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Abstract

One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation.
OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects.
MicroRNAs (miRNAs) are ,22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such
as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex
disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction
methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA ‘‘master regulators’’ (miR-22 and
miR-125) and one candidate pair of ‘‘master co-regulators’’ (miR-344-5p/484 and miR-488) that may influence the expression
of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells
grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs)
that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy
individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to
correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p =
0.045), total homocysteine levels (tHcy) (p = 0.033), serum B12 (p , 0.0001), holo transcobalamin (p , 0.0001) and total
transcobalamin (p , 0.0001); and between MTHFR rs1537514 and red blood cell folate (p , 0.0001). However, upon further
genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless,
our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM.
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Introduction

One-carbon metabolism (OCM) comprises a set of reactions

involving folate coenzymes and is critical for essential processes

including DNA methylation, cell proliferation, and the synthesis of

nucleic and amino acids. Insufficient folate or vitamin B12 intake,

genetic variation [1], or drug interference [2] can disrupt normal

OCM function. OCM dysfunction is linked to severe health

complications such as cancer [3,4], anemia [5] and neural tube

defects [6]. Folate-mediated OCM also influences levels of the

non-protein amino acid, homocysteine. Elevated homocysteine

levels have been linked to an increased risk for neural tube defects

[7]. Recent studies have revealed widespread changes in gene

expression under folate-deficient conditions [8]. However, the

underlying molecular mechanisms of these changes are poorly

understood.

MicroRNAs (miRNAs) are ,22 nucleotide non-coding RNAs

that regulate eukaryotic gene expression at the post-transcriptional

level [9]. Specifically, they associate with the RNA Induced

Silencing Complex (RISC) and guide it to target sites within

mRNAs. Once bound to mRNA, RISC induces gene repression

through a variety of mechanisms, including direct mRNA cleavage

and translational inhibition [10,11]. Most of the ,950 currently

known human miRNAs [12] are predicted to target hundreds of

genes, and many genes are targeted by multiple miRNAs [9,13].

miRNAs have been implicated in a wide array of fundamental

biological processes, such as development [14], lipid metabolism

[15], response to environmental stress [16] and innate immunity

[17]. Accordingly, mis-regulation of miRNA expression and/or

activity has been linked to many diseases including various cancers

and cardiovascular conditions [18], and is likely to underlie the

molecular etiology of many other disorders.

The role of miRNAs in the modulation of folate-mediated

OCM has not been extensively investigated. However, initial

studies suggest that folate influences miRNA expression; human

lymphoblastoid cells grown under folate-deficient conditions
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exhibit significant changes in the levels of 24 miRNAs [19]. Given

this observation, we examined the possibility of miRNA-mediated

regulation of the OCM pathway. Specifically, we applied a

computational strategy to predict whether any known human

miRNAs are candidate ‘‘master regulators’’ of the genes most

commonly associated with OCM. In a complementary analysis,

we also assessed whether genetic variants within predicted miRNA

target sites in OCM genes are associated with relevant metabolites.

Methods

miRNA target predictions
We used the TargetScanS 5.1 algorithm [20] for genome-wide

miRNA target prediction. Target predictions were filtered further

based on conservation of the miRNA and the 6–8 nt target site.

For our primary analyses, we defined conservation as precisely

shared nucleotide content between human and two of three other

mammalian species (rat, mouse and dog).

Discovery of candidate master miRNA regulators of OCM
genes

We implemented a Monte-Carlo algorithm to identify miRNAs

that are predicted to target 42 OCM genes significantly more than

expected by chance. First, we randomly selected 42 genes from the

human genome under the condition that they have at least one

predicted miRNA target site. Then we calculated the number of

genes from this randomly selected set that each known human

miRNA is predicted to target. By repeating this simulation 10,000

times, we generated a background distribution of the number of

predicted target genes for each miRNA, which we then used to

calculate an empirical p-value for the number of predicted OCM

target genes. We increased the number of simulations (up to

10,000,000) in specific instances in order to obtain a non-zero

empirical p-value. To account for differences in the average 39

UTR length between OCM genes and the randomly selected

genes in each simulation, we normalized the number of predicted

target genes to the average 39 UTR length.

