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Abstract Effective environmental management requires

monitoring programmes that provide specific links between

changes in environmental conditions and ecosystem health.

This article reviews the suitability of a range of bioindi-

cators for use in monitoring programmes that link changes

in water quality to changes in the condition of coral-reef

ecosystems. From the literature, 21 candidate bioindicators

were identified, whose responses to changes in water

quality varied spatially and temporally; responses ranged

from rapid (hours) changes within individual corals to

long-term (years) changes in community composition.

From this list, the most suitable bioindicators were iden-

tified by determining whether responses were (i) specific,

(ii) monotonic, (iii) variable, (iv) practical and (v) eco-

logically relevant to management goals. For long-term

monitoring programmes that aim to quantify the effects of

chronic changes in water quality, 11 bioindicators were

selected: symbiont photophysiology, colony brightness,

tissue thickness and surface rugosity of massive corals,

skeletal elemental and isotopic composition, abundance of

macro-bioeroders, micro- and meiobenthic organisms such

as foraminifera, coral recruitment, macroalgal cover, tax-

onomic richness of corals and the maximal depth of coral-

reef development. For short-term monitoring programmes,

or environmental impact assessments that aim to quantify

the effects of acute changes in water quality, a subset of

seven of these bioindicators were selected, including partial

mortality. Their choice will depend on the specific objec-

tives and the timeframe available for each monitoring

programme. An assessment framework is presented to

assist in the selection of bioindicators to quantify the

effects of changing water quality on coral-reef ecosystems.

Keywords Environmental monitoring �
Sublethal effects � Nutrients � Sedimentation � Turbidity

Introduction

Disturbances of coral reefs are caused by a complex

combination of stressors including those arising from cli-

mate change, diseases, predation, destructive fishing prac-

tices, storms and changes in water quality. Many of these

stressors are increasingly acting over regional and/or global

scales; therefore, maintaining the resilience of coral com-

munities will require a reduction in local, but manageable,

impacts such as altered water quality. However, in some

parts of the world, nutrient and sediment inputs to coral

reefs have increased several-fold over the last 150 years

(e.g. Richmond 1993; McCulloch et al. 2003) causing

reduced coral recruitment (Loya 1976; Babcock and

Davies 1991; Loya et al. 2004), modified trophic structures

(Lapointe 1997; Fabricius 2005), altered biodiversity (van

Woesik et al. 1999) and coral mortality (Kline et al. 2006).

These processes can transfer the competitive advantage
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away from reef-building corals leading to trophic domi-

nance by assemblages of macroalgae (Schaffelke 1999)

once productivity exceeds rates of herbivory (McCook

1999). Therefore, monitoring programmes require a suite

of bioindicators that can effectively quantify the link

between changes in water quality and the condition of

coral-reef ecosystems.

The use of bioindicators provides a number of signifi-

cant advantages over direct measurements of water quality.

For example, a direct measurement of water quality pro-

vides information about the condition of the water column

at that particular point in time. Moreover, if the frequency

of sampling is limited, or is weather-dependant and con-

strained by safety considerations, then important informa-

tion on the effects of acute episodic events that can strongly

influence the structure of coral communities may not be

quantified (e.g. terrestrial discharges during floods or the

resuspension of sediments during strong winds). These

issues are addressed with the use of appropriate bioindi-

cators that provide a time-integrated measure (from time

periods of minutes to years) of the effects of changes in

water quality on coral reefs. Given the range of natural and

anthropogenic factors that influence a complex ecosystem

such as a coral reef, compared with a single bioindicator a

suite of bioindicators of cellular, organismal and commu-

nity effects will more effectively attribute ecological

change to changes in specific environmental conditions

(Erdmann and Caldwell 1997; Jameson et al. 1998). Suites

of bioindicators and predictive models have been devel-

oped and applied successfully for assessments of ecosys-

tem health in estuarine and freshwater systems. For

example, models such as AUSRIVAS (Simpson and Norris

2000) assess ecosystem health based on assemblages of

freshwater macroinvertebrates, and the SIGNAL biotic

index uses the presence or absence of families of macro-

invertebrates to infer levels of exposure of river systems to

chemical pollutants (Chessman et al. 1997). Few studies

have assessed the suitability of potential bioindicators or

their application to an index of coral-reef ecosystem health

(Brown 1997). Three notable exceptions exist. First, Risk

et al. (2001) used the diversity of certain invertebrates (e.g.

stomatopods and amphipods), measures of bioerosion and

geochemical markers to quantify the health of coral-reef

ecosystems exposed to terrestrial runoff. Second, Jameson

et al. (2001) developed Indexes of Biotic Integrity (IBI’s)

for coral reefs combining several metrics for sessile epi-

benthos, benthic macroinvertebrates, fish, marine vegeta-

tion, phytoplankton and zooplankton. Third, Jameson and

Kelty (2004) reviewed potential bioindicators of changes in

sediments, nutrients, heavy metals, herbicides, pesticides

and bacterial exposure, as well as multi-metric bioindica-

tors of the combination of stressors on scleractinian and

non-scleractinian communities.

This review builds upon these previous studies by fur-

ther investigating the desirable characteristics of a suite of

bioindicators and their response time to changes in water

quality. Specifically, the aim of this review was to assess

and identify the bioindicators that are potentially most

appropriate for use in monitoring programmes that link

changes in water quality (i.e. dissolved and/or particulate

nutrients, rate of sedimentation, turbidity, benthic irradi-

ance, or other pollutants such as herbicides and pesticides)

to changes in the condition of coral-reef ecosystems.

Candidate bioindicators were first grouped according to the

ecological level at which the response to changes in water

quality could be measured, i.e. genetic/colony, population

or community level. This initial grouping also corre-

sponded to differences in response times, with bioindica-

tors at the genetic/colony level characterised by rapid

responses to changes in water quality, whilst responses at

higher levels of ecological organisation generally occurred

over longer time periods. This has important implications

for the selection of bioindicators because the timeframe

available for monitoring can vary from years or decades for

some long-term monitoring programmes, and weeks or

months for short-term monitoring programmes such as

environmental impact assessments (EIA). Within this

context, the scientific literature was used to rank the suit-

ability of bioindicators according to a framework that

assessed whether responses to changes in water quality

were (i) specific, (ii) monotonic, (iii) variable, (iv) practical

and (v) relevant to management goals for long- and short-

term monitoring programmes.

Desirable characteristics and selection of bioindicators

A change in water quality may be chronic (e.g. altered

runoff regime) or acute (e.g. dredging or flood events), so

an important characteristic in the selection of any bioin-

dicator is the time taken for the biological response to

manifest at the genetic/colony, population or community

level. Both the duration of response initiation and the

recovery period can range from near-instantaneous to

decades. An important distinction, therefore, is to differ-

entiate between measures suitable for detecting effects

during or shortly after exposure to a change in water

quality (i.e. rapidly, whereby the response initiation and

recovery from an event occurs within hours to weeks), and

those better suited to detecting cumulative effects over

prolonged periods of time (i.e. slowly, whereby initiation

of and recovery from response may take months to years).

