attains the best rank, BLPSO-5 the second, followed by GBABC, CMAES, and GL-25. 
 

Table 16  Parameter settings for the EAs 
 
Algorithm Parameter settings 
CMAES Number of parent individuals µ = floor(λ/2), number of offspring individuals λ 

= 4 + floor(3 log(D)) 
GL-25 Population size N = 400, 
GBABC Population size N = 60, limit = 100, crossover probability CR = 0.3, 
JADE Population size NP = 100, c = 0.1, p = 0.05 

 
Table 17  Errors of BLPSO-5 and the other EAs on the 30-D functions 
 
  CMAES  GL-25  GBABC  JADE  BLPSO-5 
F1 Mean 2.70E−14 − 8.52E+05 − 9.61E+06 + 4.43E+02 − 2.99E+06 
 SD 9.40E−15  9.84E+05  2.90E+06  8.28E+02  1.10E+06 
F2 Mean 5.59E−14 − 3.37E+03 − 2.03E+01 − 1.33E−14 − 5.09E+03 
 SD 2.30E−14  5.27E+03  5.97E+01  1.44E−14  4.25E+03 
F3 Mean 1.08E−13 − 2.18E−01 = 9.70E+01 + 3.10E−04 − 3.67E+00 
 SD 3.76E−14  6.56E−01  1.42E+02  1.49E−03  1.16E+01 
F4 Mean 1.33E−01 − 9.17E+01 + 3.52E+01 = 1.80E+01 − 2.68E+01 
 SD 7.28E−01  1.02E+01  3.32E+01  3.70E+01  3.47E+01 
F5 Mean 2.00E+01 − 2.10E+01 + 2.04E+01 − 2.03E+01 − 2.08E+01 
 SD 5.32E−06  3.45E−02  3.44E−02  3.07E−02  7.01E−02 
F6 Mean 4.18E+01 + 7.25E+00 + 5.74E+00 + 1.26E+01 + 9.37E−06 
 SD 1.05E+01  3.61E+00  2.07E+00  1.33E+00  3.20E−05 
F7 Mean 1.23E−03 + 1.70E−11 + 2.77E−13 + 1.54E−08 + 9.47E−14 
 SD 3.28E−03  4.41E−11  9.76E−14  8.38E−08  4.31E−14 
F8 Mean 4.13E+02 + 2.38E+01 + 1.78E−13 − 0.00E+00 − 2.32E−01 
 SD 6.71E+01  6.23E+00  6.46E−14  0.00E+00  5.65E−01 
F9 Mean 6.43E+02 + 5.39E+01 = 4.86E+01 + 2.44E+01 − 3.54E+01 
 SD 1.28E+02  5.34E+01  1.03E+01  3.71E+00  6.93E+00 
F10 Mean 4.87E+03 + 1.11E+03 + 1.01E+00 − 8.33E−03 − 8.83E+01 
 SD 5.75E+02  4.57E+02  7.56E−01  1.51E−02  6.48E+01 
F11 Mean 5.15E+03 + 5.55E+03 + 2.65E+03 + 1.82E+03 − 2.08E+03 
 SD 7.76E+02  2.13E+03  2.73E+02  3.03E+02  3.82E+02 
F12 Mean 3.17E−01 − 2.96E+00 + 5.81E−01 − 3.59E−01 − 8.83E−01 
 SD 3.79E−01  1.93E−01  7.65E−02  5.21E−02  1.49E−01 
F13 Mean 2.48E−01 = 3.22E−01 + 1.70E−01 − 2.12E−01 = 2.21E−01 
 SD 6.17E−02  4.93E−02  2.59E−02  2.69E−02  2.85E−02 
F14 Mean 3.77E−01 + 2.95E−01 + 9.57E−02 − 3.09E−01 + 2.14E−01 
 SD 1.08E−01  2.80E−02  2.05E−02  1.13E−01  2.88E−02 
F15 Mean 3.48E+00 − 1.27E+01 + 5.43E+00 − 3.19E+00 − 7.41E+00 
 SD 8.60E−01  5.13E+00  1.17E+00  3.39E−01  8.49E−01 
F16 Mean 1.43E+01 + 1.21E+01 + 1.08E+01 + 9.88E+00 = 9.67E+00 
 SD 4.91E−01  3.10E−01  3.42E−01  3.66E−01  4.92E−01 
F17 Mean 1.75E+03 − 1.68E+05 = 9.94E+05 + 1.33E+03 − 1.86E+05 