The Trinity Student Study (TSS) Cohort
A population of 2,506 healthy, ethnically Irish individuals

consisting of students attending University of Dublin, Trinity

College and aged between 18 and 28 years old was recruited over a

period of one academic year (TSS cohort). Each participant

completed a questionnaire regarding intake of relevant supplements

and fortified foods, and gave 30 mL of blood. Genomic DNA was

extracted from all samples using a Qiagen QIAamp DNA Blood

Mini Kit or a Qiagen DNeasy Kit (Qiagen, UK). Serum folate, red

cell folate and vitamin B12 were measured by microbiological assays

as previously described [21,22]. Holotranscobalamin II (holoTC)

was directly measured with a commercial, monoclonal technique

(Abbott AxSYM, Microparticle Enzyme Immunoassay); total

transcobalamin II (total TC) was measured with the same technique

after first saturating the protein with cyanocobalamin. Levels of total

homocysteine (tHcy), methionine, and methylmalonic acid (MMA)

were measured at Bevital AS (www.bevital.no). Ethical approval was

obtained from the Dublin Federated Hospitals Research Ethics

Committee, which is affiliated with TCD and reviewed by the

Office of Human Subjects Research at the National Institutes of

Health. Written informed consent was obtained from the

participants before commencing the study.

SNP selection
To identify single nucleotide polymorphisms (SNPs) that might

influence miRNA targeting efficiency, we cross-referenced the

locations of all SNPs with a minor allele frequency . 0.05 from

HapMap Phase III [23] and dbSNP v131 [24] against the

locations of all predicted miRNA target sites in the 39 UTRs of 42

OCM-related mRNAs. This yielded 21 SNPs; however, due to

primer incompatibility with multiplex design or assay failure of the

original SNP, proxies (r2 . 0.95) were selected for 3 of these SNPs.

In addition to these 21 SNPs in miRNA binding sites we also

tested two SNPs with previously reported functional relevance:

TCblR E88del [25] and MTHFR C677T [1].

Genotyping
Genotypes for all 21 variants were determined by allele-specific

extension product mass, detected via matrix-assisted laser

desorption/ionization – time of flight (MALDI-TOF) mass

spectrometry after undergoing iPlex assay chemistry (Sequenom,

San Diego, CA, USA). Primer sequences and assay conditions are

available upon request.

Out of the 21 variants, 19 were genotyped successfully, 17

passed quality control criteria, and 15 were confirmed as

polymorphic in our sample set and were tested for metabolite

associations. Individual assay quality was assessed based on call

rate, re-genotyping concordance and population fit to Hardy-

Weinberg equilibrium (HWE). Genotyping call rates (i.e., success

rates) averaged 97% for the TSS samples, and were at least 95%

for all accepted variants. More than 10% of TSS samples were

repeated with $98% concordance for all accepted variants. Only

one SNP (MTHFR rs1537514) was out of HWE (p,0.01). We

repeated the assay for rs1537514 using different extension primers,

and also separately genotyped a highly linked SNP (r2 = 0.973;

MTHFR rs1537516), and found that both were out of HWE

(p = 2.961025 and p = 1.961024, respectively). While genotyping

error is generally the standard explanation for a SNP not adhering

to HWE, it is unlikely in this case due to the consistency across

three separate assays. These three assays displayed similar

measures of call rates and re-genotyping concordance; therefore,

MTHFR rs1537514 was retained for further analysis.

Statistical analysis
Analysis of variance (ANOVA) was used as the primary test to

evaluate each polymorphism for association with metabolite levels.

For each SNP, only metabolites that we predicted may be affected

based on the known biological function of the gene harboring the

SNP were tested. In cases where one genotype was too rare in our

sample set to analyze by ANOVA, the Student’s t-test was used to

compare the two genotypes present. Although some metabolic

datasets were not normally distributed, our large sample sizes

allowed the use of parametric tests as a screening tool. All

significant associations via parametric tests were recapitulated with

non-parametric tests (data not shown).

