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Abstract

Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line
(ASPS-1), was analyzed jointly with patient ASPL-TFE3 (t(X;17)(p11;q25)) fusion transcript data to identify disease-specific
pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using
conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS.
These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The
concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data
provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was
exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and
their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17)(p11;q25) translocation
include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support
current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in
pathways involved in the cell cycle (CHK1), cell adhesion (ARHGD1A), cell division (CDC6), control of meiosis (RAD51L3) and
mitosis (BIRC5), and chemokine-related protein tyrosine kinase activity (CCL4).
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Introduction

Identifying disease-specific genetic signatures offers the potential

for selecting therapeutic targets and discovering small molecules

that affect the roles of these targets in cancer cell survival. In

practice, disease-specific genetic signatures typically originate from

examination of microarray gene expression readouts using

diseased cells and applications of in silico tools for extracting

important (i.e. signature) gene subsets [1–3] and pathways

(IPA(IngenuityRSystems www.ingenuity.com, GSEA [4,5] and

DAVID [6]). Typically cells used for microarray analysis represent

a relatively homogeneous population. Less typical, yet not

infrequent, cases involve microarray readouts from patient tumor

biopsies [7,8] where difficulties in assigning disease-specific genetic

signatures arise from cellular heterogeneity associated with the

tumor/non-tumor composition within each tissue sample. In an

effort to analyze genetic readouts from heterogeneous samples and

propose potential therapeutic targets, a multi-step analytical

methodology is proposed to collectively analyze related, yet

different, sets of microarray data. The first step in this

methodology identifies disease-specific genes, and their associated

biochemical pathways, using pooled microarray readouts from

patient tissue biopsies and from an isolated tumor cell. The joint

analysis of biopsy and tumor cell microarray readouts offers the

opportunity to distinguish the genetic role of genes associated with

the tumor microenvironment from that of genes associated with

the isolated tumor cell. Genes derived from these readouts, and

their associated pathways, serve to identify disease-specific features

that are assumed, in part, to affect in situ tumor cell survival. The

second component of this methodology analyzes the individual (i.e.

unpooled) microarray readouts from individual patient tissue

biopsies to determine clusters of genes, and their associated

pathways, that exhibit consistent expression patterns for these

patients. These clustering results serve as a check of the isolated

tumor cell and pooled in situ derived disease-specific genetic

signatures that were found in the first step of the methodology.

The third step in this methodology provides a bridge for

connecting individual patient gene expression signatures, identified

in step two, with patient-derived RT-PCR measures of a putative

disease-specific marker. An integral component of this last step is

the application of a novel linear model, using microarray signal

intensities, to assist in interpreting microarray readouts derived

from heterogeneous patient biopsies. The over-arching theme of

this methodology is to construct a means to jointly analyze

microarray readouts from pooled and individual tissue biopsies,

with microarray readouts from an isolated tumor cell, combined

with patient-derived RT-PCR measures of a diagnostic marker, to
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identify a small set of genetic features that collectively span this

data and may have potential as therapeutic targets.

ASPS is an exceedingly rare chemo-resistant sarcoma that

encompasses less than 1% of all soft tissue sarcomas. Originally

described in 1952 [9], this tumor is found primarily in adolescents

and young children, is characterized by periods of latency,

extremely slow growth and multi-organ metastasis with a partiality

to the lung and brain. ASPS is resistant to both radiation and

standard chemotherapeutic regimens [10–12] and exhibits a non-

reciprocal chromosomal translocation, der(17)t(X;17)(p11;q25)

[13]. Seminal work by Ladanyi and co-workers [14] indicate that

this translocation fuses the C-terminal region of transcription

factor TFE3, located at Xp11, to the N-terminal region of the

ASPL gene at 17q25. Alternative fusion junctions have been

observed and result in expression of two tumor specific fusion

transcripts, ASPL-TFE3 type 1 and type 2 and their chimeric

proteins, which are thought to function as transcription factors. In

an effort to identify new targets for ASPS, in-vivo [15] and in-vitro

[16] models of the disease have been recently developed. The

xenograft model of ASPS, established in immunocompromised

mice, maintains characteristics consistent with the original ASPS

tumor including tumor histology, expression of the ASPL-TFE3

type 1 fusion transcript and the ASPL-TFE3 type 1 fusion protein,

as well as maintenance of the t(X;17)(p11;q25) translocation

characteristic of ASPS. The ASPS xenograft model exhibits stable

expression of many up-regulated ASPS gene transcripts including

those involved in angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-

MET, VEGF, TIMP-2), cell proliferation (PRL, PCSK1),

metastasis (ADAM9) as well as the transcription factor BHLHB3

and the muscle specific transcripts TRIM63 and ITGb1BP3, and

is characterized by the development and maintenance of a

functional vascular network, a clinical feature of this highly

vascular sarcoma. ASPS-1, the cell line developed from the

xenograft tumor [16], also expresses the ASPL-TFE3 type 1 fusion

transcript and the ASPL-TFE3 type 1 fusion protein, the

t(X;17)(p11;q25) translocation characteristic of ASPS and many

of the up-regulated ASPS gene transcripts identified in the

xenograft model. ASPS-1 retains the ability to produce highly

vascularized ASPS tumors in NOD.SCID/NCr and SCID/NCr

mice. These tumors express selected ASPS markers similar to

those of the original patient tumors as well as to the xenograft

ASPS tumor.

The proposed methodology will be used to identify ASPS-

specific genetic signatures from i) patient microarray readouts

using tissue biopsy samples of primary and metastatic tumors of

alveolar soft part sarcoma (ASPS) [17], ii) an immortalized cell line

developed from a lymph node metastasis of one patient [16], and

iii) biopsy-derived RT-PCR data from the ASPL-TFE3 fusion

transcript used in the diagnosis of this disease. The analytic

workflow consists of jointly analyzing microarray data from the

pooled patient biopsies and the isolated tumor cell, ASPS-1, and

applying Principal Component Analysis (PCA) to determine a

subset of genes that characterize this data. This subset of genes is

then subjected to two methods of clustering, hierarchical for the

ASPS-tissue and ASPS-1 data and Self-Organizing Maps (SOMs)

for these genes’ expressions across the individual (i.e. non-pooled)

patient tissue data. The results of these independently conducted

clustering analyses are then examined collectively for the

occurrence of genes, and their pathways, that consistently exhibit

patterns of over and under expression across this data. Genes, and

their pathways, jointly indicated in these parallel analyses are

further analyzed by comparisons to the patient-derived RT-PCR

measurements of the ASPL-TFE3 fusion transcript. This step uses

a novel algebraic model to identify gene subsets, and their

associated pathways, that also bear a correlative relationship with

patient measures of the ASPL-TFE3 fusion transcript. Patient gene

expressions negatively correlated with patient transcript levels

represent controls for evaluating the cellular response to ASPS

translocation, while patient gene expressions positively correlated

with patient transcript levels are proposed as potential therapeutic

targets.

Collectively these results identify 75 potential ASPS-specific

therapeutic targets that appear in 29 GSEA pathways. The ASPS-

specific GSEA pathways are nearly equally divided between cell-

cycle related processes, with inclusion of many of the current

putative ASPS target genes, including MET and FLT1, and

processes related to the tumor stromal microenvironment, with an

emphasis on pathways and genes involved in immune surveillance,

chemokines and focal adhesion. These results establish a strong

interdependency for tumor cell survival on the intrinsic pathways

driving cell proliferation and on the stromal environment. One

novel component of this interdependency finds a connection

between cell-cycle related tyrosine kinase pathways and chemo-

kines involved in controlling their kinase activity; an indication

that therapeutic strategies aimed at cell-cycle related genes and

microenvironment related genes may be beneficial. Collectively

these results support a broader range of potential ASPS-specific

therapeutic targets than had been previously considered for the

treatment of this chemo-resistant sarcoma.