 SD 4.54E+02  8.63E+04  4.81E+05  4.37E+02  1.11E+05 
F18 Mean 1.42E+02 − 2.34E+02 − 2.24E+03 = 9.71E+01 − 9.05E+02 
 SD 4.03E+01  2.28E+02  2.79E+03  5.29E+01  1.20E+03 
F19 Mean 9.74E+00 + 5.01E+00 + 4.90E+00 + 5.49E+00 + 3.74E+00 
 SD 1.57E+00  5.63E−01  7.26E−01  8.32E−01  6.12E−01 
F20 Mean 2.72E+02 = 1.62E+02 − 1.36E+03 + 3.49E+03 + 3.12E+02 
 SD 1.08E+02  6.32E+01  7.13E+02  2.87E+03  3.48E+02 
F21 Mean 1.00E+03 − 6.21E+04 + 1.11E+05 + 5.44E+03 − 3.85E+04 
 SD 3.46E+02  2.82E+04  5.50E+04  2.80E+04  3.19E+04 
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F22 Mean 2.30E+02 + 1.53E+02 + 1.29E+02 = 1.71E+02 + 1.16E+02 
 SD 1.28E+02  4.95E+01  7.45E+01  7.22E+01  6.86E+01 
F23 Mean 3.15E+02 + 3.15E+02 + 3.12E+02 − 3.15E+02 − 3.15E+02 
 SD 3.88E−12  2.68E−09  1.79E+01  7.77E−02  6.11E−13 
F24 Mean 2.41E+02 + 2.22E+02 = 2.03E+02 − 2.25E+02 + 2.22E+02 
 SD 4.83E+01  4.75E−01  5.39E+00  2.98E+00  7.39E−01 
F25 Mean 2.04E+02 − 2.07E+02 + 2.08E+02 + 2.03E+02 − 2.05E+02 
 SD 3.03E+00  1.31E+00  9.34E−01  6.27E−01  4.41E−01 
F26 Mean 1.57E+02 + 1.00E+02 − 1.00E+02 − 1.00E+02 = 1.04E+02 
 SD 1.80E+02  4.36E−02  4.85E−02  3.81E−02  1.82E+01 
F27 Mean 3.68E+02 + 3.02E+02 − 4.03E+02 + 3.99E+02 + 3.08E+02 
 SD 3.62E+01  6.65E−01  1.01E+00  7.01E+01  2.94E+01 
F28 Mean 4.32E+03 + 8.92E+02 + 7.96E+02 = 5.98E+02 − 7.87E+02 
 SD 3.35E+03  2.65E+01  4.57E+01  5.59E+01  5.22E+01 
F29 Mean 8.17E+02 − 1.02E+03 − 1.12E+03 − 2.17E+02 − 1.39E+03 
 SD 8.24E+01  1.06E+02  1.99E+02  7.96E+00  1.39E+02 
F30 Mean 2.37E+03 + 1.26E+03 = 2.02E+03 + 7.32E+02 − 1.19E+03 
 SD 5.94E+02  2.66E+02  6.95E+02  1.71E+02  2.49E+02 
+   16  18  14  8  
=   2  5  4  3  
−   12  7  12  19  
“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 

Table 18  Ranking of BLPSO-5 and the other EAs according to the Friedman test on the 30-D functions 
 
 CMAES GL-25 GBABC JADE BLPSO-5 

Friedman rank 3.30 3.47 3.08 2.25 2.90 

Final rank 4 5 3 1 2 

 
Table 19 shows the errors of BLPSO-5 and the other EAs on the 50-D functions. BLPSO-5, CMAES, GL-25, GBABC, 
and JADE attain their best results on 6, 8, 0, 5, and 11 functions, respectively. Based on the results of the Wilcoxon 
rank sum test, it can be observed that BLPSO-5 performs significantly better than CMAES, GL-25, GBABC, and JADE 
on 16, 21, 17, and 8 functions, respectively, though BLPSO-5 performs significantly worse than CMAES, GL-25, 
GBABC, and JADE on 11, 2, 10, and 18 functions, and it is similar to them on 3, 7, 3, and 4 functions, respectively. 

