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Abstract: The Biogeography-Based Optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. 

Similarly to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it 

encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature 

regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary 

algorithms in terms of both local optima avoidance and convergence speed. In this study we utilise 10 chaotic maps to enhance 

the performance of the BBO algorithm. The chaotic maps are employed to define selection, emigration, and mutation 

probabilities. The proposed Chaotic BBO (CBBO) algorithms are benchmarked on 10 test functions. The results demonstrate 

that the chaotic maps (especially Gauss/mouse map) are able to significantly boost the performance of BBO. In addition the 

results show that the combination of chaotic selection and emigration operators results in the highest performance.  
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1.  Introduction 

Recently, Evolutionary Algorithms (EA) have received much attention. These algorithms have been inspired by different natural 

evolutionary mechanisms. Some of the most popular algorithms in this field are Genetic Algorithms (GA) [1], Evolutionary 

Strategy (ES), Differential Evolution (DE) [2], Evolutionary Programming (EP) [3], Genetic Programming (GP) [4], Probability-

Based Incremental Learning (PBIL), and Krill Herd (KH) algorithm [5-11]. Regardless of their different structures, these algorithms 

usually create a random population and evolve it over a pre-defined number of generations.  The evolution process is performed by 

selection, reproduction, mutation, and recombination operators. The EA algorithms are also similar in dividing the search process 

into two phases: exploration and exploitation.  
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The exploration phase occurs when an algorithm tries to discover the promising parts of a search space as extensively as 

possible [12]. In this phase the population faces abrupt changes. The EA algorithms are mostly equipped with selection and 

recombination operators in order to explore search spaces. In contrast, the exploitation phase refers to the convergence toward the 

most promising solution(s) obtained from the exploration phase as quickly as possible. The population encounters small changes in 

the exploitation phase. The mutation operators bring exploitation for EAs by randomly manipulating the individuals in the 

population. In many cases exploration and exploitation are in conflict and there is no clear boundary between these two phases due 

to the stochastic nature of EA algorithms [13]. These issues leave EA prone to stagnation in local optima. In other words, EA 

algorithms may become trapped in local optima without proper balance between exploration and exploitation. There are many 

studies that focus on improving the performance of EA by boosting exploration and exploitation. 

One of the mathematical approaches that recently has been employed to improve both exploration and exploitation is chaos. 

Chaos theory is related to the study of chaotic dynamical systems that are highly sensitive to initial conditions.  One might think 

that chaotic systems have random behaviour, but providing chaotic behaviour does not necessarily need randomness. Deterministic 

systems can also show chaotic behaviours [14]. Some of the recent studies that utilise chaos theory in EAs are the following: 

In 2001, Wang et al. developed chaotic crossover and mutation operators and proved that chaos theory can improve the 

performance of GA successfully [15]. In 2012, Yang and Cheng [16] employed chaotic maps to manipulate the mutation probability 

with the purpose of increasing the exploitation of GA. They proved that this method is able to provide better result compared to 

the standard GA on three test functions. In 2013, Jothiprakash and Arunkumar created the initial population for GA and DE by 

chaos theory and applied it to a water resource system problem [17]. They showed that GA and DE with initial chaotic populations 

outperform those of the standard GA and DE algorithms.  The performance of DE was also improved with a chaotic mutation 

factor by Zhenyu et al. [18]. In 2014, chaotic maps were integrated to the Krill Herd (KH) algorithm [19, 20]. All these studies show 

the potential of chaos theory for improving the performance of EAs. This is the motivation of this study: we apply chaos theory to 

a recently proposed EA called Biogeography-Based Optimisation (BBO) [21].  

The BBO algorithm is a novel EA that has been inspired by biogeography [21]. Biogeography studies different ecosystems for 

finding the relations between different species in terms of migration and mutation. The inventor of this algorithm, Dan Simon, 

proved that this algorithm is able to show very competitive results compared to other well-known heuristic and evolutionary 

algorithms. However, stagnation in local optima and slow convergence speed are two possible problems, similar to other EAs as 

investigated in the following works: 

In 2009, Du et al. combined ES with BBO to improve the local optima avoidance of BBO [22]. They also proposed a new 

immigration refusal to improve the exploration of the BBO algorithm. In 2010, DE was integrated with BBO, mostly to improve 
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exploitation [23]. Gong et al. proposed a different hybrid of DE and BBO to improve the exploration of the BBO algorithm. In 

this method the exploration was done by DE, whereas BBO performed the exploitation [24].  In 2011, Ma and Simon proposed a 

blended migration operator and indicated that it could improve the exploration of the BBO algorithm [25]. Other improvements, 

modifications, and hybridisations of BBO can be found in [26-29]. All these studies show that the performance of the BBO 

algorithm can be further improved.  