Results

We selected 42 genes (Table 1) known to be involved in the

OCM pathway to test in silico for miRNA targeting. In order to

minimize the rate of false positive miRNA target site predictions,

we used the TargetScanS 5.1 algorithm [20] which was recently

identified as one of the top performing prediction strategies [26],

and then further filtered the predictions to ensure that both the

miRNA and the predicted target site are conserved between

humans and at least two of three additional mammalian species

(rat, mouse and dog). The use of a conservation filter focuses the

analysis on putative miRNA regulation of OCM genes that may

be important enough to have persisted across ,80 million years of

evolution [27].

MicroRNAs and One-Carbon Metabolism
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miR-22 is the top candidate master miRNA regulator of
OCM genes

Using these target predictions, we implemented a Monte-Carlo

algorithm to identify miRNAs that are predicted to target OCM

genes significantly more than expected by chance (Methods). The

analysis revealed that miR-22 is the top candidate master regulator

(p = 0.0126, Figure 1 and Table 2). Though not significant after

stringent Bonferroni correction for multiple testing, miR-22 is

predicted to have conserved targets in 4 important OCM genes:

SLC19A1, MAT2A, MTHFD2 and MTHFR. Notably, the last

three genes have at least one miR-22 target site that is conserved

among .5 vertebrates, including a predicted target site within

Table 1. Genes involved in one-carbon metabolism (OCM).

Symbol Function category HGNC Reference

AHCY Methylation cycle – regeneration of homocysteine 343 [38]

ALDH1L1 Distribution of one –carbon units 3978 [39]

AMT Distribution of one –carbon units -glycine cleavage 473 [40]

ATIC Purine biosynthesis - DNA synthesis 794 [41]

BHMT Homocysteine remethylation 1047 [42]

CD320 Vitamin B12 cellular receptor 16692 [43]

CUBN Vitamin B12 intestinal receptor 2548 [44]

DHFR Folate homeostasis 2861 [45]

DMGDH Distribution of one –carbon units 24475 [46]

DNMT1 DNA methylation 2976 [47]

DNMT3A DNA methylation 2978 [47]

DNMT3B DNA methylation 2979 [47]

FOLH1 Folate hydrolysis (intestinal) 3788 [48]

FOLR1 Cellular folate uptake 3791 [49]

FPGS Folate homeostasis 3824 [50]

FTCD Provision of one-carbon units – histidine catabolism 3974 [51]

GART Purine biosynthesis - DNA synthesis 4163 [52]

GGH Folate hydrolysis (lysosomal) 4248 [53]

GIF B12 absorbtion 4268 [44]

GNMT Glycine methylation – folate homeostasis 4415 [54]

MAT1A Synthesis of SAM - methylation 6903 [33]

MAT2A Synthesis of SAM - methylation 6904 [33]

MAT2B Synthesis of SAM - methylation, 6905 [33]

MMAB B12 metabolism 19331 [55]

MTFMT Mitochondrial protein synthesis –formyl-methionyl transfer 29666 [56]

MTHFD1 Distribution of one –carbon units 7432 [34]

MTHFD1L Distribution of one –carbon units 21055 [35]

MTHFD2 Distribution of one –carbon units 7434 [57]

MTHFD2L Distribution of one –carbon units 31865 [57]

MTHFR Distribution of one –carbon units 7436 [1]

MTHFS Distribution of one –carbon units 7437 [58]

MTR Homocysteine remethylation 7468 [59]

MTRR Homocysteine remethylation 7473 [60]

SARDH Distribution of one –carbon units 10536 [46]

SHMT1 Provision of one –carbon units -cytosol 10850 [61]

SHMT2 Provision of one –carbon units -mitochondrion 10852 [61]

SLC19A1 Reduced folate carrier 10937 [49]

SLC25A32 Mitochondrial folate transporter 29683 [62]

SLC46A1 Proton coupled folate transporter 30521 [49]

TCN1 B12 transport protein 11652 [28]

TCN2 B12 transport protein 11653 [28]

TYMS Thymidylate biosynthesis – DNA synthesis and repair 12441 [63]

For each gene, the gene symbol, known function, HGNC identification, and literature citations indicating involvement in OCM are provided.
doi:10.1371/journal.pone.0021851.t001
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MTHFR that is ranked in the 96th percentile according to the

TargetScanS scoring criteria. MTHFR also harbors four addi-

tional non-conserved miR-22 target sites, indicating a higher

likelihood of miR-22 targeting functionality.