Table 20 shows the ranking of BLPSO-5 and the other EAs according to the Friedman test on the 50-D functions. 
JADE attains the best rank, BLPSO-5 the second, followed by CMAES, GBABC, and GL-25. 

Based on the comparison with other EAs on both 30-D and 50-D benchmark functions, it is fair to say that 
BLPSO5 is a highly competitive algorithm, as it ranks the second, only after JADE. 
 
Table 19  Errors of BLPSO-5 and the other EAs on the 50-D functions 
 
  CMAES  GL-25  GBABC  JADE  BLPSO-5 
F1 Mean 4.69E−14 − 2.14E+06 − 8.82E+06 + 1.43E+04 − 5.10E+06 
 SD 1.19E−14  2.03E+06  1.85E+06  8.54E+03  1.28E+06 
F2 Mean 9.19E−14 − 2.29E+03 = 5.74E+03 = 7.86E−14 − 3.44E+03 
 SD 3.71E−14  1.17E+03  7.08E+03  2.44E−14  2.35E+03 
F3 Mean 1.74E−13 − 3.41E+02 + 1.35E+03 + 4.27E+03 + 4.23E+01 
 SD 5.77E−14  4.32E+02  1.02E+03  3.16E+03  8.97E+01 
F4 Mean 1.64E+01 − 9.54E+01 + 8.75E+01 + 3.84E+01 − 8.64E+01 
 SD 3.73E+01  1.55E+00  2.68E+01  4.73E+01  5.04E+00 
F5 Mean 2.00E+01 − 2.12E+01 + 2.06E+01 − 2.04E+01 − 2.09E+01 
 SD 1.23E−06  2.01E−02  3.93E−02  2.85E−02  5.07E−02 
F6 Mean 7.80E+01 + 3.80E+00 + 1.38E+01 + 2.21E+01 + 9.22E−02 
 SD 1.08E+01  3.26E+00  3.83E+00  4.44E+00  3.21E−01 
F7 Mean 1.23E−03 + 1.57E−08 + 8.53E−13 + 2.88E−03 = 2.92E−13 
 SD 3.28E−03  4.57E−08  5.12E−13  4.25E−03  6.46E−14 
F8 Mean 7.23E+02 + 5.09E+01 + 4.17E−13 − 3.79E−15 − 4.97E−01 
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 SD 1.18E+02  9.19E+00  6.89E−14  2.08E−14  8.16E−01 
F9 Mean 1.18E+03 + 1.12E+02 = 1.11E+02 + 5.22E+01 − 7.10E+01 
 SD 2.16E+02  1.06E+02  1.83E+01  6.50E+00  9.02E+00 
F10 Mean 8.46E+03 + 2.52E+03 + 3.75E+00 − 1.62E−02 − 3.63E+02 
 SD 7.45E+02  8.26E+02  2.30E+00  1.23E−02  1.81E+02 
F11 Mean 8.21E+03 + 1.29E+04 + 5.92E+03 + 4.13E+03 − 4.46E+03 
 SD 7.64E+02  1.51E+03  3.86E+02  3.51E+02  4.77E+02 
F12 Mean 2.58E−01 − 3.81E+00 + 6.96E−01 − 3.46E−01 − 8.77E−01 
 SD 2.12E−01  2.06E−01  6.71E−02  3.57E−02  1.18E−01 
F13 Mean 3.75E−01 + 4.54E−01 + 2.21E−01 − 3.36E−01 + 2.86E−01 
 SD 5.52E−02  5.48E−02  3.42E−02  4.30E−02  3.72E−02 
F14 Mean 5.21E−01 + 3.45E−01 + 1.12E−01 − 3.04E−01 + 2.65E−01 
 SD 2.84E−01  2.89E−02  1.55E−02  7.22E−02  2.42E−02 
F15 Mean 6.15E+00 − 2.29E+01 = 1.27E+01 − 7.56E+00 − 1.48E+01 
 SD 1.26E+00  1.22E+01  2.73E+00  9.07E−01  1.33E+00 
F16 Mean 2.36E+01 + 2.16E+01 + 1.99E+01 + 1.82E+01 = 1.82E+01 
 SD 5.29E−01  3.34E−01  3.26E−01  3.97E−01  4.73E−01 
F17 Mean 2.61E+03 − 4.50E+05 − 2.52E+06 + 2.56E+03 − 5.97E+05 