Methods

Tumor Acquisition
ASPS tumors were obtained from surgery, following prior

informed written consent, under National Cancer Institute clinical

research protocol 05-C-N138, approved by the U.S. National

Cancer Institute (NCI) Institutional Review Board (IRB). The NCI

IRB, in conjunction with the NCI ethics committee, reviewed the

protocol annually and approved all tumor acquisitions and

progress of the protocol. The Alliance Against Alveolar Soft Part

Sarcoma (TAAASPS) assisted in the acquisition of ASPS tumors

utilized in this study. The research protocol followed is in

compliance with the Helsinki Declaration of conduct of research

using human patients. A detailed description of the patient/tumor

characteristics utilized in this present study, including the

methodologies for ASPS diagnosis, isolation of RNA, reverse

transcription and microarray data acquisition have been previ-

ously described [17].

Quantification of ASPL-TFE3 Fusion Transcripts by Real-
Time RT-PCR
SYBR Green chemistry was used to detect primer specific

amplicons. Reaction volume (20 ml) included 10 ml Quantitect

SYBR Green PCR mastermix (Qiagen, Valencia, CA), in DNase

free water (6 ml), 2 ng cDNA (2.5 ml) and 4 mM of forward and

reverse primers (1 ml each). The 24 bp forward primer (TTCA

GCTA AGTT GCCG AAGT CCCT) corresponds to nt 893–915

in exon 7 of ASPL. The reverse primer (TGAA TCGC CTGC

GACG CTCA ATTA) corresponds to nt 1296–1319 in exon 7/8

of TFE3. Reactions were performed in triplicate and universal 18S

RNA primers (Ambion, Austin, TX) were used to normalize

cDNA amplification. The fluorochrome ROX, included in the

PCR mastermix, was used as a passive reference. Reactions were

performed using an ABI7500 thermocycler (Applied Biosystems,

Step One Plus Real Time PCR System, Foster City, CA). Cycling

conditions consist of a single 10 minute/95uC activation step

followed by 45 cycles of 95uC/15 seconds, 60uC/60 seconds and

72uC/60 seconds with fluorescence measurements taken in the
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elongation step of each cycle. Fold changes in expression were

calculated manually from Ct values.

Statistical Analysis
The goal of the analytic workflow, shown schematically in

Figure 1, is to identify a subset of gene expressions, derived jointly

from pooled patient biopsies, individual patient biopsies and an

immortalized, ASPS-1, tumor cell, that reveal a consistent picture

of ASPS-specific differentially expressed genes and their associated

pathways. The strategy first trims the initial set of gene expressions

to identify candidate genes that discriminate the pooled patient

microarray readouts from the cell-based microarray readouts.

Next, an analysis of only these discriminating genes is conducted,

in parallel, using the pooled biopsy and cell-based microarray data

and, separately, the individual patient microarray data. The

following section provides further details of these steps. Additional

information appears in the legend to Figure 1.

Data trimming of the initial 54,675 mRNA expression

measures, done in duplicate, for the patient biopsy and ASPS-1

tumor cell microarray measurements, selected only instances

where present (P) calls existed for each gene and its corresponding

universal mRNA duplicates. The remaining 17,698 gene expres-

sion measures are log transformed, averaged across their replicates

and normalized to universal reference RNA, which consisted of a

mixture of RNAs from non-tumor adult male and female human

tissues. Data processing on this trimmed dataset is completed in

two steps. First, patient data is pooled to yield an average gene

expression for these ,18 k genes derived from ASPS tissue

samples. This data is compared to the corresponding gene

expression measures derived from ASPS-1. The pooled patient

ASPS gene expression data is referred to hereafter as ASPS-tissue

samples, while the cell derived dataset is referred to, as noted

earlier, as ASPS-1.

A plot of the ,18 k gene expressions derived from pooled

ASPS-tissue (y-axis) versus ASPS-1 gene expressions (x-axis)

appears in the top panel of Figure 2. Over and under expressed

genes within the pooled ASPS-tissue samples are assumed to

reflect aggregate measures of gene expression from normal and

tumor cells, while extremes in gene expressions from the ASPS-1

sample are assumed to represent only the tumor subpopulation.

The inherent overlap of tumor cells in both populations is

consistent with the correlated nature of their gene expressions, as

evidenced by the strong band running diagonally across the image

in the top panel of Figure 2. Each subpopulation is comprised of

genes over and under expressed, relative to universal mRNA and,

more importantly, relative to each other. Principal Component

Analysis (PCA) is a statistical procedure that converts a set of

correlated variables into sets of uncorrelated variables, called

principal components (PCs). The number of principal components

is less than or equal to the number of original variables, which for

the dataset used here consists of two variables; gene expressions

derived from ASPS-tissue samples and ASPS-1. This transforma-

tion assigns the 1st PC to data associated with the highest variation,

with each succeeding PC having the highest variance possible

under the constraint that it is not correlated with the preceding

PCs. The 1st PC for this dataset is displayed as the dark line

Figure 1. Data Analysis Workflow. The expression of 54,675 genes, done in duplicate, was measured for ASPS tissue biopsies and the ASPS-1
tumor cell. Selecting only present (P) calls trimmed this starting set to 17,698 gene expressions. Next, these ,18 k candidate genes were analyzed
using Principal Component Analysis (PCA). PCA identified 1244 genes that distinguished the pooled patient data from the ASPS-1 tumor cell data.
From this point forward these 1244 genes were analyzed, in parallel, for the pooled patient/ASPS-1 tumor cell data (left-most path), and the individual
patient gene expressions (right-most path). The left-most path used conventional hierarchical clustering to identify gene clusters. Clustered genes
were then used to reveal a set of ASPS-specific pathways. The right-most path analyzed the individual patient measures of these same 1244 gene
expressions, using self-organizing maps (SOMs), to cluster genes according to similarities in gene expressions across patient samples. These gene
clusters were also analyzed to identify their set of ASPS-specific pathways. The final step in this process selected only pathways and their constituent
genes that are shared amongst the ASPS-specific pathways identified from each parallel analyses.
doi:10.1371/journal.pone.0048023.g001
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running diagonally in the top panel of Figure 2. This line passes

through the majority of the data, and reflects the highly correlated

(i.e. expected) nature of this dataset. Standard PCA analysis

determines the fraction of the variance associated with each PC.

For the data displayed here, 91% of the variation is associated with

the 1st PC; leaving the remaining 9% of variation not accounted for

by the correlation implicit in this data set. The 2nd PC runs

perpendicular to the 1st PC. Data associated with the 1st PC are

assumed, herein, to represent background genes with proportional

expressions across both the pooled ASPS-tissue and ASPS-1

samples. As such, these genes represent cases where the pooled

ASPS-tissue and ASPS-1 expressions are not different, and thus

less interesting. Genes with differences in expressions between

these samples are assumed to be associated with the 2nd PC. These

genes are selected by eliminating genes within the most densely

populated regions flanking the 1st PC. A grid-based approach was

used to determine the number of nearest neighbors within each

cell of the grid. Cells with neighbor counts above the 90th

percentile of counts for all grid cells were eliminated, to yield the

1244 genes with differential expressions that were not associated

with the 1st PC (see lower panel Figure 2). These remaining

differentially expressed genes can be further stratified according to

their relative differential expression in pooled ASPS-tissue versus

ASPS-1. These gene expressions reflect differences resulting from

samples derived from ASPS-1 versus samples derived from pooled

patient samples. The lower panel in Figure 2 displays, in red,

genes over expressed in pooled ASPS-tissue relative to ASPS-1,

and in green genes relatively over expressed in ASPS-1 versus

pooled ASPS-tissue samples.

Pathway Analysis
The 1244 differential genes associated with the remaining 9% of

variation are analyzed using Gene Set Enrichment Analysis

(GSEA). This publically available tool (http://www.broadinstitute.

org/gsea/) calculates a statistical probability for the likelihood of

gene pairs (or higher) occurring randomly within a set of curated

pathway annotations [5,18]. The GSEA results for gene subsets is

reported in tabular form to include the HUGO name, the identity

of the curated pathway annotation, brief descriptions of each

pathway and the statistical significance of this finding. In lieu of

reporting GSEA results in tabular form, abridged pathway

descriptions will appear in the text. All pathways reported in this

analysis achieve a statistical significance below 0.05. The complete

set of GSEA results appear in Figures S1 and S2.

