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Abstract: The juxtaposition of plant-species invasions with latitudinal gradients in herbivore 8 

pressure is an important yet mostly unexplored issue in invasion biology. Latitudinal clines in 9 

defense and palatability to herbivores are expected to exist in native plant species but the 10 

evolution of these clines may lag behind for invasive plant species resulting in non-parallel 11 

latitudinal clines that may impact invasion success. Our study focused on a native and European 12 

invasive lineages of the common reed Phragmites australis in North America. Using native and 13 

invasive genotypes of P. australis collected across a 17° latitudinal range, we performed 14 

experiments in replicate northern and southern common gardens to investigate whether these two 15 

lineages exhibited different genetically based latitudinal clines in defenses, nutritional condition 16 

and palatability to their herbivores, the aphid Hyalopterus pruni and the fall armyworm 17 

Spodoptera frugiperda. We also tested whether invasive genotypes are more phenotypically 18 

plastic than native genotypes and whether plasticity varies with latitude. Although invasive 19 

genotypes did not exhibit higher defense levels (leaf toughness, phenolics, % carbon), they were 20 

considerably less palatable to their herbivores than native genotypes. Genetic-based latitudinal 21 

clines were evident for both native and invasive P. australis and for all defenses, nutrients and at 22 

least one palatability trait for each herbivore. In 36% of the cases where clines were evident, they 23 

were non-parallel between the two lineages. These data suggest that clines in the invasive 24 

genotypes of P. australis evolved within the past ~100 years. Moreover, our study showed that 25 

the occurrence and direction of latitudinal clines in plant traits were commonly dependent on 26 

where the study was conducted (north or south), indicating strong phenotypic plasticity in these 27 

genetic-based clines. Finally, traits for invasive genotypes of P. australis were 2.5 times more 28 

plastic than traits for native genotypes. Interestingly, plasticity for native but not invasive 29 

genotypes was strongly dependent on latitude of origin. Such spatial heterogeneity within and 30 

between the native and invasive lineages of P. australis with respect to their interactions with 31 

herbivores can generate substantial spatial variability in biotic resistance that can have important 32 

implications for the establishment and spread of invasive genotypes and species. 33 

 34 

Keywords: biotic resistance, enemy-release hypothesis, Hyalopterus pruni, invasive species, 35 

latitudinal gradients, phenotypic plasticity, Phragmites australis, plant-insect interactions, plant 36 

defense, Spodoptera frugiperda. 37 
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INTRODUCTION 39 

One of the most well-supported biogeographical patterns in ecology is the increase in 40 

primary productivity and species richness as latitude decreases (Rosenzweig 1995, Hillebrand 41 

2004). Over the past several decades, much interest also has focused on latitudinal gradients in 42 

consumer-resource interactions (e.g., Coley and Aide 1991, Pennings et al. 2001, 2009, 43 

Schemske et al. 2009, Kim 2014, Cronin et al. 2015). For plant-herbivore interactions, herbivore 44 

damage is expected to increase toward lower latitudes because of a longer growing season and 45 

more benign winter conditions (e.g., Dobzhansky 1950, Coley and Aide 1991, Bolser and Hay 46 

1996, Pennings et al. 2001, 2009, Kozlov et al. 2015, but see Andrew and Hughes 2005, Moles et 47 

al. 2011). In response, natural selection should favor increased defenses or reduced palatability in 48 

plant species at lower than higher latitudes (Coley and Aide 1991, Schemske et al. 2009). 49 

Although this ecological paradigm is deemed too simplistic because it ignores feedbacks 50 

between plant defenses and herbivore abundance, and indirect and multi-trophic interactions 51 

(Kim 2014), latitudinal gradients in herbivory and defense are commonly reported. In the meta-52 

analysis by Moles et al. (2011), 37% of the studies showed the expected negative relationship 53 

between latitude and herbivory. An additional 21% of the studies exhibited a positive 54 

relationship. Fifty-one percent of the studies exhibited a latitudinal gradient (positive and 55 

negative) in defense levels. Even though support for this paradigm is mixed, latitudinal gradients 56 

in herbivory, defense and other traits related to plant-herbivore interactions are a common 57 

occurrence. 58 

The invasion and subsequent spread of a non-native species across a broad geographic 59 

range is expected to be followed by evolutionary changes in response to novel environmental and 60 

biotic gradients. A number of studies have documented that invasive species have rapidly 61 

evolved (< 100 years) in response to an environmental gradient in their introduced range. For 62 

example, invasive species have evolved distinct clines in growth and fitness-related traits with 63 

latitude (Maron et al. 2004, Novy et al. 2013, Li et al. 2015) that parallel the clines for the same 64 

species in their native range. Although the evolution of latitudinal clines in plant defenses or 65 

palatability to herbivores is expected to occur with invasive species, no study has ever examined 66 

whether or how quickly latitudinal clines have formed in traits related to plant-herbivore 67 

interactions.  68 
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The evolution of latitudinal clines in defenses and/or palatability traits in an invasive 69 

species may have important implications for invasion success (Bezemer et al. 2014, Cronin et al. 70 

2015). For example, the biogeographic paradigm described previously predicts that native plants 71 

should exhibit latitudinal clines in defense and palatability traits (see e.g., Pennings et al. 2001). 72 

However, an invasive species may not have had sufficient time to evolve a gradient that parallels 73 

the gradients for co-occurring native species. These non-parallel gradients in defense or 74 

palatability between native and invasive species, particularly early in the invasion process, may 75 

create large-scale heterogeneity in the relative impact of herbivores on co-occurring native and 76 

invasive plant taxa. As such, in some regions, herbivory may be greater on invasive than native 77 

plants (supporting the biotic resistance hypothesis; Levine et al. 2004, Chun et al. 2010) and in 78 

other regions, the reverse may occur (i.e., biotic susceptibility). In the only example on this 79 

subject, Cronin et al. (2015) found latitudinal gradients in herbivore pressure for native 80 

genotypes of Phragmites australis (Poaceae) in the field in North America. Invasive genotypes 81 

that are sympatric with native genotypes exhibited no latitudinal gradients in herbivore pressure. 82 

These non-parallel gradients in herbivory between native and invasive P. australis resulted in 83 

greater herbivore pressure on native than invasive genotypes in the south (supporting the local 84 

enemy-release hypothesis; Zheng et al. 2012) but no difference in herbivore pressure in the 85 

north. Importantly, the field study by Cronin et al. (2015) did not allow us to assess whether the 86 

geographic variation in P. australis-herbivore traits was genetically based, the result of plastic 87 

responses by the plants to an environmental gradient (e.g., climate), or some combination of the 88 

two. 89 

Phenotypic plasticity, variability in the expression of traits in different environments, is 90 

another possible mechanism that can generate spatial heterogeneity in native-invasive plant 91 

responses to herbivores. Phenotypic plasticity is thought to be beneficial to invaders because 92 

plastic ‘‘general-purpose genotypes’’ could have a fitness advantage in founder populations (e.g., 93 

Richards et al. 2006, Chun 2011, Davidson et al. 2011). Alternatively, plasticity may also evolve 94 

in an invasive species in response to the novel environment after colonization (Richards et al. 95 

2006, Lavergne and Molofsky 2007). In their meta-analysis, Davidson et al. (2011) found strong 96 

support for the prediction that invasive species are more phenotypically plastic than native 97 

species. Moreover, theoretical models suggest that trait plasticity may vary along a climatic 98 

gradient, being greater at range margins than range interiors (Chevin and Lande 2011). A number 99 
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of studies have demonstrated latitudinal gradients in trait plasticity (e.g., Maron et al. 2004, De 100 

Frenne et al. 2011, Woods et al. 2012). Consequently, we may expect co-occurring native and 101 

invasive species to differ in trait plasticity along a latitudinal gradient which can contribute to 102 

spatial heterogeneity in invasion success. To date, no study has addressed this possibility. 103 

Although the common reed, Phragmites australis, is native and widespread in North 104 

America, a continent wide invasion by introduced European genotypes of P. australis in North 105 

America has been underway for at least 150 years (Saltonstall 2002). We conducted experiments 106 

in replicate common gardens, one in the north (41.49°, University of Rhode Island) and one in 107 

the south (30.35°, Louisiana State University), to assess whether genetic-based latitudinal 108 

gradients exist for different traits associated with the interactions between native and invasive P. 109 

australis and its herbivores. Because the study was conducted in a common-garden environment 110 

and maternal effects were minimized, any latitudinal patterns found would be genetically based. 111 

Using multiple native and invasive genotypes of P. australis collected across a 17° latitudinal 112 

range in North America (Fig. 1), we quantified plant defense levels (leaf toughness, total 113 

phenolics) and nutritional condition (percent carbon, percent nitrogen, CN ratio, water content), 114 

and conducted experiments to assess palatability to two common and widespread generalist 115 

herbivores, the mealy-plum aphid, Hyalopterus pruni (Homoptera: Aphididae), and the fall 116 

armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). We tested the following six 117 

hypotheses. (1) Genetic-based latitudinal clines for plant defenses and palatability to herbivores 118 

are evident for native P. australis genotypes. (2) Because European invasive genotypes may not 119 

have had sufficient time to evolve in response to their novel environment, latitudinal clines in 120 

defense and palatability traits will be absent or weak, and thus non-parallel to the gradients for 121 

the native genotypes. Based on differences between replicate common gardens, we also tested 122 

the hypotheses that (3) invasive genotypes are more phenotypically plastic than native 123 

genotypes, (4) plasticity varies with latitude, and (5) latitudinal clines for each lineage differ 124 

between gardens, indicating that these clines are phenotypically plastic. Finally, in light of our 125 

findings with regard to the previous hypotheses, we test the hypothesis that (6) across a broad 126 

latitudinal range in North America, European genotypes of P. australis are successful invaders 127 

because they are better defended and less palatable to herbivores than native genotypes. Support 128 

for this latter hypothesis would suggest that native communities have low biotic resistance to 129 

invasion by European P. australis. 130 
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 131 