 SD 5.38E+02  2.06E+05  1.14E+06  7.91E+02  2.10E+05 
F18 Mean 2.36E+02 = 5.04E+02 + 1.21E+03 + 2.89E+02 = 3.73E+02 
 SD 6.16E+01  2.72E+02  1.08E+03  4.05E+02  3.68E+02 
F19 Mean 1.82E+01 = 3.44E+01 + 1.36E+01 − 1.40E+01 − 2.16E+01 
 SD 2.34E+00  5.67E+00  2.93E+00  5.27E+00  9.78E+00 
F20 Mean 4.60E+02 + 4.30E+02 + 5.24E+03 + 5.24E+03 + 2.57E+02 
 SD 1.13E+02  2.34E+02  1.63E+03  6.91E+03  1.41E+02 
F21 Mean 1.84E+03 − 3.55E+05 = 1.64E+06 + 1.33E+03 − 3.80E+05 
 SD 4.68E+02  1.56E+05  5.15E+05  3.98E+02  1.44E+05 
F22 Mean 3.90E+02 + 6.00E+02 + 4.10E+02 + 6.14E+02 + 2.64E+02 
 SD 2.54E+02  4.25E+02  1.74E+02  1.45E+02  1.30E+02 
F23 Mean 3.44E+02 + 3.44E+02 + 3.39E+02 − 3.44E+02 − 3.44E+02 
 SD 2.59E−05  2.07E−09  2.63E+01  1.93E−01  2.56E−13 
F24 Mean 3.14E+02 + 2.60E+02 + 2.49E+02 = 2.74E+02 + 2.58E+02 
 SD 1.96E+02  4.97E+00  1.64E+01  2.58E+00  4.07E+00 
F25 Mean 2.05E+02 − 2.18E+02 + 2.17E+02 + 2.15E+02 = 2.10E+02 
 SD 3.63E−01  2.86E+00  1.85E+00  6.73E+00  7.36E−01 
F26 Mean 1.00E+02 − 1.17E+02 = 1.00E+02 − 1.00E+02 − 1.47E+02 
 SD 8.25E−02  3.78E+01  8.14E−02  1.03E−01  5.08E+01 
F27 Mean 4.99E+02 + 3.33E+02 = 6.18E+02 + 6.80E+02 + 3.24E+02 
 SD 8.44E+01  2.79E+01  1.71E+02  1.80E+02  2.85E+01 
F28 Mean 7.52E+03 + 1.29E+03 + 1.23E+03 + 8.53E+02 − 1.14E+03 
 SD 5.54E+03  8.01E+01  9.26E+01  6.83E+01  4.20E+01 
F29 Mean 1.02E+08 + 1.41E+03 = 1.32E+03 = 2.27E+02 − 1.36E+03 
 SD 5.57E+08  1.22E+02  2.69E+02  1.59E+00  1.82E+02 
F30 Mean 9.05E+03 = 9.91E+03 + 9.41E+03 + 1.99E+03 − 9.09E+03 
 SD 7.04E+02  3.17E+02  5.36E+02  2.22E+03  3.05E+02 
+   16  21  17  8  
=   3  7  3  4  
−   11  2  10  18  
“+”, “−”, and “=” symbolize a relation that BLPSO-5 is better than, worse than, or similar to its competitor, respectively, according 
to the Wilcoxon rank sum test at α = 0.05 
The best mean error values are marked in bold 
 

Table 20  Ranking of BLPSO-5 and the other EAs according to the Friedman test on the 50-D functions 
 
 CMAES GL-25 GBABC JADE BLPSO-5 

Friedman rank 2.97 3.85 3.02 2.45 2.72 

Final rank 3 5 4 1 2 
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5 Discussion and conclusions 
 
Comprehensive learning PSO (CLPSO) is a PSO variant whereby particle can learn from personal best information of 
different particles in different dimensions. CLPSO has shown excellent performance on multimodal problems. 
However, how to effectively select exemplars for particles still puzzles the user of CLPSO. 

