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Bioinformatic Approaches 
Including Predictive Metagenomic 
Profiling Reveal Characteristics of 
Bacterial Response to Petroleum 
Hydrocarbon Contamination in 
Diverse Environments
Arghya Mukherjee1, Bobby Chettri2, James S. Langpoklakpam2, Pijush Basak3,6, Aravind 

Prasad4, Ashis K. Mukherjee5, Maitree Bhattacharyya3, Arvind K. Singh2 & Dhrubajyoti 

Chattopadhyay  1,7

Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of 

petroleum hydrocarbon contaminated environments. The development of effective bioremediation 
strategies however, require an extensive understanding of the resident microbiome of these habitats. 

Recent developments such as high-throughput sequencing has greatly facilitated the advancement 
of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological 
characteristics from these large datasets remain a considerable challenge. In this study, we have 

implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 
diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial 

communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we 
have comprehensively described phylogenetic and functional compositions of these habitats and 

additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional 
modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. 
Additionally, we show that significantly over-represented taxa often contribute to either or both, 
hydrocarbon degradation and additional important functions. Our findings reveal significant differences 
between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition 

to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.

Anthropogenic activities and agents leading to contamination of the environment is one of the major issues that 
developing and developed industrial societies face today. Petroleum hydrocarbons are the most widespread of 
these anthropogenic agents and frequently contaminate aquatic and terrestrial ecosystems through releases of 
hydrocarbon during production, operational use, and transportation. �e development, e�ectiveness and avail-
ability of technologies and strategies pose a signi�cant challenge for the remediation, rehabilitation and resto-
ration of these contaminated environments. Many of the technologies developed and in use for the restoration 
of oil contaminated environments exploit the potential of biological systems, in particular microbial systems, to 
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use these toxic compounds as substrates for growth. Hence, much of the research conducted on bioremediation 
has concentrated on the capabilities of a single or couple of microbes exhibiting robust and e�ective growth 
using petroleum hydrocarbons. However, in the environment, bioremediation is o�en a complex process involv-
ing co-metabolism, cross-induction, inhibition and non-interaction among microbes1–3, possibly as petroleum 
hydrocarbons are a mixture of organic pollutants and therefore are used di�erently by di�erent microbes. �ese 
�ndings, along with others, established bioremediation as a process mediated by a consortium of microbes rather 
than a few. �us, characterization of microbial communities of oil contaminated environments could potentially 
provide guidelines for e�ective remediation and restoration of such environments.

Until recently, it was only possible to study a handful of microorganisms of interest isolated from source mate-
rials (as blood, soil, water or air), given the restrictions of the composition of culture media which cannot re�ect 
and mimic the dynamic nutrient �uxes of the source environment. Indeed, only 1% of microorganisms were 
found to be cultivable using a set of media from the highly characterized soil rhizosphere4. �e advent of high 
throughput massively-parallel sequencing methods has however, allowed us to investigate the entire complement 
of organisms inhabiting a certain environment. �ese next-generation sequencing methods (NGS) include a 
variety of procedures to holistically study any biological system such as amplicon sequencing (for variant identi-
�cation and phylogenetic surveys), whole genome shotgun sequencing (for single organism genome and metage-
nomes) and RNA-Seq (for transcriptomes, metatranscriptomes and identi�cation of non-regular RNAs). �ese 
powerful methods have ushered in rapid advances in bioinformatic approaches leading to development of so�-
ware capable of handling huge amounts of data and o�ering meaningful biological interpretations of the same. 
Although a technological breakthrough in modern science, several NGS methods such as metagenomic and tran-
scriptomic/metatranscriptomic sequencing are still expensive and hence, most studies on ecological processes 
like bioremediation report marker surveys as 16S rRNA gene amplicon sequencing when dealing with multiple 
samples. �us, in general, most of these studies concentrated on interpretations from microbial community com-
position but inferred poorly regarding functional and metabolic properties of the same.

Recently, with the implementation of the Human Microbiome Project (HMP), bioinformatic advancements 
have been furthered through the development of powerful new computational tools for e�ective interpretation 
and visualization of taxonomic and functional composition of microbial communities5, 6. �ese tools have obvious 
applications for the analysis of huge amounts of microbial genomic/amplicon/transcriptomic data collected from 
other sources such as soil, water and so on. Some particularly interesting computational tools allow us to explain 
the complex mutual interactions and heterogeneity inherent in microbial communities through network-based 
correlation analyses7, prediction of metagenomic biomarkers8 and prediction of metagenomes from 16S rRNA 
data9, 10. While metagenomic shotgun sequencing has certain advantages over 16S rRNA gene surveys for stud-
ying microbial communities, it has some major disadvantages. �ese are: (i) Metagenomic shotgun sequencing 
can be 5–15 fold more expensive than 16S rRNA gene sequencing, which can be a limiting factor for microbial 
ecology research in smaller laboratories, (ii) Analysis of metagenomic shotgun sequencing datasets is manifold 
computationally more intensive than 16S rRNA gene analysis and requires much more advanced and power-
ful hardware, further escalating the operational costs, (iii) Metagenomic shotgun sequencing provides a much 
lower taxonomic resolution than 16S rRNA data11 which can lead to loss of the rare biosphere, large number of 
sequences being binned as unclassi�ed and loss of information on lower level taxa (viz. genera, species) which 
can be projected as potential biomarkers in certain cases, and (iv) Unlike analysis of 16S rRNA gene sequences 
no consensus exists on the analysis of metagenomes and bioinformatic tools use diverse strategies for taxonomic 
and functional classi�cation, relying on a variety of reference databases which bias the results depending on the 
approach taken. �e availability of bioinformatic tools for prediction of functions i.e. metagenomes, from 16S 
rRNA gene sequences is therefore particularly attractive to microbial ecologists as it allows them to study the 
metabolomes of complex microbial communities with reasonable precision and con�dence at a high taxonomic 
resolution while being able to construct robust hypotheses for further work at a much lower operational cost 
compared to metagenomic sequencing.

It is well understood that depending on the environment, the method of bioremediation will vary. Essential 
information required for the development of bioremediation technologies include the response of microbes to 
petroleum hydrocarbons and their dynamics with the immediate environment. Unfortunately, despite the large 
amount of work done on microbial community composition across a myriad of oil contaminated environments, 
mainly through 16S rRNA amplicon sequencing, no attempt has been made to �nd di�erential metagenomic 
signatures among these studies. In the present study, we have aimed to investigate the taxonomic and functional 
characteristics of diverse oil contaminated environments using recent bioinformatics tools through an evolving 
pipeline to process metagenomic data. In this bioinformatic pipeline we have employed tools that allow the anal-
ysis and interpretation of high-resolution taxonomic data generated from 16S rRNA gene surveys along with 
metagenome prediction tools that allow investigation of the functional dynamics of these microbial communities. 
We used 61 publicly available 16S rRNA datasets and 4 from this study as inputs for our analysis. Consequently, 
metagenomic level characteristics of bacterial composition and metabolic potential were comprehensively 
deduced for 12 petroleum hydrocarbon contaminated habitats. We also inferred an array of di�erentially abun-
dant taxonomic and functional features which may be used as biomarkers for successful distinction of di�erent 
oil contaminated habitats as well as for monitoring of bioremediation e�orts in the same. Additionally, correla-
tion between enriched taxa and functional orthologs was also evaluated along with estimation of metagenomic 
contributions by various taxa to hydrocarbonoclastic capabilities. Furthermore, a network of bacterial interaction 
patterns was inferred to deduce complex co-occurrence and co-exclusion relationships in these environments. We 
found that phylogenetic and functional composition of oil contaminated bacteriomes were signi�cantly di�erent 
to each other and greatly in�uenced by immediate environmental factors along with petroleum hydrocarbon 
contamination. Besides providing a robust bioinformatic pipeline for microbial ecology studies in the future, our 
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investigation provides novel and valuable insights into the di�erential nature of various oil polluted habitats and 
hopefully improves upon previous understanding of these environments.

Materials and Methods
Collection and quality filtering of 16S rRNA gene sequence datasets from diverse oil contam-
inated environments. Sixty-one publicly available 16S rRNA datasets on oil degradation studies from 11 
di�erent environments collected along with four samples from this study were used for the present study (Table 1, 
Supplementary Table S1). �ese included four datasets representing upper soil layers of the Tundra biome (Tu), 
four from subsurface layers of the Tundra biome (Tb), four from the permafrost layers of the Tundra (Tp), nine 
from surface soil of Chinese oil re�neries (C), twelve representing di�erent regions of the arctic biome (A), four 
from surface soils of Indian oil re�neries (I), three from mangroves (M), seven from sur�cial marine sediments 
(DWH), seven from oil sands cores (OSC), four from surface waters of oil sands tailings ponds (OSTPu), three 
from oil sands tailings pond waters at median depth (OSTPm) and four from deep oil sands tailings pond waters 
(OSTPd). We deliberately kept the taiga and OSTP samples separate even though we expected high amounts of 
similarity between them in certain aspects when compared to other samples, due to evidence of ample distinctive 
characteristics in the said samples in their parent studies12, 13. Oil contaminated soil samples representing Indian 
oil re�neries (I) were collected from Noonmati Oil Re�nery in Guwahati and Barhola oil�elds, both in Assam, 
India. Soil samples were collected in both sites from the surface (0–10 cm) and beneath (20–40 cm) (Table 1, 
Supplementary Table S1). All the 16S rRNA datasets used can be downloaded through the list of accession num-
bers provided in Supplementary Table S1. All datasets used in the study presented, were sequenced in either 
Roche 454, Illumina or ABI Ion Torrent platforms. �e 16S rRNA datasets are described in greater detail in 
Table 1. �e downloaded 16S rRNA datasets were checked for quality using FastQC14 and �ltered for high quality 
sequences in mothur15 using the following criteria: minimum sequence length of 100 bp, sequences trimmed 
when average quality drops below 20 in a sliding window of 15 bp, and a maximum of 2 mismatches in the bar-
code-key-template region of the reads.

Analysis of microbial community structure and composition in 16S rRNA datasets. mothur15 
was used to estimate abundances of bacterial taxa in the 16S rRNA datasets collected from diverse oil 

Biome Type ID
Sequencing 
Platform Location

Depth of 
sample 
collection 
(cm below 
surface)

Source 
material for 
sequencing

Predominant 
contaminant/
hydrocarbon Reference

Urban I1-I4 454 GS Junior Assam, India
0–10 and 
20–30

In situ soil Crude oil �is study

Arctic A1-A12
Ion Torrent 
PGM

USA, Canada, 
Norway, Russia, 
and Greenland

0–15
Treated 
microcosm 
sediment

Diesel oil Bell et al.84

Urban C1-C9 Illumina Miseq
Changqing and 
Daqing, China

2–10 In situ soil Crude oil Sun et al.85

Mangrove M1-M3 454 GS FLX
Restinga da 
Marambaia, Rio 
de Janeiro, Brazil

0–20
Treated 
microcosm 
sediment

Crude oil
dos Santos 
et al.53

Marine sediment DWH1-DWH7 Illumina Gulf of Mexico 0–1# In situ soil Crude oil
Mason et 
al.54

Taiga Tu1-Tu4 454 GS FLX

Walagan, Walagan 
North, Taiyuan, 
and Jiagedaqi, 
China

20–30
Treated 
microcosm 
sediment

Crude oil
Yang et 
al.13

Taiga Tb1-Tb4 454 GS FLX

Walagan, Walagan 
North, Taiyuan, 
and Jiagedaqi, 
China

70–80
Treated 
microcosm 
sediment

Crude oil
Yang et 
al.13

Taiga Tp1-Tp4 454 GS FLX

Walagan, Walagan 
North, Taiyuan, 
and Jiagedaqi, 
China

140–150
Treated 
microcosm 
sediment

Crude oil
Yang et 
al.13

Arctic
OSC1, OSC3-5, 
OSC7, OSC9, 
OSC12

454 GS FLX Alberta, Canada 2,985–2,990 In situ soil
Oil sands 
bitumen

An et al.12

Arctic OSTPu1-OSTPu4 454 GS FLX Alberta, Canada 100–240 In situ soil
Bitumen and 
various other 
hydrocarbons

An et al.12

Arctic
OSTPm2, 
OSTPm4, OSTPm6

454 GS FLX Alberta, Canada 610–750 In situ soil
Bitumen and 
various other 
hydrocarbons

An et al.12

Arctic OSTPd1-OSTPd4 454 GS FLX Alberta, Canada 1220–1370 In situ soil
Bitumen and 
various other 
hydrocarbons

An et al.12

Table 1. Summary of datasets used in the study. (For additional details, refer to Supplementary Data Table S1). #All 
samples collected at an average of ~1500 metres below sea level, depth given is from the surface of the ocean �oor.

http://S1
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http://S1
http://S1
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contaminated habitats. Filtered high quality sequences obtained from the quality control step were aligned to the 
mothur implementation of the SILVA database and trimmed for the alignment region. Chimeric sequences were 
then removed from the datasets using the mothur implementation of Uchime16. Filtered sequences were then 
taxonomically classi�ed using the May 2013 release of the Greengenes database17 and contaminating archaeal, 
eukaryal, mitochondrial and chloroplast sequences or sequences classi�ed as unknown were removed from fur-
ther analysis. Finally, OTUs were predicted from these high-quality sequences. OTUs were again mapped to 
the sequence taxonomy �le generated previously in mothur and converted to number of sequences to generate 
comparative taxonomy data for the datasets. We also assessed the compositional similarity between the soil sam-
ples from di�erent sites. For doing this, we compared the pairwise taxonomic abundances from each site against 
each other and within the datasets as well, using Bray-Curtis measure for estimation of beta diversity18. �e 
permutation-based multivariate analysis of variance (PERMANOVA) was used to test the homogeneity of tax-
onomic dispersion across samples along with concomitant estimation of 2D stress. Computation of Bray-Curtis 
distances and PERMANOVA tests were carried out in PAST v3.1119. �e resulting Bray-Curtis similarity distance 
matrix was used as input for ordination of the oil contaminated samples through non-metric multidimensional 
scaling (NMDS) in PAST v3.1119.