METHODS 132 

Study system 133 

Phragmites australis is considered a model organism for the study of plant invasions (for 134 

a detailed discussion, see Meyerson et al. 2016). Phragmites australis is a tall and robust 135 

perennial grass of coastal and freshwater marshes with a nearly worldwide distribution (Marks et 136 

al. 1994, Lambertini et al. 2006). It was an uncommon species of wetland communities in North 137 

America for millennia but exhibited dramatic and rapid spread over the past ~150 years, 138 

particularly in the mid-Atlantic region of North America (Chambers et al. 1999). The rapid 139 

spread is attributed to the introduction of an invasive Eurasian genotype in mid 1800s (Chambers 140 

et al. 1999, Saltonstall 2002). Additional introduced genotypes have been discovered from the 141 

Atlantic and Gulf Coast regions of North America (Lambertini et al. 2012, Meyerson and Cronin 142 

2013). At least 14 genotypes of native P. australis lineage are distributed throughout North 143 

America (Saltonstall 2002, Meadows and Saltonstall 2007) and have been reported to be 144 

threatened by the spread of invasive P. australis genotypes (Meyerson et al. 2010). Phylogenetic 145 

analysis revealed that native and introduced genotypes belong to two different clades (hereafter, 146 

lineages) often regarded as separate subspecies (Saltonstall 2002). Hybridization is shown to 147 

occur between native and invasive genotypes in nature (Saltonstall 2003, Paul et al. 2010, 148 

Saltonstall et al. 2014). 149 

Among the most common and important herbivores of P. australis in North America are 150 

several introduced species, including the mealy plum aphid H. pruni and several species of gall 151 

flies in the genus Lipara (Diptera: Chloropidae) (Tewksbury et al. 2002, Lambert et al. 2007, 152 

Allen et al. 2015, Cronin et al. 2015). Native P. australis genotypes suffer substantially greater 153 

herbivore damage than the invasive genotypes (Lambert and Casagrande 2007, Allen et al. 2015, 154 

Cronin et al. 2015). Moreover, native genotypes but not invasive genotypes exhibit latitudinal 155 

gradients in herbivore damage from the three major feeding guilds (sucking, stem-feeding 156 

[galling], and chewing) along the Atlantic and Gulf coasts of North America (Cronin et al. 2015). 157 

Leaf tissue loss from chewing herbivores and incidence of stem gallers (primarily Lipara spp.) 158 

decreased with increasing latitude whereas densities of H. pruni increased with increasing 159 

latitude. These results suggest that native P. australis genotypes are more likely to have evolved 160 

latitudinal clines in response to herbivore pressure.   161 
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 162 

Plant defense, nutritional and palatability traits in common gardens  163 

We established replicate common gardens at Louisiana State University, Baton Rouge, 164 

LA (LSU: 30.35°, -91.14°) and the University of Rhode Island, Kingston, RI (URI: 41.49°, -165 

71.54°, Fig. 1). A small clump of rhizome was collected from 12 native and 16 invasive patches 166 

from the Gulf and Atlantic Coasts of North America (Fig. 1, Appendix S1). The rhizome 167 

material was split between the two gardens and propagated. Henceforth, we refer to each 168 

rhizome source as a source genotype. Owing to sprouting failures, mortality during propagation, 169 

and slow growth of some genotypes, the number of genotypes and their identity did not perfectly 170 

match between gardens at the time of our experimental studies. Seven native and 13 invasive 171 

genotypes survived at the LSU garden whereas 10 native and 15 invasive genotypes survived at 172 

URI. Four native and eight invasive genotypes were common in both gardens in 2012 when the 173 

majority of the traits (defense, nutritional traits and palatability to H. pruni; see below) were 174 

quantified (Appendix S1). The URI garden represents a moderate temperate-zone climate, is 175 

roughly at the midpoint of the distribution of native genotypes used in our gardens, and is not far 176 

from where invasive P. australis first became established in North America (Saltonstall 2002). In 177 

contrast, the LSU garden is subtropical, close to the southern range limit of invasive genotypes, 178 

and is ~700 km south of our southernmost native population.  179 

We used identical methods for the propagation of plants in each garden, including soil 180 

type and watering, fertilization and insecticidal treatment regimes. Rhizomes were planted in 181 

Metromix® soil in 19 liter nursery pots and maintained in outdoor plastic pools filled with fresh 182 

water. Plants were propagated vegetatively to get at least 32 pots per genotype. Therefore, all 183 

plants in both gardens that belong to a source genotype were clones. Source genotypes were 184 

randomly distributed within each garden. By growing the plants in the gardens for at least one 185 

year prior to the start of our study, maternal effects that might confound differences in plant traits 186 

were minimized. Plants were fertilized with Mega Green organic fertilizer upon detection of leaf 187 

yellowing and sprayed regularly with Safer® insecticidal soap (Woodstream Corp., Lititz, PA) to 188 

protect them from unwanted herbivores. Safer soap was used because it has a very short (< 2 189 

week) residual time on the plants. Hyalopterus pruni was the most common pest in the garden 190 

and the insecticidal treatment was effective in keeping them at low abundances leading up to the 191 

start of the experiments. All palatability experiments described below were conducted with stems 192 
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that had no visible herbivore damage or traces. We therefore expected little to no effects of 193 

background herbivores on plant growth and fitness traits.  194 

Because we prevented seed production by clipping and removing panicles before seeds 195 

were produced and only rhizomatous growth occurred in our gardens, it was not possible for the 196 

clonal populations to evolve in response to the local climate. Consequently, differences in mean 197 

trait values between plants (clones) from the same source genotype, but from gardens separated 198 

by 11° latitude, should be the result of phenotypic plasticity in that trait (Maron et al. 2004, 199 

Colautti et al. 2009, Woods et al. 2012).  200 

Caging experiments were performed to assess the palatability of P. australis genotypes to 201 

herbivores from two feeding guilds: the mealy-plum aphid H. pruni and the fall armyworm S. 202 

frugiperda. Hyalopterus pruni is an invasive pest of dried plum (Prunus domestica) that was 203 

introduced from Europe and uses P. australis as a secondary host plant (Lozier et al. 2009). It is 204 

one of the most widespread herbivores of P. australis throughout North America and Europe and 205 

can produce massive outbreaks with severe damage to P. australis stands (Cronin et al. 2015). 206 

First recorded in California in 1881 (Smith 1936) it was probably introduced to North America 207 

after the introduction of invasive P. australis (Lozier et al. 2009). Consequently, the native and 208 

invasive lineages of P. australis in North America most likely had an equivalent amount of time 209 

to adapt to aphid herbivory and evolve clines. Therefore, we may expect parallel latitudinal 210 

gradients for traits associated with H. pruni herbivory between native and invasive P. australis.  211 

Spodoptera frugiperda is native to North America and is a serious pest of cereal crops 212 

(Sparks 1979). It is known to feed on many grass species including P. australis (Sparks 1979, 213 

Bhattarai 2015). It overwinters only in the mild climates of southern US and reinvades most of 214 

the US and southern Canada every year (Sparks 1979). The annual northward invasion by this 215 

species is likely to result into a latitudinal gradient in duration and intensity of herbivory on the 216 

host plants. Native genotypes of P. australis, which have had a potentially long history of 217 

interaction with these herbivores, are expected to exhibit latitudinal gradients for traits associated 218 

with the P. australis - S. frugiperda interaction. In contrast, such gradients may not exist for the 219 

invasive genotypes due to their relatively short history of interaction.  220 

Because the phenological state of P. australis is likely to affect plant physiology, 221 

nutritional condition, defense levels, and herbivory (e.g., Liu et al. 2011, Lehndal and Agren 222 

2015), our palatability experiments were designed to minimize differences in plant phenology 223 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



  

This article is protected by copyright. All rights reserved 

between gardens and among source genotypes within gardens. However, phenology is a difficult 224 

concept to apply to grasses in the middle of their growing season because they are constantly 225 

producing new shoots. For example, within a pot of P. australis during late spring or summer, 226 

there is considerable variability in plant phenological state. Consequently, metrics such as 227 

growing degree days (GDD; McMaster and Wilhelm 1997) have limited value in these cases. 228 

Therefore, to minimize variation among experimental plants, we did the following. First, the 229 

experiments were timed to coincide with when the aphid colonies were well established and S. 230 

frugiperda caterpillars were present in the region. Second, we chose mid-size (growing) stems 231 

that were between 0.75 and 1.25 m in height. Finally, within a stem, we chose the uppermost, 232 

fully open leaf for H. pruni or the upper 5-10 leaves for S. frugiperda cages.  233 

Palatability to H. pruni. To assess the palatability of P. australis genotypes to aphids, we 234 

caged aphids on plants and measured colony growth. This bioassay (and other palatability 235 

metrics described below) integrates the effects of multiple plant defensive and nutritional traits 236 

on the herbivore’s survival and reproduction (i.e., fitness) and is therefore a more holistic 237 

measure of plant resistance (Kim 2014). The source of aphids was a naturally occurring stand of 238 