In this research, we have proposed a biogeography-based learning PSO (BLPSO) using the migration operator of 
BBO to select exemplars for particles. 

Given a specific problem, the original CLPSO needs to onerously tune two parameters, i.e., the learning 
probability Pc and the refreshing gap m. However, in our proposed BLPSO, no parameters have to be tuned, and what 
needs to be done is just select an appropriate migration model. 

It should be mentioned that, although BLPSO-5 (i.e., BLPSO using quadratic migration model) shows the overall 
best performance on the benchmark functions from CEC2014, BLPSO using the other migration models, such as linear, 
quadratic, and sinusoidal, also gives competitive performances on some specific functions. Therefore, a possible future 
work may be to develop a new BLPSO by using a mix of migration models. 

We have compared BLPSO-54 with well-established algorithms, including five PSO variants, four BBO 
algorithms, and four non-PSO and non-BBO EAs. The numeric simulations have shown that BLPSO-5 outperforms all 
the other PSO and the BBO algorithms. Compared with the other four EAs, BLPSO-5 ranks the second, only after 
JADE. Therefore, it is fair to say BLPSO is a highly competitive optimization algorithm among the state-of-the-art EAs. 

As to the intrinsic reason that BLPSO can achieve highly competitive performance, as we know, a good search 
process needs to balance both exploration and exploitation. It has been widely recognized that while the updating 
formulas used by the original CLPSO as in Eqs. 2 and 3 facilitate the global exploration, its exploitation ability is not 
satisfactory. Contrastingly, in our proposed BLPSO, the biogeography-based learning strategy employs a ranking 
technique whereby particles can learn more from particles with high-quality personal best positions, and this effectively 
enhances the exploitation of the original CLPSO. 

It should be mentioned that in the canonical PSO a three-term updating formula as in Eq. 1 is used for velocity, 
and each particle learns from its own personal best and the swarm’s previous best positions in all dimensions. 
Differently, in our proposed BLPSO, a two-term updating formula as in Eq. 3 is used for velocity, and the exemplar in 
each dimension also can be different. While there is quite some theoretical analysis undertaken to reveal how the 
canonical PSO works (Clerc and Kennedy 2002; Poli 2009), there is little theoretical work on CLPSO and its variants. 
Therefore, theoretical analysis would be interesting for future work on the proposed BLPSO. 

Moreover, it would also be interesting to extend the proposed BLPSO to other types of problems, such as 
constrained optimization, large-scale optimization, multi-objective optimization, and real-world problems. 
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Appendix 1. Migration models of BBO 
 
Ma (2010) provided six mathematical migration models for BBO. The six migration models can be used to design the 
biogeography-based exemplar generation method for BLPSO, and they are described as follows: 
Model 1 (constant immigration and linear emigration model): 
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Model 2 (linear immigration and constant emigration model) 
 

                                                           
4
  The source code of our proposed BLPSO is available from the first author upon request. 
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Model 3 (linear migration model): 
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Model 4 (trapezoidal migration model) 
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where  
( )( 1) / 2i ceil ps′ = +

  
 
Model 5 (quadratic migration model): 
 

2

2

1k

k

k
I

N

k
E

N

λ

µ

  = − ⋅  
  

  = ⋅ 

                                    (14) 
 
Model 6 (sinusoidal migration model): 
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In Eqs. (10) - (15), I and E are the maximum possible immigration and emigration rates; N is the population size; k is 
the index of the individual with rank k, where k = 1 refers to the worst individual and k = N refers to the best individual. 
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