Metagenome prediction and metabolic reconstruction of 16S rRNA datasets. Metagenomes 
were predicted from 16S rRNA data using PICRUSt9. OTU data generated in mothur for all 16S rRNA data-
sets was used to prepare BIOM20 �les formatted as input for PICRUSt v1.1.09 with the make.biom script availa-
ble in mothur. PICRUSt requires OTU abundances mapped to Greengenes OTU IDs as input for prediction of 
corresponding metagenomes. PICRUSt databases for 16S rRNA gene copy number normalization and KEGG 
ortholog prediction were updated using publicly available information listed in Integrated Microbial Genomes 
(IMG)21 as on 4th April, 2016, according to the instructions provided for the Genome Prediction Tutorial for 
PICRUSt (http://picrust.github.io/picrust/tutorials/genome_prediction.html#genome-prediction-tutorial) using 
default settings. �e update involved the inclusion of 16S rRNA gene copy number information and KEGG ort-
holog (KO) annotation data as per KEGG v77.122 for ~34,000 bacterial and archaeal genomes available in IMG. 
16S rRNA gene copy numbers for 16S rRNA datasets were normalized using the normalize_by_copy_number.
py script. Metagenomes were predicted from the copy number normalized 16S rRNA data in PICRUSt using 
the predict_metagenomes.py script against the updated and PICRUSt-formatted, characterized-protein, func-
tional database of KEGG Orthology. Contributions of various taxa to di�erent KOs were computed with the 
script metagenome_contributions.py and visualized with the script plot_metagenome_contributions.R (https://
groups.google.com/forum/#!topic/picrust-users/Hq9_G23J9W4) and ggplot223 in R (http://www.R-project.org). 
Predicted metagenomes were then used as inputs in HUMAnN224 for metabolic reconstruction of oil contami-
nated habitats using KEGG Pathways and/or KEGG modules. KEGG ortholog (KO) information derived from 
PICRUSt was used by MinPath25 implemented in HUMAnN2 to infer coverage and relative abundances of KEGG 
modules, which are manually de�ned tight, functional units. KEGG Pathways and KEGG modules (KEGG v77.1) 
data for HUMAnN2 were updated according to publicly available information in IMG21 and KEGG22. Coverages 
of a subset of KEGG modules were represented through heat maps generated in STAMP26.

Identification of metagenomic biomarkers. We furthered our study through detection of taxonomic 
clades, KEGG orthologs and KEGG modules that are signi�cantly over/under-represented (or di�erentially abun-
dant) in the individual oil contaminated environments through statistical analyses carried out on the inferred 
relative abundances. To this end, the procedure of linear discriminant analysis (LDA) e�ect size was employed 
through LEfSe v1.08 to identify di�erentially abundant features that can be used as potential metagenomic bio-
markers. For this analysis, the alpha parameter signi�cance threshold for the Krushkal-Wallis (KW) test imple-
mented among classes in LEfSe was set to 0.01 and the logarithmic LDA score cut-o� was set to 2.0, due to the 
relatively small sample size under consideration. All analysis carried out through LEfSe was performed through 
the Galaxy server27. Estimated biomarkers were represented using circular cladograms generated through the 
standalone graphical tool GraPhlAn v0.9528.

Detection of associations between metagenomic gene families and taxa. Additionally, to esti-
mate the relationship between taxonomic and functional enrichments in each oil polluted environment, we 
carried out tests of correlation between abundances for KEGG orthologs (metagenomic gene families) and 
taxonomic clades using a non-parametric test of Spearman’s rank correlation. Detection of signi�cant relation-
ships, de�ned as a correlation >0.7 with a p-value < 0.001 and reaching a Benjamini-Hochberg false discovery 
rate < 0.01 was carried out through the function corr.test implemented in the R package, psych29. Correlations 
were only computed for oil polluted sites represented by at least 6 samples. A subset of the resultant correlation 
network was visualized using the interactive platform, Cytoscape v3.4.030.

Detection of bacterial interactions. Bacterial interactions in oil contaminated environments was inves-
tigated in the present study through non-random bacterial co-occurrence and co-exclusion relationships within 
individual soil sites. Only polluted sites consisting of more than 4 samples were subjected to deductions of bacte-
rial interactions. mothur implementation of the Sparse Correlations for Compositional data algorithm (SparCC)7, 
a tool capable of computing signi�cant correlations from compositional data while correcting for the e�ects of the 
same, was used to detect signi�cant co-occurrence and co-exclusion patterns. SparCC was run on absolute count 
OTU tables generated by mothur for each sample, using the command sparcc with default settings except a single 
non-default parameter of permutations = 10,000. OTU associations having an absolute SparCC correlation value 
above 0.6 with p-values < 0.01 were considered statistically signi�cant and incorporated into subsequent network 
construction. �e �nal network of signi�cant SparCC correlations was built in Cytoscape 3.4.030. �e nodes in 

http://picrust.github.io/picrust/tutorials/genome_prediction.html#genome-prediction-tutorial
http://www.R-project.org
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the reconstructed networks represent OTUs participating in robust, statistically signi�cant relationships (both 
positive and negative), which are in turn portrayed by edges i.e. connections between the nodes.

Data Availability. 16S rRNA amplicon sequencing data generated in this study was deposited in the NCBI 
Sequence Read Archive (SRA) under accession numbers SRR3168574-SRR3168577. �e amplicon sequence data 
is bundled under NCBI BioProject number PRJNA306989.

Results
General characterization of bacterial community composition in petroleum hydrocarbon pol-
luted habitats. Comprehensive characterization of bacterial community composition in hydrocarbon pol-
luted environments was carried out using 61 publicly available and previously validated/published 16S rRNA 
amplicon sequencing datasets distributed over 11 di�erent habitats (Table 1, Supplementary Table S1) along with 
4 datasets generated in this study. mothur analysis of all datasets led to the identi�cation of 18 phyla, 38 orders 
and 39 families at ≥2% average relative abundance in at least one habitat (Fig. 1A,B, Supplementary Tables S2 
and S9). Proteobacteria dominated the bacterial community composition at the phylum level with mean rel-
ative abundances ranging from 20–77% across samples (Fig. 1A, Supplementary Table S2). Acidobacteria 
was detected in large numbers in all samples with notably decreased mean relative abundances in the OSC, 
OSTPu, OSTPm and OSTPd samples (Fig. 1A, Supplementary Table S2). Actinobacteria and Chloro�exi were 
consistently identi�ed in all samples with signi�cant increase in A samples, while Bacteroidetes showed higher 

Figure 1. Taxonomic distribution of bacterial communities in oil contaminated environments. Taxonomic 
clades detected at an average relative abundance ≥2% in at least one of 12 oil contaminated habitats, (A) at the 
phylum level, and (B) at the order level.

http://S1
http://S2
http://S9
http://S2
http://S2
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average relative abundance in DWH and I samples (Fig. 1A, Supplementary Table S2). Similar to our �ndings, 
an increase in abundance for the Actinobacteria was reported by Yergeau et al. in diesel contaminated arctic soil 
biopiles31. Additionally, Chlorobi was detected in high mean relative abundance only in M and I samples with 
increased Gemmatimonadetes abundance identi�ed in A, C and M samples (Fig. 1A, Supplementary Table S2). 
Verrucomicrobia contribution in microbial community composition was higher in DWH, M and C, while mean 
relative abundances of Firmicutes and Cyanobacteria were elevated in OSTP and C samples respectively (Fig. 1A, 
Supplementary Table S2). Order level taxonomic clades with average relative abundances detected at ≥2% in at 
least one habitat, tended to be more speci�c to certain samples. For instance, Acidobacterales had a 21% mean 
relative abundance in I, while Burkholderiales had an average relative abundance of 30% across OSTP samples and 
Caulobacerales had an average relative abundance of ~19% in taiga samples (Fig. 1B, Supplementary Table S2). 
Additionally, Xanthomonadales showed increased mean relative abundance (15–20%) in I and DWH samples 
and Actinomycetales dominated A samples with an average relative abundance of 24% (Fig. 1B, Supplementary 
Table S2). In addition, Alteromonadales (15%) was found in greater abundance in DWH samples, Ellin329 (15%) 
abundance was highly elevated in Taiga upper active layer (Tu), and Burkholderiales (25%), Pseudomonadales 
(27%), Rhizobiales (22%) were enriched in the OSC (Fig. 1B, Supplementary Table S2). Bacterial families 
detected at ≥2% average relative abundance in a habitat also exhibited preferential sequestration to certain sam-
ples (Supplementary Table S9). While Caulobacteraceae and Sphingomonadaceae were highly enriched in the 
taiga samples with an average relative abundance of ~19% and ~29% respectively, Comamonadaceae exhibited a 
highly elevated mean relative abundance of 30% in the OSTP samples (Supplementary Table S9). Additionally, 
Comamonadaceae also dominated the I samples bacteriome with a mean relative abundance of 15% and contrib-
uted 10% of the bacteriome in A samples (Supplementary Table S9). Other highly speci�c increases in average 
relative abundance at the family level as compared to other samples included Microbacteriaceae (19%) for A sam-
ples, Alteromonadaceae (14%), Xanthomonadaceae (20%) for DWH samples, and Moraxellaceae (26%) for OSC 
samples (Supplementary Table S9).

Similarity in bacterial community structure and detection of taxonomic biomarkers of oil pol-
luted environments. Bray-Curtis similarity scores were inferred from taxonomic data generated by mothur 
in PAST v3.11 (Table 2) and consequently reduced to a two-dimensional space using NMDS (Fig. 2) for estima-
tion of structural similarity of bacteriomes from petroleum hydrocarbon polluted environments. PERMANOVA 
tests carried out in PAST showed that taxonomic composition of bacterial communities in the oil polluted envi-
ronments were signi�cantly varied (p = 0.05) (Supplementary Table S7). However, there were some exceptions. 
�e PERMANOVA results demonstrated that the taiga samples and OSTP samples were not signi�cantly di�erent 
among themselves (p = 0.2–0.9) (Supplementary Table S7) and that bacteriomes at these sites although separated 
by depth shared substantial similarity. �ese observations indicated that unlike large distance spatial separation 
i.e. geographical isolation, depth or local spatial separation is not a major de�ning factor for e�ecting substantial 
dissimilarity in bacterial community structure. �is is well supported by the Bray-Curtis indices (Table 2) and 
NMDS plots of the same (Fig. 2) wherein all these samples cluster fairly closely. Additionally, polluted man-
grove sediments, OSTPm and Tp samples showed similarity among themselves (p = 0.054–0.09) (Supplementary 
Table S7). Given the very low p values, these may be aberrations and may have occurred due to preferences, 
assumptions, and thresholds set in our analysis pipeline. Additionally, our observations using Bray-Curtis dis-
tances and PERMANOVA tests show that habitats showing signi�cant similarities to OSTPm and Tp i.e. OSTPu, 
OSTPd and Tb, Tu respectively (Table 2, Supplementary Table S7), exhibit signi�cantly di�erent bacterial com-
munity structure when compared to polluted mangrove sediments (p = 0.0296–0.0312) (Supplementary Table S7) 
and with each other i.e OSTPu, OSTPd-Tb, Tu (p = 0.0262–0.0316) (Supplementary Table S7) thus furthering the 
conclusion of an aberration. All habitats showed considerable conservation of taxonomic composition within 
respective samples as described in Table 2. Among these intra-group interactions, OSC samples were indeed 
clustered in very close proximity (Fig. 2) and exhibited a Bray-Curtis similarity score of 0.85 ± 0.09, which was the 
highest among all inter and intra-group comparisons (Table 2). Intra-group comparisons of taiga samples showed 
lowest similarities (Bray-Curtis similarity score 0.45–0.57 ± 0.15) among all habitats, probably due to the sam-
pling of source soil from 4 di�erent regions of the China-Russia crude oil pipeline (Table 1, Supplementary 
Table S1, Table 2). Among the inter group comparisons, lowest similarity was observed among M and Tp samples 
(Bray-Curtis similarity score 0.31 ± 0.02) while the highest similarity was recorded between the relatively related 
environments of M and DWH (Bray-Curtis similarity score 0.54 ± 0.05) (Table 2). �e taiga and OSTP samples, 
exhibited an inter-group Bray-Curtis similarity score similar to intra-group scores when compared within them-
selves (Table 2), i.e. (Tb, Tu, Tp and OSTPu, OSTPm, OSTPd). �is showed that the taiga and OSTP samples were 
less homogenous for each habitat, while again underlining the inherent similarities in the bacterial community 
structure of taiga and OSTP habitats.