SOM Clustering
The differential gene expressions for the filtered genes for each

patient sample consists of 1244 gene expressions for 7 patients

done in replicate (12446762). Each record represents the signal

associated with a gene’s expression as measured in the ASPS tissue

samples. Pooling of this dataset was used above to derive the subset

of trimmed genes displayed in the lower panel of Figure 2. The
SOM analysis [19] examines the individual (i.e. non-pooled)

patient data for the existence of gene expression patterns shared

across all patient samples. The underlying assumption is that each

tissue sample’s tumor/non-tumor heterogeneity is preserved, thus

fixing the relative differential gene expressions in that sample. In

other words, if a patient’s ASPS tissue consists of 30% tumor and

70% non-tumor, these fractions apply to all gene measurements

for that patient. Consequently the extent of heterogeneity remains

constant within each patient’s tissue sample. Based on this

assumption, the profile of each gene’s differential expression

across all patients represents an ASPS-specific tissue signature for

the seven patients analyzed here. Gene clusters found from the

PCA analysis of pooled ASPS-tissue and individual ASPS-tissue

expressions that are also found in the SOM clustering of individual

patient gene expressions are indicative of a consistent set of

disease-specific pathways and genes. The existence of a consistent

set of genes provided reciprocal support for their inclusion as

disease-specific genes. Stated differently, gene clusters identified

from the PCA-derived subsets of pooled patient tissue samples and

ASPS-1 should also cluster on the basis of similarities in gene

expression patterns derived from individual patient biopsies. This

type of cross checking provides an internal consistency check for

identifying ASPS-specific genes and their pathways.

Figure 2. Top Panel: Scatter plot of pooled ASPS-tissue (y-axis)
versus ASPS-1 (x-axis) differential gene expression measure-
ments. Data trimming (see Methods: Statistical Analysis) reduced the
original 54,798 measurements to 17,698 differentially expressed genes.
The diagonal line represents the first principal component (1st PC) from
PCA analysis and accounts for 91% of the variation in this data set. The
lower panel displays the 1244 gene expressions not associated with the
1st PC. Points in red and green, respectively, correspond to differential
expressions relatively higher in the pooled ASPS-tissue versus ASPS-1
gene expressions, and vice-versa. Consistent with the PCA analysis, the
1st PC exactly bisects the pooled ASPS-tissue versus ASPS-1 datasets.
doi:10.1371/journal.pone.0048023.g002
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Strategy for Assessing Gene Expression Variations in
Tissue Samples from Different Patients
Many cancers, including ASPS, are characterized by chromo-

somal translocations, resulting in genetic defects involving

expression of a fusion gene and protein that can be recognized

as a tumor marker. As such, the expression of the fusion protein is

a characteristic property of the tumor, with non-tumor cells not

expressing this protein. In the consideration of tumor samples

from many patients, as well as from different tumor locations on

the same patient, the genetic signature of such samples, as

measured by gene expression from microarrays, can and will be

quite varied for many different reasons. As noted earlier, excised

or biopsied tissue samples from tumors contain both tumor cells

and non-tumor cells. Further confounding the problem is that

expression of any particular gene can be different in the non-

tumor tissue versus tumor tissue. Both the amount of tumor and

the gene expressions are a priori unknown quantities. The strategy

proposed here uses a linear, algebraic model to extract, from

patient microarray data, gene expression patterns that are

representative of the underlying genetic defect.

The strategy assumes that only one tumor type exists within a

patient’s tissue sample. Microarray analysis assumes that the raw

channel intensity signal, Ii,k, for a particular patient tumor, i, and

gene k, is proportional to the total amount of mRNA in the

patient’s tissue sample, which can be formally written as:

Ii,k~aEtumor,i,kfizaEnon{tumor,i,k(1{fi) ð1Þ

where a is the constant that converts the amount of RNA to a

detectable signal, Etumor,i,k is the RNA expression of gene k in

patient i’s tumor cell portion of the sample, fi is the fraction of the

sample that contained tumor cells, and Enon-tumor,i,k is the RNA

expression of the same gene k in patient i’s non-tumor cell portion

of the sample.

Measuring the expression of a reference RNA sample for each

microarray, done simultaneously on each microarray, the total

signal intensity, Iref,k, stemming from the RNA expression of gene k

in the reference sample can be expressed as:

Iref ,k~aEref ,k ð2Þ

Where a is the constant that converts the amount of mRNA to a

detectable signal, as above, and Eref,k is the mRNA expression of

gene k in the reference sample.

The gene expression ratio, defined as:

vri,kw~Ii,k=Iref ,k ð3Þ

measures the expression of gene k in the tumor sample relative to

the reference sample. The expression ratio ri,k, for gene k of patient

i, as referenced to the non-tumor cells of the same sample is:

ri,k~Etumor,i,k=Enon{tumor,i,k ð4Þ

which is not necessarily the same as the ,ri,k.. To illustrate this

potential difficulty, consider the case where the reference mRNA,

Eref, is the same as the mRNA derived from non-tumor cells in the

patient sample, Enon-tumor. The two expression ratios can now be

expressed as a function of the fraction of tumor cells in the patient

sample:

vri,kw~Ii,k=Iref ,k~(ri,k{1)fiz1 ð5Þ

This relationship finds that the two expression ratios,ri,k. and ri,k
are identical only if fi is 1, i.e. if the entire excised tumor sample

contains nothing but tumor cells. If fi is different from 1 the two

ratios deviate from each other, e.g. for a fi of 0.1 and a measured

,ri,k. of 10, ri,k is (1021)/0.1+1=91. Consequently, a sample

from a patient’s tumor with varying f finds the measured ratios to

vary dramatically even though the expression of the gene is the

same.

Application of Quantitative RT-PCR to the Known Tumor
Signature Gene
When a known genetic defect causes a marker fusion gene to be

expressed, different tumor samples can be characterized by

performing quantitative RT-PCR on the fusion gene transcript

using oligo-primers that span the fusion site. The amount of fusion

transcript varies for each tumor, but can be referenced to a

specific, but arbitrary patient. As is done with gene expressions, the

observable fusion amount, Ri, is related to the tumor fraction in

the sample. Assuming that the measure of fusion transcript in the

tumor portion of the tissue sample is the same across all tumor

cells, the fusion fraction can be written as

fi~
1

b
Ri ð6Þ

where 1/b is the proportionality constant that relates the observed

normalized RT-PCR values to the absolute fraction in the sample.

The properties of the expression system can be examined by

graphing the single channel observables Ii,k and Ri versus each

other, i.e.

aEtumor,i,kfizaEnon{tumor,i,k(1{fi) versus bfi ð7Þ

Using the expression ratio rik, for gene k of patient i, as defined

above, the left side of the definition of intensity can be expressed as

a linear equation in fi:

(ri,k{1)aEnon{tumor,i,kfizaEnon{tumor,i,k or

½(ri,k{1)fiz1�aEnon{tumor,i,k

ð8Þ

Since all constants in equation (9) are positive, the important part

of this linear equation is the slope, and in particular the quantity

that determines its sign, (ri,k21). When a graph of gene fusion

transcript versus gene expression across all tumor types exhibits a

positive slope, then

ri,kw1 ð9Þ

i.e. the expression ratio of the gene is enhanced in the tumor tissue,

and likewise if the slope is negative, the gene is expressed less in the

tumor tissue. In practice the linear equation Ii,k(Ri)= ak+bkRi is

evaluated, where ak, bk are constant for each gene and

independent of the tumor sample. The actual constants determin-

ing the proportions and conversions do not need to be evaluated.

For purposes of the study conducted here, the analysis simply

reduces to identifying instances of a non-zero slope between

patient gene expressions and ASPL-TFE3 fusion transcript levels.