P. australis within 80 km of each common garden. For ethical reasons and to minimize the 239 

genetic variation among aphids within each garden, we used a single source population of aphids 240 

for each garden. Cages for the aphid experiment were constructed using five cm lengths of clear 241 

acrylic tubing (2.8 cm in diameter, 0.1 cm in thickness) that were inserted over the P. australis 242 

leaves. The ends of the tubes were sealed with closed-cell foam plugs that had a small fine-243 

screen window cut into their centers for air circulation (see Appendix S2: Fig. S1). Aphid 244 

colonies were initiated with two adult aphids caged on the youngest fully open leaf on a 245 

randomly selected stem from each pot. Aphids reproduce parthenogenetically and produce a 246 

colony within a few days. After 10 d, leaves with aphid colonies were collected, transported on 247 

ice to the laboratory, and stored in a freezer at -20° C. With a suitable host, aphid colonies can 248 

increase in size by 100-fold in 10 d without any evidence of leaf deterioration or resource 249 

depletion due to intraspecific competition (G.P. Bhattarai personal observation). Aphids per 250 

colony were enumerated and then dried at 40°C for two days. Dry mass of each colony was 251 

determined using a Mettler microbalance (0.1 mg precision). Because aphid mass was strongly 252 

correlated with aphid colony size (R = 0.878, P < 0.0001) we used only colony size in 253 

subsequent analyses. Aphid colony survival was determined as the proportion of cages per P. 254 
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australis source genotype that had a viable aphid colony after 10 d. Survivorship and colony size 255 

were used as indicators of plant palatability to the aphids. The aphid experiment was conducted 256 

at LSU from April 13-23, 2012 with nine introduced and five native genotypes (20 cages per 257 

genotype), and repeated at URI from June 17-27, 2012 with 12 introduced and six native 258 

genotypes (8-12 cages per genotype). The experiments were performed two months later in the 259 

URI than LSU garden so that plants were in comparable developmental stages (about two 260 

months old) in each garden.  261 

Palatability to S. frugiperda. For S. frugiperda, we also performed a caging experiment 262 

and measured the performance of individual larvae feeding on plants from each source genotype. 263 

For both gardens, S. frugiperda were obtained as eggs from the same source (Benzon Research 264 

Inc., Carlisle, PA) and larvae were reared in the laboratory on artificial diet provided by 265 

Southland Products (Lake Village, AR). At the fourth instar stage, the mass of each larva was 266 

determined, and those larvae within 20-50 mg were selected for the experiment. Sleeve cages 267 

(45×60 cm2 or 60×75cm2

We took photographs of all the remaining leaves inside the cage to quantify leaf area 281 

consumed by each larva. Using ImageJ (Rasband 2014), we quantified the remaining leaf area 282 

(cm

 in size) were built using fine insect netting. The cage was inserted over 268 

the upper portion of a stem (containing 5-10 leaves) and enclosed around the stem at the bottom 269 

using a cable tie (see Appendix S2: Fig. S2). A single caterpillar was released into each cage 270 

through a hole cut open in the top of the cage. The hole was subsequently stapled closed. Within 271 

each pot, a single stem was selected at random for a cage. The experiment was terminated after 8 272 

d, before any caged plants had all available leaf material consumed by the S. frugiperda and 273 

before the larva could mature to the pupal stage. Each larva was collected, transported on ice to 274 

the laboratory and its fresh mass was determined using a Mettler microbalance. Larval growth 275 

was calculated as proportional change in fresh biomass during the experiment (ln final mass [mg] 276 

- ln initial mass [mg]). Survivorship of larvae on each source genotype of P. australis was 277 

determined as the proportion of cages with a live larva at the end of the experiment. All the cases 278 

in which the larva died before the termination of the trial were excluded from the analyses for 279 

palatability traits related to S. frugiperda (see below).  280 

2) for each plant and estimated pre-consumption leaf area by extrapolation. Leaf area 283 

consumed by each larva was estimated as the pre-consumption leaf area – leaf area remaining 284 

after 8 d. We used leaf area consumed and not proportion leaf area consumed because the total 285 
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leaf area within a cage was variable and abundant (never being completely consumed), and 286 

therefore, the former measure is more informative. The amount of leaf area consumed by larvae 287 

could be an indicator of plant defense levels (e.g., Coley 1986). However, herbivores may also 288 

consume more to compensate for the lower quality of leaf tissues (Mattson 1980). Finally, we 289 

determined biomass conversion efficiency of larva (larval growth per unit [ln] area of leaf 290 

consumed). Leaf area measurements for plants with dead or missing larvae were excluded from 291 

the analyses. These four variables, larval survivorship and growth, leaf area consumed, and 292 

biomass conversion efficiency, were used as the measurements of plant palatability to chewing 293 

herbivores. The experiment was performed on May 23-31, 2013 including nine native and 13 294 

invasive genotypes (20 plants per genotype) at LSU garden, and on August 7-15, 2013 including 295 

six native and eight invasive genotypes (7-10 plants per genotype) at URI.  296 

Plant defense and nutritional traits. Plant characteristics related to defense and nutritional 297 

quality were measured concurrently with the H. pruni experiment and from the same pots as 298 

those with cages. Water content of leaves has been shown to have a positive relationship with 299 

population growth rate of aphids (e.g., Johnson 2008, but see Woods et al. 2012) and 300 

lepidopteran larvae (Scriber and Feeny 1979). Water content of leaves was estimated as the 301 

proportion of water per unit fresh biomass of three newly opened leaves collected from each pot 302 

(n = 10 per genotype). For nutrient analysis (percent carbon, percent nitrogen and CN ratio), the 303 

top three leaves were collected from a single plant per pot (n = 5 pots per genotype). Leaves 304 

were lyophilized and ground to a fine powder in the laboratory. Leaf nutritional levels were 305 

assayed using an elemental analyzer at Brown University Environmental Chemistry Facilities 306 

(http://www.brown.edu/Research/Evchem/facilities/). Herbivores often prefer and perform better 307 

on plants with higher % nitrogen (Mattson 1980, Agrawal 2004). Also, carbon content of leaves 308 

has been shown to influence herbivore performance (Agrawal 2004, Cronin et al. 2015). 309 

Leaf toughness (force [kg] required to push a blunt steel rod [4.8 mm in diameter] 310 

through the leaf) and total phenolics concentration were our measures of plant defenses against 311 

herbivores. As a member of the Poaceae, P. australis defenses are likely limited to structural 312 

defenses and phenolics (McNaughton 1979, Tscharntke and Greiler 1995, Strauss and Agrawal 313 

1999). In our field surveys (Cronin et al. 2015), leaf toughness and phenolics were negatively 314 

related to leaf-area consumed by chewing herbivores and aphid density, respectively. Using a 315 

penetrometer (Itin Scale Co., Inc., Brooklyn, NY), toughness was measured for the fully open 316 
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uppermost leaf from a randomly selected stem per pot. Leaf toughness was also measured for the 317 

top-most leaf inside each cage of the S. frugiperda experiment in 2013. Total phenolics (nM/g of 318 

dried leaf tissue) were estimated using a modified version of the Folin-Ciocalteu method 319 

(Waterman and Mole 1994, Cronin et al. 2015). 320 

 321 

Statistical methods 322 

Our primary objective with this study was to determine if P. australis trait variation 323 

within a common garden is genetically based, and particularly whether this genetic variation was 324 

attributed to differences between lineages (native, invasive) and/or was related to latitude of 325 

origin of the genotype (i.e., a genetic-based cline). A secondary objective involved using source 326 

genotypes that were shared between common gardens to assess whether traits associated with P. 327 

australis – herbivore interactions are more phenotypically plastic for invasive than native 328 

lineages. For the primary objective, we used mixed-effects or general linear models to test 329 

whether each plant defense, nutritional, and palatability trait varied between gardens, lineages 330 

and along a latitudinal gradient. Garden (LSU, URI), lineage (native, invasive), and latitude of 331 

origin (hereafter, latitude effect) were treated as fixed effects, and source genotype was a random 332 

effect. With uniquely coded source genotypes (see Appendix S1), that belong to either native or 333 

invasive lineage, included in the model as a random effect our model structure was equivalent to 334 

a nested-model (i.e., genotypes within a lineage).  335 

Several traits required a slightly different analytical approach. Aphid colony size (number 336 

per cage) was Poisson distributed. Therefore, for this trait, we used a generalized mixed effect 337 

model with Laplace estimation method and Poisson distribution of errors (Bolker et al. 2009). To 338 

account for overdispersion of the count data, an observation-level random effect was also added 339 

to the model (Bolker et al. 2009). Because we had a single estimate of H. pruni and S. frugiperda 340 

larval survivorship per source genotype, we could not assess a source-genotype effect for these 341 

two traits. Therefore, survivorship of aphids and larvae were analyzed using general linear 342 

models. Finally, because we measured leaf toughness in 2012 and 2013, we included year as a 343 

random variable in the linear mixed-effects model for this defense trait.  344 

To help normalize data distributions and homogenize variances among categories (i.e., 345 

gardens, lineages), % carbon, % nitrogen, CN ratio, total phenolics and leaf area were ln-346 

transformed. Quantile-quantile plots were also used to identify potential outliers in the 347 
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distribution of trait estimates. However, in no case did the removal of these data points 348 

qualitatively change the conclusions of the model. 349 

For each dependent variable, we used Akaike’s Information Criteria corrected for finite 350 

sample size (AICc) to select the most informative model (Burnham and Anderson 2010). The 351 

full model included all random and fixed effects plus all two- and three-way interactions. In 352 

addition, we included a quadratic term (latitude2

Candidate models were ranked by AICc from lowest to highest value and AICs with a Δ