We repeated the analysis with a less stringent conservation

requirement (among primates; human, rhesus, chimp) in order to

investigate whether any potential master regulators have arisen

recently in order to adapt to evolving physiology. This approach

predicts miR-22 target sites within two additional OCM genes,

TCblR and TCN2, which are involved in vitamin B12 uptake

[28]. However, because the liberal criteria leads to the prediction

of many more miR-22 target sites genome-wide, a large

proportion of which are likely false positives, the significance of

miR-22 targeting of OCM genes is diluted (p = 0.1235). None-

theless, this less stringent analysis does indeed identify a different

candidate master regulator of OCM, miR-125/351, that may

have functional relevance in relatively recent evolutionary history

(p = 0.0033; Table S1).

miR-344-5p/484 and miR-488 are the top candidate
master co-regulators of OCM genes

miRNAs often co-regulate their target genes in order to induce

effective repression [13]. Accordingly, we implemented a Monte-

Carlo algorithm to identify pairs of miRNAs that are predicted to

co-target OCM genes significantly more than expected by chance.

miR-22 does not appear in the top 30 pairs of master co-regulator

candidates, suggesting that its influence upon OCM genes may

have evolved independently from that of other miRNAs. However,

we did identify miR-344-5p/484 and miR-488 as a candidate pair

for master co-regulators (p = 0.0004). Interestingly, though both

of these miRNAs are among the top 6 candidates for individual

candidate master regulators, neither is statistically significant by

itself (Table 2, Figure 1). That their targeting of OCM genes is

significant only when considered together as a pair suggests that

their influence upon OCM may have co-evolved.

Genotype-phenotype correlation analysis for
polymorphisms within predicted miRNA target sites in
OCM genes

In order to investigate the potential phenotypic relevance of the

predicted miRNA targeting of OCM genes, we first identified all

common HapMap Phase III and dbSNP v131 single nucleotide

polymorphisms (SNPs with minor allele frequency . 5%, n = 21)

that map to within the predicted miRNA target sites. DNA

samples obtained from healthy Irish college students (n = 2,506)

were genotyped at each SNP locus. Of these 21 SNPs, 14 were

successfully genotyped, and proxy SNPs (r2 . 0.95) were

genotyped for 3 others. 15 of these 17 SNPs were polymorphic

in our sample set (Table S2). Blood, plasma and serum samples

from these same students were previously phenotyped for serum

metabolites related to OCM. We found significant associations

between 2 SNPs and several related metabolites: TCblR rs9426

with serum B12 (sB12) (p , 0.0001), holo transcobalamin

(holoTC) (p , 0.0001), total transcobalamin (total TC) (p ,

Figure 1. Statistical analysis of predicted microRNA targeting in the one-carbon metabolism (OCM) pathway. For each microRNA, the
empirical p-value for the level of enrichment of predicted target sites in OCM genes (Methods) is shown. Analysis is restricted to predicted target sites
that, together with their cognate microRNAs, are conserved between humans and at least two other mammalian species among mouse, rat and dog.
Lower dashed line indicates p = 0.05; upper dashed line indicates equivalent significance level after correction for multiple hypothesis testing.
doi:10.1371/journal.pone.0021851.g001
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0.0001), total homocysteine (tHcy) (p = 0.033) and methylmalonic

acid (MMA) (p = 0.045); and MTHFR rs1537514 with red blood

cell folate (RCF) (p , 0.0001) (Table 3; Table S2). Upon re-

analysis with only those participants who do not take vitamin

supplements (which can affect metabolite levels and may make a

genetic effect more difficult to detect), all associations remained

significant. After Bonferroni correction for multiple testing, the

TCblR rs9426 association with sB12, holoTC and total TC and

the MTHFR rs1537514 association with RCF remained signifi-

cant (Table 3).