As mentioned above, one of the methods of improving the performance of EA is by using chaos theory. Currently, there are 

few works in the literature for improving exploration and exploitation capabilities of BBO using chaos theory. In 2013, we 

integrated 3 chaotic maps with BBO and tested it over 4 test functions [30]. We showed that the chaotic maps can improve the 

performance of BBO. However, we only integrated chaotic maps with some of the components of the BBO algorithm. This work 

integrates 10 chaotic maps into this algorithm in order to extensively investigate the effectiveness of chaos theory for improving 

exploration and/or exploration of the BBO algorithm. Our main motivation for employing chaotic maps for defining emigration 

and immigration probability is to improve the exploration of BBO. In contrast, chaotic mutation operators are designed to 

promote exploitation of the BBO algorithm.  

The organisation of the paper is as follows: Section 2 presents a brief introduction to the BBO algorithm. Section 3 introduces 

the chaotic maps and proposes the method of combining them with BBO.  The experimental results of test functions are provided 

in Section 4. Section 5 concludes the work and suggests some directions for future research. 

 

2. Biogeography-Based Optimisation algorithm 

As its name implies, the BBO algorithm has been inspired by biogeography [21]. The BBO algorithm mimics relations 

between different species (habitants) located in different habitats in terms of immigration, emigration, and mutation. In fact, this 

algorithm simulates the evolution of ecosystems, considering migration and mutation between different geographically separated 

regions toward a stable situation.  

Generally speaking, the concepts of the search process of BBO are identical to those of other evolutionary algorithms wherein 

a set of random solutions is first generated. Afterwards, the initial random solutions are evaluated by a fitness function and then 

evolved over a pre-defined number of iterations. The BBO algorithm is very similar to GA. Search agents in BBO, called habitats, 

work similarly to chromosomes in GA. The parameters of habitats, called habitants, are analogous to genes in GA. The associated 

fitness value for each habitat in BBO is called the Habitat Suitability Index (HSI). Depending on the HSI of habitats, the habitants 

are able to migrate from one habitat to another. In other words, habitats can be evolved based on their HSI as follows [31]: 
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• Habitants living in habitats with high HSI are more likely to emigrate to habitats with low HSI 

• Habitants located in low-HSI habitats are more prone to allow immigration of new habitants from habitats with high 

HSI  

• Habitats might face random changes in their habitants regardless of their HSI values 

These rules assist habitats to improve the HSI of each other and consequently evolving the initial random solutions for a given 

problem. In the BBO algorithm, each habitat is assigned three rates: immigration (𝜆𝜆𝑘𝑘), emigration (𝜇𝜇𝑘𝑘), and mutation. These rates 

are calculated based on the number of habitants as follows: 

𝜇𝜇𝑘𝑘 = 𝐸𝐸×𝑛𝑛
𝑁𝑁

                 (2.1) 

𝜆𝜆𝑘𝑘 = 𝐼𝐼 × 1−𝑛𝑛
𝑁𝑁

                 (2.2) 

where n is the habitant count, N is the maximum number of habitants, E is the maximum emigration rate, and I indicates the 

maximum immigration rate. 

Fig. 1 illustrates immigration and emigration rates. This figure shows that the probability of emigration is proportional to 

number of habitats. In addition, the immigration probability is inversely proportional to the number of habitants. The mutation 

rate of BBO is also a function of the number of habitants and defined as follows:  

𝑚𝑚𝑛𝑛 = 𝑀𝑀 × �1 − 𝑝𝑝𝑛𝑛
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

�                        (2.3) 

where M is an initial value for mutation defined by the user, 𝑝𝑝𝑛𝑛  is the mutation probability of the n-th habitat, and 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 =

arg max(𝑝𝑝𝑛𝑛) ,𝑛𝑛 = 1,2, … ,𝑁𝑁. 

The pseudo code of the BBO algorithm is illustrated in Fig. 2. 

In the next section the method of integrating the 10 chaotic maps is proposed. 

 

3. Chaotic maps for BBO 

In this section we present the chaotic maps used and describe the method of improving the performance of BBO using them. 

We chose 10 different chaotic maps as shown in Table. 1 and Fig. 3. 