To further investigate taxonomic apportionment and detect di�erentially abundant clades in various oil pol-
luted environments, we compared the abundances of clades detected at an abundance of ≥0.5% in at least 5 
samples, at each taxonomic level. �e consequent taxonomic pro�le inferred for all samples (from domain to 
species level) was then used by LEfSe to detect metagenomic biomarkers. In all, LEfSe detected 255 di�eren-
tially abundant taxa including 66 families, 47 genera and 11 species level biomarkers across all habitats (Table 3, 
Supplementary Figure S2, Supplementary Tables S2 and S5). �e largest number of taxonomic biomarkers were 
detected for the C samples (68) while the lowest were recorded for both OSTPd and Tu (7) (Supplementary 
Table S5). �e very low number of detected taxonomic biomarkers for OSTPd and Tu may be a fallout of the 
comparatively higher bacterial community structure similarity between taiga and OSTP samples than others 
leading to smaller tally of unique and signi�cantly di�erential clades. Taxonomic biomarkers detected at the 
family level are listed in Table 3. At the genus level, Phenylobacterium and Novosphingobium were detected as bio-
markers for Tp samples, while genera such as Geobacter, Syntrophus, Microbacterium, Mycobacterium, HB2.32.21, 
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Candidatus Koribacter, Methylobacterium, Caulobacter, and Rhodococcus were attributed as biomarkers for 
OSTPu, OSTPm, A, C, DWH, I, OSC, Tb, and Tu samples respectively (Supplementary Fig. S2, Supplementary 
Tables S2 and S5). Pathogenic microorganisms are known to be important degraders of petroleum hydrocarbons. 
Several strains of infectious microbes such as Burkholderia32, Stenotrophomonas33, 34 and Mycobacterium35 have 
been shown to harbor impressive capabilities for degradation of a variety of petroleum hydrocarbons. In the 

Habitat
India oil 
re�neries Arctic

China oil 
re�neries Mangrove

Marine 
sediments

Taiga 
upper 
active layer

Taiga 
bottom 
active layer

Taiga 
permafrost 
layer

Oil sands 
core

Oil sands 
tailings 
pond upper

Oil sands 
tailings pond 
median

Oil sands 
tailings 
pond deep

India oil 
re�neries (I)

0.63 ±  0.06 0.51 ± 0.07 0.39 ± 0.03 0.44 ± 0.04 0.47 ± 0.04 0.41 ± 0.06 0.41 ± 0.04 0.36 ± 0.05 0.48 ± 0.04 0.46 ± 0.08 0.46 ± 0.08 0.48 ± 0.08

Arctic (A) 0.51 ± 0.07 0.72 ±  0.07 0.48 ± 0.05 0.46 ± 0.03 0.42 ± 0.06 0.45 ± 0.07 0.41 ± 0.05 0.39 ± 0.05 0.49 ± 0.05 0.39 ± 0.05 0.39 ± 0.04 0.41 ± 0.06

China oil 
re�neries (C)

0.39 ± 0.03 0.48 ± 0.05 0.69 ±  0.08 0.48 ± 0.02 0.40 ± 0.05 0.38 ± 0.06 0.35 ± 0.05 0.34 ± 0.06 0.37 ± 0.06 0.32 ± 0.02 0.35 ± 0.04 0.34 ± 0.05

Mangrove (M) 0.44 ± 0.04 0.46 ± 0.03 0.48 ± 0.02 0.83 ±  0.02 0.54 ± 0.05 0.34 ± 0.03 0.34 ± 0.02 0.31 ± 0.02 0.36 ± 0.02 0.41 ± 0.02 0.43 ± 0.04 0.41 ± 0.05

Marine 
sediments 
(DWH)

0.47 ± 0.04 0.42 ± 0.06 0.40 ± 0.05 0.54 ± 0.05 0.77 ±  0.09 0.35 ± 0.05 0.35 ± 0.02 0.33 ± 0.05 0.43 ± 0.02 0.38 ± 0.03 0.39 ± 0.03 0.42 ± 0.04

Taiga upper 
active layer 
(Tu)

0.41 ± 0.06 0.45 ± 0.07 0.38 ± 0.06 0.34 ± 0.03 0.35 ± 0.05 0.52 ±  0.18 0.59 ± 0.17 0.52 ± 0.18 0.45 ± 0.09 0.34 ± 0.06 0.35 ± 0.05 0.37 ± 0.07

Taiga bottom 
active layer 
(Tb)

0.41 ± 0.04 0.41 ± 0.05 0.35 ± 0.05 0.34 ± 0.02 0.35 ± 0.02 0.59 ± 0.17 0.57 ±  0.12 0.55 ± 0.20 0.45 ± 0.05 0.33 ± 0.04 0.34 ± 0.04 0.37 ± 0.06

Taiga 
permafrost 
layer (Tp)

0.36 ± 0.05 0.39 ± 0.05 0.34 ± 0.06 0.31 ± 0.02 0.33 ± 0.05 0.52 ± 0.18 0.55 ± 0.20 0.45 ±  0.22 0.42 ± 0.10 0.32 ± 0.06 0.33 ± 0.05 0.36 ± 0.08

Oil sands core 
(OSC)

0.48 ± 0.04 0.49 ± 0.05 0.37 ± 0.06 0.36 ± 0.02 0.43 ± 0.02 0.45 ± 0.09 0.45 ± 0.05 0.42 ± 0.10 0.85 ±  0.09 0.45 ± 0.05 0.45 ± 0.04 0.56 ± 0.10

Oil sands 
tailings pond 
upper (OSTPu)

0.46 ± 0.08 0.39 ± 0.05 0.32 ± 0.02 0.41 ± 0.02 0.38 ± 0.03 0.34 ± 0.06 0.33 ± 0.04 0.32 ± 0.06 0.45 ± 0.05 0.67 ±  0.12 0.64 ± 0.09 0.63 ± 0.13

Oil sands 
tailings pond 
median 
(OSTPm)

0.46 ± 0.08 0.39 ± 0.04 0.35 ± 0.04 0.43 ± 0.04 0.39 ± 0.03 0.35 ± 0.05 0.34 ± 0.04 0.33 ± 0.05 0.45 ± 0.04 0.64 ± 0.09 0.56 ±  0.05 0.61 ± 0.12

Oil sands 
tailings pond 
deep (OSTPd)

0.48 ± 0.08 0.41 ± 0.06 0.34 ± 0.05 0.41 ± 0.05 0.42 ± 0.04 0.37 ± 0.07 0.37 ± 0.06 0.36 ± 0.08 0.56 ± 0.10 0.63 ± 0.13 0.61 ± 0.12 0.61 ±  0.15

Table 2. Similarities of bacterial community structure within a habitat and between pairs of habitats expressed 
as Bray-Curtis distances.

Figure 2. Non-metric multidimensional scaling (NMDS) plot of taxonomic composition of all oil 
contaminated samples of all habitats. NMDS ordination of 65 oil contaminated samples across 12 habitats was 
carried out based on Bray-Curtis similarity distances calculated from pairwise taxonomic pro�le comparisons 
between all samples. Taxonomic clades present in at least one sample at a relative abundance ≥0.5% were used 
as input. A shorter linear distance between two samples denote greater similarity between the corresponding 
samples. Samples from 12 environments are depicted by di�erent colors (see legend).
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Di�erentially abundant 
Taxa Habitat† Taxonomy‡

Iamiaceae A Bacteria|Actinobacteria|Acidimicrobiia|Acidimicrobiales|Iamiaceae

Microbacteriaceae A Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Microbacteriaceae

mb2424 C Bacteria|Acidobacteria|Acidobacteria 6|iii1 15|mb2424

Ellin6075 C Bacteria|Acidobacteria|Chloracidobacteria|RB41|Ellin6075

Dietziaceae C Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Dietziaceae

Geodermatophilaceae C Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Geodermatophilaceae

Micromonosporaceae C Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Micromonosporaceae

Mycobacteriaceae C Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Mycobacteriaceae

Nocardiaceae C Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Nocardiaceae

Solirubrobacteraceae C Bacteria|Actinobacteria|�ermoleophilia|Solirubrobacterales|Solirubrobacteraceae

Cytophagaceae C Bacteria|Bacteroidetes|Cytophagia|Cytophagales|Cytophagaceae

Kouleothrixaceae C Bacteria|Chloro�exi|Chloro�exi|Rosei�exales|Kouleothrixaceae

Dolo 23 C Bacteria|Chloro�exi|TK10|AKYG885|Dolo 23

Gemmataceae C Bacteria|Planctomycetes|Planctomycetia|Gemmatales|Gemmataceae

Pirellulaceae C Bacteria|Planctomycetes|Planctomycetia|Pirellulales|Pirellulaceae

Planctomycetaceae C Bacteria|Planctomycetes|Planctomycetia|Planctomycetales|Planctomycetaceae

Myxococcaceae C Bacteria|Proteobacteria|Deltaproteobacteria|Myxococcales|Myxococcaceae

Opitutaceae C Bacteria|Verrucomicrobia|Opitutae|Opitutales|Opitutaceae

Chthoniobacteraceae C Bacteria|Verrucomicrobia|Spartobacteria|Chthoniobacterales|Chthoniobacteraceae

Flavobacteriaceae DWH Bacteria|Bacteroidetes|Flavobacteriia|Flavobacteriales|Flavobacteriaceae

Weeksellaceae DWH Bacteria|Bacteroidetes|Flavobacteriia|Flavobacteriales|Weeksellaceae

Rhodobacteraceae DWH Bacteria|Proteobacteria|Alphaproteobacteria|Rhodobacterales|Rhodobacteraceae

Alteromonadaceae DWH Bacteria|Proteobacteria|Gammaproteobacteria|Alteromonadales|Alteromonadaceae

Colwelliaceae DWH Bacteria|Proteobacteria|Gammaproteobacteria|Alteromonadales|Colwelliaceae

Marinicellaceae DWH Bacteria|Proteobacteria|Gammaproteobacteria|Marinicellales|Marinicellaceae

Xanthomonadaceae DWH Bacteria|Proteobacteria|Gammaproteobacteria|Xanthomonadales|Xanthomonadaceae

Verrucomicrobiaceae DWH Bacteria|Verrucomicrobia|Verrucomicrobiae|Verrucomicrobiales|Verrucomicrobiaceae

Acidobacteriaceae I Bacteria|Acidobacteria|Acidobacteriia|Acidobacteriales|Acidobacteriaceae

Koribacteraceae I Bacteria|Acidobacteria|Acidobacteriia|Acidobacteriales|Koribacteraceae

Chitinophagaceae I Bacteria|Bacteroidetes|Saprospirae|Saprospirales|Chitinophagaceae

Ignavibacteriaceae I Bacteria|Chlorobi|Ignavibacteria|Ignavibacteriales|Ignavibacteriaceae

Acetobacteraceae I Bacteria|Proteobacteria|Alphaproteobacteria|Rhodospirillales|Acetobacteraceae

Rhodospirillaceae I Bacteria|Proteobacteria|Alphaproteobacteria|Rhodospirillales|Rhodospirillaceae

Hydrogenophilaceae I Bacteria|Proteobacteria|Betaproteobacteria|Hydrogenophilales|Hydrogenophilaceae

Sinobacteraceae I Bacteria|Proteobacteria|Gammaproteobacteria|Xanthomonadales|Sinobacteraceae

Phycisphaeraceae M Bacteria|Planctomycetes|Phycisphaerae|Phycisphaerales|Phycisphaeraceae