There are both advantages and disadvantages to rapid and

slow response times in bioindicators according to their

application. A rapid response could be considered desirable

as an ‘early warning’ indicator of change, i.e. a sublethal

response used in short-term monitoring programmes that
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incorporate reactive management strategies to mitigate the

effects of any further changes in water quality. This is

offset, however, by the high level of sampling intensity

and replication required to obtain accurate estimates of a

response that could change over days to weeks. Con-

versely, a bioindicator responding over a longer timescale

may not provide an early warning of change, but be par-

ticularly useful for monitoring chronic exposures, as these

types of bioindicators are likely to have low-natural vari-

ability and require fewer samples to detect ecological

change. Most importantly, the response time of a bioindi-

cator to a change in water quality must be comparable to

the timeframe of the disturbance being measured.

In order to select a bioindicator objectively requires a set

of selection criteria. Here, five key criteria were used to

rank the suitability of bioindicators for assessing changes

in water quality on coral reefs (Table 1; modified from

Jones and Kaly 1996; Erdmann and Caldwell 1997;

Jameson et al. 1998). First, specificity is the extent to which

the changes in the bioindicator respond to changes in

water quality, and not to other environmental conditions

(Fig. 1a). Second, monotonicity is the extent to which the

magnitude of the changes in the bioindicator are propor-

tional to the intensity and duration of the changes in water

quality, which is evident in the shape of the dose–response

relationship (Fig. 1b, c). Third, variability is the extent of

natural variation of the bioindicator in the absence of

changes in water quality. A bioindicator that displays

patterns of seasonal or temporal variability might still be

suitable for monitoring programmes provided that the

effect size at the time and location of the disturbance dif-

fers significantly compared with variability at reference

locations (Fig. 1d). Fourth, practicality is the extent to

which the changes in the bioindicator are easily quantified,

and depends on cost, observer independence, level of

expertise and the spatial and temporal scales required for

application. Last, relevance refers to ecological relevance

as well as to relevance in public perception, which will

assist in the communication of the results to a wide range

of end-users.

Bioindicators of the effects of changes in water quality

on coral reefs

From the many bioindicators presented in the literature, 21

candidate bioindicators were short-listed for potential use

in monitoring programmes on coral reefs. The next section

and Table 2 provide a brief description of the main prop-

erties of these bioindicators. In order to facilitate the sys-

tematic comparison of bioindicators and to assess their

suitability to detect either chronic or acute changes in water

Table 1 Criteria for selection of bioindicators to assess effects of

changes in water quality on corals and coral communities

Criteria Definition

Specificity Biological response is specific to the stressor of

interest and not to other environmental stressors

Monotonicity The magnitude of the biological response should

reflect the intensity and duration of the stressor of

interest

Variability Biological responses should be consistent at a range of

spatial and temporal scales. Ideally, there should be

low background variability although a change in

variance can itself be used as an indicator of an

impact

Practicality Measurements of biological responses should be cost

effective, easy to measure, non-destructive and

observer independent

Relevance Biological response should be ecologically relevant

and important in public perception to assist

communication

Modified from Jones and Kaly (1996), Erdmann and Caldwell (1997),

and Jameson et al. (1998)

(b)

0

20

40

60

80

100

f(
x)

(c)

0

20

40

60

80

100

f(
x)

(d)

0

20

40

60

80

100

f(
x)

(a)

0

20

40

60

80

100
f(

x)

Time

Fig. 1 Response of a hypothetical bioindicator to a disturbance (dark

grey areas represent the disturbance in question; light grey areas

represent other disturbances). A suitable bioindicator must detect

differences between a disturbed state (solid line) and reference states

(dashed lines). a response of a bioindicator with high specificity, b
and c monotonic dose-response relationships whereby the magnitude

of change of the bioindicator is proportional to the intensity and

duration of the disturbance, d responses at impact locations must

differ from those at reference locations if bioindicators that vary

temporally are used in monitoring programmes
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Table 2 Examples of studies examining coral reef bioindicators to changing water quality at the level of individual colonies, populations and

communities on coral reefs

Bioindicator Stressor Response Source

Genetic/colony measures

Gene expression Heavy metals,

sedimentation

Up-regulation of 14 of 32 stress genes on cDNA array of Diploria strigosa
sampled in a bay adjacent to a municipal dump. Elevated expression of

uPAR transcripts consistent with genes expressed during sedimentation

stress

(Morgan et al.

2005)

RNA/DNA ratio Turbidity and light

attenuation

Increasing RNA/DNA ratio related to irradiance for massive Porites spp.

sampled at two of three locations in Indonesia. Elevated RNA/DNA ratio

at turbid locations suggests greater metabolic activity at higher suspended

particle loads

(Meesters et al.

2002)

Symbiont

photophysiology

Herbicides Fv/Fm in four species of coral (Acropora formosa, Montipora digitata,

Porites cylindrica, Seriatopora hystrix) reduced by 50% within 60–90 min

of exposure to diuron (10 lg l-1) compared with controls

(Jones et al. 2003)

Concentration of

chlorophyll a
Dissolved

inorganic

nutrients

Mean chl. a (mg g protein-1, ±SE): S. pistillata, Control 5.6 ± 3.14, NH4

(20 lM) 19.4 ± 8.97. S. hystrix, Control 8.75 ± 4.04, NH4 (20 lM)

13.5 ± 4.49

(Hoegh-Guldberg

and Smith 1989)

Density of symbionts Dissolved

inorganic

nutrients

Mean symbiont density (106 cells mg protein-1, ±SE): S. pistillata, Control

0.55 ± 0.12, NH4 (20 lM) 1.49 ± 0.25. S. hystrix, Control 2.11 ± 1.03,

NH4 (20 lM) 2.78 ± 1.55

(Hoegh-Guldberg

and Smith 1989)

Lipid content Inshore–offshore Porites porites, nearshore lipid content *11% of tissue DW, offshore lipid

content *8% of tissue DW

(Harland et al.