This is equivalent to identifying patient gene expressions that are

positively or negatively correlated with the patient’s fusion

transcript levels. This observation is rather remarkable in that

the analysis avoids the issue of how much of the tissue sample

originates from tumor cells. If the observed gene expression data

Gene Expression Analysis of ASPS Patient Data
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originates from two or more different tumor cell populations the

analysis could be amended to take this into account. The method,

however, is not suitable to estimate quantitative ratios, as the

experimental variations are not cancelled out using standard ratio

techniques. However, it is a powerful qualitative method, when the

goal is to identify important gene subsets. Gene expressions

determined from this approach could be verified with an

independent experiment such as quantitative RT-PCR, although

a quantitative measure may also be inherently difficult due to

variations of the tumor-cell content in sampled tissue specimens.

An integral component of this analysis is relating key component

of this.

The importance of this result in the context of identifying ASPS-

specific genes and associated pathways has profound implications

for the methodology proposed here. Specifically, correlative

measures of differential gene expressions across patient samples

versus RT-PCR measures of ASPL-TFE3 fusion transcript in these

same patient samples, represents a valid means of assessing ASPS-

important gene subsets and their associated pathways. An

additionally important component of this analysis is that it

provides a means to integrate the earlier-derived gene cluster

results, based on pooled tissue and ASPS-1 gene expressions, with

the RT-PCR data. If the disease-specific genes derived from each

part of the analysis were not consistent, there would be no basis for

extending the results into genes with expressions correlated with

the TFE3-ASPL transcript levels.

Results

The results are presented sequentially, beginning with the

clustering results for the pooled patient ASPS-tissue versus ASPS-1

trimmed gene sets (n = 1244), followed by the clustering results of

expressions for these same 1244 genes using the individual (i.e.

non-pooled) patient tissue samples. Reporting consists of providing

GSEA pathway results for clustered gene subsets and collectively

integrating these results to identify common over and under

expressed genes and pathways. The guiding principle is to use

each data mining approach to converge on a set of ASPS-specific

signature genes and their associated pathways.

GSEA Results for pooled ASPS-tissue and ASPS-1 genes
The pooled ASPS-tissue versus ASPS-1 PCA divided the 1244

gene expressions (i.e. trimmed dataset) into 542 genes lying above

and 702 genes lying below the 1st PC (see Figure 2). Genes above

the 1st PC represent relatively greater gene expression in ASPS-

tissue samples when compared to ASPS-1. GSEA results for the

topmost scoring GO, KEGG or Biocarta pathways for genes over

expressed in the ASPS-tissue partition are dominated by pathways

associated with the extracellular region;

i. proteinaceous extracellular matrix; GO:0005578.

ii. extracellular matrix; GO:0031012.

iii. extracellular region and extracellular region part;

GO:0044421 and GO:0005576.

and pathways involved in cellular maintenance and

development;

iv. protease inhibitor activity; GO:0030414.

v. cellular morphogenesis during differentiation; GO:0000904.

Together these GSEA pathways point to genes that are involved

in maintaining a stable cellular environment. The complete set of

GSEA pathways and their 45 pathway genes from these 542 genes

are displayed in Figure S1.

The GSEA results for the genes having expression greater in

ASPS-1 versus ASPS-tissue samples (e.g. below the 1st PC in

Figure 2) identify pathways associated with;

i. cell cycle phase; GO:0022403.

ii. cell cycle; KEGG cell cycle

iii. meiotic cell cycle; GO:0051321l.

iv. m_phase; GO:0000279.

v. meiotic recombination; GO:0007131.

vi. meiosis_I; GO:0007127.

vii. cell cycle checkpoint; GO:0000075.

viii. DNA recombination; GO:0006310.

ix. homologous recombination; KEGG Homologous recombi-

nation

x. p53 signaling pathway; KEGG p53 signaling pathway

These genetic signals point to pathways that support cellular

maintenance and growth. The complete set of GSEA pathways

and their 24 pathway genes derived from these 702 genes are listed

in Figure S2.

GSEA Results for clustered subsets of pooled ASPS-tissue
and ASPS-1 genes
The results in the two preceding paragraphs provide a coarse

picture of the GSEA pathways and their associated genes

identified from a global assessment of the 1244 genes in pooled

ASPS-tissue and ASPS-1 that are not associated with the 1st PC.

To obtain a more refined perspective of ASPS-specific pathways,

simple hierarchical clustering can be used to identify gene subsets

within this dataset. Figure 3 (upper panel) displays the

dendrogram (Euclidian distance metric and Wards clustering) for

the pooled ASPS-tissue samples. Clustering divides the 542 genes

in the complete ASPS-tissue set into two groups, comprised of

three and two sub-clades, respectively (see Figure 3, lower panel,

for sub-clade members). The GSEA pathways and their associated

genes for all dendrogram meta-clades (shortened hereafter to

DEND meta-clade to distinguish these results from the SOM

results to follow where meta-clades will be referred to as SOM

meta-clades) are listed in Table S1. DEND meta-clade A, colored

black in Figure 3 (lower panel), has GSEA pathways comprised

of the extracellular region, Biocarta ASHO and KEGG viral

myocarditis. Here hemoglobin (HBA1, HBA2), myosin (MYH11)

and collagen (COL4A5, COL6A3) related pathway genes would

be expected from tissue-derived samples. The clade associated

with the color green (DEND meta-clade B) identifies GSEA

pathways for enzyme inhibitory and regulatory activity, mem-

brane and cell fractions and cytosol. These pathways are also

consistent with samples taken from ASPS tissue. Noteworthy in

this and the previous set of genes (DEND meta-clade A) is that

nearly all of these pathway genes are relatively under expressed

when compared to universal RNA (i.e. universal RNA normalized

expression values below 1.0). Despite the fact that these genes are

relatively under expressed compared to universal RNA, there

normalized expressions are greater than observed for the ASPS-

tissue samples, as these measures should be largely devoid of these

genes. The clade associated with the color red (DEND meta-clade

C) identifies the GSEA pathways: positive regulation of cell

proliferation, extracellular region, chemokine activity, immune

response, inflammatory response and defense response. Notewor-

thy in their sets of pathway genes is the appearance of
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thrombospondin and various chemokines, whose presence has

been shown to inhibit neovascularization and suppress tumor

growth in breast cancer xenografts [20]. The genes associated with

the color cyan (DEND meta-clade D) identify GSEA pathways:

sarcomere, myofibril, contractile fiber part and structural constit-

uent of muscle (genes TTN and NEB), and heparin binding,

carbohydrate binding and glycosaminoglycan binding (genes

POSTN and MDK). Genes associated with the color magenta

(DEND meta-clade E) identify GSEA pathways for focal adhesion

and basolateral membrane, which include genes from the integrin

family, vascular endothelial growth factors and membrane

proteins. The gene subsets for GSEA pathways associated with

these 3 latter DEND meta-clades (C, D and E) have expressions

above their universal mRNA reference (i.e. normalized expressions

greater than 1.0). Furthermore, the genes associated with DEND

meta-clade D represent the most over expressed genes in this set; a

result consistent with previous studies [17].

Figure 4 (upper panel) displays the dendrogram (Euclidian

distance metric and Wards clustering) for clustering of ASPS-1

gene expressions. Clustering, on the basis of expression levels,

divides this gene set into three groups, each comprised of two sub-

clades (see Figure 4, lower panel, for sub-clade members). The

clade associated with the color red (DEND meta-clade H)

represents a special case, where the sub-clade colored in pink

represents the portion of this gene subset that has expression values

below universal RNA. All other meta-clades have gene expressions

above universal RNA (i.e. greater than 1.0 on the x-axis). GSEA

pathway results for all genes associated with meta-clade H are

listed in Table 1. These comprise numerous pathways associated

with cellular growth. The format of Table 1 includes GSEA

results for the probability of the occurrence of two or more genes

Figure 3. Top Panel; Dendrogram for pooled ASPS-tissue Gene Expressions. Clades are colored to identify samples associated with five
meta-clades (DEND meta-clades A, B, C, D and E). The members of DEND meta-clade A with ASPS-tissue values higher than universal RNA are
displayed in gray. All other meta-clades are comprised of genes with expression values above universal RNA (i.e. values above 1.0 on the y-axis).
Bottom Panel, ASPS-tissue versus ASPS-1 scatter plot where cluster memberships are color-coded to match the meta-clade dendrogram displayed in
top panel.
doi:10.1371/journal.pone.0048023.g003
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within a pathway and the numbers of genes within these pathways.