It is worth mentioning here that Fig. 3 shows deterministic systems are also able to provide chaotic behaviours. There is no 

random component in Table. 1, but the chaotic behaviours of the equations is quite evident in Fig. 3. This set of chaotic maps has 

been chosen with different behaviours, while the initial point is 0.7 for all. The initial point can be chosen any number between 0 
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and 1 (or -1 and 1 depends on the range of chaotic map). However, it should be noted that the initial value may have significant 

impacts on the fluctuation pattern of some of the chaotic maps. In this paper we use similar initial values to those of [5, 32].  

We employ the chaotic maps for manipulating the selection, emigration, and mutation operators of the BBO algorithm. The 

chaotic selection and emigration operators improve exploration, whereas the chaotic mutation enhances exploitation. A different 

chaotic map is used for of 10 variants of the BBO algorithm. The application of chaotic maps is tested singly on each of the main 

operators, and then in combination. 

 

3.1 Chaotic maps for selection:  

As can be seen in Fig. 2, the selection of a habitat for migration is defined by the probability of λ. We employ the chaotic map 

to define this probability. The final value from the chaotic map should lie in the interval [0,1], so we normalise those in [-1,1]. In 

this work the rand value (underlined in Fig. 2) is substituted by values from the chaotic map to provide chaotic behaviours for the 

selection operator as follows: 

 

if C(t) < λi then 

Emigrate habitants from Hi to Hj chosen with the probability proportional to μi                       (3.1) 

end if 

 

where C(t) is the value from the chaotic map in the t-th iteration and Hi shows the i-th habitat. 

Note that this method of integrating chaotic maps in the selection phase of BBO is identical to that of [30]. It can be inferred 

from equation (3.1) that the chaotic maps are responsible for choosing the origin of immigration in our proposed chaotic selection 

operator.  

 

3.2 Chaotic maps for emigration: 

As highlighted in Fig. 2, emigration is performed with probability proportional to μ after selecting a habitat. We use the chaotic 

map to calculate this probability as follows: 

 

if C(t) < μi then 

select a random habitant in xi and replace it with xj                    (3.2) 

end if 
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where C(t) is the value from the chaotic map in the t-th iteration and xi shows the i-th habitant. 

Equation (3.2) shows that the chaotic maps are allowed to define the probability of emigration and consequently chaotic 

emigration behaviours. Note that we again normalise those chaotic maps that lie in the interval [-1,1] 

 

3.3 Chaotic maps for mutation: 

The probability of mutation is defined directly by the chaotic map as follows: 

 

for i=1 to number of habitants at k-th habitat 

    if C(t) < Mutation_rate(k) then 

Mutate i-th habitants         (3.3) 

          end if                           

             end for 

 

where C(t) is the value from the chaotic map in the t-th iteration and Mutation_rate(k) shows the mutation rate of k-th habitat, which 

can be defined by (2.3) or any other mutation probability generator. Note that the mutation rate is normalised to the range of [0,1]. 

 

In the next section we provide a comparative study using these new chaotic operators and name them Chaotic BBO (CBBO). 

Moreover, combination of these operators (BBO with chaotic selection/emigration and BBO with chaotic 

selection/emigration/mutation) are also developed and benchmarked.  

The following observations may assist in showing how the proposed method operators are theoretically efficient, either 

individually or together: 

• The chaotic selection operator assists CBBO to choose habitats chaotically which improves exploration  

• The chaotic emigration operator allows CBBO to perform emigration with a chaotic pattern that again emphasises 

exploration 

• The chaotic mutation operator helps CBBO to exploit the search space better than BBO since there might be 

different values for mutation probability 

• Different chaotic maps for selection, emigration, and mutation provide different exploration and exploitation patterns 

for the CBBO algorithm 

• Since chaotic maps show chaotic behaviour, a generation of CBBO might emphasise either exploration or exploration 
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• In case of entrapment in local optima, the chaotic selection and emigration operators combined assist CBBO to exit 

from them 

• In case of finding a promising region(s) of search space, the chaotic mutation operator helps CBBO to chaotically 

exploit the neighbourhood. 

 

In the following sections various benchmark functions are employed to demonstrate the effectiveness of the proposed 

method in action. 

 

4. Experimental results and discussion 

To evaluate the performance of the proposed CBBO algorithms, 10 standard benchmark functions are employed in this section 

[3, 33-38].  These benchmark functions are divided into two groups: multimodal and unimodal . The former group is suitable for 

benchmarking exploration, whereas the latter group is use to examine exploitation [36, 37, 39]. Table 2 lists these functions and 

their features, where Dim indicates dimension of the function, and Range is the boundary of the function’s search space. Note that 

Table 3 provides the initial parameters of the BBO and CBBO algorithms. 