1992)

Lipid content Turbidity Goniastrea retiformis and P. cylindrica, lipid content reduced by shading (Anthony and

Fabricius 2000)

Tissue thickness Light limitation,

nutrient

availability

Mean tissue thickness (mm, ±SD) of massive Porites Central Great Barrier

Reef (GBR): nearshore 6.59 ± 1.19, offshore 5.21 ± 0.95

(Barnes and Lough

1992)

Surface rugosity Light limitation,

nutrient

availability

Surface rugosity of massive Porites greater on nearshore compared with

offshore reefs. Mean tissue growth (mm year-1 ± SE): nearshore

9.20 ± 1.66, mid-shelf 7.42 ± 1.32, offshore 6.87 ± 0.14

(Darke 1991)

Coral growth Light limitation,

nutrient

availability

Massive Porites: mean skeletal density (g cm-3, ±SD): Central GBR

nearshore 1.35 ± 0.21, offshore 1.57 ± 0.16. Mean extension rate

(mm year-1, ±SD): nearshore 13.56 ± 3.5, offshore 8.22 ± 1.02. Mean

calcification rate (g cm-2 year-1, ±SD): nearshore 1.77 ± 0.26, offshore

1.28 ± 0.12

(Lough and Barnes

1992)

Coral growth Dissolved

inorganic

nutrients

S. pistillata: growth rates (mg day-1) decreased by 25–60% during long-

term nutrient exposure

(Ferrier-Pages

et al. 2000)

Skeletal elemental and

isotopic composition

Sewage Porites lobata: d15N levels greater on reefs with sewage input compared with

five of seven Indo-Pacific reference locations

(Heikoop et al.

2000)

Partial mortality River exposure More colonies with [50% partial mortality adjacent to river mouths than

sites distant from riverine discharge

(Nugues and

Roberts 2003)

Mucus production Sediment Variable species- and sediment-specific responses in situ and under

experimental conditions for 42 scleractinian corals

(Stafford-Smith

and Ormond

1992)

Population measures

Population structure Field water quality

gradient

High Island (high exposure to flood plumes) low colony density (0.13 m-2),

similar proportion across size classes. Fitzroy Island (low exposure to

flood plumes) greater colony density (2.46 m-2), population dominated

([73%) by juvenile size classes.

(Smith et al. 2005)

Coral diseases Dissolved

inorganic

nutrients

Nutrient enrichment associated with increased aspergillosis of Gorgonia
ventalina and yellow band disease of Montastraea annularis and

M. franksii

(Bruno et al. 2003)

Coral diseases Dissolved organic

carbon

Species-specific responses in mortality of Montastrea annularis, Agaricia
tenuifolia and Porites furcata exposed to different sources of DOC.

Mortality increased over time suggesting chronic exposure is potentially

more deleterious than acute exposure

(Kuntz et al. 2005)
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quality, an assessment framework (Table 3) was developed

based on the five selection criteria. Each of the candidate

bioindicators was scored against each criterion, and the

sum of positive scores determined their final rank at a scale

of 1–5, with each criterion having the same weight. Hence,

a bioindicator would receive a maximum score of 5 if it

responds specifically and monotonically to changing water

quality, has low background variability, is practical to

implement and has high ecological and public relevance.

Bioindicators with a score of 4 or 5 were assigned a ‘high-

priority’ ranking for use in either long- or short-term

monitoring programmes, depending on their response time.

Bioindicators that ranked 2–3 were given a ‘medium pri-

ority’ due to satisfying only some of the selection criteria,

while a ranking of \2 may provide useful, often compli-

mentary, information about the responses of corals to

changes in water quality, but were considered ‘low-

priority’.

Genetic/colony measures

Gene expression

Genetic biomarkers are emerging as powerful tools to

identify sources of stress and measure stress responses in

corals (Edge et al. 2005; Morgan et al. 2005) and their

symbionts (Leggat et al. 2007 and see reviews by van

Oppen and Gates 2006; Foret et al. 2007). Regulation of

stress-specific genes is determined by comparing gene

expression in populations exposed to environmental

stressors with those at reference conditions. For example,

the development of a complimentary DNA (cDNA) array

containing 32 stress genes allowed the profiling of gene

expression in corals exposed to changes in seawater tem-

perature, salinity and ultraviolet light in the laboratory

(Edge et al. 2005) and with increasing distance from

leachate associated with a municipal dump (Morgan et al.

Table 2 continued

Bioindicator Stressor Response Source

Coral diseases Dissolved organic

carbon

Mortality of M. annularis fivefold greater, and microbial production rates

one order of magnitude greater, in DOC enriched treatments than in

controls

(Kline et al. 2006)

Bioerosion Terrestrial runoff Total internal bioerosion of Acropora highly variable with nearshore *4%,

mid-shelf *12%, outer reefs *1%.

(Risk et al. 1995)

Bioerosion Terrestrial runoff Internal bioerosion in living Porites 11% on nearshore reefs, 1.3% on outer

reefs.

(Sammarco and

Risk 1990)

Community measures

Micro- and

meiobenthic

bioindicators

Field water quality

gradient

Change in benthic foraminifera along water quality gradients. Heterotrophic

rotaliids and a species retaining plastids (Elphidium sp.) characteristic of

low light, higher nutrient conditions on turbid nearshore reefs with larger

symbiont-bearing taxa Amphistegina spp. and Calcarina hispida abundant

on clear-water outer reefs in the Whitsunday Region of GBR

(Uthicke and

Nobes 2008)

Larval supply and

recruitment

Sedimentation Larval survival and settlement reduced in experimental treatments of high

(100 mg l-1) and low (50 mg l-1) sediments compared with controls

(0 mg l-1)

(Gilmour 1999)

Larval supply and

recruitment

River exposure Recruitment greater on reefs distant from a river in the northern GBR

compared with those adjacent to river discharge

(Smith et al. 2005)

Benthic cover Dredging Coral cover decreased by 30% adjacent to a dredging operation. Recovery of

coral cover within 22 months

(Brown et al.

1990)

Benthic cover Field water quality

gradient

Increasing distance from two rivers, Central GBR: From reefs near the river

to those [80 km, macroalgae cover decreased from 70 ± 10% to 0%,

octocoral cover increased from 1 ± 1% to 19 ± 10%, and hard coral

cover increased from 4 ± 2% to 31 ± 14%

(van Woesik et al.

1999)

Community structure Field water quality

gradient

Increasing distance away from two rivers, Central GBR: 24 hard coral taxa at

reefs near rivers, 64 hard coral taxa at reefs [80 km away from rivers

(van Woesik et al.

1999)

Taxonomic richness Field water quality

gradient

Regional and gradient analysis of water quality on GBR, taxonomic richness

of hard corals 50% lower in region with high nutrient and sediment loads;

decreased octocoral richness but increased macroalgae richness along

water quality gradients from low to elevated levels of nutrients and

sediments

(Fabricius et al.

2005)

Max. depth of coral-

reef development

Field water quality

gradient

Maximum depth of coral reef development increased from 5.0 m at coastal

reefs to 25 m at offshore reefs in the Whitsunday Region of GBR

(Cooper et al.