TCblR rs9426 is in high D9 with another variant within the

TCblR gene, E88del (D9 = 0.94; r2 = 0.37), which was

previously associated with increased levels of MMA in newborns of

European ancestry [25] and increased risk of neural tube defects

(NTD) in a large Irish population [29]. In order to compare the

effects of the two variants, we additionally genotyped E88del in

our cohort. Similar to rs9426, E88del displayed significant

associations with several metabolites: sB12 (p , 0.0001), holoTC

(p , 0.0001), total TC (p , 0.0001), tHcy (p , 0.011), and MMA

(p = 0.0016). However, the differences between alleles in the

average level of each of the 5 metabolites are greater for the

E88del locus than for rs9426. This observation supports the

hypothesis that the deletion of a glutamic acid residue at position

88 (E88del), rather than the removal of possible miRNA regulation

(rs9426), is the likely source of the metabolic variation observed

between genotypes.

MTHFR rs1537514 is in high D9 (D9 = 0.988; r2 = 0.059) with

the well-studied MTHFR 677C-.T (rs1801133; MAF = 0.24) [1].

Both of these SNPs have minor allele frequencies in our cohort of

at least 0.11. We compared phenotypic variation of homozygotes

at each SNP locus independently. Specifically, as all MTHFR

C667T (SNP1) T (i.e. minor allele) alleles occur on a rs1537514

(SNP2) G (i.e. major allele) background, we compared the

following three genotype combinations by a two-tailed t-test:

(#1) SNP1 TT, SNP2 GG (n = 267); (#2) SNP1 CC, SNP2 GG

(n = 728); and (#3) SNP1 CC, SNP2 CC (n = 49). The results of

this analysis reveal that the major (#2) and minor allele (#1)

homozygotes of 677C-.T differ substantially more from one

another in RCF (204 nM difference between means, p , 0.0001)

than the major (#2) and minor (#3) allele homozygotes of

rs1537514 (152 nM difference between means, p = 0.0352). This

suggests that 677C-.T is more likely to be the causative variant.

Discussion

In this study we describe a computational strategy for the

identification of candidate master miRNA regulators of a group of

42 OCM-related genes. Based on our target prediction analyses

with the most stringent conservation criteria, we discover a novel

role for miR-22 as a candidate master regulator of OCM. miR-22

is widely expressed and has been previously linked to cancer

[30,31]. It is predicted to target OCM genes (MTHFR,

TCblR,TCN2, SLC19A1, MAT2A and MTHFD2) that are

critical for folate and vitamin B12 transport, folate cofactor

distribution and methylation (Table 1). The enzyme encoded by

the MTHFR gene plays a key role in the regulation of OCM by

channeling one-carbon units away from DNA synthesis and into

the production of methionine by MTR [32]. Methionine is then

converted to the methyl donor, S-Adenosyl methionine (SAM), by

Table 2. Top 6 candidate microRNA master regulators of one-
carbon metabolism genes in mammals.

microRNA

P-value for enrichment
of predicted target
sites in OCM genes

Predicted OCM
target genes

miR-22 0.0126 MTHFD2, MTHFR,
SLC19A1, MAT2A

miR-383 0.0286 SHMT2, DNMT3A

miR-344-5p/484 0.0787 DNMT3A, MAT2A

miR-136 0.08 MAT2A, MTHFS

miR-29abc 0.1024 DNMT3A, MAT2A,
DNMT3B, MAT1A

miR-488 0.1081 DNMT3A, MAT2A

For each microRNA, the empirical p-value for the level of enrichment of
predicted target sites in OCM genes (Methods) and the gene symbol for each
predicted target gene are provided. Analysis is restricted to predicted target
sites that, together with their cognate microRNAs, are conserved between
humans and at least two other mammalian species among mouse, rat and dog.
doi:10.1371/journal.pone.0021851.t002

Table 3. Summary metabolite data for individuals with different genotypes at significantly associated single nucleotide
polymorphic (SNP) loci that are within predicted microRNA target sites.