Erythrobacteraceae M Bacteria|Proteobacteria|Alphaproteobacteria|Sphingomonadales|Erythrobacteraceae

Desulfuromonadaceae M Bacteria|Proteobacteria|Deltaproteobacteria|Desulfuromonadales|Desulfuromonadaceae

Spirochaetaceae M Bacteria|Spirochaetes|Spirochaetes|Spirochaetales|Spirochaetaceae

Propionibacteriaceae OSC Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Propionibacteriaceae

Brucellaceae OSC Bacteria|Proteobacteria|Alphaproteobacteria|Rhizobiales|Brucellaceae

Methylobacteriaceae OSC Bacteria|Proteobacteria|Alphaproteobacteria|Rhizobiales|Methylobacteriaceae

Oxalobacteraceae OSC Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Oxalobacteraceae

Enterobacteriaceae OSC Bacteria|Proteobacteria|Gammaproteobacteria|Enterobacteriales|Enterobacteriaceae

Moraxellaceae OSC Bacteria|Proteobacteria|Gammaproteobacteria|Pseudomonadales|Moraxellaceae

Rhodocyclaceae OSTPd Bacteria|Proteobacteria|Betaproteobacteria|Rhodocyclales|Rhodocyclaceae

Anaerolinaceae OSTPm Bacteria|Chloro�exi|Anaerolineae|Anaerolineales|Anaerolinaceae

Desulfobulbaceae OSTPm Bacteria|Proteobacteria|Deltaproteobacteria|Desulfobacterales|Desulfobulbaceae

Syntrophaceae OSTPm Bacteria|Proteobacteria|Deltaproteobacteria|Syntrophobacterales|Syntrophaceae

Pseudomonadaceae OSTPm Bacteria|Proteobacteria|Gammaproteobacteria|Pseudomonadales|Pseudomonadaceae

Peptococcaceae OSTPu Bacteria|Firmicutes|Clostridia|Clostridiales|Peptococcaceae

Comamonadaceae OSTPu Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Comamonadaceae

Geobacteraceae OSTPu Bacteria|Proteobacteria|Deltaproteobacteria|Desulfuromonadales|Geobacteraceae

Syntrophorhabdaceae OSTPu Bacteria|Proteobacteria|Deltaproteobacteria|Syntrophobacterales|Syntrophorhabdaceae

Gaiellaceae Tb Bacteria|Actinobacteria|�ermoleophilia|Gaiellales|Gaiellaceae

Caulobacteraceae Tb Bacteria|Proteobacteria|Alphaproteobacteria|Caulobacterales|Caulobacteraceae

Continued
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present study, pathogens such as Mycobacterium and Burkholderia, were identi�ed as genus level biomarkers for 
C samples and Tb samples respectively. Interestingly, LEfSe detected 19 phylum level biomarkers which indicate 
that preferential proliferation of bacterial lineages emanating from particular higher level taxa, probably driven 
by hydrocarbon stress, is possible and may lead to de�nitive compositional di�erences between oil polluted habi-
tats (Supplementary Fig. S2, Supplementary Tables S2 and S5). Moreover, candidate phyla such as AC1, WS3 and 
WS6 were identi�ed as biomarkers for OSTP samples which also underline the uniqueness of these environments 
(Supplementary Fig. S2, Supplementary Tables S2 and S5). However, further investigations are required to gather 
information on possibly distinctive roles played by these phyla in these habitats.

Metabolic characterization and functional biomarkers of oil contaminated environments. For 
understanding the metabolic potential of oil polluted environments and identifying di�erentially abundant 
functional features, metagenomes were predicted by PICRUSt using 16S rRNA gene amplicon data analyzed 
in mothur. Predicted proteins were classi�ed as KEGG orthologs (KOs) resulting in the identi�cation of 7020 
KOs across all samples. Metabolic reconstruction of metagenomes predicted by PICRUSt was carried out in 
HUMAnN2, which detected 585 KEGG modules across all samples. Among these functional modules, 19 
functional modules were present across all samples at a coverage of >90% and were identi�ed as core modules 
(Table 4, Supplementary Fig. S4, Supplementary Table S4). Most of the core modules identi�ed are essential 
for sustenance of prokaryotic life in the environment, such as translation (M00178), central carbon metabolism 
(M00149), ATP synthesis (M00153, M00157) and nucleotide and amino acid metabolism (M00005, M00020). 
Rest of the core modules identi�ed were found to be involved in various kinds of transport systems for cations, 
nutrients and peptides including iron, phosphate, nickel, and amino acids (M00188, M00222, M00223, M00236, 
M00237, M00239, M00240, M00250, M00254, M00255, M00256, M00258, M00320) (Table 4, Supplementary 
Fig. S4, Supplementary Table S4). �is is important, since these resources are generally present in limiting quan-
tities in nature and o�en determine the survival and proliferation of microbes in the environment. Additionally, 
transport systems for lipopolysaccharide (LPS), a principal component of the gram-negative bacterial cell 
wall, were also understandably identi�ed as core modules and included KEGG functional modules for export 
of LPS across both cytoplasmic (M00250) and outer membranes (M00320) (Table 4, Supplementary Fig. S4, 
Supplementary Table S4). Furthermore, 56 di�erently covered functional modules were detected across all 
oil contaminated samples (Supplementary Fig. S4, Supplementary Table S4). Among these, �ve modules were 
completely covered in only one sample while being absent in all others (Supplementary Fig. S4, Supplementary 
Table S4). �ese included structural complexes for Manganese/Iron transport (M00243), bacterial proteasomes 
(M00342) and putative aldouronate transport (M00603), all of which were completely covered only in the C 
samples (Supplementary Fig. S4, Supplementary Table S4). �is indicates that bacteria in the C site are better 
equipped for transport of metallic cations, peptide utilization and uptake of plant derived aldouronates than 
other sites. Furthermore, the presence of a complete complement of D-Xylose transport system (M00215) in the 
C site also indicates possible bacterial access to hemicellulosic plant material at this site (Supplementary Fig. S4, 
Supplementary Table S4). Additionally, glutamate transport system (M00233) was completely covered in only the 
A site, and RstB-RstA stress response two component system (M00446) at the OSC site (Supplementary Fig. S4, 
Supplementary Table S4). �e bacteria at A site, thus are possibly more capable of utilizing glutamate for growth, 
while resident bacteria in the OSC are conceivably better furnished with stress response mechanisms critical in 
environmental adaptation and survival.

Di�erentially abundant 
Taxa Habitat† Taxonomy‡

Bradyrhizobiaceae Tb Bacteria|Proteobacteria|Alphaproteobacteria|Rhizobiales|Bradyrhizobiaceae

Hyphomicrobiaceae Tb Bacteria|Proteobacteria|Alphaproteobacteria|Rhizobiales|Hyphomicrobiaceae

Sporichthyaceae Tp Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Sporichthyaceae

�ermogemmatisporaceae Tp Bacteria|Chloro�exi|Ktedonobacteria|�ermogemmatisporales|�ermogemmatisporaceae

Sphingomonadaceae Tp Bacteria|Proteobacteria|Alphaproteobacteria|Sphingomonadales|Sphingomonadaceae

Alcaligenaceae Tp Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Alcaligenaceae

Intrasporangiaceae Tu Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Intrasporangiaceae

Micrococcaceae Tu Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Micrococcaceae

Nocardioidaceae Tu Bacteria|Actinobacteria|Actinobacteria|Actinomycetales|Nocardioidaceae

Burkholderiaceae Tu Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Burkholderiaceae

Table 3. Summary table showing di�erentially abundant bacterial clades at the Family level detected by LEfSe. 
†Column labelled “Habitat” represents the petroleum contaminated environment in which the corresponding 
taxa (as presented in column labelled “Di�erentially abundant Taxa”), was found to be signi�cantly 
di�erentially abundant by LEfSe using the one class, non-strict test (Please refer to Materials and methods, 
and Supplementary Table S2 for details). Acronyms represent the following habitats: A: Arctic, C: China oil 
re�neries, I: India oil re�neries, M: Mangrove, DWH: Marine sediments, OSC: Oil sands core, OSTPu: Oil sands 
tailings pond upper, OSTPm: Oil sands tailings pond median, OSTPd: Oil sands tailings pond deep, Tb: Taiga 
bottom active layer, Tu: Taiga upper active layer, Tp: Taiga permafrost layer. ‡Taxonomy is described using the 
following hierarchy: Kingdom|Phylum|Class|Order|Family|Genus|species.
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Module ID De�nition of modules in KEGG

M00005 PRPP biosynthesis, ribose 5 P = > PRPP

M00020 Serine biosynthesis, glycerate-3P = > serine

M00149 Succinate dehydrogenase, prokaryotes

M00153 Cytochrome d ubiquinol oxidase

M00157 F-type ATPase, prokaryotes and chloroplasts

M00178 Ribosome, bacteria

M00188 NitT/TauT family transport system

M00222 Phosphate transport system

M00223 Phosphonate transport system

M00236 Putative polar amino acid transport system

M00237 Branched-chain amino acid transport system

M00239 Peptides/nickel transport system

M00240 Iron complex transport system

M00250 Lipopolysaccharide transport system

M00254 ABC-2 type transport system

M00255 Lipoprotein-releasing system

M00256 Cell division transport system

M00258 Putative ABC transport system

M00320 Lipopolysaccharide export system

Table 4. Core modules shared between habitats as detected by HUMAnN2.

Figure 3. Metabolic reconstruction and functional biomarkers of metagenomes from oil polluted habitats. 
Cladogram showing a subset of the 4-level KEGG BRITE hierarchical structure denoted by four rings, as 
inferred against KEGG metabolic modules detected by HUMAnN2 from metagenomic gene family abundance 
data produced by PICRUSt for all oil contaminated samples. �e outermost ring represents KEGG functional 
modules that have been detected in at least one of the 65 PICRUSt predicted metagenomes as reconstructed 
by HUMAnN2, while the innermost ring represents the Level 1 KEGG BRITE clades. Di�erentially abundant 
KEGG metabolic modules inferred by LEfSe using KEGG module abundance data generated by HUMAnN2 are 
colored corresponding to the oil contaminated habitat they have been identi�ed to be di�erentially abundant in 
(see legend). Circles not di�erentially abundant in any habitat are colorless. Brackets represent a single KEGG 
BRITE clade at that Level from which daughter clades originate. KEGG BRITE clades with a single daughter 
clade are joined using regular branches. Annotations for the KEGG BRITE hierarchy follow an outside-in 
pattern, wherein Level 1 KEGG BRITE clades are annotated in the outermost section of the cladogram with 
lower clades annotated further inside ending at the outermost circle in that section of the cladogram. More 
information on this style of representation can be found elsewhere28, 36, 83.
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In addition to di�erently covered functional modules, 414 KEGG modules were detected to be di�erentially 
abundant in at least one of the 12 contaminated environments (Fig. 3, Supplementary Fig. S3, Supplementary 
Tables S3 and S6). �e largest number of di�erentially abundant modules were attributed to the OSC samples (70) 
while the least (8) were attributed to the OSTPm samples (Supplementary Fig. S3, Supplementary Tables S3 and S6).  
�e detection of a higher number of di�erentially abundant modules in the OSC samples is possibly due to its 
highly extreme environment as compared to other samples, leading to sequestration of several convenient func-
tions to optimize the use of available resources and counteract distinct environmental stress conditions. On the 
contrary, similar to the result for taxonomic biomarkers, the least number of di�erential functional modules were 
detected in an OSTP sample (OSTPm), with the penultimate spot occupied by Tu samples (13) (Supplementary 
Fig. S3, Supplementary Tables S3 and S6). As explained before, this is not surprising since both taiga and OSTP 
samples share comparatively greater similarity between their habitats leading to an overlap of functional capa-
bilities and hence, fewer unique and over-represented functional modules. Most of the modules for metabolism 
of aromatic hydrocarbons such as xylene degradation (M00537), toluene degradation (M00539), benzoate deg-
radation (M00540 and M00551), salicylate degradation (M00638) and catechol ortho-cleavage (M00568) were 
signi�cantly associated with the OSC samples (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). 
A number of structural complexes implicated in photosynthesis were found to be di�erentially abundant in C 
samples, which included Photosystems I and II (M00163, M00161), the cytochrome b6f complex (M00162) and 
NADP(H): Quinone oxidoreductase for chloroplasts and cyanobacteria (M00145) (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6). Additionally, a plethora of amino acid biosynthesis modules were detected as 
functional biomarkers in the taiga samples. For example, three di�erent KEGG modules for lysine biosynthe-
sis (M00525-M00527), and one each for threonine, methionine and cysteine biosynthesis (M00018, M00017, 
M00021) were signi�cantly abundant in Tb samples while KEGG modules for valine/isoleucine, phenylalanine, 
tyrosine, leucine and isoleucine biosynthesis (M00019, M00024, M00026, M00040, M00432, M00535, M00570) 
were over-represented in Tp samples (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). �e taiga 
samples also exhibited an over-representation for modules involved in the biosynthesis of vitamins and cofactors 
such as heme, pantothenate, ubiquinone, tetrahydrofolate, thiamine and ascorbate (M00127, M00129, M00121, 
M00119, M00128, M00126) (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6).