2007)
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2005; Table 2). Other studies have investigated changes in

the expression of large numbers of genes with DNA

microarrays for stressors, such as changing seawater tem-

peratures (Foret et al. 2007), suggesting potential for sim-

ilar applications to detect changes in water quality. Gene

expression ranked a medium-priority bioindicator for use

in long- and short-term monitoring programmes (Table 3).

Whilst it has been shown to be highly specific, the methods

to detect changes in water quality require testing under

field conditions and the patterns of temporal variability are

not well understood.

RNA/DNA ratio

The RNA/DNA ratio is based on the principle that the

amount of DNA within a cell remains invariant whereas the

amount of RNA varies as a function of metabolic pro-

cesses, such as protein synthesis related to growth. Under

conditions favourable for coral growth, such as in clear-

water with high benthic irradiance, the RNA/DNA ratio is

expected to be greater than conditions where growth is

limited by available light. Indeed, recent studies have

demonstrated positive relationships between RNA/DNA

ratio and light intensity along depth and turbidity gradients

(Meesters et al. 2002; Buckley and Szmant 2004; Table 2).

However, interspecific and seasonal variability, coupled

with complex responses to increased heterotrophy in turbid

conditions, suggests that although RNA/DNA ratios may

be sensitive to changes in water quality, further research is

required to better understand the sources of variability. The

RNA/DNA ratio ranked a medium-priority bioindicator for

use in long- and short-term monitoring programmes

(Table 3), until a better understanding of interspecific and

seasonal variability in this ratio is obtained. This bioindi-

cator may, however, prove useful in EIA to measure effects

of acute changes in water quality within species when

values from impact locations are compared with those from

reference locations.

Symbiont photophysiology

The photophysiology of coral symbionts can be charac-

terised by several parameters each having different

responses depending on exposure to the various compo-

nents that comprise a change in water quality. For example,

the maximum quantum yield (Fv/Fm) decreases with

increasing exposure (duration and quantity) to sediment

(Philipp and Fabricius 2003) and exposure to agricultural

chemicals (Jones et al. 2003; Table 2), but appears not be

influenced (for cultured symbionts) by exposure to elevated

levels of dissolved inorganic nutrients (Rodriguez-Roman

and Iglesias-Prieto 2005). Exposing the symbionts to a

series of irradiances in short (10 s)-incremental steps

producing a rapid light curve can also provide detailed

information on photo-acclimatory responses of corals to

changes in water quality (Ralph and Gademann 2005).

Quantitative parameters derived from rapid light curves

include maximum photosynthetic rate (PSmax), minimum

saturating irradiance (Ek) and light utilisation coefficients

(a) of the initial rise of the curve. Symbionts acclimatised

to high irradiances are characterised by high PSmax and Ek,

with low a, but the opposite occurs for symbionts accli-

matised to low-irradiance as the symbionts attempt to

optimise their light capture and utilisation capability

(Anthony and Hoegh-Guldberg 2003; Cooper and Ulstrup

2009). However, these parameters are influenced by vari-

ation in seawater temperature (Coles and Jokiel 1977;

Warner et al. 1996; Fitt et al. 2001), flow regime (Na-

kamura et al. 2005), diurnal changes in benthic irradiance

(Jones and Hoegh-Guldberg 2001; Lesser and Gorbunov

2001) and symbiont genotype (Frade et al. 2008; Hennige

et al. 2009). Thus, these factors must be accounted for

when using symbiont photophysiology to infer changes in

water quality. Nevertheless, photophysiological responses

are rapid (i.e. timescales of minutes to days) making these

measures particularly suitable as sublethal bioindicators of

changes in water quality if confounding variables are

controlled. Symbiont photophysiology is, therefore, ranked

a high-priority bioindicator for use in long- and short-term

monitoring programmes (Table 3). Chlorophyll a fluo-

rometers can be used to quantify photophysiological

responses although the application of these instruments as

monitoring tools requires a high level of training and a

theoretical understanding of their utility.

Colony brightness

The colour of scleractinian corals is determined by pho-

tosynthetic pigments contained in the algal endosymbionts

and light-absorbing compounds in the coral tissue (e.g.

Jeffrey and Haxo 1968; Salih et al. 2000; Dove et al.

2001), both of which are known to respond to changes in

water quality. Concentrations of chlorophyll a (and hence

colour brightness) increase in response to exposure to

elevated nutrients (Hoegh-Guldberg and Smith 1989;

Table 2) and reduced irradiance (Falkowski and Dubinsky

1981; Dubinsky et al. 1984) whereas symbiont density

may decrease in response to sedimentation (Nugues and

Roberts 2003) and exposure to pollutants, such as cyanide

(Cervino et al. 2003). However, symbiont density also

varies with season (Stimson 1997; Brown et al. 1999;

Fagoonee et al. 1999) and seawater temperature, indicating

a moderate specificity to changes in water quality. Corre-

lating colony brightness to changes in water quality also

requires large spatial and temporal replication in monitoring

programmes because photo-acclimatory responses occur on
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short timescales (Anthony and Hoegh-Guldberg 2003).

Changes in host pigmentation in response to changes in

water quality are less well documented, although Salih et al.

(2006) found a modal response in levels of fluorescent

pigments across a depth gradient and suggested the possi-

bility of a dual role for these host pigments; photo-protec-

tive at high irradiances and light-amplifying at low

irradiance deep depths. Notwithstanding these caveats,

colony brightness ranked a high-priority bioindicator for

use in long- and short-term monitoring programmes

(Table 3) because colour changes can be measured with

simple tools, such as colour charts (Siebeck et al. 2006),

making it a useful sublethal bioindicator and a trigger for

more intensive studies.

Lipid content

Corals are mixotrophic organisms that assimilate carbon

from their symbionts (Muscatine 1980), the capture of

zooplankton (Porter 1974) and the digestion of organic

particulate matter (Tomascik and Sander 1985; Anthony

1999). Any carbon that is surplus to metabolic require-

ments is excreted, or stored as energy reserves in the form

of lipids (Crossland 1987; Anthony and Fabricius 2000).

Lipid content can change with exposure to dissolved

nutrients (Achituv et al. 1994), altered light availability

(Stimson 1987; Harland et al. 1992) and turbidity (Anthony

and Fabricius 2000; Table 2). Saunders et al. (2005) linked

differences in the ratio of non-polar storage lipids to polar

structural lipids within corals, to acute changes in water

quality by a relative decrease in non-polar storage lipids;

the stress response was a net decrease in the amount of

energy available for storage as lipids. Importantly, the use

of such a ratio removes the need to normalise data, which

along with potential loss of lipid mass during the gravi-

metric analysis, introduces another source of uncertainty

into the estimate of total lipid content. Moreover, total lipid

content may vary according to the production of mucus and

gametes (Stimson 1987), seasons (Oku et al. 2003), and is

lowest at times of high metabolic demand such as during

periods of rapid growth or reproduction (Leuzinger et al.