This example serves to illustrate the relatively high significance

(compared to the standard of p = 0.05) for these events not

representing random occurrences. The over expressed ASPS-1

genes in these pathways consist of BUB1, TTK, BIRC5, CDC23,

KIF2C and RAD52, none of which appear in the pink sub-clade

of genes under expressed with respect to universal RNA. These

genes and their associated pathways represent cellular signals that

are both over expressed relative to universal RNA and these

expressions are greater than found in the ASPS-tissue samples.

The clade associated with the color black (DEND meta-clade

F, Table S2) has GSEA pathways comprised of chromatin

assembly or disassembly, protein kinase binding, kinase binding,

negative regulation of cell adhesion, DNA damage and integrity

checkpoints. The clade associated with the color green (DEND

meta-clade G) has GSEA pathways comprised of endoplasmic

reticulum and pathways associated with lipid, glycolipid and

alcohol metabolism. Genes associated with the cyan colored sub-

clade (DEND meta-clade I) represent the extremes of over

expression relative to universal RNA, and expression values much

greater when compared to the ASPS-tissue samples. All of these

GSEA pathways are related to the cell cycle and include the

pathway genes CHK1, RAD50 and RAD51L3. The genes

associated with the magenta colored sub-clade (meta-clade J) also

comprise genes that are highly over expressed with respect to

universal RNA and have higher expression in ASPS-1 when

compared to the ASPS-tissue samples. These GSEA pathways

include leukocyte chemotaxis and leukocyte migration, transmem-

brane receptor protein tyrosine kinase activity, transmembrane

receptor protein kinase activity, protein tyrosine kinase activity,

protein tyrosine kinase activity and KEGG renal cell carcinoma;

all containing the pathway genes MET and EPHA5. These latter

Figure 4. Top Panel, dendrogram for ASPS-1 gene expression. Clades are colored to identify samples associated with five meta-clade
memberships (DEND meta-clades F-J). DEND meta-clade members with gene expressions lower than their universal RNA are highlighted in pink.
Bottom Panel, ASPS-tissue versus ASPS-1 scatter plot where meta-clade memberships are color-coded to match the dendrogram displayed in the top
panel.
doi:10.1371/journal.pone.0048023.g004
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GSEA pathways suggest the involvement of chemokines and

tyrosine kinases, either in the etiology or diagnosis of ASPS [21]

or/and as potential therapeutic targets (Phase II Study of

Cediranib (AZD2171) in Patients With Alveolar Soft Part

Sarcoma, NCI-09-C-0192, NCT00942877).

These findings indicate that genes over expressed in the pooled

ASPS-tissue samples relative to ASPS-1, and over expressed with

respect to universal RNA, point to pathways related to wound

healing that include immune, chemokine and metabolic responses,

while genes associated with ASPS-1 and over expressed with

respect to universal RNA point to pathways involved in cellular

proliferation. Evident from these clustering steps is the association

of gene subsets, based only on differential gene expression, that are

related to different GSEA pathways. In the next section the

analysis will focus on the individual patient data, combined with

the RT-PCR measures of the ASPL-TFE3 fusion transcript in

these patients.

SOM Analysis
Self-organizing maps (SOMs) represent a powerful tool for

analyzing multi-dimensional, noisy data into a form that facilitates

visualization of clustering results. The upper left panel in Figure 5

displays the SOM (row dimension 20 column dimension 12 to

yield 240 clusters) generated from individual patient gene

expression measurements in ASPS-tissue (1244 genes 7 patients

2 replicates). The SOM has been colored in a gray scale identify

the similarity of data assigned to each SOM cluster when

compared to its nearest SOM neighbors (dark:most similar;

white:least similar). To facilitate comparisons of the SOM results

with the results derived from the earlier analysis of pooled patient

data (ASPS-tissue) versus ASPS-1, all the SOM clusters have been

used to generate a SOM meta-clustering of this data. Here the

representative cluster for each of the 240 SOM nodes provides

input for hierarchical clustering. A dendrogram of the SOM meta-

clusters is displayed in the upper right panel of Figure 5. This tree

has been arbitrarily clipped to display only ten meta-clades. The

SOM regions for each meta-clade are displayed as white

boundaries in the upper left panel. This result finds, for example,

that SOM meta-clades 6, 7 and 10 share similarity in their pattern

of gene expressions. Consistent with the SOM dendrogram, SOM

meta-clades 6, 7 and 10 are also nearest neighbors. The lower left

panel displays the patient gene expression data for these 1244

genes. The patient replicates appear as adjacent columns and

provide an indication of the reproducibility of these values. Data

from the seven patient tumors is ordered arbitrarily along the x-

axis. This gene expression data has been sorted from top to bottom

to correspond to the SOM meta-clade groupings appearing in the

upper panels. For example, SOM meta-clade 1 and SOM meta-

clade 3, adjacent branches in the SOM dendrogram, and SOM

neighbors, appear as rows 527–646 and rows 647–787, respec-

tively, in the display of the patient data. The patient data for these

genes’ expressions display a pattern, as, for example, with column

11–12, corresponding to the 6th patient’s measurements, having

relatively high gene expressions for rows 527–787, when compared

to the other patients’ data. In general, this patchwork appearance

serves as an illustration of the heterogeneity between patient

measurements, and as the basis for dividing these genes into

groups, each sharing a similar pattern across the patient samples.

This patchwork appearance lends further support to the premise

that a linear model may serve to capture patient-specific

differences in gene expressions for later comparisons with RT-

PCR data.

It is important to emphasize that the 1244 genes used for SOM

analysis were derived collectively from the ASPS-tissue (i.e. patient

pooled) and ASPS-1 data. Attempts to derive this set of genes by

sampling the tails of over and under expressed genes from only the

ASPS-tissue data were able to identify many of the over expressed

genes within this set of 1244, yet few of the under expressed genes.

Although not pursued in detail, the majority of these under

expressed genes appear in the lower left portion of ASPS-tissue

versus ASPS-1 scatterplots in Figure 2.

The lower right panel in Figure 5 displays a histogram of the

ratio of gene counts from the ASPS-tissue overexpressed genes to

the ASPS-1 overexpressed genes, determined for each SOM meta-

clade. Values above or below the horizontal dashed line

correspond to cases where the ASPS-tissue genes are in greater

or lesser abundance, respectively, when compared to the ASPS-1

gene set. The remarkable finding is that the pooled and individual

genes can be segregated into groups comprised of similar genes.

For example, SOM meta-clades 7, 6, 10, 3 and 5 include patient

records abundant in genes over expressed in ASPS-tissue samples

when compared to ASPS-1. These SOM meta-clades appear as a

diagonal band running midway through the SOM from the 10

o’clock to 4 o’clock position. Conversely, the SOM region

corresponding to instances where ASPS-1 gene expressions are

greater than ASPS-tissue gene expressions appear above and

below this diagonal region. This result provides motivation for

subjecting these packets of SOM clustered genes to GSEA

analysis, in the same manner as previously used for the pooled

patient gene sets versus ASPS-1 gene sets.

Genes in SOM meta-clades most abundant in ASPS-tissue

genes (SOM meta-clades 7, 6, 10, 3 and 5) yield the GSEA

pathways that, for the most part, recapitulate the results for the

pooled ASPS-tissue data. These pathways are dominated by

cellular processes involving the extracellular matrix and adhesion.