) to evaluate whether the relationship between 353 

the trait and latitude was nonlinear. Candidate models were constructed using all possible 354 

combinations of the variables including one with no fixed effect, but with two restrictions. First, 355 

interaction terms could only be present in the model if their main effects were also present in the 356 

model. Second, the random effects (source genotype and the repeated measure of toughness) 357 

were retained in every model combination. Without this underlying structure to the model, the 358 

design would be pseudoreplicated.  359 

i 360 

value (= AICci - AICcmin) of ≤ 2 were deemed to have substantial support (Burnham and 361 

Anderson 2010). We also report the AICc weights (wi) which indicate the weight of evidence (as 362 

a proportion) in favor of model i being the best model given the set of candidate models. 363 

Goodness of fit of each mixed effects model was reported as marginal (R2
m, variance explained 364 

by fixed effects) and conditional R2 (R2
c, variance explained by the entire model) that are 365 

comparable in interpretation to the coefficient of determination, R2

The AICc-best models for each trait were used to evaluate the hypotheses outlined in the 369 

Introduction. The presence of a latitude effect in the model would suggest that there is a genetic-370 

based latitudinal cline in P. australis (Hypothesis 1). The addition of a lineage × latitude 371 

interaction in the best model would further indicate the existence of non-parallel latitudinal 372 

gradients between the native and invasive lineage (Hypothesis 2). Otherwise, the absence of this 373 

interaction term would suggest parallel latitudinal gradients (or, more appropriately, no evidence 374 

that gradients differ between lineages). A garden effect in the best model would suggest 375 

phenotypic plasticity in the trait (Hypothesis 3) and a garden × latitude interaction would support 376 

Hypothesis 4 that the degree of plasticity for a trait (i.e., the difference between gardens) varies 377 

with latitude of origin of the plants. A three-way interaction between fixed effects (Garden × 378 

, for linear models (Nakagawa 366 

and Schielzeth 2013). All analyses were run in R 3.2.0 (R Development Core Team 2015) using 367 

lme4 (Bates et al. 2014) and AICcmodavg (Mazerolle 2015) packages. 368 
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Lineage × Latitude) would support our Hypothesis 5 that the slopes of the latitudinal clines for 379 

each lineage differs between gardens (i.e., the latitudinal gradient for each lineage is 380 

phenotypically plastic). Finally, if a lineage effect is present in the best model and plant defense 381 

trait values are higher or palatability is lower for the native than invasive lineage, it would 382 

support the biotic-resistance hypothesis (Hypothesis 6).  383 

In cases where the AICc-best model included a garden interaction term (Garden × 384 

Lineage, Garden × Latitude and/or Garden × Lineage × Latitude interactions), we repeated the 385 

model-selection procedure for each garden to better elucidate the lineage and latitude effects on 386 

each trait. In this case, candidate models included all combinations of lineage, latitude and the 387 

lineage × latitude interaction, as well as a model with no fixed effects. If latitude (or latitude and 388 

lineage × latitude interaction) was in the AICc-best model for a particular garden, we performed 389 

mixed effect analyses to determine the relationship between latitude and the trait for each 390 

lineage. 391 

We performed a separate correlation analysis for each garden to examine whether plant 392 

palatability traits were linearly related to defense and nutritional traits. Plant-level measures of 393 

putative defense (leaf toughness, total phenolics), nutritional (water content, % nitrogen, % 394 

carbon, C:N ratio) and palatability (aphid colony size, larval growth, leaf area chewed and 395 

biomass conversion efficiency) were used in the pairwise correlation analysis (Pearson’s product 396 

moment correlation, R). Nutrient concentrations and leaf area chewed were ln transformed. P-397 

values were adjusted for multiple comparisons using a Bonferroni correction.  398 

For the second objective, we quantified phenotypic plasticity in defense, nutritional and 399 

palatability traits for P. australis genotypes that were present in both common gardens (4 native, 400 

8 invasive; Appendix S1). We could not assess plasticity in palatability to aphids because the 401 

aphids were obtained from different source populations located nearby each garden. As such, 402 

differences in palatability to aphids between gardens could also be due to genetic differences 403 

between aphid source populations (e.g., local co-adaptation between southern aphids and 404 

southern populations of P. australis). Plasticity for each trait and lineage was measured as the 405 

proportional difference in mean trait expression between gardens; e.g., effect size = [mean leaf 406 

toughness for native genotypes at LSU – mean leaf toughness for native genotypes at URI]/mean 407 

leaf toughness for native genotypes at LSU. Lineage means per garden for each trait were 408 

obtained from the least-squares means from the linear mixed-effects model outlined above (or 409 
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the alternative models for larval survivorship, and leaf toughness) that contained garden and 410 

latitude as fixed effects and genotype as a random effect. For all traits, the effect size for native 411 

lineage (x-axis) was plotted against the effect size for invasive lineage (y-axis). If the data point 412 

for a trait falls above the 1:1 line, it would indicate that plasticity for that trait is greater for the 413 

invasive than native lineage. Data points below the line would indicate the opposite. A pairwise 414 

t-test was performed to assess whether plasticity for the native and invasive lineages differed for 415 

all traits combined (Hypothesis 3). Finally, we also computed plasticity for each source genotype 416 

of P. australis and used ANCOVA to examine the effects of lineage and latitude on plasticity for 417 

each defense and nutritional trait (Hypothesis 4).  418 

 419 

RESULTS 420 

Defense and nutritional traits 421 

The phenotypic expression of P. australis defense and nutritional traits was strongly 422 

influenced by plant lineage and latitude of origin, and also was strongly modulated by where the 423 

study was conducted (LSU or URI). The best model, based on AICc weights, included latitude 424 

for all six traits (leaf toughness, total phenolics, water content, % nitrogen, % carbon, and CN 425 

ratio) and lineage for four traits (total phenolics, water content, % nitrogen, and CN ratio)(Table 426 

1, Appendix S3). Interestingly, in all cases where lineage was present in the best model, so was a 427 

lineage × latitude interaction; an indication that native and invasive lineages exhibit nonparallel 428 

genetically based gradients in these traits. Finally, not only was the garden where the study was 429 

conducted important in all cases (Table 1, see Appendix S3: Table S1 for detailed information), 430 

there were many interactions involving garden, lineage and latitude of origin.  431 

The defensive trait leaf toughness was negatively related to latitude, decreasing by 51% 432 

between our southernmost and northernmost genotypes (Fig. 2A, Table 1). Plants from the LSU 433 

garden exhibited steeper declines in toughness with increasing latitude than plants from the URI 434 

garden (garden × latitude interaction). Because of the garden × latitude interaction in the best 435 

model, we conducted separate model-selection procedures for each garden to explore the effects 436 

of lineage, latitude and their interactions on leaf toughness. At the LSU garden, native and 437 

invasive lineages had parallel latitudinal clines in leaf toughness (no lineage × latitude 438 

interaction in the AICc-best model; Appendix S3: Table S2). There was a significant negative 439 

relationship between toughness and latitude for the invasive genotypes but the relationship was 440 
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not significant for the native genotypes (Fig. 2A, Appendix S3: Tables S2 and S3). In contrast, 441 

total phenolics were 34% higher for native than invasive genotypes and 96% higher for plants 442 

grown in the LSU vs. URI garden (Fig. 2B, Appendix S3: Tables S1, S4 and S5). At the LSU 443 

garden, total phenolics for invasive and native lineages did not vary with latitude of origin 444 

(Appendix S3: Table S2). However, at URI, total phenolics increased with latitude for native 445 

genotypes but did not vary with latitude for invasive genotypes (lineage × latitude and non-446 

parallel clines; Appendix S3: Tables S2 and S3). 447 

Similar to total phenolics, the AICc best models to explain water content, % nitrogen and 448 

the CN ratio were the same and included all main factors and their 2- and 3-way interactions 449 

(Table 1, Appendix S3). AICc weights for these models (the likelihood of the model given the 450 

candidate models considered) were > 0.93. Water content was 8% higher for native than invasive 451 

genotypes and 4% higher for plants grown at URI vs. LSU (Fig. 2C, Appendix S3: Tables S4 and 452 

S5). At LSU, water content decreased with increasing latitude for both lineages but the 453 

latitudinal clines were non-parallel (lineage × latitude interaction in the AICc-best model; 454 

Appendix S3: Tables S2 and S3). At URI, the invasive genotypes exhibited a significant negative 455 

latitudinal cline in water content but no cline was evident for the native genotypes. The absence 456 

of a lineage × latitude interaction in the AICc-best models suggest that these two clines are not 457 

different (Appendix S3: Table S2). Lineage, latitude and their interaction were important factors 458 

contributing to variation in % nitrogen at URI but were unimportant to % nitrogen at LSU (Fig. 459 

2D, Appendix S3: Table S2). At the URI garden, % nitrogen increased significantly with latitude 460 

for the native genotypes but declined (non-significant) with latitude for the invasive genotypes 461 

(non-parallel cline; Appendix S3: Table S3). Overall, % nitrogen was similar between the native 462 

and invasive genotypes (3.13 ± 1.04% and 3.10 ± 1.02%, respectively; mean ± SE). For CN ratio, 463 

the slopes of the latitudinal clines at URI were in the opposite direction as for % nitrogen and 464 

was only significant for the native genotypes (Fig. 2F, Appendix S3: Tables S2 and S3). The 465 

difference in CN ratio between lineages changed between gardens (garden × lineage interaction; 466 