2003). Nevertheless, this bioindicator has a rapid response

time with changes occurring within weeks following

changes in water quality (Anthony and Fabricius 2000;

Saunders et al. 2005). Determination of total lipid content

ranked a medium-priority bioindicator for use in long- and

short-term monitoring programmes (Table 3) because of

the high level of intra-colonial and seasonal variability

associated with this measure. However, relative differences

in the ratio of non-polar/polar lipids of corals show great

potential for use in EIA when comparing impact with

reference locations. Analysis of lipid content requires small

samples to be collected from the coral colony, followed by

analytical techniques such as gravimetry for total lipid

content, or using thin-layer chromatography for determi-

nation of lipid fraction ratios (Saunders et al. 2005).

Tissue thickness of massive corals

Tissues of massive Porites have been found to be thicker

on coastal reefs compared with offshore reefs, possibly

because of the higher concentrations of nutrients and

particulate organic matter in the coastal zone (Barnes and

Lough 1992; Table 2). Many environmental factors,

including irradiance, seawater temperature, water clarity,

particulate and dissolved inorganic nutrient levels and

sedimentation change from inshore to offshore locations,

and previous studies have not resolved which of these

factors is the most influential in affecting tissue thickness.

Barnes and Lough (1992) suggested that massive Porites

would have thicker tissue layers where particulate matter

and other food items were not limited. Tissue thickness can

change within a few weeks following a change in water

quality (Cooper 2008), and hence this measure ranked a

high-priority bioindicator for use in long- and short-term

monitoring programmes (Table 3). Tissue thickness is best

determined in massive Porites by removing a small core

from the upward-facing surface and measuring the depth of

the skeleton occupied by living tissue with callipers.

However, as the thickness of the tissue layer can vary

within a colony (Barnes and Lough 1992), sampling must

be standardised and replicated. A limitation of this measure

is that the sampling is intrusive, and so procedures that

mitigate sampling effects, i.e. plugging core-holes to

facilitate tissue regrowth, need to be considered.

Surface rugosity of massive corals

The surface rugosity of massive Porites increases when

skeletal growth is unable to provide sufficient surface area

to accommodate increased tissue growth. Several studies

have shown that Porites colonies had a greater surface

rugosity on coastal than offshore reefs of the Great Barrier

Reef, potentially due to increased availability of nutrients

and particulate organic matter (Darke 1991; Scoffin et al.

1992, Table 2), suggesting a high specificity to changes in

water quality. Thus, surface rugosity ranked a high-priority

bioindicator for use in long-term monitoring programmes

(Table 3). It is, however, likely to be of limited use for

short-term monitoring due to its slow response time. Sur-

face rugosity can be determined by placing a piece of chain

of known length on the upper surface of the colony and

calculating the ratio between the horizontal and vertical

chain length (Darke 1991).
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Coral growth

Irradiance is a key determinant of coral growth (Goreau

and Goreau 1959; Bak 1974). However, coral growth is

also indirectly affected by changes in irradiance due to

variable turbidity and nutrient conditions (e.g. Marubini

and Davies 1996). On the Great Barrier Reef, the growth

parameters of massive Porites vary along cross-shelf gra-

dients. For example, the skeletal density of massive Porites

increases (Risk and Sammarco 1991), but the rate of linear

extension and calcification decreases, with increasing dis-

tance from the coast (Lough and Barnes 1992; Table 2).

However, coral growth is also influenced by variation in

other parameters such as temperature, thermal stress and

ocean acidification (Lough and Barnes 2000; Cooper et al.

2008a; De’ath et al. 2009) indicating a moderate specificity

to changes in water quality. Coral growth ranked a med-

ium-priority bioindicator for use in long-term monitoring,

but was of low priority for short-term monitoring because

of its slow response time (Table 3). Notwithstanding this,

analysis of coral growth records provide important histor-

ical information on environmental changes over decades to

centuries that can be used in combination with other bio-

indicators in long-term monitoring programmes. The coral

growth parameters are generally derived from cores or

slices of massive corals (Knutson et al. 1972), but can also

be measured in corals with other growth forms (Ferrier-

Pages et al. 2000; Table 2). Techniques for quantifying

coral growth include gamma densitometry (Chalker and

Barnes 1990) to determine skeletal density, with the dis-

tance between the peaks of adjacent density bands to

determine linear extension, and the product of these

two parameters, linear extension and density, to estimate

calcification rate.

Skeletal elemental and isotopic composition

Chemical elements incorporated from the water column

into the coral skeleton can be used as retrospective bioin-

dicators of environmental conditions (e.g. Goreau 1977;

Risk et al. 2001; Cohen and McConnaughey 2003; Cohen

et al. 2004). Several studies have examined the utility of

the ratio of the nitrogen isotopes 15N/14N (known as d15N)

to hindcast changes in water quality on coral reefs

(Sammarco et al. 1999; Heikoop et al. 2000; Table 2). The

main sources of anthropogenic nitrogen (sewage, organic

nitrogen from soil erosion and synthetic fertilisers) each

produce characteristic d15N signatures that allow identifi-

cation of the source of nitrogen (Heaton 1986). Sewage

effluent is enriched with the heavier 15N isotope and has

d15N values in the range from ?10% to ?22%, soil-

organic nitrogen between ?4 and ?9 %, with synthetic

fertilizers from –4% to ?4 % (Heaton 1986). For example,

Marion et al. (2005) traced the introduction of synthetic

fertiliser on rice fields in Bali back to the early 1970’s

using d15N records in coastal corals exposed to agricultural

runoff. Skeletal elemental and isotopic composition is,

therefore, ranked a high-priority bioindicator for use in

long- and short-term monitoring programmes (Table 3).

Analyses of skeletal chemistry typically involve the col-

lection of a small sample of coral followed by analysis

using mass spectrometry to identify specific sources of

pollutants on coral reefs (Risk et al. 2001).

Partial mortality

A partial mortality is a lesion in the living tissue of a coral

colony that may be caused by changes in a range of

environmental conditions (Hughes and Jackson 1980).

Estimates of partial mortality on the surfaces of coral

colonies have been used to assess the effects of water

quality stressors such as sedimentation on coral reefs.

Nugues and Roberts (2003) reported higher partial mor-

tality in some coral species at sites closest to rivers com-

pared with those at some distance from rivers (Table 2).

Importantly, this response was species specific and likely to

be greater in species with poor sediment-rejection abilities

(Obura 2001; Nugues and Roberts 2003). Ginsburg et al.