Table S3 lists these GSEA pathways. Genes in the remaining

SOM meta-clades find GSEA pathways consistent with those

found for the ASPS-1 data set. These pathways are dominated by

cell cycle and mitotic processes. Table S4 lists these GSEA

pathways. Noteworthy in these results is that gene subsets provided

for GSEA have not been segregated in any way other than to use

the individual patient data as input to SOM clustering. The

information contained within the individual patients’ gene

Table 1. GSEA results for DEND meta-clade H (red:pink) for
ASPS-1 over expressed genes relative to ASPS-tissue.

Name ID # genes P-val

red:pink DEND meta-clade H

Regulation of mitosis GO:0007088 4 3.88E-04

M phase GO:0000279 6 4.23E-04

Mitosis GO:0007067 5 6.85E-04

M phase of mitotic cell cycle GO:0000087 5 7.65E-04

Cell cycle phase GO:0022403 6 3.42E-03

Spindle GO:0005819. 3 4.02E-03

Regulation of cell cycle GO:0051726 6 4.42E-03

Cell cycle GO:0007049 8 5.12E-03

KEGG cell cycle Cell cycle 5 5.14E-03

Cell cycle process GO:0022402 6 5.91E-03

Column 1 provides a short description of the pathway, column 2 the pathway
identifier, column 3 the number of genes from ASPS-1 in this sub-clade that
occurs within each pathway, column 4 the statistical significance of this
occurrence.
doi:10.1371/journal.pone.0048023.t001
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expressions appears sufficient to identify ASPS-specific pathways

similar to those found from the pooled ASPS-tissue versus ASPS-1

data sets.

The next step in the analysis identifies mutual GSEA pathways

determined from the analysis of pooled patient (ASPS-tissue) and

cellular gene expression (ASPS-1) data versus the SOM meta-

clustering of the individual patient samples. The general premise

here is that the mutual appearance of selected pathways derived

from these two independent approaches will focus these pathways

and their associated pathway gene expressions into ASPS-specific

genetic signatures. Figure 6 displays a 3-dimensional histogram

for the co-occurrence of GSEA pathways (number count appears

as the Z-axis) in DEND meta-clades A-J (x-axis) and SOM meta-

clades 1–10 (y-axis). Twenty-nine GSEA pathways are found to

co-exist at least once within the 10 DEND meta-clades and 10

SOM meta-clades. The mutual pathways and their associated

gene subsets for these cases are listed in Table S5, ordered from

largest (n = 5) to smallest (n = 1) counts of mutual pathways. The

six instances where more than one common GSEA pathway exists

have their number counts at the top of each histogram. The genes

listed in the third column of Table S5 identify the gene subsets

defining each GSEA pathway. Asterisks identify pathway genes

Figure 5. Top left panel displays the SOM for the 1244 individual patient gene expressions from ASPS-tissue and ASPS-1 (1244
genes). SOM colors indicate the similarity of gene measurements between SOM clusters (dark: similar light:less similar). Dendrogram (clipped at 10
SOM meta-clades) from hierarchical clustering of SOM codebook vectors is displayed in the upper right panel. Corresponding SOM meta-clades are
identified on the SOM by the white boundary lines. Matching labels appear on the SOM regions and SOM dendrogram. Lower left panel displays the
gene expression measurements for the 1244 ASPS-tissue genes for 7 patients, done in replicate. Records are ordered from top to bottom from the left
to right meta-clades of the dendrogram. Record boundaries are: SOM meta-clade 7; rows 1–41, SOM meta-clade 6; rows 42–256, SOM meta-clade 10;
rows 257–340, SOM meta-clade 2; rows 341–425, SOM meta-clade 9; rows 426–526, SOM meta-clade 1; rows 527–646), SOM meta-clade 3; rows 647–
787, SOM meta-clade 5; rows 788–934, SOM meta-clade 8; rows 935–1143, SOM meta-clade 4; rows 1144–1244, Lower right panel displays the
histogram for the ratio of counts of genes in the ASPS-tissue set to counts of genes in the ASPS-1 set. Dashed horizontal line defines cases where
equal fractions of ASPS-tissue and ASPS-cell genes occur in a meta-clade. Here SOM meta-clades (7, 6, 10, 3 and 5) represent ASPS-tissue genes
greater in abundance than found for ASPS-1 genes.
doi:10.1371/journal.pone.0048023.g005
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found mutually from the two different methods of clustering

analysis.

These results find that parallel data analyses converge to a

mutual set of 29 GSEA pathways and 75 genes that characterize

this set of ASPS gene expression measurements. Cell-cycle related

processes represent a large share of these pathways, with the

finding of a small subset of genes in common to these pathways

(denoted with asterisks*), including; BUB1, CCNB1, KIF2C, IL8

and RAB51L3 (cell cycle) and MET, EPHA5, FLT1, NRP2 and

ACVR1C (receptor protein kinase pathways). Tumor stromal

pathways are also in evidence with the common genes including;

TLR4, TLR7, HLA-DRA, HLA-DQA1, CXCR4, FOS and

TGFB2 (immune surveillance and chemokine pathways) and NF2,

ITGA7, PGF, ITGA4, PDGFD and PARVA (focal adhesion).

These results suggest a connection between pathways related to

cell survival and pathways related to a supportive stromal

environment.

Incorporation of RT-PCR ASPL-TFE3 Fusion Data
The individual patient gene expression data can be analyzed

further with RT-PCR determinations of the ASPL-TFE3 fusion

transcript. The upper left panel in Figure 7 displays the 20612

SOM used earlier to analyze the PCA-derived 1244 differentially

expressed genes. The white boundary lines, associated with the

previously derived SOM meta-clades, subdivide the patient’s gene

expression data. The upper right panel in Figure 7 displays this

SOM, with its clusters now colored in a gray scale to indicate the

Pearson correlation coefficient (PCC) of the patient’s ASPL-TFE3

fusion transcript with patient’s gene expressions within each SOM

cluster. Here the SOM clusters are colored from most positive

(white) to most negative (black) correlations between the average of

patient gene expressions within a SOM cluster and the ASPL-

TFE3 fusion transcript. The most positively correlated region lies

in SOM meta-clade 5 and also corresponds with the SOM regions

most associated with the genes over expressed in the ASPS-tissue

compared to ASPS-1. This result supports the use of ASPS tissue

data as important for identifying ASPS-specific pathways and

genes. However, the second most positively correlated SOM

region overlaps portions of SOM meta-clades 3, 4 and 8, all of

which correspond to SOM regions where genes are over expressed

in ASPS-1 versus ASPS-tissue samples. In contrast, the SOM

region exhibiting the most negative correlation with the ASPL-

TFE3 fusion transcript data lies in SOM meta-clade 2, associated

with genes over expressed in the ASPS-tissue versus ASPS-1. The

second most negatively correlated SOM region corresponds to

SOM meta-clade 1; a region comprised mainly of genes over

expressed in the ASPS-1 samples versus ASPS-tissue samples.

Examples of individual correlations are displayed in the lower

panels of Figure 7; where the left and right plots display

negatively and positively correlated genes, respectively. As

expected, patient HGF gene expression is strongly negatively

correlated with the ASPL-TFE3 fusion transcript. Although not

shown here, RAB27A also shares this strong negative correlation;

both gene’s expression are known to be directly [22] or indirectly

[23] under the control of TFE3. FLT1, the fms-related tyrosine

kinase 1 (vascular endothelial growth factor/vascular permeability

factor receptor) member of the family of receptor tyrosine kinases

(RTKs) also displays a strong positive correlation with the ASPL-

TFE3 fusion transcript. This positive correlation has been the basis

for proposing anti-angiogeneic-based therapeutic strategies

[18,19]. The proto-oncogene MET, also known as hepatocyte

growth factor receptor, HGRF, is in the tyrosine kinase family of

oncogenes, and also is positively correlated with the ASPL-TFE3

fusion transcript. Both HGF and HGFR have been have been

proposed as targets for cancer therapy [24].