Overall, all the sites were found to harbor a variety of di�erentially abundant modules dedicated to the trans-
port of saccharides, polyols, peptides, metallic cations, vitamins, amino acids, mineral ions, organic ions, lipids 
and phosphate, underlining the large genetic investment of resident bacteria in the processing of environmental 
information speci�c to the said site (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). However, 
while di�erentially over-represented transport systems for saccharides, polyols and lipids were almost ubiqui-
tously detected, signi�cantly associated transport systems for other substrates as phosphates, amino acids, pep-
tides and organic ions were restricted to certain sites. �is may indicate di�erential availability of these nutrients 
resulting in preferential dependence on certain substrates acquired from the environment and may contribute 

Figure 4. Subset of signi�cant correlations exhibited between KEGG orthologous gene families and bacterial 
clade abundances. Spearman correlations were calculated between KEGG orthologous gene families and 
phylotypes at any taxonomic level from phylum to OTU within 4 oil polluted habitats (habitats with six or more 
samples). A subset of signi�cant associations with correlation >0.7 and p-value < 0.001 reaching a Benjamini-
Hochberg false discovery rate < 0.01 are shown here. Taxonomic clades are represented in rectangles with a 
light purple background and KEGG orthologs are depicted in rectangles with white background (see legend). 
KEGG orthologs are colored according to corresponding KEGG modules, wherever applicable (see legend). 
Correlations for each habitat is depicted using di�erent colors (red, Arctic; blue, China oil re�neries; turquoise, 
Marine sediments; midnight blue, Oil sands core) with positive and negative associations represented by 
continuous and broken arrow lines respectively (see legend).
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to the characteristically di�erent nature of the bacteriomes under consideration. Several di�erentially abundant 
biosynthetic pathways for sugars, amino acids and vitamins were also detected along with a great diversity of two 
component systems catering to a range of functions such as stress and redox response, quorum sensing, chemo-
taxis and heavy metal tolerance across all sites (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). 
Additionally, some modules for atypical energy metabolism as denitri�cation, dissimilatory nitrate reduction and 
dissimilatory sulfate reduction were also detected to be di�erentially abundant and may be important biomark-
ers for the corresponding sites due to their contribution in bacterial respiration (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6). Finally, several modules describing microbial resistance to antibiotics and 
antimicrobial peptides were detected to be over-represented at all sites (Supplementary Tables S3 and S6). �is is 
probably due to the method of ancestral state reconstruction used by PICRUSt for genome prediction, that leads 
to these genes being predicted for consequent metagenomes if input 16S rRNA data includes hits from bacteria 
known to have antibiotic resistance genes. �e possession and even expression of these genes probably will not 
have a signi�cant selective advantage in environments already undergoing natural selection due to oil pollution. 
However, these genes can be contributed by potential pathogens, some of which are known to be proli�c degrad-
ers of petroleum hydrocarbons and therefore warrants precautions to be taken for further ex-silico studies.

Associations between bacterial taxa and metagenomic gene families. Correlations between bac-
terial abundance and functions enriched at di�erent sites were evaluated following a statistical strategy simi-
lar to the approach described by Segata et al.36 (see Materials and Methods: Detection of associations between 
metagenomic gene families and taxa). �e results indicated strong and signi�cant associations between a number 
taxonomic clades and metagenomic gene families predicted by PICRUSt (Fig. 4). A subset of these signi�cant cor-
relations included strong associations between previously detected taxonomic biomarkers and over-represented 
KOs for each site, which further con�rmed the identi�ed taxonomic biomarkers. For example, photosynthetic 
structural complex genes cpeA (K05376) and psb28-2 (K08904), found to be di�erentially abundant in C sam-
ples exhibited strong positive association with an over-represented cyanobacterial order, Oscillatoriophycideae 
(Spearman correlation >0.7, P-value < 0.001) (Fig. 4). Additionally, an array of genes related to polycyclic aro-
matic hydrocarbon degradation such as nidABD, phdFGIEK, and phtAaBC (K11943-48, K18251, K18255-57, 
K18275) were di�erentially abundant in C samples and also signi�cantly positively correlated to known pol-
yaromatic hydrocarbon degrader and taxonomic biomarker Mycobacterium (Spearman correlation >0.7, 
P-value < 0.001)35 (Fig. 4). In other observations, taxonomic biomarkers Microbacterium and Microbacteriaceae 
showed positive correlation with several genes associated with the transport of sugars, saccharides and amino 
acids such as ggtB-D (K10232-34), cebE-G (K10240-42), chvE (K10546), gguA-B (K10547-48), and gluA-D 
(K10005-08) in arctic samples (Spearman correlation >0.7, P-value < 0.001) (Fig. 4). Hydrocarbon degradation 
genes like pcaG (K00448), bbsH (K07546) and pcaL (K14727) were signi�cantly correlated to class Actinobacteria 
in a positive manner in the same samples (Spearman correlation >0.7, P-value < 0.001) (Fig. 4). In the DWH 
samples, Colwelliaceae/Colwellia exhibited positive correlations with both anaerobic C4-dicarboxylate transporter 
(dcuB; K07792) and 2-oxopent-4-enoate/cis-2-oxohex-4-enoate hydratase (bphH, xylJ, tesE; K18820), an enzyme 
implicated in oligosaccharide metabolism (Spearman correlation >0.7, P-value < 0.001) (Fig. 4). Additionally, 
genus HB2.32.21, associated positively with several genes involved in alginate production (alg44, algJXKFE; 
K19291-3, K19295-6, K16081), �agellar synthesis/chemotaxis (qseC; K07645) and aminobenzoate metabolism 
gene regulation (feaR; K14063) (Spearman correlation >0.7, P-value < 0.001) (Fig. 4). Acidobacteria however, 
was found to be negatively correlated with the alkB1-2 gene (K00496) coding for alkane-1-monooxygenase 
(Spearman correlation <−0.7, P-value < 0.001) (Fig. 4) in the DWH samples. �is can be due to a possible neg-
ative e�ect of crude oil contamination on the abundance of Acidobacteria at DWH sites. �is observation is 
also corroborated by a conspicuous absence of any taxonomic biomarker from this phylum for DWH samples 
(Supplementary Fig. S2, Supplementary Tables S2 and S5) and an absent contribution for hydrocarbon deg-
radation capabilities (Supplementary Fig. S5). In OSC samples, positive correlations were detected between 
Methylobacterium and genes involved in furfural degradation (hmfABCDEF; K16874-80) and benzoate degrada-
tion (aliAB, badI; K04116-17, K07536) (Spearman correlation >0.7, P-value < 0.001) (Fig. 4). Methylobacterium, 
although an aerobe37, has been shown to possess anaerobic benzene degradation genes in the genome annotation 
for Methylobacterium extorquens PA1 in the KEGG (http://www.genome.jp/kegg-bin/show_pathway?mex01220). 
Furthermore, several two-component systems (TCS) showed strong positive association with Acinetobacter and 
Enterobacteriaceae in the OSC samples. Acinetobacter was positively correlated with the enrichment of RstA/RstB 
stress response TCS (K07639, K07661), while Enterobacteriaceae showed a�rmative relationships with the aer-
obic stress response sensor kinase ArcB (K07648) and nitrate/nitrite response regulator NarP (K07685) (Fig. 4).

To further understand the association of bacterial clades with gene families speci�cally with respect to hydro-
carbon degradation, we categorized all taxa contributing to the abundance of genes known to be involved in 
hydrocarbon degradation at the family and genus level (Supplementary Fig. S5). �e results showed that sig-
nificant differences existed between major contributors to the abundance of hydrocarbonoclastic genes at 
different sites. For example, abundance for alkane-1-monooxygenase (K00496) was contributed mainly 
by Alteromonadaceae in DWH samples, Comammonadaceae in I, Mycobacteriaceae and Nocardiaceae in 
C, Propionibacteriaceae in OSC, and a mixture of Acetobacteraceae, Mycobacteriaceae, Nocardiaceae and 
Rhodospirillaceae in the taiga samples (Supplementary Fig. S5). Similarly, for protocatechuate-4,5-dioxygenase 
(K04100-01), Alteromonadaceae was again the major contributor for DWH samples, Comamonadaceae 
and Methylobacteriaceae for OSC, Rhodocyclaceae for I, Rhodocyclaceae and Comamonadaceae in OSTP, and 
Comamonadaceae and Bradyrhizobiaceae for taiga samples (Supplementary Fig. S5). �ese di�erences in patterns 
observed at the family level, were even more stark at higher resolutions i.e. genus level, thus e�ectively di�eren-
tiating such metagenomic contributors from site to site. �is was best demonstrated for the hydrocarbonoclas-
tic gene catechol-1,2-dioxygenase (K03381), for which Alteromonadaceae was found to be the most dominant 
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contributor in both DWH and M samples (Supplementary Fig. S5). However, at the genus level, it was seen that 
while HB2.32.21 was the dominant e�ector organism in DWH samples, Marinobacter was the largest metagen-
omic contributor for K03381 in the M samples (Supplementary Fig. S5).

Bacterial interactions in oil polluted environments. To further understand complex ecological rela-
tionships in oil polluted environments, bacterial association networks were deduced from estimated taxonomic 
pro�les. For our study, we concentrated on individual oil polluted habitats with 4 or more samples, i.e. arctic, 
China oil re�neries, oil sands core and so on. �e resulting bacterial correlation networks, inferred at or above 
the species level, constituted 186 signi�cant relationships among 115 phylotypes (OTUs clustered at 97% sim-
ilarity) (P < 0.01) (Fig. 5, Supplementary Table S8). Among the associations deduced to be signi�cant, 72.58% 
were detected to share positive correlations while the rest shared antagonistic relationships. Almost half of the 
co-occurrence patterns identi�ed (46%) were observed between bacteria of the same phyla while more than 
three-quarters of all negative correlations (78%) were detected between bacteria belonging to distinct phyla 
(Fig. 5, Supplementary Table S8). Interestingly, bacterial taxa a�liated to phylum Actinobacteria were involved 
in more same phylum, co-occurrence interactions (i = 25) than bacteria from phylum Proteobacteria (i = 23), 
even though the mean relative abundance of Proteobacteria was much higher than Actinobacteria (Fig. 1, Fig. 5, 
Supplementary Table S8) across all habitats. When computed at the class level, nearly 20% of all positive correla-
tions were observed among bacteria belonging to the same class while almost all co-exclusion patterns observed 
(94%) were between dissimilar classes (Fig. 5, Supplementary Table S8). �us, our results from the inferred bacte-
rial correlation networks indicated that, co-occurrence of phylotypes was closely related to sharing of evolution-
ary lineage. For example, in the OSC habitat, phylotypes belonging to proteobacterial family Oxalobacteraceae 
shared positive pairwise correlations with Moraxellaceae and Enterobacteriaceae phylotypes, both of which 
belong to phylum Proteobacteria (Fig. 5, Supplementary Table S8). Additionally, similar co-occurrence pat-
terns were observed between phylotypes attributed to families belonging to the order Actinomycetales in the 
C samples. Positive pairwise associations were observed in C samples between phylotypes from families 
Micrococcaceae and Nocardioidaceae, Intrasporangiaceae and Mycobacteriaceae with Solirubrobacteraceae, and 
Gaiellaceae and Geodermatophilaceae with Microbacteriaceae, all of which belong to order Actinomycetales 
(Fig. 5, Supplementary Table S8). Furthermore, genera Arthrospira and Phenylobacterium, both of which belong 
to family Caulobacteraceae, co-occurred in the Tu samples (Fig. 5, Supplementary Table S8). Conversely, bacteria 

Figure 5. SparCC network plot of global bacterial interactions in individual oil polluted habitats. Signi�cant 
bacterial associations captured by SparCC (p-value < 0.01) with an absolute correlation magnitude of ≥0.6 are 
presented. Nodes represent detected phylotypes (OTU clustered at 97% similarity) involved in either signi�cant 
co-occurrence (green edges) or co-exclusion (red edges) relationships. Border coloration depicts taxonomic 
a�liation of nodes at the phylum level (see legend). Node size is proportional to the connectivity of the node 
(both positive and negative relationships).
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without evolutionary commonalities tended to be negatively correlated. For example, in DWH samples, antag-
onistic relationships were observed between phylotypes belonging to family Flavobacteriaceae from phylum 
Bacteroidetes and proteobacterial families Desulfuromonadaceae and Desulfobulbaceae (Fig. 5, Supplementary 
Table S8). Similarly, mutual exclusion was observed between phylotypes belonging to family Weeksellaceae of 
phylum Bacteroidetes and Xanthomonadaceae of phylum Proteobacteria in I samples. Additionally, negatively 
correlated associations were observed between phylotypes belonging to genera Dietzia and Chthoniobacter in C 
samples, the former of which belongs to phylum Actinobacteria and the latter to phylum Verrucomicrobia (Fig. 5, 
Supplementary Table S8).