(2001), however, found great variability in the partial

mortality of massive corals and suggested that for corals

with a massive growth form, partial mortality was not a

suitable bioindicator of changes in water quality along the

Florida Reef Tract. Partial mortality can also result from

injuries due to competitive interactions with other benthic

organisms, feeding scars from coral predators, overgrowth

by macroalgae, coral diseases, storms or other physical

damage (Garzon-Ferreira et al. 2005) indicating low

specificity to changes in water quality. Thus, partial mor-

tality ranked a medium-priority bioindicator for use in

long-term monitoring programmes (Table 3). Increases in

rates of partial mortality are, however, likely to be rapid

following acute changes in water quality such as increased

sedimentation. Thus, measuring rates of change in partial

mortality ranked a high-priority bioindicator for short-term

monitoring and could be used as a trigger for a more

intensive impact assessment. Partial mortality can be

quantified by estimating the proportion of colony surface

free of living tissue, or using photographic techniques to

measure the area of lesions and colony surfaces.

Mucus production

Mucus is produced by some corals to clean the colony

surface of sediments, or as a response to emersion during

low tides, turbidity, pollutant exposure, changes in salinity

and water temperatures and injury (Stafford-Smith and
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Ormond 1992; Stafford-Smith 1993; Brown and Bythell

2005). Some corals, however, will not produce mucus

when stressed, or will stop producing mucus after pro-

longed stress. For example, sheets of mucus may only be

produced by massive Porites to remove sediment when

conditions are calm (Coffroth 1985), and fungid corals may

cease producing mucus when cells become ‘exhausted’,

despite ongoing exposure to stressors (Schuhmacher 1977).

Mucus production by corals ranked a low priority bioin-

dicator for use in long- and short-term monitoring pro-

grammes (Table 3). Mucus production is difficult to

quantify and currently best recorded as qualitative obser-

vations. However, excess mucus production may be a

useful qualitative bioindicator for short-term monitoring

provided that complimentary evidence is obtained from

quantitative methods.

Population measures

Population structure

The structure of a population can be defined as the

number of individuals at different life-history stages. The

effects of changes in water quality on coral reefs have

been inferred by quantifying changes in the structure of

coral populations through time (e.g. Bak and Meesters

1999; Meesters et al. 2001; Gilmour 2004). Meesters

et al. (2001) found that the size–frequency distributions

of coral populations closest to urban centres were nega-

tively skewed, having fewer juveniles and more large

colonies than reference locations. For some species,

however, differences in size–frequency distributions were

related to their life-history strategies, such as the degree

to which corals invest in different modes of sexual and

asexual reproduction (Gilmour 2004), or species with

small, short-lived colonies (Meesters et al. 2001). In

contrast, the size–frequency distributions of populations

recovering from a bleaching event were skewed posi-

tively (dominated by juvenile size classes) at a location

exposed to infrequent floods, whereas it was platykurtotic

(flattened) at a location with a higher flood frequency

(Smith et al. 2005; Table 2). Population size–frequency

distributions of corals are affected by a range of other

confounding variables such as flow, irradiance, connec-

tivity to larval sources and disturbance history (Hughes

1989; Hughes and Connell 1999), indicating a low

specificity to changes in water quality. Thus, population

structure ranked a medium-priority bioindicator for use in

long- and short-term monitoring programmes (Table 3).

The population structure of a coral reef can be assessed

by measuring sizes and determining the abundance of

colonies along transects.

Coral diseases

Coral diseases are recognised as a major form of distur-

bance for coral reefs (Sutherland et al. 2004) and anthro-

pogenic influences are considered to increase their

prevalence (Green and Bruckner 2000; Bruno et al. 2003).

At present, approximately 20 diseases have been identified

that affect more than 100 species of corals (Sutherland

et al. 2004). Most diseases are caused by pathogens such as

bacteria, cyanobacteria and fungi. Pathogens can be

delivered to coral reefs via terrestrial runoff (Sutherland

et al. 2004), or transmitted by biological vectors (Sussman

et al. 2003). Recent studies have highlighted the role of

elevated levels of dissolved organic carbon, a common

component of sewage and organic discharge, to tissue

sloughing (symptomatic of many diseases) and increased

coral mortality (Table 2; Kuntz et al. 2005; Kline et al.

2006). However, elevated water temperatures can also

increase the spread and virulence of pathogens on reefs

with high coral cover (Bruno et al. 2007) and reduce the

immune response in corals, indicating a moderate speci-

ficity to changes in water quality. The incidence of coral

disease ranked a medium-priority bioindicator for use in

long-term monitoring programmes (Table 3). Notwith-

standing this, relative changes in the incidence of coral

diseases may provide useful information for control-impact

type studies. Coral disease prevalence can be quantified as

the proportion of colonies with visible disease symptoms in

large quadrats or along transects (e.g. Cervino et al. 2001).

Abundance of macro-bioeroders

Bioerosion is the process of erosion of substrata by bio-

logical activity, and comprises both internal bioerosion (i.e.

micro- and macroborers) and external bioerosion (i.e.

grazers) (Hutchings 1986; Bellwood 1995). Rose and Risk

(1985) found an increased abundance of the boring sponge

Cliona delitrix on reefs associated with the discharge

of untreated sewage. Similarly, the inverse relationship

between the abundance of internal bioeroders and distance

from the coast, in Acropora formosa and massive colonies of

Porites, was attributed primarily to a greater exposure to

terrestrially derived nutrients on nearshore reefs on the

Great Barrier Reef (Sammarco and Risk 1990; Risk et al.

1995; Table 2). Abundances of macro-bioeroders have been

shown to have a high specificity and slow-response period to

spatial differences in water quality (Cooper et al. 2008b),

and hence provide a useful time-integrated measure of

water-quality changes. For this reason, abundance of

macro-bioeroders ranked a high-priority bioindicator for

use in long-term monitoring, but had medium priority for

short-term monitoring because of the slow-response

period (Table 3). The abundance of macro-bioeroders
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(predominantly sponges, polychaetes, sipunculans, barna-

cles and bivalves) can be determined with counts of external

bore holes occurring in quadrats placed on the surface of

living massive corals.

Community measures

Micro- and meiobenthic bioindicators

A variety of micro- and meiobenthic measures are potential

bioindicators of changes in water quality. For example, the

content of organic matter (Hyland et al. 2005), abundance

and composition of bacteria species (Uthicke and McGuire

2007) and microphytobenthos (Bell and Elmetri 1995;

Gottschalk et al. 2007) of sediments, as well as forami-

nifera (Cockey et al. 1996; Uthicke and Nobes 2008),

amphipods (Thomas 1993) and stomatopods (Risk et al.