The convergent pathways and genes derived from this collective

ASPS data set, listed in Table S5, can be examined for cases

Figure 6. Three-dimensional histogram for count of pathways (pw cnt) shared from the GSEA analysis of gene expressions derived
from the patient pooled/ASPS-1 data (axis labels DEND meta-clade, with clade letters A–J) and the individual patient data (axis
labeled SOM meta-clades, with meta-clades numbered 1–10). Genes designated with an asterisk are common to pathways identified using
the ASPS-tissue: ASPS-1 data set and the individual patient dataset.
doi:10.1371/journal.pone.0048023.g006
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where the SOM meta-clades overlap with SOM meta-clades

found to be most correlated with the ASPL-TFE3 fusion transcript

data. Pathways extracted from genes associated with SOM meta-

clades 3, 4, 5, 8 and 9 are listed in Table 2. These ASPS-specific

pathways feature tyrosine-kinase activity, immune surveillance and

focal adhesion amongst those associated with gene expressions

most positively correlated with transcript levels. These pathways,

and their associated genes, represent potential ASPS therapeutic

targets.

Table 3 lists the results from extracting pathways associated

with negative ASPL-TFE3 gene correlations. The isolation of cell-

cycle related pathways represents a most unusual result. The

pathways associated with SOM meta-clade 1 and 7 are derived

from instances where their component genes are all over expressed

with respect to universal RNA and have their expression values

greatest in ASPS-1, when compared to the ASPS-tissue samples.

Apparently the cell cycle control imposed by TFE3 alone is

diminished by its fusion transcript, however the genetic compo-

nents of the cellular machinery needed for proliferation are

responding to signals directing cellular mitosis and meiosis.

Accordingly, these genes, albeit over expressed with respect to

universal RNA, are negatively correlated with the ASPL-TFE3

fusion transcript. Hence most of the necessary components exist to

perform cellular proliferation functions, but the transcriptional

directive from TFE3 appears to be absent.

Discussion

Collective analysis of patient ASPS and ASPS-1 gene expres-

sions and the patient-derived ASPL-TFE3 fusion transcript yielded

a consistent genetic picture of ASPS-specific pathways and their

associated genes. The cellular processes affected by the non-

reciprocal t(X;17) chromosomal translocation, that can be

Figure 7. Upper left panel displays SOM (20612) based on the 1244614 patient gene measurements. Colors represent the PCCs of the
ASPL-TFE3 fusion transcript values against the SOM codebook vectors for each cluster. These codebook vectors represent the best representative of
the gene expressions contained within a SOM cluster (typically 5–10 genes). White boundaries correspond to SOM meta-clades. Upper right panel
displays the same SOM image with the boundary line (white with black inlay) identifying clusters with the most significant positive PCC values (ASPL-
TFE3 fusion transcript versus patient gene expressions). The region scribed by this boundary encompasses most of SOM meta-clade 5, and includes
portions of SOM meta-clades 3, 4, 8 and 9. Lower panels plot patient ASPL-TFE3 fusion transcript to gene expressions for selected genes. Lower left
and right panels depict examples of negatively and positively correlated genes, respectively. Positive: FLT1:SOM meta-clade 8 MET:SOM meta-clade 9,
PGF SOM meta-clade 3, NBN SOM meta-clade 8. Negative: HGF:SOM meta-clade 2, BUB1:SOM meta-clade 1, RAD51L1:SOM meta-clade 7, TTK:SOM
meta-clade 1.
doi:10.1371/journal.pone.0048023.g007
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collectively linked to measures of gene expression derived

independently from ASPS patient tissue and an ASPS cell, identify

aberrant regulation of the cell-cycle and tissue stroma-related

adhesion pathways as ASPS genetic signatures. These pathways

largely reflect the nature of what is known about these tumor cells

and their behavior. Relating these pathways to the biology of

ASPS is an essential step towards understanding their roles in this

disease and proposing therapeutic strategies. An obvious first step

is to explore the occurrence of the 75 genes listed in Table S5

according to their chromosomal origins. Figure 8 displays a bar

chart for the count of these genes according to chromosome.

Noteworthy in this plot is the existence of 5 genes associated with

chromosome 17 and 2 genes with chromosome X (Table 4). The

genes within the same cytogenetic band as TFE3 (chr17q25)

include ARHGDIA and BIRC5, functioning, respectively, in

pathways related to cell adhesion and cell cycle. Consistent with

the observed negative correlation between TFE3 regulated gene

expressions and ASPL-TFE3 transcript levels, this analysis

identifies genes such as HGF, ARHGDIA and BIRC5, albeit at

a significance level of p,0.1. The appearance of BIRC5 on

cytogenetic band 17q25 and its negative correlation between

ASPL-TFE3 fusion transcript levels and patients’ gene expression,

clearly points to an important role of the cell cycle in ASPS, either

directly through BIRC5, or more generally through other genes

involved in the cell cycle. Table 4 and Table S5 both include the

GSEA cell cycle pathways of meiosis, meiotic cell cycle, meiotic

recombination and DNA recombination and the genes CHK1,

RAD50, RAD51L3 and RAD50L1. Amongst this list of genes is

the appearance of CHK1, which encodes a protein kinase

required for DNA damage checkpoint control; also found to be

over expressed in ASPS-1 relative to ASPS tissue. This checkpoint

control may be linked to the earlier described elevation in gene

expression for cell cycle genes, and to the arrested growth rate of

ASPS tumor cells. Recently CHK1 inhibitors have been proposed

as cancer therapeutics on the basis of their ability to activate cell

cycle checkpoints in p53 defective cancer cells [25]. Others have

proposed that the elevated levels of CHK1 in some cancers,

postulated to result from reduced capacity for its degradation,

could provide a selective advantage to cancer cells by conferring

chemo-resistance [26]. Ma et al. [25] and Reed and Altiok [27]

propose that CHK1 inhibition may release its checkpoint function,

thereby sensitizing tumor cells to anticancer agents. This

possibility, combined with the current analyses’ emphasis on the

role of cell cycle in ASPS, warrants further investigation for CHK1

inhibitors in the treatment of these chemo-resistant ASPS tumor

cells.

Other interesting genes implicated in these results are CCL4

and CDC6, located in the TFE3 neighboring cytogenetic band,

chr17q21, with cellular functions related to protein tyrosine kinase

activity and cell cycle. CCL4, also known as macrophage

inflammatory protein 1-b, is a regulator of macrophage migration

and signals through the G-protein coupled beta chemokine

receptor, CCR5. Protein kinases linked to this chemokine family

include the SRC kinase Lyn, PI3K, focal adhesion related kinase

Table 2. Convergent pathways where the SOM meta-clades overlap with SOM clades found to be most positively correlated with
the ASPL-TFE3 fusion transcript data.

SOM meta-clade Pathway

8 Protein tyrosine kinase activity

8 Transmembrane receptor protein kinase activity

8 Transmembrane receptor protein tyrosine kinase activity

8 DNA damage response signal transduction by p53 class mediator

5 Cellular morphogenesis during differentiation

5 KEGG intestinal immune network for IgA production

5 KEGG Leishmania infection

3 BIOCARTA cardiac EGF pathway

3 Focal adhesion

9 Focal adhesion

Pathways extracted from genes associated with SOM meta-clades 3, 5, 3 and 9.
doi:10.1371/journal.pone.0048023.t002

Table 3. Convergent pathways where the SOM meta-clades
overlap with SOM clades found to be most negatively
correlated with the ASPL-TFE3 fusion transcript data.

SOM meta-clade Pathway

1 KEGG cell cycle

1 Mitosis

1 M phase of mitotic cell cycle

1 regulation of cell cycle

1 regulation of mitosis

1 leukocyte chemotaxis

1 leukocyte migration

7 DNA recombination

7 meiosis I

7 meiotic cell cycle

7 meiotic recombination

6 interleukin 8 biosynthetic process

6 negative regulation of cell adhesion

2 alcohol metabolic process

10 BIOCARTA Toll pathway

10 KEGG pantothenate and CoA
biosynthesis

10 BIOCARTA ASHP pathway

Pathways are extracted from genes associated with SOM meta-clades 1, 7, 6, 2,
10.
doi:10.1371/journal.pone.0048023.t003
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Pyk2, and members of the MAPK family. siRNA gene silencing

demonstrated that chemotaxis requires activation of Pyk2, PI3K

p85, and Lyn, as well as MAPK ERK. MIP-1b activation of

CCR5 triggered translocation of Pyk2 and PI3K p85 from the

cytoplasm to co-localize with Lyn, at the plasma membrane, with

formation of a multi-molecular complex. In addition, arrestins,

also recruited to CCR5, impaired complex formation and

macrophage chemotaxis toward MIP-1b when down-regulated.