Fig. 2F): the CN ratio for invasive genotypes was 12.1% greater at LSU and 13.3% less at URI 467 

than for native genotypes. Finally, the AICc best model for % carbon included only garden, 468 

latitude and their interaction (Table 1, Appendix S3). Mean % carbon was similar between native 469 

and invasive lineages (45.46 ± 1.01% and 45.25 ± 1.00%, respectively). On average, the % 470 

carbon declined by 1.7% from the south to the north and the relationship was only evident for the 471 
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plants at the LSU garden (hence the garden × latitude interaction; Fig. 2E, Appendix S3: Table 472 

S2). Only for the invasive lineage at LSU was there a significant latitudinal cline (Appendix S3: 473 

Table S3). 474 

 475 

Palatability to herbivores 476 

Traits associated with P. australis palatability to H. pruni and S. frugiperda were strongly 477 

influenced by the garden in which the study was conducted and plant lineage, and to a lesser 478 

extent latitude. For aphid colony size, the best model included lineage, latitude, garden and a 479 

garden × lineage interaction (AICc weight = 1.0, Appendix S3: Table S1). Aphid colony size 480 

was strongly affected by lineage and latitude at both gardens (both lineages; parallel negative 481 

latitudinal gradients) (Fig. 3A, Appendix S3: Tables S2 and S3). The garden × lineage 482 

interaction was present in the model because there was a 26-fold difference in colony size 483 

between native and invasive genotypes at LSU but only a 5-fold difference at URI (Fig. 3A). 484 

After accounting for the garden effect, aphid colony size averaged 11 times larger for native than 485 

invasive genotypes (Appendix S3: Table S4). Based on paired measurements obtained from P. 486 

australis stems, aphid colony size was positively correlated with water content in both gardens 487 

(LSU: R = 0.39, P < 0.01; URI: R = 0.23, P = 0.04; Appendix S4) and total phenolics in the LSU 488 

garden (R = 0.53, P < 0.01; Appendix S4). No other nutritional or defense trait was correlated 489 

with this palatability measure. 490 

Similar fixed effects were included in the best model for aphid survivorship (AICc 491 

weight = 0.51, R2 = 0.628; Table 1, Appendix S3). Aphid survivorship was 32% higher on native 492 

than invasive plants and declined with increasing latitude (Fig. 3B, Appendix S3: Table S4). 493 

Mean survivorship was estimated to be 94% in the southernmost genotypes and 70% in the 494 

northernmost genotypes (a 24% change). As with colony size, the difference in aphid 495 

survivorship between native and invasive genotypes at LSU (46%) is much greater than the 496 

difference at URI (18%). At URI, the native and invasive lineages exhibited parallel negative 497 

latitudinal clines for aphid survivorship but at LSU, the negative latitudinal clines were not 498 

significant (Appendix S3: Tables S2 and S3). Because we had only a single estimate of aphid 499 

survivorship per P. australis source genotype, we could not assess correlations between this trait 500 

and nutritional and defense levels on a per-plant basis. 501 
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For the four traits associated with P. australis palatability to S. frugiperda, the main 502 

sources of variation in the AICc-best models were garden and lineage (Appendix S3). For all 503 

traits, native genotypes were more palatable than invasive genotypes to S. frugiperda larvae. 504 

Larval growth rate, survivorship, leaf-area consumed and biomass conversion efficiency were 505 

61%, 11%, 114% and 33% higher on native than invasive genotypes, respectively (Fig. 3C-F, 506 

Appendix S3: Table S4). Interestingly, LSU plants were more palatable than URI plants. After 507 

accounting for the effects of lineage, larvae grew 142% larger, had 17% higher survivorship, 508 

consumed 65% more leaf tissue, and were 58% more efficient at converting plant biomass to 509 

larval biomass on LSU than URI plants (Fig. 3C-F, Appendix S3: Table S5). With regard to 510 

biomass conversion efficiency, the difference between lineages was only evident in the URI 511 

garden (garden × lineage interaction) and the relationship between conversion efficiency and 512 

latitude was affected by both lineage and garden (lineage × latitude and garden × latitude 513 

interactions). At the LSU garden, there was no latitudinal gradient in conversion efficiency (Fig. 514 

3F, Appendix S3: Table S2). However, at the URI garden, conversion efficiency declined with 515 

increasing latitude but only for the invasive genotypes (but no lineage × latitude interaction; Fig. 516 

3F, Appendix S3: Tables S2 and S3). Finally, S. frugiperda palatability was generally negatively 517 

correlated with leaf toughness and positively correlated with % nitrogen (Appendix S4). The 518 

correlations were strongest in the LSU garden where leaf toughness was significantly negatively 519 

related to larval growth rate (R = -0.21, P < 0.01) and leaf-area chewed (R = -0.20, P < 0.01) and 520 

nitrogen was significantly positively correlated with biomass conversion efficiency (R = 0.40, P 521 

= 0.04). At URI, the direction of the relationships between leaf toughness and % nitrogen and S. 522 

frugiperda palatability were similar to those found in the LSU garden but only one relationship 523 

was significant - larval growth rate and % nitrogen (R = 0.60, P = 0.05). Interestingly, water 524 

content was negatively correlated with leaf-area chewed in the LSU garden (R = -0.26, P = 0.04). 525 

 526 

Plasticity in trait responses 527 

We found strong evidence that plant traits associated with herbivory in P. australis were 528 

phenotypically plastic, more so for invasive than for native genotypes. Averaged across all 10 529 

traits (aphid traits were excluded; see Methods), mean ± SE plasticity (proportional difference 530 

between the two gardens) for the invasive genotypes was 0.23 ± 0.11 and for the native was 0.09 531 

± 0.08; a statistically significant 156% difference (t9 = 2.708, P = 0.024, Fig. 4). These large 532 
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differences in trait expression between gardens, for both lineages, likely underlie the ubiquitous 533 

garden effect in the previous analyses (Appendix S3: Table S1). 534 

Irrespective of P. australis lineage, plants reared at the URI garden were more nutritious 535 

and less well defended than those at LSU. Plants reared at URI had 7% greater leaf water content 536 

and had 24% more nitrogen than those at LSU, whereas plants at LSU produced 131% tougher 537 

leaves, 58% more total phenolics and 23% greater CN ratio than plants at URI (Appendix S5). 538 

Despite the higher defenses and lower nutrition at LSU, plants grown at LSU were more 539 

palatable to herbivores than those at URI. Aphid colony size was 57% greater at LSU than at 540 

URI (Appendix S5). S. frugiperda larvae consumed two times more leaf area and exhibited a 541 

244% higher growth rate at LSU than in URI (Appendix S5). Finally, biomass conversion 542 

efficiency of larvae was 137% greater at LSU than URI (Appendix S5).  543 

When trait plasticity was measured for each P. australis genotype, we found that it varied 544 

with latitude for 4 of 6 traits in native genotypes and only 1 of 6 traits in invasive genotypes (Fig. 545 

5, Appendix S6). For native genotypes, plasticity in leaf toughness, water content, and % 546 

nitrogen decreased (Fig. 5A,C,D) and plasticity in the CN ratio increased (Fig. 5F) with 547 

increasing latitude of origin. For the invasive genotypes, leaf toughness was the only trait in 548 

which plasticity varied with latitude – a relationship that paralleled the one for native genotypes 549 

(Fig. 5A). The difference between lineages in the relationship between plasticity and latitude for 550 

total phenolics, water content, % nitrogen and CN ratio are indicated by a significant lineage × 551 

latitude interaction in the model ANCOVAs (Appendix S6). We also examined whether these 552 

latitudinal trends were driven by invasive genotypes collected from southern latitudes beyond the 553 

distributional range of native genotypes. Re-analyses of these data excluding those genotypes 554 

(collected from the sites south of 36° latitude) did not qualitatively alter the results. 555 

 556 

DISCUSSION 557 

The juxtaposition of plant-species invasions with large-scale gradients in herbivore 558 

pressure and native plant-herbivore interactions is an important yet mostly unexplored issue in 559 

the field of invasion biology (Bezemer et al. 2014, Cronin et al. 2015). Our study is the first to 560 

demonstrate genetic-based latitudinal clines for traits related to plant-herbivore interactions 561 

involving sympatric invasive and native species (or lineages of the same species). These data 562 

suggest that clines in the invasive genotypes of P. australis evolved within the past ~ 100 years. 563 
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In 36% of the cases where clines were evident, the clines for native and invasive lineages were 564 

not parallel. Moreover, our study showed that the occurrence and direction of latitudinal clines in 565 

plant traits was commonly dependent on where the study was conducted (LSU or URI), strongly 566 

suggesting that environmental context is an important driver of the expression of plant traits and 567 

clines in those traits. Until now, this phenotypic plasticity in latitudinal clines for traits related to 568 

species interactions has never been reported. Finally, we found that invasive genotypes were 2.5 569 

times more plastic than native genotypes but the native genotypes were much more likely to 570 

exhibit significant latitudinal variability in phenotypic plasticity than the invasive genotypes. 571 