2001) are all potential bioindicators of changes in water

quality. Indeed, some of these indicators have already been

applied successfully in monitoring programmes e.g. the

FORAM Index developed by Hallock et al. (2003). Whilst

most micro- and meiobenthic indicators show great

potential for application to coral reefs, their widespread

acceptance will depend on the availability of taxonomic

expertise or genetic assays, or the development of simple

protocols that overcome the need for species differentia-

tion. Recently, Uthicke and Nobes (2008) demonstrated the

application of a FORAM Index to coral reefs by quanti-

fying the disappearance of large symbiont-bearing taxa in

foraminifera assemblages along a gradient of decreasing

irradiance and increasing nutrient availability, from the

outer to the inner Great Barrier Reef (Table 2). Micro- or

meiobenthic bioindicators, especially foraminifera, were

ranked high-priority bioindicators for use in long- and

short-term monitoring programmes (Table 3). Methods

such as the FORAM Index are based on easily quantifiable

size classes, rather than species composition, thereby use-

ful information can be obtained even by observers with

limited taxonomic expertise (Hallock et al. 2003). Foram-

inifera communities can be quantified simply by collecting

replicate sediment samples on coral reefs, which may be

dried and stored for later processing.

Larval supply and coral recruitment

Many spawning corals release gametes synchronously over a

few nights each year that develop into larvae and disperse for

days to months before settling and metamorphosing into

coral polyps. The number of larvae settling at a site is a

measure of larval supply, while the number of small juvenile

corals (typically defined as\5 cm) is a measure of recruit-

ment to the community. High sedimentation, turbidity and

nutrients all reduce the number of larvae produced by corals,

their rates of settlement and early post-settlement survival

(Babcock and Davies 1991; Hunte and Wittenberg 1992;

Wittenberg and Hunte 1992). Larval supply of corals is

influenced by the abundance and fecundity of adult corals on

the reef and on adjacent reefs, the abundance of predators and

competitors, and the physical conditions before, during and

after spawning (e.g. Hughes and Jackson 1985; Hughes and

Connell 1987). Consequently, there is great natural variation

in the supply of larva on a coral reef. Thus, larval supply

ranked a low priority bioindicator for use in monitoring

programmes (Table 3). In contrast, larval settlement is typ-

ically the greatest on surfaces that are relatively free of

sediment, i.e. vertical or downward-facing horizontal sur-

faces in areas of high sedimentation (Babcock and Davies

1991; Gilmour 1999; Table 2). Thus, the ratio of coral

recruits on vertical, compared with upward-facing horizon-

tal, surfaces may prove a better bioindicator of changes in

sedimentation on coral reefs than settlement abundance

alone, but field comparisons are required to determine suit-

ability. Coral recruitment (i.e. the number of small juvenile

corals of a given taxonomic group) ranked a high-priority

bioindicator for use in long- and short-term monitoring pro-

grammes, because changes in the abundance of the smallest

colony size classes reflect their susceptibility to changes in

water quality such as rates of sedimentation (Table 3). Larval

supply can be quantified using larvae traps (Lasker et al.

1998) or settlement plates (e.g. Babcock and Davies 1991),

and changes in the number of coral recruits can be quantified

within quadrats or transects, although both methods are

labour intensive and require some taxonomic expertise.

Benthic cover

Benthic cover of coral-reef biota is perhaps the most widely

measured parameter in coral-reef monitoring programmes

(e.g. Marshall and Orr 1931; Smith et al. 1981; Bell and

Elmetri 1995). Estimates of the percentage cover of benthic

communities are generally calculated for hard corals,

octocorals, macroalgae and sediment, and the proportion of

these categories has been shown to vary with changes in

water quality. For example, coral cover is known to

decrease with declining water quality in the Indo-Pacific

(e.g. Brown et al. 1990; van Woesik et al. 1999; Table 2). In

contrast, Lirman and Fong (2007) found a negative rela-

tionship between coral cover and changes in water quality

in the Florida Keys, where coral cover was significantly

greater on coastal compared with offshore reefs, despite the

existence of a water quality gradient. In some instances,

coral cover alone may not reflect the effects of changes in

water quality, because coral cover is also influenced by

other forms of disturbance, which include cyclones,

destructive fishing, bleaching events, predation by Acanthaster
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planci and ship groundings. Therefore, changes in coral

cover have a low specificity to changes in water quality, and

using it as a co-variate in water-quality assessments will

require knowledge of the disturbance history. Response

times of loss of coral cover vary from weeks for acute

changes in water quality (Brown et al. 1990), to years for

chronic exposure. Thus, benthic cover of hard corals ranked

a medium-priority bioindicator for use in long- and short-

term monitoring programmes (Table 3). In contrast,

increases in macroalgal cover associated with declines in

water quality are well known, with perhaps the best evi-

dence being provided by the shift in the coral reef assem-

blage from one dominated by hard corals to a high cover of

macroalgae due to the introduction of sewage into Kaneohe

Bay (Smith et al. 1981). Changes in macroalgae have a high

specificity, and are highly relevant in the public perception,

making it a high priority for use in long-term monitoring

programmes provided the confounding influences of sea-

sons and grazing pressure of herbivores are taken into

consideration (Hughes et al. 2007).

Community structure

Community structure is defined as the relative abundance

of different taxa at a location. Links are often drawn

between coral community structure and exposure to water

quality because species’ abundances generally reflect

environmental conditions (e.g. van Woesik et al. 1999;

Table 2). For example, the community structure of mac-

roalgae may be explained by responses to water quality.

Fabricius et al. (2005) reported strong gradient effects in

macroalgae at different spatial scales, with greater relative

abundances of Rhodophyta and Chlorophyta on coastal

reefs adjacent to a region exposed to elevated loads of

terrestrial runoff, compared with a region with lower

nutrient and sediment inputs. This measure, however, has a

variable response time, with rapid changes after acute

disturbances that result in mortality, and gradual shifts in

response to chronic water-quality changes (Brown et al.

1990). Being a multivariate measure, the interpretation of

changes in community structure requires knowledge of the

biology of the individual species involved, as well as the

disturbance history of a location. Thus, community struc-

ture ranked a medium-priority bioindicator for use in long-

and short-term monitoring programmes (Table 3). The

methods to monitor coral community structure are estab-

lished, and are based on standard monitoring techniques

such as photo-transects (English et al. 1997).

Taxonomic richness

Taxonomic richness is defined as the number of taxa within

a community. The taxonomic richness of hard corals,

octocorals and macroalgae gradually change along water

quality gradients in several coastal regions of the Great

Barrier Reef (van Woesik et al. 1999; Fabricius et al.

2005). For example, the taxonomic richness of octocorals

with zooxanthellae declined with increasing turbidity and

sedimentation (Fabricius et al. 2005; Table 2). Existing

studies suggest that the taxonomic richness of hard corals,

octocorals and macroalgae have a high specificity to

changes in water quality. In addition, decreases in taxo-

nomic richness will occur in response to both chronic and

acute reductions in water quality, either because of rapid

mortality or reduced settlement success of the most sus-

ceptible species. Taxonomic richness is, therefore, con-

sidered a high-priority bioindicator for use in long- and

short-term monitoring programmes (Table 3), although

extensive and ongoing observer training is required to

identify and quantify the different taxa and cross calibra-

tion is necessary to achieve any consistency. As with

community structure, the methods to monitor taxonomic

richness are established (English et al. 1997), but require

high-level taxonomic expertise.