Together, these results identify a novel mechanism of chemokine

receptor regulation of chemotaxis linking CCR5 to multiple

downstream signaling molecules [28].

Localization of CCL4 to chromosome 17q21, raises a number

of interesting possibilities for future experiments. CCL4 is also a

member of the family of beta chemokines, and functions in

pathways associated with protein tyrosine kinase activity (see

Table 4). Recently, beta chemokine CCL5 neutralization has

been found to restrict cancer cell growth in colorectal cancer [29].

This study explored tumor-stromal communications that favor

tumor development by signaling growth factors, angiogenesis,

modulation of the ECM, and recruitment of additional stromal

cells as part of the immune evasion mechanisms of cancer. Colon

cancer promoters, which also correlate with tumor grade and

shorter patient survival, include VEGF, FGF and PDGF.

Increasing evidence supports a role of chemokines produced

within the tumor microenvironment in tumor pathogenesis [30–

33]. One study reports clinical efficacy when treating an ASPS

patient with interferon alpha 2a [34]; an effect possibly mediated

by the role of interferons in angiogenesis [35] or by the capacity of

interferons to activate specific signaling cascades involving

chemokines [36].

CCL4 is also a member of the family of beta chemokines that

may function in ASPS in ways similar to those observed for CCL5

in colon cancer. Recent studies find activation of phosphoinositide

3-kinases by the CCR4 ligand [37], a result similar to that

reported above for CCL5. A comparison of CCL5 patient

expression with ASPL-TFE3 fusion transcript levels finds a strong

positive correlation (r = 0.78 p= 0.0036), placing it above the

observed positive correlation for FLT1. CDC6, also on chr17q21,

has expression values positively correlated with ASPL-TFE3 fusion

transcript, albeit with a significance value above the standard

threshold (r = 0.19, p = 0.12). RAD51L3, also located in chr17q21,

functions in pathways related to cellular meiosis and exhibits a

strong negative correlation with the ASPL-TFE3 fusion transcript.

Collectively these results can be used to hypothesize experimental

modulation of pathways associated with genes found on chromo-

some 17 as a means to identify potential therapeutic targets in the

treatment of ASPS.

Many of the results presented here are consistent with recent

reports describing targeted therapies for the treatment of soft tissue

sarcomas [38,39]. Stacchiotti et al. [40] found direct evidence for

an antitumor effect from treatment of advanced ASPS with

sunitinib. Their antiproliferative and biochemical assays found

sunitinib to markedly impair ASPS cell growth and switch off

PDGFBR. The results presented here (Table S5) find a role for

platelet-derived growth factor proteins in focal adhesion pathways.

Their study [40] further confirmed a physical association between

PDGFBR targets in ASPS cells, as well as MET-ligand dependent

activation. A recent report [41] finds that the MET inhibitor

ARQ197 yielded a response in a phase II study of clear cell

sarcoma. These examples, and others (see the review by Taylor et

al. [42]) are consistent with the findings here of the importance of

protein tyrosine kinase pathways, and in particular the role of

MET, as ASPS-specific pathways and an ASPS-specific gene,

respectively (Table S5). Early studies found an association

between certain sarcomas and insulin growth factor (IGF)

signaling [43,44]. Recent developments now find that IGF and

insulin receptors facilitate sufficient cross-talk between various

pathways to consider them as important anticancer targets. In

Figure 8. Bar chart for number of genes per chromosome.
Genes are selected from Table S5 (n = 75 genes).
doi:10.1371/journal.pone.0048023.g008

Table 4. Details for genes associated with Chromosomes 17 and X.

Gene Cytoband GSEA p-value Gene Description GSEA Pathway Description

ARHGDIA chr17q25 5.53e-4 Rho GDP dissociation inhibitor (GDI) alpha Negative regulation of cell adhesion

BIRC5 chr17q25 5.53e-4 baculoviral IAP repeat-containing 5 (survivin) Kegg cell cycle, mitosis, M-phase of
mitotic cycle, regulation of cell cycle

CCL4 chr17q21 1.34e-3 chemokine (C-C motif) ligand 4 Protein tyrosine kinase activity

CDC6 chr17q21 1.34e-3 CDC6 cell division cycle 6 homolog (S. cerevisiae) Kegg cell cycle

RAD51L3 chr17q11 RAD51-like 3 (S. cerevisiae) Meiosis_I, meiotic cell cycle

KAL1 chrxp22 4.41e-5 Kallmann syndrome 1 sequence Cellular morphogenesis during
differentiation

TLR7 chrxp22 4.41e-5 Toll-like receptor 7 Interleukin 8 biosynthetic process

Columns include a) HUGO name, b) chromosome position, c) GSEA probability for genes in same cytoband, d) brief description of gene, and e) GSEA pathway.
doi:10.1371/journal.pone.0048023.t004
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support of this claim, a mechanism has been proposed linking the

translocation associated with Ewings sarcoma with the IGF

binding protein 3 (IGFBP3) promoter, reducing IGFBP3 produc-

tion and effectively up-regulating IFG1 [45–47]. The results

reported here (Table S5) implicate IGF1 as an ASPS-specific

target with an important role in focal adhesion pathways. Finally,

the earlier mention here of cediranib (see section GSEA Results for

clustered subsets of pooled ASPS-tissue and ASPS-1 genes:), can now be

updated with the finding of numerous objective remissions,

apparently related to its role as a protein tyrosine kinase inhibitor

of VEGF and PDGFR [48]. While the reported role of cediranib

appears to involve inhibition of angiogenesis, the analysis here

points to an additional role in focal adhesion as well as the

possibility of interaction with chemokines that affect tyrosine

kinase activity.

In summary, the results from bioinformatics mining of the

collective ASPS data raise a number of testable hypotheses

regarding a limited set of cellular pathways as potential therapeutic

targets in the treatment of ASPS. The linear model introduced

here to detect important genetic signals is generally applicable to

instances where heterogeneous tissue samples are used for gene

expression profiling.

Supporting Information

Figure S1 GSEA output for genes (y-axis) and pathways
(x-axis). Black boxes indicate occurrence of 2 or more genes in a

GSEA pathway. GSEA results are derived from the 542 filtered

genes above the 1st PC (See Figure 2). These genes are over

expressed in ASPS-tissue relative to ASPS-1.

(DOC)

Figure S2 GSEA output for genes (y-axis) and pathways
(x-axis). Black boxes indicate occurrence of 2 or more genes in a

GSEA pathway. GSEA results are derived from the 702 filtered

genes below the 1st PC (See Figure 2). These genes are over

expressed in ASPS-1 relative to ASPS-tissue.

(DOC)

Table S1 GSEA Pathways and Pathway Genes for the DEND

meta-clades derived from the clustering of ASPS-tissue genes (See

Figure 3).

(DOC)

Table S2 GSEA Pathways and Pathway Genes for the DEND

meta-clades derived from the clustering of ASPS-1 genes (See

Figure 4).

(DOC)

Table S3 GSEA pathways for genes associated with SOM meta-

clades 7, 6, 10, 3 and 5.

(DOC)

Table S4 GSEA pathways for genes associated with SOM meta-

clades 2,9,1,8 and 4.

(DOC)

Table S5 Results for convergent pathways derived from the

pooled ASPS-1 and ASPS-tissue analysis and the SOM-based

analysis of individual patient gene expressions. Column 1 lists the

meta-clade identifiers (DEND meta-clade: SOM meta-clade),

column 2 lists the GSEA pathways and column 3 lists the pathway

genes identified from each analysis.

(DOC)
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