Overall, this study suggests that traits associated with P. australis interactions with its herbivores 572 

are under strong genetic and environmental controls and they vary between co-occurring native 573 

and invasive P. australis genotypes across their latitudinal range in eastern North America. Such 574 

spatial heterogeneity within and between lineages with respect to their interactions with 575 

herbivores has the potential to generate substantial spatial heterogeneity in biotic 576 

resistance/susceptibility that can have important implications for the establishment and spread of 577 

invasive genotypes and species.  578 

 579 

Latitudinal clines in plant-herbivore traits 580 

Hypothesis 1: Genetic-based latitudinal clines for plant defenses and palatability to herbivores 581 

are evident for native P. australis genotypes.  582 

Hypothesis 2: Because invasive genotypes may not have had sufficient time to evolve in 583 

response to its novel environment, latitudinal clines in defense and palatability traits 584 

will be absent or weak, and thus non-parallel to the gradients for the native genotypes. 585 

 586 

Genetic-based clines. In our study, support for the hypotheses that native genotypes 587 

should be more likely to exhibit genetic-based latitudinal clines than invasive genotypes 588 

(Hypotheses 1 and 2) was mixed. At least one cline was evident for each defense and nutritional 589 

trait, and for at least one trait associated with palatability to H. pruni and S. frugiperda. 590 

However, between the two gardens, there were twice as many latitudinal clines in plant-591 

herbivore traits for the invasive genotypes compared to the native genotypes (8 vs 4 clines, 592 

respectively; Appendix S3: Table S3). Moreover, in only one instance was a latitudinal cline for 593 

a particular trait evident for both lineages (water content).  594 
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Although it was strongest in the LSU garden, leaf toughness of native and invasive 595 

genotypes generally increased with decreasing latitude. As herbivore pressure in naturally 596 

occurring patches of P. australis is higher at lower latitudes (Cronin et al. 2015), our common-597 

garden study supports the presumed role of this trait as a defense against herbivores (e.g., Raupp 598 

1985, Saldago and Pennings 2005). Its role as a defense is further supported by the finding that 599 

palatability to S. frugiperda was generally negatively correlated with leaf toughness (see below). 600 

Our results with leaf toughness are also consistent with the prediction that longer lifespans of 601 

leaves in areas with longer growing seasons should favor tougher leaves (Coley and Aide 1991, 602 

Salgado and Pennings 2005). The lone positive latitudinal cline for total phenolics, evident for 603 

native genotypes at URI, was the opposite of what we observed in the field (Cronin et al. 2015) 604 

and is counter to our expectations if this trait is related to herbivore defense. However, total 605 

phenolics represent a broad class of compounds that serve other purposes for plants including 606 

protection against photodamage (Close and McArthur 2002). Moles et al. (2011) reported that ca. 607 

30% of the published studies found a significant latitudinal gradient in plant total phenolics. 608 

Interestingly, the majority of those significant gradients were in the direction observed for the 609 

native genotypes from the URI garden. Finally, these results are also consistent with the findings 610 

from the meta-analysis of common-garden studies by Colautti et al. (2009) in which there was no 611 

consistent directionality in latitudinal clines for plant defense traits, and that evidence for clines 612 

in the field do not always match up with clines for the same species in the common garden. 613 

Latitudinal gradients in foliar nutrient levels are commonly reported (e.g., Siska et al. 614 

2002, Reich and Oleksyn 2004, Lovelock et al. 2007, De Frenne et al. 2013, He and Silliman 615 

2015). Between gardens, there was a trend toward decreasing % carbon with increasing latitude, 616 

the opposite pattern to that observed in nature (e.g., De Frenne et al. 2013). It is possible that 617 

plants adapted to the CO2-rich environments in the north may have evolved to be less efficient at 618 

uptaking or utilizing CO2 for photosynthesis or storing carbon compounds into their tissues than 619 

plants from the relatively CO2-poor environments in the south (see e.g., Denning et al. 1995). 620 

For example, plant stomata are known to stay open longer and wider or the density of stomata 621 

increase when the concentration of atmospheric CO2 decreases in order to maintain an adequate 622 

CO2 gradient between the atmosphere and the leaf (Beerling et al. 1998). It is possible that P. 623 

australis adapted to their local CO2 concentrations and consequently, southern plants were more 624 

efficient at producing or storing carbon compounds. Alternatively, carbon-rich tissues at 625 
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southern latitudes could serve as a defense against greater herbivore pressure in the south (Orians 626 

and Milewsky 2007).  627 

We found evidence for latitudinal clines for % nitrogen, CN ratio, and water content but 628 

they varied between gardens and lineages. Although nitrogen content in coastal wetland plants 629 

tends to increase with increasing latitude (Siska et al. 2002, He and Silliman 2015), we found 630 

both positive (URI garden) and negative (LSU garden) latitudinal clines for % nitrogen in native 631 

P. australis genotypes. Similar results were found for the CN ratio and water content. These 632 

differences between lineages and gardens clearly indicate that latitudinal clines in P. australis 633 

traits are phenotypically plastic (Woods et al. 2012; see section “Phenotypic plasticity in defense 634 

and palatability traits”). 635 

The genetic-based clines for palatability to H. pruni (aphid colony growth and 636 

survivorship decreased with increasing latitude; although more strongly for the invasive lineage) 637 

do not appear to be caused by latitudinal variation in the P. australis nutritional and defensive 638 

traits. Although aphid colony growth was positively correlated with total phenolics and water 639 

content of leaves, neither of those variables was positively correlated with latitude. Latitudinal 640 

gradients in palatability to aphids could be explained by the fact that aphid abundance on P. 641 

australis increases with increasing latitude in North America (Cronin et al. 2015). At northern 642 

latitudes, strong selection pressure by these herbivores may have resulted in higher resistance or 643 

lower palatability.  644 

Because H. pruni was introduced to North America not long after the introduction of 645 

invasive genotypes of P. australis (Lozier et al. 2009), both native and invasive lineages likely 646 

had an equivalent amount of time to adapt to the gradient in aphid abundance. The existence of 647 

parallel clines between native and invasive genotypes suggests that both P. australis lineages 648 

evolved in similar ways to the latitudinal variation in aphid abundance. A few studies to date 649 

have reported the formation of clines along an environmental gradient (latitudinal or elevational) 650 

by an invasive species that parallels the clines in the native range (Maron et al. 2004, Alexander 651 

et al. 2009). However, most previous studies (e.g., Colautti et al. 2009, Maron et al. 2004) 652 

involved cross-continental comparisons between native and invasive species and so, 653 

environmental conditions, even at similar latitudes, may not be the same. In contrast, our native 654 

and invasive genotypes are found in the same marshes along the East and Gulf Coasts and 655 

experience the same environmental gradient. 656 
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 With only one exception (negative correlation between biomass conversion efficiency 657 

and latitude for the invasive genotypes in the URI garden), there was very little evidence of 658 

genetic-based clines for palatability to S. frugiperda. In nature, chewing damage to native 659 

genotypes of P. australis is strongly negatively correlated with latitude (Cronin et al. 2015). In 660 

response to these selection pressures, we expected that the native genotypes would have evolved 661 

a positive latitudinal cline in palatability to native grass-feeding generalists like S. frugiperda. 662 

The fact that a gradient was evident for the invasive genotypes, and that it was in the opposite 663 

direction predicted for the native genotypes is surprising. Finally, we suggest that the negative 664 

relationship between leaf toughness and latitude (Fig. 2) could be the mechanism driving the 665 

negative latitudinal gradient in biomass conversion efficiency in the invasive lineage.  666 

Non-parallel latitudinal gradients between native and invasive genotypes. One interesting 667 

and important finding regarding native and invasive genotypes of P. australis was that for 20% 668 

of the cases (5 of 24; 12 traits × 2 gardens), the relationship between latitude and trait level was 669 

different for native and invasive genotypes from the same garden (in support of Hypothesis 2). 670 

We observed non-parallel clines in water content, total phenolics, % nitrogen, and CN ratio (all 671 

but the first occurring in the URI garden). In the case of total phenolics, % nitrogen, and CN 672 

ratio, the slope of the relationship with latitude differed in sign between the native and invasive 673 

genotypes. These results suggest that the two lineages have evolved in different ways to the same 674 

environmental gradient. Although there are many studies that have examined latitudinal clines 675 

for species in their native and invasive ranges (Colautti et al. 2009), environmental differences 676 

make clinal comparisons questionable. Because the native and invasive ranges of P. australis 677 

overlap on the same continent, our study provides a much stronger example of clinal evolution in 678 

invasive taxa. Although co-occurring native and invasive genotypes across a broad latitudinal 679 

range is known only for P. australis, a number of other species have co-occurring and distinct 680 

invasive genotypes or native-invasive hybrids (Ayres et al. 2004, Lavergne and Molofsky 2007, 681 

Ciotir et al. 2013). These are potentially fertile systems for the study of cline formation and 682 

evolution. These non-parallel latitudinal clines between co-occurring native and invasive 683 

genotypes of P. australis can result in spatially varying degrees of local enemy release and biotic 684 

resistance (see “Implications for invasion success”).  685 

Origin of latitudinal clines. We contend that the clines described above for the invasive 686 

genotypes of P. australis must have arisen de novo while in North America. A pre-existing cline, 687 
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i.e., one that evolved in Europe and subsequently transferred virtually intact to North America, is 688 

possible but unlikely. For this to occur, there would have to have been multiple introduction 689 

events in which individuals from one latitude in Europe colonized at a similar latitude in North 690 