Most phylotype interactions observed in microbial association networks lack any empirical evidence to sup-
port the natural presence of the same. However, the nature of some interactions may be predicted based on 
the biological proclivities of the taxa involved. For example, Cupriavidus shared a signi�cantly negative corre-
lation with Herminiimonas in OSC samples (Fig. 5, Supplementary Table S8). �is antagonistic activity can be 
an outcome of the non-obligate predatory nature of Cupriavidus38, which can be preying on Herminiimonas. 
Additionally, Candidatus Koribacter and Devosia were involved in a signi�cantly positive interaction in Tb sam-
ples (Fig. 5, Supplementary Table S8). It can be speculated that both species, which are known degraders of plant 
polymers39, 40 may be involved in a mutually bene�cial relationship for achieving completion of such an objective. 
Such a possibility is supported by the detection of di�erentially abundant KEGG modules for degradation of 
pectin (M00081) and D-galacturonate (M00631) (Supplementary Fig. S3, Supplementary Tables S3 and S6) in 
Tb samples. An opposite, signi�cantly antagonistic relationship was observed between the chemoorganotrophic 
Microbacterium and Chthoniobacteraceae, both of which are well known degraders of plant polymers41, 42, in the 
C samples. It can be argued that both taxa may be competing for similar resources in the environment and there-
fore are engaged in a competitive relationship (Fig. 5, Supplementary Table S8). Incidentally, a KEGG module for 
degradation of plant-polymer component glucuronate (M00014) was also identi�ed to be di�erentially abun-
dant in these samples (Supplementary Fig. S3, Supplementary Tables S3 and S6). Pseudonocardina was found to 
share signi�cantly negative associations with both Novosphingobium and Bradyrhizobiaceae in Tu samples (Fig. 5, 
Supplementary Table S8). Such an interaction can be theorized to happen due to an antimicrobial activity that 
Pseudonocardina is known to have43. �ese interpretations show that SparCC computed taxonomic correlations 
can therefore provide reasonably relevant targets for hypothesis building and evaluation of co-operative and 
competitive interactions in the environment.

Discussion
�e advent of next-generation sequencing (NGS) technologies has revolutionized investigative approaches into 
microbial processes. �is has led to re-exploration of well-known microbial processes as the nitrogen cycle44, 
methane metabolism45, sulfur cycle46, heavy metal remediation and petroleum bioremediation47 along with exam-
ination of exotic and extreme environments such as deep-sea hydrothermal vents48, cold deserts like Antarctica49 
and remote cave systems50. As a result, a large body of work has accumulated over the years on the microbiologi-
cal study of hydrocarbon degradation using NGS technologies51. Most of these studies employed 16S rRNA based 
amplicon sequencing while some used metagenomic shotgun sequencing for their enquiries. Although some of 
these studies have concentrated on prediction of potential biomarkers for oil pollution in certain environments52, 53,  
no investigative e�ort has been undertaken to use the large amounts of data generated in oil pollution studies 
across the world to review, validate and further these studies. In the present study, we describe taxonomic and 
functional characteristics of oil polluted environments across the world to understand the di�erences and similar-
ities that exist between them. Additionally, we infer several potential biomarkers, both taxonomic and functional, 
along with correlation networks, which provide new insights into the process of oil bioremediation through iden-
ti�cation of important taxa and metabolic pathways in di�erent oil polluted ecosystems. To this end, we have 
used 65 16S rRNA datasets from di�erent studies across the world (Table 1, Supplementary Table S1), including 
4 datasets generated in this study, and carried out robust in-silico analysis with recently developed bioinformatics 
tools to compare and contrast the same. �e principal features and �ndings of our study are discussed below.

Validation of bioinformatic pipeline. To our knowledge this is the only study that has congregated 
existing 16S rRNA gene NGS data generated during experiments on hydrocarbon pollution in di�erent habitats 
around the world to deduce possible biomarkers and associated bacterial characteristics and interactions. �e 
bioinformatics pipeline we designed to analyze this data employed PICRUSt, which is a recently developed tool 
that uses 16S rRNA data to predict metagenomes along with LEfSe which predicts potential biomarkers and 
HUMAnN2 for metabolic reconstruction of PICRUSt predicted metagenomes. It is to be noted however, that 
KEGG orthologs and KEGG module databases for PICRUSt and HUMAnN2 were meticulously updated (pre-
viously PICRUSt KEGG databases included KEGG orthologs only up to K15039 and HUMAnN had a KEGG 
module database represented only up to M00378) to include currently available de�nitions of KEGG functional 
modules and represent the metabolic terrain of environmental habitats in totality, especially with respect to 
hydrocarbon degradation (several KEGG modules for hydrocarbon degradation were absent in the original data-
base). Prediction of metagenomes for petroleum hydrocarbon contaminated habitats will therefore be incomplete 
without the use of the database developed in this study and may constitute a gross misrepresentation of the said 
environments.

It must be noted that although promising, studying of environmental systems and processes through predic-
tion of metagenomes from 16S rRNA data is bound by certain limitations. �e main disadvantages of this method 
include: (i) �e requirement of an updated database for prediction of metagenomes from 16S rRNA data and 
consequent estimation of metabolic pathways present. An obsolete database will lead to identi�cation of a partial 
metagenome and huge loss of information leading to a steep drop in the quality of conclusions drawn. To elabo-
rate in brief, the metagenome prediction relies on sequenced genomes for creation of a prediction database and 
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the availability of sequenced genomes can therefore dictate the quality of the prediction database created. �us, 
non-updated prediction tools will only be able to predict a more complete metagenome for highly studied envi-
ronments like the human gut as opposed to scarcely studied habitats such as hypersaline mats. Fortunately, focus 
on environmental research and large depositions of environmental sequences in public databases in recent years 
has largely bridged this divide. However, caution must be taken considering the type of habitats being analyzed, 
(ii) Due to the inherently predictive nature of the process, some caution must be exercised while interpreting 
results. �is can be done by concentrating primarily on identi�cation of patterns rather than on single points 
of conclusion i.e. relying on several proteins or pathways belonging to the same metabolic grouping to derive a 
conclusion rather than on the presence of one. Additional ex silico work is advised in the latter case. However, for 
obvious reasons, conclusions can be drawn with much more con�dence from 16S rRNA gene datasets that have 
already been published and reviewed and when using an updated prediction database, (iii) Although the process 
is robust and has been proven to be much more than a hypotheses building exercise in a number of studies24, 
conclusions drawn from such bioinformatic pipelines require ex silico con�rmation, similar to any other kind of 
sequencing based experiment.

To con�dently interpret and infer results obtained in this study, we validated our �ndings in both taxonomic 
and functional aspects. For example, a complete convergence of conclusion was observed when comparing our 
inferred taxonomic compositions and biomarkers with the �ndings of Mason et al.54 for the marine sediment 
samples. Our analysis of the marine sediment samples identi�ed a highly dominant Gammaproteobacterial genus, 
HB2-32-21 (Greengenes OTU ID 248394) belonging to the family Alteromonadaceae (Supplementary Table S2) as 
a taxonomic biomarker (Supplementary Fig. S2, Supplementary Tables S2 and S5) and as a signi�cant contributor 
of hydrocarbon degradation capabilities for the habitat (Supplementary Fig. S5). Additionally, Colwelliaceae and 
Rhodobacteraceae were also detected as over-represented taxonomic biomarkers at the Macondo oil contami-
nated DWH sample sites (Supplementary Fig. S2, Supplementary Tables S2 and S5) with the latter contributing 
heavily to the abundance of the hydrocarbonoclastic enzyme, alkane-1-monooxygenase (Supplementary Fig. S5). 
Understandably, all aforementioned taxa were also identi�ed by Mason et al. as exceptionally abundant in oil con-
taminated samples as compared to uncontaminated marine sediment samples. To further this validation, we com-
pared the relative abundances of all taxonomic biomarkers identi�ed in this study for DWH samples with relative 
abundances inferred by Mason et al. To achieve this, we subjected the DWH data to 16S rRNA sequence analysis 
as described previously54 and plotted relative abundances for each study using boxplots generated in R by ggplot2 
(Supplementary Fig. S6). Our results show that, relative abundances inferred in both studies, across all taxonomic 
biomarkers were exceptionally similar. �e only departures from this observation were constituted by the taxa 
Chryseobacterium, Xanthomnadales, Xanthomonadaceae and Weeksellaceae (Supplementary Fig. S6). �is can be 
explained by the di�erences in an updated 16S rRNA SILVA reference database used in the present study against 
the then Greengenes October 2012 release used by Mason et al., where larger number of representative sequences 
for these taxa are present in current databases thereby allowing appropriate recognition of the same. Indeed, the 
highly abundant Xanthomonadales and Xanthomonadaceae were not identi�ed as important taxonomic indica-
tors by Mason et al. Additionally, we compared mean relative abundances for 110 KEGG orthologs implicated 
in xenobiotic degradation as de�ned by KEGG Pathways22 and a subset of the same in terms of counts per mil-
lion for both studies (Supplementary Fig. S6). Our observations show that quantitative dispositions of KOs for 
PICRUSt predicted metagenomes generated in this study and shotgun sequenced metagenomes produced by 
Mason et al. were largely in agreement and reasonably comparable (Supplementary Fig. S6). �e observed con-
sistencies of results obtained in this study with those by Mason et al. thus provided appropriate validation of the 
employed bioinformatic pipeline besides furthering their study by providing new insights.

Important similarities were also discovered between conclusions inferred by An et al.12 and our study, 
regarding the OSC datasets. In the original study by An et al.12, the oil sands core was deduced as an aerobic 
environment with limited oxygen ingress in speci�c regions leading to regional anaerobiasis. �is theory of inter-
mittent oxygen infusion in sections of the oil sands core was strongly supported by the detection of both aerobic 
and anaerobic pathways of hydrocarbon degradation in the oil sands core. For example, in the OSC samples 
we detected di�erentially abundant KEGG modules for aerobic degradation of di�erent hydrocarbons such as 
xylene, benzoate, toluene and cumate including metabolism of corresponding intermediates such as salicylate 
and catechol (M0537-40, M00568, M00638) (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6)55 
alongside a module implicated in anaerobic degradation of benzoate (M00551) (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6)56. �is further validation of our bioinformatic pipeline through uniformity of 
results obtained, indicated the robustness and reliability of the applied computational approaches for interpreta-
tion of environmental 16S rRNA sequence datasets.

Metabolic reconstruction of oil polluted metagenomes reveals important functional pathways 
in petroleum hydrocarbon contaminated habitats. PICRUSt was used to predict metagenomes from 
16S rRNA data and KEGG metabolic modules were detected using HUMAnN2 in order to elaborate the func-
tional landscape of each oil polluted environment. We identi�ed 19 core modules which were present across all 
habitats with a coverage of >90%. Most of these are involved in processes central to survival of bacteria in the 
environment. Furthermore, to identify preferential genetic investments among resident bacteria at each habi-
tat, di�erentially abundant KOs and KEGG modules were detected through LEfSe. Consequently, we analyzed 
over-represented KOs and KEGG modules across all habitats to identify broad metabolic signatures that may be 
indicative of important areas of genetic expenditure, especially outside hydrocarbon degradation.