Maximum depth of coral-reef development

The maximum depth of seagrass distribution has been used

as a bioindicator of estuarine health (Abal and Dennison

1996), and a similar approach has been used for coral

communities to infer changes in water quality on coral

reefs (Kleypas 1996; van Woesik et al. 1999; Cooper et al.

2007). Coral growth and distribution is determined by

available irradiance (Yentsch et al. 2002), and the maxi-

mum depth of coral reef development can be defined as the

zone of transition from zooxanthellate hard corals to

azooxanthellate filter feeders along a depth gradient. On

the Great Barrier Reef, the maximum depth of coral-reef

development increased almost fivefold within a group of

inshore islands along a gradient from low irradiance and

elevated nutrients at nearshore locations, to high irradiance

and low nutrients at outer locations (Cooper et al. 2007;

Table 2). The response time of changes in maximum depth

of coral growth is most likely to be on a timescale of

months to years. Thus, the maximum depth of coral-reef

development ranked a high priority for use in long-term

monitoring, but was a low priority for use in short-term

monitoring programmes (Table 3). The maximum depth of

coral reef development can be quantified by visual esti-

mates or with transects along a depth gradient.

Conclusions

Each of the bioindicators identified here has a different

response time (i.e. from near instantaneous to years) and
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specificity to changes in water quality, and the final choice

of bioindicators must depend on the specific objective and

timeframe available for a monitoring programme.

Responses that are specific to disturbances such as nutrient

availability, sedimentation and turbidity and that demon-

strate a rapid response time, can provide an early warning

of changes in water quality. In particular, sublethal bioin-

dicators that reflect rapid changes at the genetic/colony

level of selected species may be among the most effective

ways to pre-empt mortality of corals and impacts to the

wider community. In addition, understanding the processes

acting within colonies and among the life-history stages of

a selected species will provide a better understanding of the

consequences of changes in water quality on populations

and coral-reef communities. The comparison of responses

from a composite of bioindicators will provide the most

useful information on the status and trends of reef eco-

systems. As the extent of water-quality degradation

increases, so does the scale at which the responses are

manifested, and the time taken for the system to return to

its previous state when the stressors are removed.

Responses to small changes in water quality may be best
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Fig. 2 Conceptual model of coral bioindicators to indicate increasing

exposure to the key components of water quality. Responses are

presented in increasing order of effect from stress to mortality

resulting from increasing levels of stressors. Responses will depend

on both the magnitude and duration of changes in the levels of

stressors (e.g. Kuntz et al. 2005). All the responses will first be

evident at the genetic/colony level and then in the wider community.

Sublethal responses, therefore, may pre-empt more severe effects at

the population and community level and can be used to describe shifts

in ecosystem condition from healthy (green) to degraded (red)

conditions
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measured by focusing on rapid sublethal effects at the

genetic/colony level in the most susceptible species or life

stages; when the stressors are removed, then the condition

of these organisms may rapidly return to their previous

state. With further decreases in water quality, responses

will be measured as partial mortality or mortality of

organisms in an increasing number of species or life stages,

which becomes evident at the scale of populations and

communities, and these signals will remain measurable for

months to years after the stressors are removed. Finally,

extreme decreases in water quality produce widespread

mortality across a range of organisms that will be evident at

the level of entire communities and as a shift in ecosystem

state; the time taken for the response to be manifest will

vary between chronic or acute events, but recovery, when

the stressors are removed, is likely to occur slowly. This is

best conceptualised when the bioindicators are represented

against increasing levels of stressors, from sublethal stress

to mortality (Fig. 2). Exposure to a low-level stress will

first invoke a response at the genetic and colony level, such

as symbiont photophysiology and coral brightness. As

stress increases, either in terms of duration or intensity,

responses at the population and community level may

become evident through reduced juvenile densities, chan-

ges in the community structure, through the loss of

susceptible species, increased macroalgal abundances,

reduced abundances of large symbiont-bearing foraminif-

era, and a reduction in the maximum depth of coral-reef

development. Response time is, therefore, a critical crite-

rion that underpins bioindicator selection in any environ-

mental monitoring. Moreover, exposure to changes in

water quality may invoke different responses in some

groups, e.g. elevated nutrient concentrations and turbidity

decreases coral brightness, while sedimentation stress

increases brightness (through bleaching) on upward facing

surfaces. Hence, important information on the specific

forms of stress can be gained by investigating the direction

and magnitude of responses relative to reference

conditions.

This review has identified 11 measures as high-priority

bioindicators that should be considered for inclusion into

long-term monitoring programmes. These are: symbiont

photophysiology, colony brightness of corals, tissue

thickness and surface rugosity of massive corals, skeletal

elemental and isotopic composition, abundance of macro-

bioeroders, coral recruitment, micro- and meiobenthic

bioindicators such as foraminifera, macroalgal cover, tax-

onomic richness of corals and the depth of coral-reef

development. For short-term monitoring programmes such

as required for EIA that aim to quantify effects of acute

disturbances on coral communities, eight priority bioindi-

cators were identified as: symbiont photophysiology, col-

ony brightness of corals, tissue thickness of massive corals,

skeletal elemental and isotopic composition, partial

mortality, micro- and meiobenthic bioindicators, coral

recruitment and taxonomic richness of corals. The differ-

ence between the two suites of bioindicators primarily

reflects differences in the response time. Short-term mon-

itoring programmes would be best served with sublethal

bioindicators or those evident in the most susceptible

species, which have rapid response times. In the case of

acute changes in water quality, the exceedence of some

pre-determined threshold for a bioindicator may trigger a

management response that could be used to limit further

impacts. In contrast, monitoring the biological conse-

quences of chronic exposure to lowered water quality as

part of long-term monitoring programmes would be best

based on bioindicators with slower response times coupled

with a suite of sublethal bioindicators to provide an early

indication of ecological change. Pomeroy et al. (2004)

identified a range of measures that also included taxonomic

richness and coral recruitment as priority biophysical

indicators for assessing the effectiveness of marine pro-

tected areas. However, this review has also identified that

sublethal measures have important applications in moni-

toring programmes. For either short- or longer-term mon-

itoring programmes, assessments should be based on

deviation from reference values (historic data or reference

locations), while also controlling for other changes in

physical and biological conditions that affect the specificity

and variability of the response. In both cases, an assess-

ment framework, such as the one suggested here, should

provide the basis for the selection of a suite of bioindicators

to be used when assessing the consequences of changes in

water quality around coral reefs.
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