America. There is no evidence for this sort of parallel invasion process with P. australis. Based 691 

on an analysis of chloroplast DNA from herbarium specimens by Saltonstall (2002), European P. 692 

australis became established in the mid-Atlantic region at least 150 years ago and spread rapidly 693 

north and south (Saltonstall 2002). It is highly suggestive of one or a few major founding events 694 

followed by range expansion. Although other European genotypes are present in North America, 695 

they appear restricted to very northern and southern latitudes (Lambertini et al. 2012, Meyerson 696 

and Cronin 2013). Therefore, our study supports the growing body of literature that invasive 697 

species evolve relatively quickly (< 100 years) in response to an environmental gradient (e.g., 698 

Maron et al. 2004, Alexander et al. 2009, Li et al. 2015). Furthermore, the absence of a humped 699 

or u-shaped relationship between latitude and each trait, centering on the origin of the invasion 700 

(between Delaware and Connecticut; Saltonstall 2002), suggests that the time since invasion is 701 

not an important driver of the evolution of these gradients in the invasive lineage.  702 

 Our finding that invasive genotypes were twice as likely as native genotypes to exhibit a 703 

latitudinal cline for plant-herbivore traits is somewhat surprising. Such a result would suggest 704 

that the invasive genotypes in their new range were more evolutionarily responsive to the same 705 

environmental conditions faced by the native genotypes. For two main reasons, this seems 706 

unlikely. First, local adaptation and cline formation requires limited gene flow among 707 

populations distributed along the latitudinal gradient (Slatkin 1985). Populations of native 708 

genotypes are quite rare and isolated in comparison to the extremely widespread and abundant 709 

invasive populations (Chambers et al. 1999, Saltonstall 2002). The native genotypes would seem 710 

much more likely to exhibit local adaptation and genetic isolation-by-distance than invasive 711 

genotypes. This prediction is supported by Kettenring and Mock (2012) who found greater 712 

genetic homogeneity among invasive than native populations of P. australis. Second, the 713 

selection pressures from North American herbivores on the invasive genotypes is considerably 714 

weaker than on native genotypes. Based on our latitudinal field surveys of herbivory, invasive 715 

genotypes suffered 70% to 650% lower levels of herbivory from all herbivore guilds (chewers, 716 

gallers, suckers) than native genotypes and that herbivory levels for invasive genotypes did not 717 

vary significantly with latitude (Cronin et al. 2015). Moreover, this study demonstrated that two 718 
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herbivores, H. pruni and S. frugiperda, had lower growth and survivorship on the invasive 719 

genotypes. If anything, the high levels and strong latitudinal gradients in herbivory of the native 720 

genotypes should have favored a high frequency of genetic-based latitudinal clines for this 721 

lineage.  722 

 723 

Trait variation between replicate common gardens. One of our strongest and most 724 

obvious finding was that for all traits considered in this study, a garden effect was present in 725 

every model; indicative of significant trait plasticity. Also, interactions involving garden (e.g., 726 

garden × lineage, garden × latitude, garden × lineage × latitude were quite common (see 727 

Appendix S3). These types of garden effects are a frequent occurrence in studies involving 728 

multiple common gardens (e.g., De Frenne et al. 2012, Woods et al. 2012, Zhou et al. 2014). 729 

Also, in their meta-analysis, Colautti et al. (2009) found numerous examples of a garden × 730 

latitude interaction for studies conducted in both the native and invasive ranges of a plant 731 

species. In some studies, reversals of latitudinal trends were evident between gardens (Chapin 732 

and Chapin 1981, Santamaría et al. 2003, Maron et al. 2004). As the same species or genotype is 733 

represented in each garden, these garden × latitude interactions imply plasticity in the regulation 734 

of latitudinal clines (Richards et al. 2006, Woods et al. 2012, Zhou et al. 2014). 735 

One possible reason for the substantial differences in trait expression between gardens is 736 

that the gardens reside in very different parts of the range of the two P. australis lineages. The 737 

URI garden is near the center of the coastal range for both native and invasive lineages, whereas 738 

the LSU garden is near the southern extent of the invasive lineage and ~700 km south of our 739 

southernmost native population. Plants in the southern garden, particularly for the native lineage, 740 

may be at their thermal limits (e.g., Drake et al. 2015) which could result in altered expression of 741 

genetic-based clines in these plant nutritional traits. Several studies have examined latitudinal 742 

clines in plant traits in replicate common-garden experiments located within, at the boundary or 743 

beyond the limits of the species range (e.g., De Frenne et al. 2012, Woods et al. 2012, Zhou et al. 744 

2014). For example, in their study of plant growth and defense traits in common milkweed 745 

(Asclepias syriaca), Woods et al. (2012) found a cline in milkweed phenology in their garden at 746 

the southern range limit (North Carolina) but no cline in their garden at the northern range limit 747 

(New Brunswick, Canada). Woods et al. (2012) also evaluated whether plant defense trait 748 

expression was dependent on the proximity of the milkweed source populations to the center of 749 
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the species range. According to the ‘range-center’ hypothesis (Alexander et al. 2007, Woods et 750 

al. 2012), because plant abundance and herbivore pressure is expected to be higher near the 751 

range center than range margins, plant defenses are predicted to be humped shaped (peaking at 752 

the range center) and palatability to herbivores should be u-shaped (trough at the range center). 753 

Woods et al.’s (2012) study did not support this hypothesis as traits were linearly related to 754 

latitude. We also find no support for the range-center hypothesis because none of our models 755 

supported a curvilinear relationship between plant traits and latitude (i.e., the quadratic term for 756 

latitude was never retained in our model-selection procedures). One important implication from 757 

our study, and those of De Frenne et al. (2012), Woods et al. (2012), Zhou et al. (2014), is that 758 

because latitudinal clines in plant traits are phenotypically plastic and dependent on climatic 759 

conditions, future climate change may fundamentally alter latitudinal gradients in nature. 760 

Understanding the biogeography of plant-herbivore interactions in the face of climate change is 761 

going to be a daunting task if latitudinal clines in species-interaction traits are universally plastic 762 

as these studies suggest. 763 

 764 

Phenotypic plasticity in defense and palatability traits 765 

Hypothesis 3: Invasive genotypes are more phenotypically plastic than native genotypes. 766 

Hypothesis 4: Plasticity varies with latitude. 767 

Hypothesis 5: Latitudinal clines are phenotypically plastic. 768 

 769 

A fundamental question in the field of invasion biology is what traits promote invasion 770 

success. Phenotypic plasticity is thought to be beneficial to founding populations by increasing 771 

niche breadth (e.g., Richards et al. 2006, Chun 2011, Davidson et al. 2011) or plasticity may be a 772 

trait that evolves in response to the novel environments (Richards et al. 2006, Lavergne and 773 

Molofsky 2007). In agreement with the meta-analysis by Davidson et al. (2011), we found that 774 

invasive genotypes were 2.5 times more plastic than native genotypes (supporting Hypothesis 3). 775 

Because we prevented these genotypes from evolving in response to the biotic and/or abiotic 776 

environment (see Methods “Plant defense, nutritional and palatability traits in common 777 

gardens”), these differences in trait expression between gardens are attributed to phenotypic 778 

plasticity. We also found that trait plasticity varied linearly with latitude (supporting Hypothesis 779 

4), although interestingly, it was primarily for the native genotypes (4 of 6 traits for the native 780 
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and 1 of 6 traits for the invasive genotypes). Similar linear relationships between latitude and 781 

plasticity have been reported elsewhere (e.g., Maron et al. 2004, De Frenne et al. 2011, Woods et 782 

al. 2012). It is possible that native genotypes under stress from high thermal limits or high 783 

herbivore pressure (Cronin et al. 2015) near the southern range limit of the lineage, had to evolve 784 

to be more plastic, supporting Chevin and Lande’s (2011) argument that plasticity should be 785 

greater at the range margins. In contrast, the southern range limit for invasive P. australis is the 786 

Gulf of Mexico and geographic barriers may limit their southern range, not high temperature. 787 

Coupled with low levels of herbivory, the invasive genotypes may not be as stressed as native 788 

genotypes at lower latitudes. Finally, as we have discussed previously (“Trait variation between 789 

replicate common gardens”), we found evidence that for a specific lineage, latitudinal clines 790 

differed between gardens, supporting Hypothesis 5 that clines are phenotypically plastic. 791 

Latitudinal cline plasticity was evident for total phenolics, water content, % nitrogen and CN 792 

ratio (see Fig. 2). Latitudinal cline plasticity appears to be a common occurrence in studies 793 

involving multiple common gardens (see Colautti et al. 2009). However, this is the first study to 794 

show clinal plasticity at the sub-specific level. 795 

 796 

Implications for invasion success 797 

Hypothesis 6: Across a broad latitudinal range in North America, European genotypes of P. 798 

australis are successful invaders because they are better defended and less palatable to 799 

herbivores than native genotypes. 800 

 801 

 Enemy release, i.e., reduced pressure by natural enemies in the introduced relative to the 802 

native range (Keane and Crawley 2002), is one of the more prominent hypotheses invoked to 803 

explain invasion success (e.g., Mitchell and Power 2003, Liu and Stiling 2006). Biogeographic 804 

studies comparing enemy pressure on a plant species in its native and invaded range support this 805 

hypothesis (e.g., Mitchell and Power 2003, Liu and Stiling 2006). However, invasion success is 806 

also likely to be dependent on the invasive species being less vulnerable to natural enemies than 807 

sympatric native species (i.e., “local enemy release”; Zheng et al. 2012), and support for this 808 

outcome is mixed (Colautti et al. 2004, Chun et al. 2010). Our field work with the European 809 

genotypes of P. australis revealed that not only was herbivory significantly lower in their 810 

invaded than native range, but also that they suffer 70% - 650% less herbivory in North America 811 
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as compared to North American native genotypes (Cronin et al. 2015). In addition, our common-812 

garden study demonstrates an underlying genetic basis to lower levels of herbivory of European 813 

genotypes of P. australis – they are less palatable to H. pruni and S. frugiperda. Invasive 814 

genotypes had aphid colonies that were 91% smaller, and had S. frugiperda that consumed 54% 815 

less leaf material and exhibited 38% lower growth rates than native genotypes (supporting 816 