SNP Gene

Predicted
microRNA
binding site Genotype N

tHcy
(uM)

Met A
(uM) SB12 (pM)

Sfol
(nM) RCF (nM)

holoTC
(pM)

total TC
(pM)

MMA A
(uM)

rs9426 TCblR miR-136 CC 2192–
2246

*8.763.0 N/A **3286140 N/A N/A **57627 **8326163 *0.18860.0853

CT 198–
202

*8.262.5 N/A **3826190 N/A N/A **88652 **9756211 *0.17660.0721

TT 1 9.260 N/A 53860 N/A N/A 17360 130760 0.14060

rs1537514 MTHFR miR-596
and miR-
518a-5p/527

GG 1926–
1946

8.763.1 29.668.5 N/A 34618 **10576422 N/A N/A N/A

GC 410–
414

8.462.5 28.667.6 N/A 35629 **11426470 N/A N/A N/A

CC 51 8.162.3 28.267.2 N/A 37623 **12696499 N/A N/A N/A

Numerical data represent mean metabolite levels 6SD; N indicates the range in the number of individuals with a particular genotype for which data was available for
different metabolites. * indicates a significant (p , 0.05) result; ** indicates a significant result (p , 0.05) after correction for multiple testing; N/A indicates that the SNP
was not test for association with a particular metabolite.
doi:10.1371/journal.pone.0021851.t003
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MAT2A [33]. Vitamin B12 transport via TCblR and TCN2

influences SAM production by regulating the activity of the B12-

dependent MTR enzyme. Folate is required for this process and is

transported from the circulation into cells by the reduced folate

carrier, the product of the SLC19A1 gene. Finally, MTHFD2 is

important for the exchange of one-carbon units between the

cytoplasm and the mitochondrion [34–35]. Coordinated regula-

tion of these genes by miR-22 is likely to influence OCM and

downstream epigenetic processes.

Our results revealed another potential master regulator of

OCM, miR-125/351. The large majority of its predicted targets

are conserved only in primates, indicating that its putative role in

regulating OCM may be more evolutionarily recent. It also

appears likely that while miR-125/351 functions cooperatively

with other miRNAs to impose regulation on OCM genes, miR-

229s influence in OCM may have evolved independently from

other miRNAs. Notably, both miR-22 and miR-125/351

significantly increase in expression upon folate deficiency [19],

lending further support to the prediction that these two miRNAs

are relevant to folate-mediated OCM. Our results suggest that

miR-344-5p/484 and miR-488 may act in a cooperative fashion to

regulate OCM. Neither miR-344-5p/484 nor miR-488 was

included in the Marsit et al. study that examined miRNA

expression under folate-deficient conditions. Future investigations,

including loss-of-function experiments using antagomirs [36] or

‘‘sponge’’ constructs [37] are required to validate the predicted

role of miR-22, miR-125/351, miR-344-5p/484 and miR-488 as

important regulators of OCM genes.

In a complementary, independent experiment, we genotyped 17

SNPs located within predicted miRNA target sites in OCM genes

and found significant associations between two of the SNPs and

several metabolites. However, further analyses suggested that these

associations could be accounted for by nearby functional variants

that are in strong linkage disequilibrium with the miRNA target

site SNPs. Nonetheless, we believe that our approach, which

combines bioinformatic and genetic experiments, provides a useful

model for exploring the role of miRNAs in basic physiological

processes.
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Table S1 Top 5 candidate microRNA master regulators
of one-carbon metabolism genes in primates. For each

microRNA, the empirical p-value for the level of enrichment of

predicted target sites in OCM genes (Methods) and the gene

symbol for each predicted target gene are provided. Analysis is

restricted to predicted target sites that, together with their cognate

microRNAs, are conserved among humans, rhesus monkey, and

chimpanzee.
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Table S2 Complete metabolite association results for
single nucleotide polymorphisms (SNPs) within predict-
ed human microRNA target sites in OCM genes.
* indicates a significant (p , 0.05) SNP-metabolite association;

** indicates a significant SNP-metabolite association (p , 0.05)
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