Table 4 to Table 8 present the experimental results. The results are averaged over 10 independent runs. The average (mean) and 

standard deviation (std) of the best solution obtained in the last iteration are reflected in the tables. According to Derrac et al. [40], to 

evaluate the performance of evolutionary algorithms, statistical tests should be conducted. In other words, it is not enough to 

compare algorithms based on the mean and standard deviation values [41] and a statistical test is necessary to prove that a proposed 

new algorithm presents a significant improvement compared to other algorithms. 

In order to judge whether the results of the algorithms differ from each other in a statistically significant way, a nonparametric 

statistical test, Wilcoxon’s rank-sum test [42], is carried out at 5% significance level. The p-values calculated in the Wilcoxon’s 

rank-sum are given in the results as well. In the tables, N/A indicates “Not Applicable”, meaning that the corresponding algorithm 

could not be compared with itself in the rank-sum test. It is generally considered that p-values less than 0.05 can be considered as 

sufficient evidence against the null hypothesis. Note that the best results are highlighted in bold face and the p-values greater 

than 0.05 are underlined. 

Table 4 shows the results of the CBBO algorithm with chaotic selection operators. CBBO1 to CBBO10 utilise Chebyshev, 

Circle, Gauss/mouse, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent selection operators respectively. It can be 

seen in this table that CBBO2, CBBO6, CBBO8, CBBO9, and CBBO10 show worse results compared to the BBO algorithm. 
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This shows that the Circle, Piecewise, Singer, Sinusoidal, and Tent chaotic selection operators are not able to improve the 

performance of BBO algorithm. In contrast, the CBBO1, CBBO3, CBBO4, CBBO5, and CBBO7 algorithms show much better 

results compared to BBO on all the test functions. In other words, Chebyshev, Gauss/mouse, Iterative, Logistic, and Sine chaotic 

maps have successfully improved the performance of the BBO algorithm. Table 4 shows that the Gauss/mouse-based BBO 

algorithm yields the best results on all of the test functions. The p-values reported prove that this superiority is statistically 

significant. Moreover, Fig. 4 shows the convergence curves of the algorithm. As may be seen in this figure, the Gauss/mouse 

selection operator has the fastest convergence rate. Considering the results of Table 4 and Fig. 4, it can be stated that the 

Gauss/mouse maps improve the performance of BBO in terms of both exploration and exploitation.   

The statistical results of the CBBO algorithms with chaotic emigration operators are presented in Table. 5. As this table 

shows, CBBO11, CBBO13, CBBO14, VBBO15, and CBBO17 show better results than the BBO algorithm. However, CBBO12, 

CBBO16, CBBO18, and CBBO19, and CBBO20 failed to outperform the BBO algorithm. These results are totally consistent 

with those of Table 4: again the Chebyshev, Gauss/mouse, Iterative, Logistic, and Sine chaotic emigration operators successfully 

improve the performance of the BBO algorithm. Among these operators, the Gauss/mouse chaotic emigration operator once 

more shows the best statistical results. The p-values presented prove that this superiority is significant in a statistical way. The 

convergence curves of CBBO11 to CBBO20 and that of BBO are depicted in Fig. 5. This figure shows that CBBO11, CBBO13, 

CBBO14, VBBO15, and CBBO17 have the fastest convergence rates. Note that the CBBO13 algorithm shows the overall fastest 

convergence speed as well. This indicates that the performance of BBO can be boosted by the Gauss/mouse emigration operator 

in terms of not only exploration but also exploitation.  

Table 6 shows the results of the chaotic mutation operators. In contrast to the previous results, there is no absolute superiority 

for any of the algorithms. For instance, CBBO28 and CBBO21 provide the best results on Sphere and Schwefel functions, 

whereas CBBO24 and CBBO27 show the best results on Rosenbrock and Rastrigin functions respectively. There is also no 

distinguishing convergence behaviour for the algorithms; almost all algorithms are clustered together in their performance, as 

shown in Fig. 6. However, the results of CBBO22, CBBO24, CBBO25, CBBO27, CBBO28, and CBBO30 are mostly better than 

the BBO algorithm. This suggests that chaotic mutation operators may also be able to improve the performance of the BBO 

algorithm, but none of them can provide significant superiority as p-values of Table 6 confirm (the p-values underlined are those 

greater than 0.05).  

The results of the CBBO algorithms with both chaotic selection and emigration operators are provided in Table 7 and Fig. 7. 