Hypothesis 6). Contrary to hypothesis 6, we did not find evidence that leaf toughness and total 817 

phenolics, our two putative measures of P. australis resistance, were greater for invasive than 818 

native genotypes. In fact, native genotypes had more total phenolics (Appendix S3: Table S4). 819 

One possible explanation for the lower palatability of invasive plants is that leaf water content is 820 

8% lower than for native plants. High water content is beneficial to many insect species (e.g., 821 

Huberty and Denno 2004). Finally, not only are invasive genotypes of P. australis less palatable 822 

to herbivores than native genotypes, they are also more plastic with regard to the traits that likely 823 

influence palatability, including total phenolics, water content, % nitrogen and CN ratio. Flexible 824 

genotypes may not only be an adaptation to a variable environment (e.g., Agrawal 2001) but may 825 

also make it more difficult for herbivores to adapt to its host or track host resources in space 826 

(Denno 1983). Given the levels of herbivory observed for P. australis in North America, and the 827 

potential impact on plant fitness (Lambert and Casagrande 2007, Lambert et al. 2007, Cronin et 828 

al. 2015, Bhattarai et al. 2016, Cronin et al. 2016), the invasive genotypes of P. australis are at a 829 

significant advantage over native genotypes. It is no surprise that wetland communities in North 830 

America did not resist invasion by European genotypes of P. australis. 831 

 There is an important biogeographic component to enemy-release for invasive P. 832 

australis. A strong negative relationship between latitude and herbivory for the native genotypes 833 

but no latitudinal gradient for the invasive genotypes results in the strength of enemy release 834 

being greater at lower than higher latitudes (Cronin et al. 2015). Although it remains to be tested, 835 

we hypothesized that the likelihood of establishment and rate of spread of invasive P. australis 836 

genotypes should be greatest at lower latitudes (but see Bhattarai and Cronin 2014). We also 837 

suggested that non-parallel gradients in herbivory between sympatric native and invasive species 838 

or genotypes are likely to be a common occurrence, especially for recent invaders.  839 

 Based on our replicated common-garden study, the biogeography of this plant-herbivore 840 

interaction is much more complicated than previously envisioned. Latitudinal clines in traits 841 

potentially important to the interaction between P. australis and its herbivores evolved quickly 842 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



  

This article is protected by copyright. All rights reserved 

(≈ 100 years) for the invasive genotypes, there is plasticity in the regulation of those clines, and 843 

in a number of cases, the clines run counter to those for the native genotypes. All of this adds up 844 

to substantial heterogeneity in the interactions between native and invasive P. australis and their 845 

shared herbivores. For example, Bhattarai et al. (in review) found significant variability along the 846 

Atlantic Coast of the United States in the strength of apparent competition (mediated by their 847 

shared herbivores) between native and invasive P. australis genotypes. Because studies with 848 

replicate common gardens often have found similar plasticity in latitudinal clines of invasive 849 

species (Richards et al. 2006, Woods et al. 2012, Zhou et al. 2014), we argue that large-scale 850 

plant invasions are characterized by considerable spatial heterogeneity in herbivore impact on 851 

native and invasive species (or genotypes). This heterogeneity may also explain why support for 852 

local enemy release is inconsistent among studies (see e.g., Colautti et al. 2004, Chun et al. 853 

2010).  854 

  855 

Concluding remarks 856 

Although this study was conducted at the sub-specific level (i.e., lineages of the same 857 

species), we strongly believe that our results and conclusions are applicable to any native-858 

invasive plant system, whether the participants differ at the species, genus or higher taxonomic 859 

level. If anything, we would have expected differences in plant traits, clines and plasticity at the 860 

sub-specific level to be much more difficult to detect than at higher taxonomic levels. As such, 861 

our study suggests that these biogeographic differences between native and invasive taxa, 862 

particularly early on in the establishment and spread of invasive taxa, are likely to be common 863 

and significant. Lastly, by conducting our study at the sub-specific level, phylogenetic 864 

differences between native and invasive taxa that could underlie differences in biogeographic 865 

patterns, are less likely to be an issue. This represents one of the great strengths of the P. 866 

australis study system and is one reason why we consider this a model system for studying 867 

species invasions (Meyerson et al. 2016).  868 

Finally, replicate garden studies have proven to be very informative to understanding 869 

plant-herbivore interactions. Those positioned in climatically different environments or at 870 

different locations within the species range have been especially fruitful (e.g., Woods et al. 871 

2012). Continued research in this area should focus on experimental manipulations at key 872 

locations within, at the boundary, and beyond the invasion range, particularly focusing on the 873 
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impact of natural enemies (herbivores and pathogens) on local plant fitness, the role of generalist 874 

and specialist natural enemies, interactions with other sympatric native and invasive plant 875 

species and higher trophic levels. As our most pernicious invaders typically have broad invasion 876 

fronts, the biogeography of their interactions with native species cannot be ignored if we wish to 877 

understand what has led to their success.  878 
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Table 1. Best models (based on AICc model-selection procedure for the effects of garden (G), 1146 

lineage (S), and latitude (L) and all possible two- and three-way interactions on each P. australis 1147 

plant defense, nutrition and palatability traits. Detailed information about these models is 1148 

provided in Appendix S3: Table S1. 1149 

Dependent variable Model 

Plant defense traits  

Leaf toughness G   L   G×L 

Phenolics G   S   L   G×S   G×L   S×L   G×S×L 

  

Plant palatability traits 

Water content G   S   L   G×S   G×L   S×L   G×S×L 

% nitrogen G   S   L   G×S   G×L   S×L   G×S×L 

% carbon G   L   G×L 

C:N  G   S   L   G×S   G×L   S×L   G×S×L 

Aphid colony size* G   S   L   G×S 

Aphid survivorship** G   S   L   G×S 

Larval growth G   S 

Larval survivorship** G   S 

Leaf area chewed G   S 

Larval biomass conversion 

efficiency 

G   S   L   G×S   G×L 

Notes: Nutrient concentrations (% carbon, % nitrogen, C:N, and phenolics) and leaf area chewed 1150 

(cm2

*Generalized linear mixed effect model (GLMM) with Poisson family was used in the analysis. 1152 

) were ln transformed. 1151 
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**General linear models were used in these analyses. 1153 

 1154 

Fig. 1. Map of the location of P. australis source genotypes used in this study and the location of 1156 

the common gardens at Louisiana State University (LSU) and University of Rhode Island (URI). 1157 

FIGURE LEGENDS 1155 

Fig. 2. Effects of lineage, latitude and garden on defense and nutritional traits of native and 1158 

invasive P. australis grown in common gardens at Louisiana State University and the University 1159 

of Rhode Island. Symbols in the shaded portion of the graph are the least-squares means (± SE) 1160 

for different lineages in different gardens. The relationship between a plant trait and latitude is 1161 

shown by a line fit by least-squares regression, only for cases in which the AICc-best model 1162 

included the effect of latitude (either a Latitude or Lineage × Latitude or Garden × Latitude). 1163 

Thick lines denote significant trait-latitude relationships (P ≤ 0.05) and thin lines represent non-1164 

significant relationships (P > 0.05; see Appendix S3). Slopes (βLSU and βURI

Fig. 3. Effects of lineage, latitude and garden on palatability traits of native and invasive P. 1167 

australis grown in common gardens at Louisiana State University and the University of Rhode 1168 

Island. Symbols in the shaded portion of each graph are least-squares means (± SE) for native 1169 

and invasive lineages in each garden. In cases where Latitude or Lineage × Latitude or Garden × 1170 

Latitude was a factor in the AICc-best model, the relationship between the plant trait and latitude 1171 

is shown by a line fit by least-squares regression. Thick lines denote significant trait-latitude 1172 

relationships (P ≤ 0.05) and thin lines represent non-significant relationships (P > 0.05; see 1173 

Appendix S3). Slopes (β

) are reported for the 1165 

significant relationships.  1166 

LSU and βURI

Fig. 4. Phenotypic plasticity in defense and palatability traits for native and invasive genotypes 1175 

of P. australis. Plasticity in plant traits (n = 10) was estimated as the proportional difference in 1176 

mean trait expression between gardens (i.e., [mean trait value for a lineage at LSU – mean trait 1177 

value for that lineage at URI]/mean trait value for LSU). Symbols above the 1:1 line depict 1178 

greater plasticity in invasive genotypes than the natives. Inset bar graph shows least squares 1179 

mean ± SE plasticity for native (Nat) and invasive (Inv) genotypes. A statistically significant 1180 

difference between means (pairwise t-test; P = 0.024) is represented by an asterisk. 1181 

) are reported for the significant relationships. 1174 

Fig. 5. The relationship between trait plasticity (proportional difference in mean trait expression 1182 

between gardens) and latitude for native and invasive P. australis genotypes. Each point 1183 
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represents a single genotype that was represented in each garden. Lines are fit by least-squares 1184 

regression and were provided only for those traits in which a significant latitude or lineage × 1185 

latitude interaction was detected in an ANCOVA (see Appendix S6). Slopes (β) are reported for 1186 

the significant relationships. 1187 
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