We identi�ed several di�erential functional pathways dedicated to the transport of certain sugars or lipids, 
biosynthesis of biomolecules, stress response, quorum sensing, metabolism of polysaccharides, assimilation 
and respiration of sulphur and/or nitrogen compounds besides hydrocarbon degradation, across all sites. For 
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example, a collection of putrescine transport complexes (M00193, M00299, M00300) and a transport system 
for arginine/ornithine (M00235) were detected to be di�erentially abundant for the DWH samples (Fig. 3, 
Supplementary Fig. S3, Supplementary Tables S3 and S6). �is sequestration of putrescine transporters along 
with transporters for ornithine, which is readily converted by ornithine decarboxylase to putrescine indicates a 
signi�cant dependence of marine bacteria at oil polluted DWH sites on putrescine. �is can be explained by the 
crucial role putrescine plays in bacteria as an osmoprotectant57, and therefore its prevalence in a marine oil pol-
luted environment. Similarly, availability and possible use of carbon sources besides hydrocarbons was apparent 
in the C samples. �e di�erential presence of a complete complement of D-xylose transport system (M00215) and 
a putative aldouronate transport system (M00603) along with the over-representation of KEGG module M00014 
(Glucuronate pathway), strongly indicated that besides petroleum hydrocarbons, plant wastes may be available as 
possible sources of energy for resident soil bacteria at the China oil re�neries site (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3, S4 and S6). Bacteria are known to extracellularly depolymerize methylglucuronoxylan, 
a polysaccharide made of xylose that constitutes the hemicellulosic component of terrestrial plants58 leading to 
the production of aldouronates and xylooligosaccharides. �ese compounds are taken up and normally converted 
intracellularly to fermentable xylose, leading to generation of energy along with ethanol. Alternatively, D-xylose 
can also be directly taken up from the environment. Also, two structural complexes for transport of peptides/
oligopeptides (M00239 & M00439) were detected to be di�erentially abundant in the C samples along with bac-
terial proteasomes (M00342) (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). �is indicates that 
acquisition of environmental peptides and consequent proteasomal degradation of the same, may be a dominant 
mechanism for obtaining amino acids for assimilatory purposes in the C samples.

Interestingly, the DesK-DesR two-component system (M00479), implicated in regulation of the des gene cod-
ing for a desaturase that helps control the saturation state of membrane lipids at low temperatures59 was detected to 
be di�erentially abundant in the arctic samples (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6).  
Furthermore, the FitF-FitH two component system (M00771), responsible for insecticidal toxin regula-
tion60, was over-represented in the urban site of the Indian oil re�nery samples (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6). �is makes sense, since it has previously been shown that relatively higher 
amount of heat generation in cities compared to rural areas leads to sequestration of insects in urban areas61. 
Sulfur assimilation in bacteria (M00616) was detected to be di�erentially abundant in OSC samples along with a 
number of modules dedicated to transfer of sulfur compounds (M00185, M00234, M00238, M00348, M00435-36)  
indicating a conceivably large genetic investment in scavenging and metabolism of sulfur compounds in this site 
(Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). Di�erential presence of a transport module 
for thiamine (M00191), which is required for assimilation of sulfonate compounds, adds further credence to 
this notion (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). Additionally, di�erential detection 
of assimilatory nitrate reduction module (M00531) also indicates the capability of the OSC bacteriome to use 
such compounds for their proliferation (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). Sulfate 
and nitrate ions are also important molecules in anaerobic respiration, and therefore may play crucial roles in 
bacterial survival in the anaerobic regions of the OSC. Interestingly, reduction of nitrate has been reported to be 
closely linked to anaerobic degradation of benzene and concomitant growth62, functional modules for both of 
which have been di�erentially detected in OSC samples (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 
and S6). Unlike other oil polluted sites, several hydrocarbonoclastic modules were di�erentially detected in the 
OSC samples (see previous section), whereas only two transport systems for small sugars (M00204, M00215) and 
no major polysaccharide metabolism and/or transport pathways were detected to be over-represented (Fig. 3, 
Supplementary Fig. S3, Supplementary Tables S3 and S6). �is indicates large adaptations in the bacteriome of the 
OSC directed at the utmost utilization of available petroleum hydrocarbons against a possibly restricted supply of 
other carbon sources leading to the large clustering of di�erentially abundant hydrocarbon degradation pathways 
in the OSC samples.

Multiple functional modules related to methane metabolism, both methanogenic and methanotrophic, 
were detected to be over-represented for the OSTP samples. For example, methanogenesis (M00356) was 
over-represented in OSTPu, along with methane assimilation modules M00344-45 and M00608 detected to 
be di�erentially abundant in OSTPu and OSTPm respectively (Fig. 3, Supplementary Fig. S3, Supplementary 
Tables S3 and S6). Oil sands tailings ponds are known to be important sources of methanogenesis and of 
methylotrophy12, where deeper regions tend to be highly anaerobic. Additionally, modules for copper process-
ing (M00762) and copper tolerance sensor (M00452) were detected in OSTPd (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6). �is is important, since copper is an essential component of the particulate 
methane monooxygenase (pMMO), and its availability can therefore determine the survivability of methano-
trophs63 along with the ratio of soluble and particulate MMO in the environment.

Several KEGG modules dedicated to the biosynthesis of amino acids, vitamins and co-factors were detected 
to be over-represented in the taiga samples (see above) (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 
and S6). �is is indicative of the metabolic versatility of the taiga bacteriomes regarding amino acid, vitamin and 
co-factor metabolism. Steep enrichment of these KEGG modules in the taiga samples may be due to characteristic 
environmental conditions of the taiga and requires further studies to decipher the speci�c reasons behind such 
an adaptation. �e identi�cation and importance of di�erentially abundant modules for sulfur containing amino 
acid biosynthesis (M00017, M00021) is further supported by the detection of over-represented sulfur assimila-
tion modules (M00176, M00595) which involve biosynthesis of cysteine and methionine as �nal/supplementary 
steps64, 65 (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). Additionally, capabilities of the taiga 
bacteriome to degrade complex plant polymers and a possible presence of alternative carbon sources such as 
pectin and component sugars of other plant polysaccharides can be inferred through the presence of di�eren-
tially abundant functional modules for pectin degradation (M00081), and uptake and metabolism of other sugar 
and sugar derivatives such as N-Acetylglucosamine, N, N’-Diacetylchitobiose, D-glucuronate, aldouronates, and 
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D-galactouronate (M00606, M00205, M00061, M00603, M00631) (Fig. 3, Supplementary Fig. S3, Supplementary 
Tables S3 and S6).

In the M samples, two component systems for starvation of phosphate (M00434), a limiting nutrient for man-
groves34 and metal tolerance (M00499) were detected as di�erentially abundant (Fig. 3, Supplementary Fig. S3, 
Supplementary Tables S3 and S6). Genetic investment in metal tolerance should be important in M samples as 
mangroves in Brazil are routinely subjected to pollution from factory e�uents52. Furthermore, the clustering of 
di�erentially abundant central carbohydrate metabolism pathways (M00001-2, M00004, M00009, M00011) along 
with transport systems for sugars like fructose (M00273) in M samples, indicate the possible availability of simple 
sugars as carbon sources besides hydrocarbons (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6) 
and a concurrent ability to use the same. �is observation is also supported by the detection of a di�erentially 
abundant module for the synthesis of trehalose (M00565), a known carbohydrate energy storage compound and 
anti-desiccation agent66, from glucose (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6).

All functional modules for degradation of aromatic hydrocarbons were detected to be di�erentially abundant 
in OSC, DWH, taiga and OSTP (in that order) samples (Supplementary Fig. S3, Supplementary Tables S3 and S6). 
�is is probably because these environments tend to be more extreme than other sites described in this study and 
coupled with oil pollution, the bacterial metabolic pathways in these environments have been further sculpted to 
rely greatly only on petroleum hydrocarbons for growth. Additionally, sulfate and nitrate utilization modules have 
been identi�ed in most of these sites, which indicates the ability of these bacteriomes to possibly couple atypical 
metabolic pathways to anaerobic alkane degradation, as has been previously described67. Our results thus indi-
cate that for all habitats, genetic composition of the bacteriome is representative of the immediate environment 
especially in terms of substrate usage, nutrient availability, energy metabolism, biosynthesis of compounds, and 
survival strategies including quorum sensing, chemotaxis, and stress response. Our �ndings reveal pathways dif-
ferentially important in these oil polluted environments, especially those not related to hydrocarbon degradation 
and can therefore be used for di�erentiation between habitats of interest. Further empirical studies will however 
be required to strengthen these observations and pinpoint functional biomarkers absolutely exclusive to oil pol-
luted environments in speci�c biomes.

Taxonomic biomarkers make important contributions to hydrocarbonoclastic and additional 
functional capabilities in oil polluted environments. Taxonomic clades that are di�erentially abun-
dant in oil polluted sites used in the present study were inferred using taxonomic pro�les generated through 
analysis of 16S rRNA data in mothur by LEfSe. Additionally, to decipher functional associations of taxonomic 
clades, direct correlations between KOs and taxa were determined along with metagenomic contributions to 
hydrocarbonoclastic genes. Furthermore, bacterial co-occurrence and co-exclusion networks were deduced to 
understand important bacterial interactions in oil polluted sites. Our �ndings suggest that, taxonomic biomarkers 
inferred in our study contribute signi�cantly to important functions in the oil polluted metabolic landscape and 
are o�en determined by their oil degradation capabilities. For example, biomarkers for DWH samples HB2.32.21 
and Alteromonadaceae (Table 3, Supplementary Fig. S2, Supplementary Tables S2 and S5), were associated 
with over-represented KOs implicated in alginate biosynthesis (Fig. 4). Moreover, a two-component pathway 
involved in the regulation of alginate production (M00505) was also di�erentially abundant in DWH samples 
(Supplementary Tables S3 and S6). Interestingly, previous studies have shown that alginates provide increased 
mechanical stability to bacterial bio�lms68, and can therefore be instrumental in aiding anchorage or adhesion 
of DWH Alteromonadaceae. HB.32.21 and Alteromonadaceae were found to be important contributors in hydro-
carbonoclastic properties of the DWH bacteriome (Supplementary Fig. S5) and the former also exhibited strong 
associations with regulation of genes for aminobenzoate metabolism through feaR (see Results). Furthermore, 
another taxonomic biomarker identi�ed for DWH samples, Colwelliaceae, was closely associated to the anaerobic 
C4-dicarboxylate transporter DcuB (see Results), which is responsible for transport of molecules as fumarate, 
succinate and malate69. �is is important, as it may help the facultatively aerobic Colwelliaceae to degrade alkanes 
anaerobically by addition of fumarates in marine sediments67. Similarly, Mycobacterium was detected as a bio-
marker for C samples (Supplementary Fig. S2, Supplementary Tables S2 and S5) and correlated strongly with KOs 
implicated in degradation of hydrocarbons such as naphthalene, benzoate and phthalate (Fig. 4). Additionally, 
Mycobacterium also made major contributions to the aliphatic hydrocarbonoclastic capabilities of the habitat 
through the gene alkane-1-monooxygenase (K00496) (Supplementary Fig. S5). Hence, it can be conceived that 
Mycobacterium is one of the most important hydrocarbon degraders in these samples and may have made sig-
ni�cant genetic investments for utilization of contaminating crude oil in C samples. Mycobacterium, a known 
human pathogen, is a well-known degrader of petroleum hydrocarbons and has previously been shown to har-
bor the ability to degrade a variety of aromatic hydrocarbons such as naphthalene, anthracene, phenanthrene, 
pyrene and so on35. Phylum Cyanobacteria, a biomarker for C samples (Supplementary Fig. S2, Supplementary 
Tables S2 and S5), strongly correlated with di�erentially abundant photosynthetic proteins cpeA (K05376) and 
psb28-2 (K08904) through an over-represented cyanobacterial order for C samples, Oscillatoriophycideae (Fig. 4, 
Supplementary Fig. S2, Supplementary Tables S2 and S5). Additionally, KEGG modules for photosynthesis 
such as Photosystems I and II (M00163, M00161), cytochrome b6f complex (M00162) and NADP(H):quinone 
oxidoreductase for chloroplasts and cyanobacteria (M00145) were also found to be over-represented in C samples 
(Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). �ese observations indicated important, di�er-
ential and extra-hydrocarbonoclastic contributions of Cyanobacteria in C samples.

Microbacterium, which is known to be a stringent chemoorganotroph70, was identi�ed to be di�erentially 
abundant in A samples (Supplementary Fig. S2, Supplementary Tables S2 and S5). Microbacterium was found 
to share close associations with KOs involved in over-represented transport systems dedicated to acquisition 
of organic compounds such as cellobiose (M00206), alpha-glucosides (M00201), glutamate (M00227, M00233) 
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and multiple sugars (M00207, M00216, M00221) (Fig. 4), which can be used as possible sources of carbon and 
energy by it and indicates a probable availability of the same in the environment. Phylum Actinobacteria and 
class Actinobacteria, which were detected as biomarkers in the A samples, exhibited signi�cant correlations 
with almost all di�erentially abundant KOs for A samples including hydrocarbon degrading genes as pcaG, 
phenol-2-monooxygenase, bbsH, and pcaL (data not shown).