It can be observed that the results of all CBBO algorithms are much better than those of Table 4, Table 5, and Table 6. All of the 

CBBO algorithms provide superior results compared to the BBO algorithm except CBBO39. The convergence curves in Fig. 7 
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also indicate that the BBO and CBBO39 algorithms provide the worst rates. According to Table 7 and Fig. 7, CBBO33 which 

utilises the Gauss/mouse selection and emigration operators remarkably enhance the performance of the BBO algorithm. Since 

CBBO33 provides the best results on all the test functions such as unimodal and multimodal, it can be stated that the 

combination of the Gauss/mouse selection and emigration operators significantly improves exploration and exploitation of the 

BBO algorithm.  

Table 8 and Fig. 8 show the experimental results of CBBO41 to CBBO50. As Table 8 suggests, all CBBO algorithms 

outperform the BBO algorithm except CBBO49 and CBBO50. It is worth mentioning the results of this table are worse than 

those of Table 7. This means that the use of chaotic mutation operators degraded the effects of chaotic selection and emigration 

operators. Therefore, it can be said that the chaotic selection and emigration operators are more effective than the chaotic 

mutation operators in terms of improved performance. The CBBO43 algorithm shows the best results on all benchmark 

functions, proving again that the Gauss/mouse selection and emigration operators are able to improve the performance of the 

BBO algorithm markedly. The convergence behaviours of the algorithms also support this statement, as shown in Fig. 8.  

To sum up, the results show that the Chebyshev, Circle, Gauss/mouse, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, 

and Tent selection, emigration, and mutation operators are able to improve the performance of the BBO algorithm. Generally, 

the results of the chaotic selection and emigration operators are much better than the chaotic mutation operators. This shows that 

the exploration of the BBO algorithm is weaker than its exploitation.  The results prove that chaotic selection and emigration are 

able to alleviate this weakness.  

The results of the CBBO algorithms with both chaotic selection and emigration operators show that the majority of these 

operators (except Sinusoidal selection and emigration operators) can improve the performance of the BBO algorithm 

significantly. This is due to boosting the exploration of the BBO algorithm utilising these operators simultaneously whereby the 

BBO algorithm can avoid local optima much better. In other words, the chaotic selection and emigration operators bring different 

patterns of migration behaviour for habitats which results in showing higher exploration capability.    

Generally speaking, the results of the chaotic maps on all the benchmark functions follow the order of: Gauss/mouse < Sine 

< Chebyshev < Logistic < Iterative < normal BBO < Circle < Singer < Piecewise < Tent < Sinusoidal. It can be seen that the 

Gauss/mouse map shows the best (minimum) results, whereas the Sinusoidal map provides the worst (maximum) results. 

Matching these results with Fig. 3, it can be seen that the Sinusoidal map usually returns values greater than 0.5. This means that 

the Sinusoidal map provides less probability of selection, emigration, and mutation compared to others, from consideration of 

equation (3.1), equation (3.2), and equation (3.3). This is the reason for the poor performance of the CBBO9, CBBO19, CBBO29, 

CBBO39, and CBBO49 variants. In contrast, the Gauss/mouse map has a totally different behaviour, as illustrated in Fig. 3. This 
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chaotic map mostly returns values less than 0.5. This causes a high probability of emigration over the course of iterations 

compared to the BBO and other CBBO algorithms. In other words, there is an emphasis on exploration using the Gauss/mouse 

map that prevents CBBO3, CBBO13, and CBBO33 from stagnating in local optima. The results of unimodal test functions and 

convergence curves also prove that the superior exploration of the Gauss/mouse map does not have a negative impact on the 

exploitation.  

 

5. Conclusion 

This paper investigated the effectiveness of 10 different chaotic maps in improving the performance of the BBO algorithm. In 

order to compare the chaotic maps in terms of enhancing exploration and exploitation, ten benchmark functions dividing into 

multimodal and unimodal problems were employed. Generally speaking, the results proved that chaotic maps are able to 

significantly improve the performance of BBO. Moreover, the results of the comparative study suggest that the Gauss/mouse map 

is the best map. The reason was the higher selection and emigration probabilities when utilising this map. The results also showed 

that chaotic mutation operators are not able to improve the performance of the BBO algorithm significantly. Another finding of 

this paper was that the combination of the chaotic selection and emigration operators are better than other combinations 

investigated. This was due to the superior exploration of the CBBO with these two operators combined.  

For future studies, it would be interesting to employ CBBO algorithms for solving real world engineering problems. In addition, 

other chaotic maps are also worth applying to BBO. 
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