In OSC samples, over-represented taxa Methylobacterium was associated with genes involved in degradation 
of furfural and other hydrocarbons (Supplementary Fig. S2, Supplementary Tables Ss and S5). �e presence of the 
strongly aerobic Methylobacterium37 once again reinforces the �nding of ample availability of oxygen in the OSC. 
Interestingly, di�erentially abundant taxa Enterobacteriaceae and Acinetobacter were detected to be associated 
with several KOs implicated in stress response which included two-component system KOs for aerobic/anaerobic 
survival as ArcB and NarP and transcriptional regulation of the mar-sox-rob regulon (Supplementary Fig. S2, 
Supplementary Tables S2 and S5). �e mar-sox-rob regulon has been reported in coordinating survival against 
various environmental stresses activated by inducers as paraquat, decanoate and intriguingly, salicylate71, func-
tional modules for which is di�erentially abundant in OSC samples (Supplementary Fig. S3, Supplementary 
Tables S3 and S6). Additionally, Acinetobacter was correlated with the stress response serine protease DegS and 
iron starvation Fe/S biogenesis protein NfuA (Fig. 4). �us, these biomarkers seem to contribute to important 
stress response pathways rather than hydrocarbon degrading capabilities. Additionally, over-represented taxa 
such as Oxalobacteraceae, Cupriavidus, Brucellaceae, and Ochrobactrum (Supplementary Fig. S2, Supplementary 
Tables S2 and S5) were found to di�erentially contribute to the abundance of several hydrocarbonoclastic genes 
(K00446, K00448-51, K03381) (Supplementary Fig. S5) in the OSC samples.

In taiga samples, several detected biomarkers such as Phenylobacterium, Caulobacteraceae, 
Sphingomonadaceae, Novosphingobium, Rhodococcus, and Burkholderiaceae (Table 3, Supplementary Fig. S2, 
Supplementary Tables S2 and S5) were found to contribute heavily but di�erently to the abundance of a pleth-
ora of hydrocarbonoclastic genes (Supplementary Fig. S5). Additionally, identi�cation of di�erentially abundant 
functional modules for the assimilation of sulphate, transformation of thiosulphate to sulphate and regulation of 
the SOX complex responsible for thiosulphate transformation (M00176, M00595, M00523) underline the pref-
erential sulphur usage in this site (Fig. 3, Supplementary Fig. S3, Supplementary Tables S3 and S6). �is is well 
supported by the identi�cation of Bradyrhizobium, Caulobacter, and Burkholderia as biomarkers (Supplementary 
Fig. S2, Supplementary Tables S2 and S5), all which are known to be involved in sulfur metabolism72, 73 and 
house homologous genes for the same. The pathogenic Burkholderia, a taxonomic biomarker for Tb sam-
ples (Supplementary Fig. S2, Supplementary Tables S2 and S5), although known for its hydrocarbon degradation 
capabilities32 was found to make only minor contributions to the abundance of a few hydrocarbonoclastic genes 
(K03381, K00448-449, K00451) (Supplementary Fig. S5) and therefore may not play a major remedial role in the 
taiga samples but contribute di�erently to the habitat. Importantly, a number of biomarkers identi�ed here for the 
taiga samples such as Phenylobacterium, Sphingomonadaceae, Novosphingobium and Rhodococcus were detected 
as “habitat specialists” in oil contaminated taiga samples recently by Yang et al.74.

Anaerobic, photoautotrophic Ignavibacteriaceae, was identified as a biomarker in I samples (Table 3, 
Supplementary Fig. S2, Supplementary Tables S2 and S5). Additionally, KEGG modules such as dissimilatory 
sulfate reduction, sulfate = >H2S (M00596) and NarX-NarL (nitrate respiration) two-component regulatory 
system (M00471; also found to be present with complete coverage) were found to be di�erentially abundant in 
these samples (Fig. 3, Table 4, Supplementary Fig. S3 and S4, Supplementary Tables S3, S4 and S6). �is indi-
cated that anaerobic processes and taxa play a major role in the oil contaminated I samples. Simultaneous iden-
ti�cation of over-represented aerobic pathways such as formaldehyde assimilation, serine pathway (M00346) 
(Supplementary Fig. S3, Supplementary Tables S3 and S6) and differentially abundant aerobic taxa such as 
Methylibium, Chitinophagaceae and sulfate oxidizing �iobacillus (Table 3, Supplementary Fig. S2, Supplementary 
Tables S2 and S5) however indicated that these environments may also have aerobic aspects. Microbial association 
network inferred for I samples showed a large proportion of signi�cant interactions to be antagonistic in nature. 
Microbial relationships in the I samples showed intense competition among taxa which included both aerobic 
(Parvibaculum, Chitinophagaceae, Acidocella) and anaerobic bacteria (Anaerolineales, Ignavibacteriaceae) (Fig. 5, 
Supplementary Table S8). �ese observations of an intertwined network of anaerobic and aerobic bacteria along 
with �ndings stated above indicate co-existence of these taxa in relative proximity with competition for resources 
and a possibly microaerophilic or partially anaerobic oil polluted habitat. One of only two signi�cantly positive 
correlations in I samples was found to be shared between Methylibium and Parvibaculum (Fig. 5, Supplementary 
Table S8). Methylibium petroleiphilum was also detected as a biomarker for I samples and contributed signi�-
cantly to the hydrocarbon degradation capabilities at these sites (Supplementary Fig. S2 and S5, Supplementary 
Tables S2 and S5). Methylibium petroleiphilum, an aerobic bacterium, has previously been reported to degrade 
hydrocarbons such as methyl tert-butyl ether, a compound frequently used in oil re�neries75. It can therefore be 
speculated that these two taxa may be involved in a mutualistic relationship, possibly concerning hydrocarbon 
degradation, wherein the metabolically better adapted Methylibium may provide Parvibaculum with a competi-
tive edge and facilitate its enrichment in the I samples (Fig. 5, Supplementary Table S8).

Similar to the results of An et al.12, we encountered a signi�cantly high proportion of anaerobic taxa in the 
OSTP samples, among which Anaerolinaceae, Syntrophaceae, Desulfobulbaceae, Peptococcaceae, Geobacteraceae, 
Syntrophorhabdaceae and the thermophilic Caldiserica76 were detected as biomarkers (Table 3, Supplementary 
Fig. S2, Supplementary Tables S2 and S5). Detected taxonomic biomarkers such as Anaerolinaceae and 
Comamonadaceae (Table 3, Supplementary Fig. S2, Supplementary Tables S2 and S5) were found to make signi�-
cant contributions to the abundance of hydrocarbon degradation genes (Supplementary Fig. S5) in OSTP samples. 
Other identi�ed biomarkers such as Geobacteraceae and �auera (Table 3, Supplementary Fig. S2, Supplementary 
Tables S2 and S5) are well known anaerobic hydrocarbon degraders77, 78. Additionally, another detected bio-
marker Nitrospirales (Supplementary Fig. S2, Supplementary Tables S2 and S5), which is known to be involved 
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in nitri�cation79 may contribute to an over-represented module ammonia = > nitrite transformation (M00528) 
that was identi�ed in OSTP samples (Supplementary Fig. S3, Supplementary Tables S3 and S6). Biomarkers of 
sulfate reducing bacteria such as Desulfuromonadales and Desulfobulbaceae (Table 3, Supplementary Fig. S2, 
Supplementary Tables S2 and S5), which is a known mesophilic/psychrophilic sulfate reducer80, may be involved 
in critical sulfur metabolism pathways known to be important in OSTPs81. Interestingly, obligate anaerobes 
such as Anaerolinaceae have previously been associated with sulfate reducing conditions in the OSTPs82. Lastly, 
major contributions for hydrocarbonoclastic capabilities in OSTP samples was also observed from biomarkers  
Pseudomonas (K00446, K00448, K00449, K00496, K03381) and Rhodocyclaceae (K04100-01) (Table 3, 
Supplementary Fig. S2 and S5, Supplementary Tables S2 and S5) furthering the hydrocarbon degradation capa-
bilities of OSTPs.

We also investigated signi�cant bacterial associations in oil polluted sites to decipher important co-occurrence 
and co-exclusion relationships. Our results showed that greater co-occurrence exists between phylotypes sharing 
an evolutionary lineage while more co-exclusions were observed between phylotypes from di�erent ancestries. �is 
observation has also been previously reported in microbial correlation studies in the environment46, 83. Interestingly, 
not a large proportion of taxonomic biomarkers were observed to be represented in these signi�cant correlations. 
�is can possibly happen due to separation of niches due to various environmental and even temporal factors. For 
example, in the bacterial association network for DWH samples, biomarker Colwelliaceae was detected to participate 
in a signi�cantly positive relationship with Desulfobulbaceae, a strictly anaerobic sulfate utilizing bacterial family 
(Fig. 5, Supplementary Table S8). �e existence of this kind of a relationship, based on degradation of recalcitrant 
hydrocarbons, was inferred upon by the original authors too54. Strikingly however, the most abundant and robust 
hydrocarbon degrader predicted for DWH samples in our study, i.e. HB2.32.21 (Supplementary Fig. S5) was not 
detected to be involved in any signi�cant associations. �is observation can be explained by a possible individual 
capacity of survival for HB2.32.21 due to its hydrocarbonoclastic capacities without extensive interactions with other 
resident bacteria, therefore occupying a separate niche in the oil polluted marine sediment site. �us, signi�cant 
correlations (both positive and negative) may be driven by factors other than only oil pollution in oil contaminated 
sites with apparently benign taxa being involved in such interactions. �is indicates that biomarkers and correlation 
networks must be studied in tandem to deduce meaningful conclusions.

Our results therefore show that, detected biomarkers may contribute di�erently to strictly hydrocarbono-
clastic properties when compared across sites, but their close association with most di�erentially abundant KOs 
and as an extension, several over-represented functional pathways for each site underlines their signi�cance in 
these oil contaminated sites. We �nd that although many of the taxonomic biomarkers contribute to hydrocar-
bonoclastic capabilities, some do not and can therefore contribute to other possibly important functions. �ese 
observations not only elucidate important taxa contributing functions more speci�c and essential to each site, but 
also shows that niches related to functions other than hydrocarbon degradation may signi�cantly in�uence bac-
teriome structure in oil polluted sites, possibly more in sites with understandably lower degrees of contamination. 
�is indicates clearly that while hydrocarbonoclastic capabilities may be a driving force for continued survival 
in these sites, other immediate factors including availability of di�erent organic and inorganic compounds and 
environmental stress can heavily in�uence evolution of the bacteriome also. �us, we see that a combination of 
oil degradation capabilities and environmental factors shape the landscape for bacterial petroleum degradation. 
As an extension, it therefore becomes imperative to examine oil bioremediation processes, especially aimed at 
empirical identi�cation of biomarkers, in totality with due comparison to similar studies and not in isolation 
as it may lead to misleading conclusions. �is is well illustrated in some previous studies that have focused on 
predicting microbial markers or proxies for oil pollution in certain environments52, 53. In the study on man-
grove oil pollution and detection of microbial proxies by dos Santos et al.53, Marinobacter, belonging to family 
Alteromonadaceae, was identi�ed as a possible biomarker for oil pollution in mangroves. However, in our study 
when compared to other sites, Alteromonadaceae was detected to be di�erentially abundant in the DWH samples 
and Marinobacter was not identi�ed as over-represented in any of the oil polluted sites (Table 3, Supplementary 
Fig. S2, Supplementary Tables S2 and S5).

Conclusion
Meta-omics approaches such as meta-genomics, transcriptomics or proteomics, integrated with an in-depth anal-
ysis of large and exhaustive datasets using state-of-the-art bioinformatic tools bound in e�cient cohesion o�er 
enhanced and possibly novel interpretations of microbial and trophic associations occurring in the environment. 
In this study, we have implemented an atypical, evolving computational pipeline, that employs contemporary 
bioinformatic contrivances to explore and decipher characteristics of bacterial response to oil contamination in 
diverse environments from 16S rRNA sequence datasets. Our study showed that signi�cant taxonomic and func-
tional di�erences exist between geographically and/or spatially isolated oil polluted sites and that oil pollution 
is not the sole driving factor in determination of the metagenomic fabric at these sites, even if maybe the most 
predominant one. We have successfully demonstrated that several important taxonomic clades and functional 
modules detected for these habitats are o�en involved in extra-hydrocarbonoclastic activities, thus underlining 
the importance of these apparently peripheral niches related to endemic environmental responses in the survival 
of oil contaminated ecosystems. In the process, we inferred robust taxonomic and functional biomarkers along 
with competitive and cooperative interactions among bacteria at diverse oil contaminated sites, that are repre-
sentative of an entire oil polluted habitat and not only its hydrocarbonoclastic capabilities. To our knowledge, this 
is the �rst population genomics study carried out on petroleum hydrocarbon polluted habitats. �e present study 
contributes novel insights into the complex ecological dynamics of oil polluted bacteriomes besides providing 
relevant analytical and visualization methods for studying the relation between soil biodiversity and ecosystem 
function from environmental 16S rRNA phylogenetic survey data.
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